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Abstract

We show a connection between the deMorgan formula size of a Boolean function
and the noise stability of the function. Using this connection, we show that the Fourier
spectrum of any balanced Boolean function computed by a deMorgan formula of size
s is concentrated on coefficients of degree up to O(

√
s).

These results have several applications that apply to any function f that can be
computed by a deMorgan formula of size s. First, we get that f can be approximated
(in L2-norm) with constant error by a polynomial of degree O(

√
s). Second, we show

an upper bound of O(
√
s) on the average sensitivity of f .

Our main result stems from a generalization of Khrapchenko’s bound [Khr71], that
might be of independent interest, and some Fourier analysis on the Boolean cube.

Previous works prove that any function f : {0, 1}n → {0, 1} that can be computed
by a deMorgan formula of size s, can be approximated point-wise by a polynomial of
degree O(s1/2+o(1)) with constant point-wise error. We note that this result can be
easily extended to have a polynomial of degree O(t ·s1/2+o(1)) that approximates f with
point-wise error 2−t, for any t > 0. This was shown in a long line of results in quantum
complexity, including [BBC+01] and [FGG08, ACR+07, RS08, Rei09].

1 Introduction

In the seminal paper of Linial, Mansour and Nisan [LMN93], it is shown that every Boolean
function that can be computed by an AC0 circuit, has a low-degree polynomial that ap-
proximates the function with error exponentially decreasing in the degree. Construction of
low-degree polynomials that approximate Boolean functions is a central tool in complexity
theory that has numerous applications. In particular, the result of [LMN93] has various
applications in many fields such as learning theory, cryptography, pseudorandomness and
derandomization.
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In this work, we show several results regarding deMorgan formulas. A deMorgan formula
is a Boolean formula over the basis B2 = {∨,∧,¬} with fan in at most 2. A deMorgan
formula is represented by a tree such that every leaf is labeled by an input variable and
every internal node is labeled by an operation from B2. A formula is said to compute a
function f : {0, 1}n → {0, 1} if on input x ∈ {0, 1}n it outputs f(x). The computation is
done in the natural way from the leaves to the root. The size of a formula is defined as the
number of leaves it contains. For a Boolean function f we denote by L(f) the size of the
smallest deMorgan formula that computes f .

We show a connection between the deMorgan formula size of a Boolean function and the
noise stability of the function. Let f : {0, 1}n → {0, 1} be a Boolean function. For every
p ∈ (0, 1/2] we show that

NSp(f) ≥ 1− 2p
√
L(f) · ‖f‖2 · (1− ‖f‖2)

where ‖f‖ denotes the L2-norm of f , and NSp(f) is the noise stability of f with parameter
p, as formally defined in Definition 2.9.

In addition, we show that the Fourier spectrum of a balanced Boolean function is concen-
trated on coefficients of degree up to O(

√
L(f)). More formally, for every Boolean function

f : {0, 1}n → {0, 1} and every ε > 0, we show that for k =
√

L(f)·(1−‖f‖2)
ε2·‖f‖2 it holds that∑

S⊆[n],
|S|<k

f̂(S)2 ≥ ‖f‖2 (1− ε)

where f̂(S) denotes the Fourier coefficient of f at S. This implies that f can be approximated
(in L2-norm), with error ε‖f‖2, by a polynomial of degree < k. Notice that if ‖f‖2 < 1/2
then one may prefer to approximate 1 − f rather than f . We note that the quadratic
dependence between L(f) and the degree of the approximating polynomial is tight, since the
parity function over n variables is computed by a deMorgan formula of size Θ(n2) and its
Fourier representation is concentrated on the largest coefficient.

Another application of our results is an upper bound on the average sensitivity of f .
We show that AS(f) ≤ O(

√
L(f) · ‖f‖2 · (1 − ‖f‖2)), where AS(f) denotes the average

sensitivity of f , as formally defined in Definition 8.2.

1.1 Previous Work

Previous works give an upper bound on the degree of an approximating polynomial using
tools from quantum complexity. Specifically, for every Boolean function f , Beals et al.
[BBC+01] show that if f has a q-query bounded-error quantum algorithm (in the black box
model), then there exists a polynomial of degree at most 2q that approximates f . Moreover,
in a line of works in quantum query complexity [FGG08, ACR+07, RS08, Rei09] it is shown
that if a Boolean function f : {0, 1}n → {0, 1} can be computed by a deMorgan formula of
size s, then there is a quantum black box algorithm that computes f in O (

√
s · logn/log logn)
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queries, suffering from a point-wise error of 1/3. By repeating independent applications of
the algorithm, one can increase the number of queries to O (t ·

√
s · logn/log logn) and reduce

the point-wise error to 2−t. Combining both of these results proves that every function f :
{0, 1}n → {0, 1} that can be computed by a deMorgan formula of size s can be approximated
by a polynomial of degree O (t ·

√
s · logn/log logn) up to point-wise error of 2−t.

This result and our result are incomparable. Let f : {0, 1}n → {0, 1} be a Boolean
function that can be computed by a deMorgan formula of size s. Our result gives L2-norm
approximation which is tight in the degree (i.e, O(

√
s)) for a constant ε. Moreover, our

result is achieved using simple classical tools such as Khrapchenko’s bound [Khr71] and
Fourier analysis on the Boolean cube. The previous result is achieved using tools from
quantum computing and quantum query complexity. The previous result gives a point-wise
approximation by a polynomial which is almost optimal in the degree and with exponentially
small point-wise error.

We note that there are results regarding the sign degree of functions that can be computed
by small deMorgan formulas. The sign degree of a function is the minimal degree of a
polynomial that agrees in sign with the function. In particular, combining the results of
[FGG08, ACR+07, RS08, Rei09] with the work of Lee [Lee09] fully resolves a conjecture by
O’Donnell and Servedio [OS03] which states that the sign degree of every Boolean function
that can be computed by a deMorgan formula of size s is O(

√
s).

As we have already mentioned, our main results (see Section 3) follow from a generaliza-
tion of Khrapchenko’s bound on the size of deMorgan formulas. Various generalizations of
Khrapchenko’s bound were used in the past in numerous works. Zwick [Zwi91] extended the
definition of formula size to handle weighted input variables and generalized Khrapchenko’s
bound to cover the new definition. Koutsoupias [Kou93] was able to extend Khrapchenko’s
bound with a spectral version to give better lower bounds for specific functions. H̊astad
[H̊as98] showed that the shrinkage exponent of Boolean deMorgan formulas (for the exact
definition see [H̊as98]) is 2. One of the components in his proof is a lower bound on the
deMorgan formula size that depends on the probability that some restrictions occur (for the
exact formulation see [H̊as98]). H̊astad proves that indeed this lower bound is a generalization
of Khrapchenko’s bound. Laplante, Lee and Szegedy [LLS06] introduce a new complexity
measure for Boolean functions that is a lower bound on the deMorgan formula size. They
show that several deMorgan formula size lower bounds (including [Khr71, Kou93, H̊as98])
are, in fact, a special case of their method.

2 Preliminaries

We start with some general notation. We denote by [n] the set of numbers {1, 2, . . . , n}. For
i ∈ [n] and for x ∈ {0, 1}n, denote by xi the i-th bit of x. We denote by wt(x) the Hamming
weight of a string x ∈ {0, 1}n (i.e. the number of 1’s in the string). We denote by ∆(x, y)
the Hamming distance between two strings x, y ∈ {0, 1}n (i.e. the number of coordinates in
which x and y differ). In addition, for simplicity, we define 0

0
= 0.
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2.1 DeMorgan Formulas

Throughout the paper we will only consider deMorgan formulas and not always explicitly
mention it.

Definition 2.1. A deMorgan formula is a Boolean formula with AND, OR and NOT gates
with fan in at most 2.

Definition 2.2. The size of a formula F is the number of leaves in it and is denoted by
L(F ). For a function f : {0, 1}n → {0, 1}, we will denote by L(f) the size of the smallest
formula computing the function f .

2.2 Fourier Analysis

For each S ⊆ [n], define χS : {0, 1}n → {−1, 1} as χS(x) =
∏

i∈S(−1)xi . It is well known
that the set {χS}S⊆[n] is an orthonormal basis (called the Fourier basis) for the space of all
functions f : {0, 1}n → R. It follows that every function f : {0, 1}n → R can be represented
as

f(x) =
∑
S⊆[n]

f̂(S)χS(x)

where f̂ : {0, 1}n → R, and f̂(S) is called the Fourier coefficient of f at S ⊆ [n].

Definition 2.3. We define the inner product 〈·, ·〉 on pairs of functions f, g : {0, 1}n → R
by

〈f, g〉 =
1

2n

∑
x∈{0,1}n

f(x)g(x) = E
x∈{0,1}n

[f(x)g(x)]

2.2.1 Basic Properties

Proposition 2.4. For f : {0, 1}n → R and S ⊆ [n], the Fourier coefficient of f at S is

f̂(S) = 〈f, χS〉 =
1

2n

∑
x∈{0,1}n

f(x)χS(x)

Proposition 2.5. Consider functions f, g : {0, 1}n → R. Since {χS}S⊆[n] forms an or-
thonormal basis for the space of functions from {0, 1}n to R, we get Plancherel’s theorem

〈f, g〉 =
∑

S,T⊆[n]

f̂(S)ĝ(T ) 〈χS, χT 〉 =
∑
S⊆[n]

f̂(S)ĝ(S)

In particular, the orthonormality of the basis gives the known Parseval theorem∑
S⊆[n]

(
f̂(S)

)2

= 〈f, f〉 = ‖f‖2

where ‖f‖ denotes the L2-norm of f .

4



2.2.2 Convolution

We begin by defining the convolution operation.

Definition 2.6 (Convolution). Let f, g : {0, 1}n → R. The convolution f ∗ g : {0, 1}n → R
is defined as follows

(f ∗ g)(x) =
1

2n

∑
y∈{0,1}n

f(x⊕ y)g(y)

We state the well known convolution theorem.

Proposition 2.7 (The Convolution Theorem). Let f, g : {0, 1}n → R.

f̂ ∗ g(S) = f̂(S)ĝ(S)

2.3 Fourier Coefficients of Product Functions

We prove a simple lemma regarding Fourier coefficients of functions which are product func-
tions. This lemma is useful to analyze Fourier coefficients of some specific functions.

Proposition 2.8. Let f : {0, 1}n → R be a function such that f(x) = g(x1) · · · · · g(xn) for
some function g : {0, 1} → R. It holds that for S ⊆ [n],

f̂(S) = ĝ(S1) · · · · · ĝ(Sn)

where Si = {1} if i ∈ S and Si = ∅ otherwise.

Proof. By the definition of Fourier coefficient (Proposition 2.4), we get that

f̂(S) =
1

2n

∑
x∈{0,1}n

f(x)χS(x)

=
1

2n

∑
x∈{0,1}n

g(x1) · · · · · g(xn)χS1(x1) . . . χSn(xn)

=

1

2

∑
x1∈{0,1}

g(x1)χS1(x1)

 · · · · ·
1

2

∑
xn∈{0,1}

g(xn)χSn(xn)


= ĝ(S1) · · · · · ĝ(Sn)

as needed.

2.4 Noise Stability

We define the noise stability of a Boolean function.
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Definition 2.9 (Noise stability). Let f : {0, 1}n → {0, 1} be a Boolean function. For
p ∈ [0, 1] and x ∈ {0, 1}n, define Np(x) to be the distribution of a random element y ∈ {0, 1}n
which satisfies Pr[xi 6= yi] = p, independently for all i ∈ [n]. The p-noise stability of f is

NSp(f) = Pr
x∈{0,1}n,
y∼Np(x)

[f(x) = f(y)]

3 Main Results

Let f : {0, 1}n → {0, 1} be a function that can be computed by a small deMorgan formula
and let g : {0, 1}n → {0, 1} be such that g(x) ≤ f(x) for every x ∈ {0, 1}n. Our first theorem
gives a lower bound on the noise stability of g.

Theorem 3.1. Let f : {0, 1}n → {0, 1} be a Boolean function computable by a deMorgan
formula of size s. Let g : {0, 1}n → {0, 1} be a Boolean function such that g−1(1) ⊆ f−1(1).

Denote α =
|g−1(1)|

2n
and γ =

|f−1(1)\g−1(1)|
2n

. For any p ∈ (0, 1/2], it holds that

NSp(g) ≥ 1− 2γ − 2p
√
s · α · (1− α− γ)

A useful corollary stating a lower bound on the noise stability of a function f : {0, 1}n →
{0, 1} that can be computed by a small deMorgan formula. This corollary stems from the
previous theorem when setting g−1(1) = f−1(1).

Corollary 3.2. Let f : {0, 1}n → {0, 1} be a Boolean function computable by a deMorgan

formula of size s. Denote α = |f−1(1)|
2n

. For any p ∈ (0, 1/2], it holds that

NSp(f) ≥ 1− 2p
√
s · α · (1− α)

In addition, we show a lower bound on the Fourier weight of the “light” coefficients of f .

Theorem 3.3. Let f : {0, 1}n → {0, 1} be a Boolean function computable by a deMorgan

formula of size s. Denote α = |f−1(1)|
2n

. Then, for any ε > 0, letting k = 1
ε

√
s1−α

α
it holds

that ∑
S⊆[n],
|S|<k

(
f̂(S)

)2

≥ α (1− ε)

4 Generalization of Khrapchenko’s Bound

In this section we generalize the Khrapchenko bound on the size of deMorgan formulas. We
begin by recalling the original Khrapchenko bound.
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Theorem 4.1 ([Khr71]). Let f : {0, 1}n → {0, 1} be a Boolean function and let A ⊆
f−1(1), B ⊆ f−1(0). Denote H(A,B) = {(a, b)|a ∈ A, b ∈ B,∆(a, b) = 1}. It holds that

L(f) ≥ K(A,B) =
|H(A,B)|2

|A| · |B|

In this section we prove a lower bound for formula size that can be interpreted as a
generalized version of Khrapchenko’s theorem. Let A,B ⊆ {0, 1}n and p ∈ [0, 1], we define

Hp(A,B) =
∑

a∈A,b∈B

p∆(a,b) (1− p)n−∆(a,b)

Theorem 4.2 (Generalized Khrapchenko bound). Let f : {0, 1}n → {0, 1} be a Boolean
function and let A ⊆ f−1(1), B ⊆ f−1(0). It holds that for any 0 < p ≤ 1,

L(f) ≥ Kp(A,B) =
(Hp(A,B))2

|A| · |B| · p2

Proof. The proof follows the lines of the proof of Khrapchenko’s bound from [Weg87] (see
Section 8.8 there).

For f : {0, 1}n → {0, 1} denote Kp(f) = maxA⊆f−1(1),B⊆f−1(0) {Kp(A,B)}. It is enough
to prove that Kp(f) is a formal complexity measure (see Lemma 8.1 in [Weg87]). In order
to do so, we prove 3 properties of Kp(f), following the original proof, as follows:

• ∀i ∈ [n] : Kp(xi) ≤ 1. Each vector in A (or B, symmetrically) contributes at most∑n−1
i=0

(
n−1
i

)
pi+1(1− p)n−i−1 = p to Hp(A,B). It follows that Kp(xi) ≤ 1.

• Kp(¬f) = Kp(f). The definition of Kp(f) is symmetric with respect to A and B.

• Kp(f ∨ g) ≤ Kp(f) + Kp(g). We choose A ⊆ (f ∨ g)−1(1) and B ⊆ (f ∨ g)−1(0)
such that Kp(A,B) = Kp(f ∨ g). Since B ⊆ (f ∨ g)−1(0), then B ⊆ f−1(0) and
B ⊆ g−1(0). Partition A into disjoint Af ⊆ f−1(1) and Ag ⊆ g−1(1). Then Hp(A,B) =
Hp(Af , B) +Hp(Ag, B). Then,

Kp(f ∨ g) =
(Hp(Af , B) +Hp(Ag, B))2

(|Af |+ |Ag|)|B|p2

Kp(f) +Kp(g) ≥ (Hp(Af , B))2

|Af ||B|p2
+

(Hp(Ag, B))2

|Ag||B|p2

The claim now follows (as done in [Zwi91]) since for every a1, a2 ∈ R and every b1, b2 > 0
it holds that

a2
1

b1

+
a2

2

b2

≥ (a1 + a2)2

b1 + b2
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Remark: We consider our bound as a generalization of Khrapchanko’s bound since for
every Boolean function f : {0, 1}n → {0, 1} and A ⊆ f−1(1), B ⊆ f−1(0) it holds that

lim
p→0
Kp(A,B) = K(A,B)

We end this section with a lemma that will be useful for the rest of the paper.

Lemma 4.3. Let f : {0, 1}n → {0, 1} be a Boolean function such that L(f) = s. For
A ⊆ f−1(1), B ⊆ f−1(0) and C = {0, 1}n \ (A ∪B) it holds that

Hp(A,A) = |A| −Hp(A,B)−Hp(A,C)

and thus

Hp(A,A) ≥ |A| −
√
s · |A| · |B| · p−Hp(A,C)

Notice that when C = ∅ (that is A = f−1(1) and B = f−1(0)), it holds that Hp(A,C) = 0.

Proof of Lemma 4.3. First, it is clear, by the definition, that Hp(A,A) = Hp(A,A∪B∪C)−
Hp(A,B)−Hp(A,C). Second, we notice that Hp(A,A∪B∪C) = |A|

∑n
i=0

(
n
i

)
pi(1−p)n−i =

|A|, which proves the equality of the lemma. For the second part, using Theorem 4.2 we get

that s = L(f) ≥ (Hp(A,B))2

|A|·|B|·p2 . So
√
s · |A| · |B| · p ≥ Hp(A,B) which proves the inequality of

the lemma.

4.1 Generalized Khrapchenko and Noise Stability

Let f : {0, 1}n → {0, 1} be a Boolean function, let A ⊆ f−1(1), B ⊆ f−1(0) and C =
{0, 1}n \ (A ∪B). In this subsection we bound NSp(f) in terms of Hp(A,B) and Hp(A,C).

Lemma 4.4. Let f : {0, 1}n → {0, 1} be a Boolean function and p ∈ [0, 1]. Let A ⊆ f−1(1),
B ⊆ f−1(0) and C = {0, 1}n \ (A ∪B). It holds that

NSp(f) ≥
(

1− |C|
2n

)
− 2Hp(A,B) +Hp(A ∪B,C)

2n

Specifically, if C = ∅, it holds that

NSp(f) = 1− 2Hp(A,B)

2n

Proof. By the definition of noise stability

NSp(f) = Pr
x∈{0,1}n,
y∼Np(x)

[f(x) = f(y)]

≥ Pr
x∈{0,1}n,
y∼Np(x)

[x ∈ A ∧ y ∈ A] + Pr
x∈{0,1}n,
y∼Np(x)

[x ∈ B ∧ y ∈ B] (4.1)
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Using simple manipulations we get that

Pr
x∈{0,1}n,
y∼Np(x)

[x ∈ A ∧ y ∈ A] =
∑

x′∈{0,1}n
Pr

x∈{0,1}n,
y∼Np(x)

[x ∈ A ∧ y ∈ A|x = x′] Pr
x∈{0,1}n

[x = x′]

=
1

2n

∑
x′∈{0,1}n

Pr
y∼Np(x)

[x ∈ A ∧ y ∈ A|x = x′]

=
1

2n

∑
x′∈A

Pr
y∼Np(x′)

[y ∈ A]

=
1

2n

∑
x′∈A

∑
y′∈{0,1}n

Pr
y∼Np(x′)

[y ∈ A|y = y′] Pr
y∼Np(x′)

[y = y′]

=
1

2n

∑
x′∈A

∑
y′∈A

Pr
y∼Np(x′)

[y = y′]

=
1

2n

∑
x′∈A

∑
y′∈A

p∆(x′,y′)(1− p)n−∆(x′,y′)

=
1

2n
Hp(A,A)

An analogous calculation shows that

Pr
x∈{0,1}n,
y∼Np(x)

[x ∈ B ∧ y ∈ B] =
1

2n
Hp(B,B)

Plugging these back into equation (4.1), we get that

NSp(f) ≥ 1

2n
(Hp(A,A) +Hp(B,B))

=
1

2n
(|A|+ |B| − 2Hp(A,B)−Hp(A ∪B,C))

=

(
1− |C|

2n

)
− 2Hp(A,B) +Hp(A ∪B,C)

2n

where the first equality follows from Lemma 4.3.
Notice that if C = ∅, then the inequality in equation (4.1) becomes an equality (from

which the equality in the lemma follows).

5 Proof of Theorem 3.1

Let f : {0, 1}n → {0, 1} be a Boolean function computable by a deMorgan formula of size
s. Let g : {0, 1}n → {0, 1} be a Boolean function such that g−1(1) ⊆ f−1(1). Denote
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A = g−1(1), B = f−1(0) and C = f−1(1) \ g−1(1). Recall that α = |A|
2n

and γ = |C|
2n

. Notice

that Hp(A∪B,C)

2n
≤ γ (by the definition of Hp(A ∪ B,C)). Using Lemma 4.4 (applied for the

function g) and Theorem 4.2, we get that

NSp(g) ≥ (1− γ)− 2Hp(A,B)

2n
− γ

≥ 1− 2γ −
2 · p

√
s · |A| · |B|
2n

= 1− 2γ − 2p
√
s · α · (1− α− γ)

which proves Theorem 3.1.

6 Noise Stability and Fourier Expansion

In this section we prove a known relation between the noise stability of a Boolean function
f : {0, 1}n → {0, 1} and its Fourier expansion (see e.g. [BKS98, BJT99, O’D02]). We note
that our analysis is similar to the analysis in previous proofs of this lemma (see the remark
at the end of this section).

Lemma 6.1. Let f : {0, 1}n → {0, 1} be a Boolean function. For every p ∈ (0, 1/2] it holds
that

NSp(f) = 1− 2f̂(∅) + 2
∑
S⊆[n]

(1− 2p)|S|
(
f̂(S)

)2

Let A,B ⊆ {0, 1}n. Denote by IA and IB the characteristic functions of the sets A and
B, respectively. In other words,

IA(x) =

{
1 x ∈ A
0 otherwise

, IB(x) =

{
1 x ∈ B
0 otherwise

Fix p ∈ (0, 1/2] and denote by Ip : {0, 1}n → [0, 1] the function Ip(x) = pwt(x)(1− p)n−wt(x).
Lemma 6.1 is proved using Lemma 4.4 and the following lemma.

Lemma 6.2. Let f : {0, 1}n → {0, 1}. For any A,B ⊆ {0, 1}n,

Hp(A,B) =
∑

a∈A,b∈B

p∆(a,b)(1− p)n−∆(a,b) = 22n ·
∑
S⊆[n]

ÎA(S)ÎB(S)Îp(S)

Proof. We can rewrite Hp(A,B) as

Hp(A,B) =
∑

x∈{0,1}n
IB(x)

∑
y∈{0,1}n

IA(y)Ip(x⊕ y)

= 22n · 〈IA ∗ Ip, IB〉
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Expanding each function by the appropriate Fourier expansion and using the convolution
theorem (Proposition 2.7) we get

Hp(A,B) = 22n ·

〈∑
S⊆[n]

ÎA(S)Îp(S)χS,
∑
T⊆[n]

ÎB(T )χT

〉
= 22n ·

∑
S⊆[n]

ÎA(S)ÎB(S)Îp(S)

which proves the claim.

We will now investigate the Fourier coefficients of Ip and prove the following lemma.

Lemma 6.3. For every S ⊆ [n], it holds that

Îp(S) =
(1− 2p)|S|

2n

Proof. We first notice that Ip is a product distribution. That is, if we denote

Ip(x) =

{
p x = 1

1− p x = 0

the function Ip : {0, 1} → R then

Ip(x) = Ip(x1) · Ip(x2) · · · · · Ip(xn)

Using Proposition 2.8, it follows that for every S ⊆ [n],

Îp(S) =
n∏
i=1

(
Îp(Si)

)
(6.1)

To calculate this, we prove a simple lemma about the Fourier coefficients of Ip.

Lemma 6.4. It holds that Îp({1}) = 1−2p
2

and Îp(∅) = 1
2
.

Proof. By the definition, Îp(∅) = Ex∈{0,1}[Ip(x)] = 1
2
. The second part also follows directly

from the definition of Fourier coefficients (Proposition 2.4).

Plugging this lemma back into equation (6.1), we get that

Îp(S) =
(1− 2p)|S|

2n

which completes the claim.

We are now ready to prove the main lemma of this section.
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Proof of Lemma 6.1. Let f : {0, 1}n → {0, 1}, let A = f−1(1), B = f−1(0). Fix p ∈ [0, 1].
By Lemma 4.4 we know that

NSp(f) = 1− 2Hp(A,B)

2n
(6.2)

By Lemma 4.3 we get that
Hp(A,B) = |A| −Hp(A,A)

Plugging Lemma 6.3 into Lemma 6.2 we get that

Hp(A,A) = 2n
∑
S⊆[n]

(
ÎA(S)

)2

(1− 2p)|S|

Denote α = |A|
2n

. Plugging these into equation (6.2), we get that

NSp(f) = 1− 2α + 2
∑
S⊆[n]

(
f̂(S)

)2

(1− 2p)|S|

which proves the lemma (recall that α = f̂(∅)).

Remark: We note that our analysis is similar to the one done in the previous proofs of
Lemma 6.1. The difference is that most of our analysis works for any A ⊆ f−1(1) and
B ⊆ f−1(0) rather than A = f−1(1) and B = f−1(0) and might be of independent interest.

7 Proof of Theorem 3.3

Let f : {0, 1}n → {0, 1} be a Boolean function computable by a deMorgan formula of size s

and let ε > 0. Let A = f−1(1), B = f−1(0). Denote α = |A|
2n

and β = |B|
2n

. Let p ∈ (0, 1/2] (to
be fixed later).

Using Theorem 3.1 and Lemma 6.1 we get that

1− 2α + 2
∑
S⊆[n]

(1− 2p)|S|
(
f̂(S)

)2

≥ 1− 2p
√
s · α · β

Splitting the sum of the left-hand side to “light” Fourier coefficients and “heavy” ones,
we get that

α− p
√
s · α · β ≤

∑
S⊆[n],
|S|<k

(
f̂(S)

)2

(1− 2p)|S| +
∑
S⊆[n],
|S|≥k

(
f̂(S)

)2

(1− 2p)|S|

≤
∑
S⊆[n],
|S|<k

(
f̂(S)

)2

+ (1− 2p)k
∑
S⊆[n],
|S|≥k

(
f̂(S)

)2

12



which means that for any k ∈ [n],∑
S⊆[n],
|S|<k

(
f̂(S)

)2

≥ α− p
√
s · α · β − (1− 2p)k

∑
S⊆[n],
|S|≥k

(
f̂(S)

)2

= α− p
√
s · α · β − (1− 2p)k

α− ∑
S⊆[n],
|S|<k

(
f̂(S)

)2


where the equality holds by Parseval’s theorem (see Proposition 2.5). Finally, we get that

∑
S⊆[n],
|S|<k

(
f̂(S)

)2

≥ α

1− p
√
sβ
α
− (1− 2p)k

1− (1− 2p)k



= α

1−
p
√
sβ
α

1− (1− 2p)k


Setting p = 1

2k
, we get that

∑
S⊆[n],
|S|<k

(
f̂(S)

)2

≥ α

1−

√
sβ
α

2k
(

1−
(
1− 1

k

)k)


≥ α

1−

√
sβ
α

2k (1− e−1)


≥ α

1−

√
sβ
α

k


Plugging in k = 1

ε

√
s1−α

α
we get that∑

S⊆[n],
|S|<k

(
f̂(S)

)2

≥ α (1− ε)

as needed.

8 Applications

In this section we survey some applications of our main theorems.
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8.1 Approximating Formulas Using Low-Degree Polynomials

A useful consequence of Theorem 3.3 is that it is possible to approximate Boolean functions
that are computed by small deMorgan formulas by low-degree polynomials. This fact is
formally stated in the next corollary.

Corollary 8.1. Let f : {0, 1}n → {0, 1} be a Boolean function computable by a deMorgan
formula of size s. For every ε > 0, there exists a polynomial p : {0, 1}n → R of degree

< 1
ε

√
s1−α

α
such that ‖f − p‖2 ≤ ε · α, where α = ‖f‖2.

Proof. Let k = 1
ε

√
s1−α

α
and let the polynomial p(x) be defined as p(x) =

∑
S⊆[n],
|S|<k

f̂(S)χS(x).

Using Theorem 3.3, it follows that

‖f − p‖2 ≤ ε · α

as required.

8.2 Average Sensitivity of Formulas

A consequence of Corollary 3.2 is a bound on the average sensitivity of functions that can
be computed by small deMorgan formulas.

Definition 8.2 (Average sensitivity). Let f : {0, 1}n → {0, 1} be a Boolean function. The
average sensitivity (also known as total influence) of f is

AS(f) =
n∑
i=1

Pr
x∈{0,1}n

[
f(x) 6= f(x(i))

]
where x(i) is x with the ith bit flipped.

Fact 8.3 ([KKL88]). AS(f) = 4
∑

S⊆[n] |S|f̂(S)2.

Corollary 8.4. Let f : {0, 1}n → {0, 1} be a Boolean function that can be computed by a
deMorgan formula of size s and let α = ‖f‖2. Then,

AS(f) ≤ 2
√
s · α · (1− α)

Proof. Using Corollary 3.2 and Lemma 6.1, it follows that for any p ∈ (0, 1/2],

2p
√
s · α · (1− α) ≥ 2f̂(∅)− 2

∑
S⊆[n]

(1− 2p)|S|
(
f̂(S)

)2

≥ 2f̂(∅)− 2
∑
S⊆[n]

(
f̂(S)

)2
(

1− 2p|S|+
(
|S|
2

)
(2p)2

)

= −2
∑
S⊆[n]

(
f̂(S)

)2
(
−2p|S|+

(
|S|
2

)
(2p)2

)
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where the last equality holds since f̂(∅) =
∑

S⊆[n]

(
f̂(S)

)2

. Dividing both sides by p, we get

that

2
√
s · α · (1− α) ≥ −2

∑
S⊆[n]

(
f̂(S)

)2
(
−2|S|+

(
|S|
2

)
4p

)

Taking the limit when p→ 0, we get that

2
√
s · α · (1− α) ≥ 4

∑
S⊆[n]

|S|
(
f̂(S)

)2

= AS(f)

as required.
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