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The Spectrum of Small DeMorgan Formulas

Anat Ganor* [lan Komargodski* Ran Raz'

Abstract

We show a connection between the deMorgan formula size of a Boolean function
and the noise stability of the function. Using this connection, we show that the Fourier
spectrum of any balanced Boolean function computed by a deMorgan formula of size
s is concentrated on coefficients of degree up to O(v/s).

These results have several applications that apply to any function f that can be
computed by a deMorgan formula of size s. First, we get that f can be approximated
(in Lo-norm) with constant error by a polynomial of degree O(y/s). Second, we show
an upper bound of O(y/s) on the average sensitivity of f.

Our main result stems from a generalization of Khrapchenko’s bound [Khr71], that
might be of independent interest, and some Fourier analysis on the Boolean cube.

Previous works prove that any function f :{0,1}"™ — {0,1} that can be computed
by a deMorgan formula of size s, can be approximated point-wise by a polynomial of
degree O(s"7*+°()) with constant point-wise error. We note that this result can be
easily extended to have a polynomial of degree O(t-s72+°(1)) that approximates f with
point-wise error 27¢, for any ¢t > 0. This was shown in a long line of results in quantum
complexity, including [BBCT01] and [FGGO0S8, IACR™07, [RS08|, [Rei09].

1 Introduction

In the seminal paper of Linial, Mansour and Nisan [LMNO93], it is shown that every Boolean
function that can be computed by an AC? circuit, has a low-degree polynomial that ap-
proximates the function with error exponentially decreasing in the degree. Construction of
low-degree polynomials that approximate Boolean functions is a central tool in complexity
theory that has numerous applications. In particular, the result of [LMN93] has various
applications in many fields such as learning theory, cryptography, pseudorandomness and
derandomization.
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In this work, we show several results regarding deMorgan formulas. A deMorgan formula
is a Boolean formula over the basis By = {V, A, =} with fan in at most 2. A deMorgan
formula is represented by a tree such that every leaf is labeled by an input variable and
every internal node is labeled by an operation from Bs. A formula is said to compute a
function f:{0,1}" — {0,1} if on input = € {0,1}" it outputs f(z). The computation is
done in the natural way from the leaves to the root. The size of a formula is defined as the
number of leaves it contains. For a Boolean function f we denote by L(f) the size of the
smallest deMorgan formula that computes f.

We show a connection between the deMorgan formula size of a Boolean function and the
noise stability of the function. Let f : {0,1}" — {0,1} be a Boolean function. For every
p € (0,1/2] we show that

NS, (f) = 1= 2pVL(f) - [IFI1?- (1 = [L£]?)

where || f|| denotes the Lo-norm of f, and NS,(f) is the noise stability of f with parameter
p, as formally defined in Definition [2.9]

In addition, we show that the Fourier spectrum of a balanced Boolean function is concen-
trated on coefficients of degree up to O(y/L(f)). More formally, for every Boolean function

f:{0,1}" — {0, 1} and every € > 0, we show that for k = %}H!M it holds that

S =fIP (-2

SCn],

|S|<k
where fA'(S ) denotes the Fourier coefficient of f at S. This implies that f can be approximated
(in Ly-norm), with error || f||?, by a polynomial of degree < k. Notice that if || f]|* < 1/2
then one may prefer to approximate 1 — f rather than f. We note that the quadratic
dependence between L(f) and the degree of the approximating polynomial is tight, since the
parity function over n variables is computed by a deMorgan formula of size ©(n?) and its
Fourier representation is concentrated on the largest coefficient.

Another application of our results is an upper bound on the average sensitivity of f.

We show that AS(f) < O(/L(f) - |IfII>- (1 = ||f]I*)), where AS(f) denotes the average
sensitivity of f, as formally defined in Definition [8.2]

1.1 Previous Work

Previous works give an upper bound on the degree of an approximating polynomial using
tools from quantum complexity. Specifically, for every Boolean function f, Beals et al.
[BBC*01] show that if f has a g-query bounded-error quantum algorithm (in the black box
model), then there exists a polynomial of degree at most 2¢ that approximates f. Moreover,
in a line of works in quantum query complexity [FGGOS, I ACRT07, [RS08, Rei09] it is shown
that if a Boolean function f : {0,1}" — {0,1} can be computed by a deMorgan formula of
size s, then there is a quantum black box algorithm that computes f in O (/s - 1987/ioglogn)



queries, suffering from a point-wise error of 1/3. By repeating independent applications of
the algorithm, one can increase the number of queries to O (¢ - /s - 1987/1og10gn) and reduce
the point-wise error to 27¢. Combining both of these results proves that every function f :
{0,1}™ — {0, 1} that can be computed by a deMorgan formula of size s can be approximated
by a polynomial of degree O (t - /s - 1°67/ioglogn) up to point-wise error of 2.

This result and our result are incomparable. Let f : {0,1}" — {0,1} be a Boolean
function that can be computed by a deMorgan formula of size s. Our result gives Lo-norm
approximation which is tight in the degree (i.e, O(y/s)) for a constant . Moreover, our
result is achieved using simple classical tools such as Khrapchenko’s bound [Khr71] and
Fourier analysis on the Boolean cube. The previous result is achieved using tools from
quantum computing and quantum query complexity. The previous result gives a point-wise
approximation by a polynomial which is almost optimal in the degree and with exponentially
small point-wise error.

We note that there are results regarding the sign degree of functions that can be computed
by small deMorgan formulas. The sign degree of a function is the minimal degree of a
polynomial that agrees in sign with the function. In particular, combining the results of
[FGGOS8, IACR™07, RS08|, [Rei09] with the work of Lee [Lee09] fully resolves a conjecture by
O’Donnell and Servedio [OS03] which states that the sign degree of every Boolean function
that can be computed by a deMorgan formula of size s is O(v/s).

As we have already mentioned, our main results (see Section 3|) follow from a generaliza-
tion of Khrapchenko’s bound on the size of deMorgan formulas. Various generalizations of
Khrapchenko’s bound were used in the past in numerous works. Zwick [Zwi91] extended the
definition of formula size to handle weighted input variables and generalized Khrapchenko’s
bound to cover the new definition. Koutsoupias [Kou93] was able to extend Khrapchenko’s
bound with a spectral version to give better lower bounds for specific functions. Hastad
[Has98|] showed that the shrinkage exponent of Boolean deMorgan formulas (for the exact
definition see [Has9§|) is 2. One of the components in his proof is a lower bound on the
deMorgan formula size that depends on the probability that some restrictions occur (for the
exact formulation see [Has98]). Hastad proves that indeed this lower bound is a generalization
of Khrapchenko’s bound. Laplante, Lee and Szegedy [LLS06] introduce a new complexity
measure for Boolean functions that is a lower bound on the deMorgan formula size. They
show that several deMorgan formula size lower bounds (including [Khr71l, [Kou93, [Has98])
are, in fact, a special case of their method.

2 Preliminaries

We start with some general notation. We denote by [n] the set of numbers {1,2,...,n}. For
i € [n] and for x € {0,1}", denote by x; the i-th bit of z. We denote by wt(z) the Hamming
weight of a string x € {0,1}" (i.e. the number of 1’s in the string). We denote by A(x,y)
the Hamming distance between two strings =,y € {0,1}" (i.e. the number of coordinates in
which x and y differ). In addition, for simplicity, we define % = 0.



2.1 DeMorgan Formulas

Throughout the paper we will only consider deMorgan formulas and not always explicitly
mention it.

Definition 2.1. A deMorgan formula is a Boolean formula with AND, OR and NOT gates
with fan in at most 2.

Definition 2.2. The size of a formula F' s the number of leaves in it and is denoted by
L(F). For a function f : {0,1}" — {0,1}, we will denote by L(f) the size of the smallest
formula computing the function f.

2.2 Fourier Analysis

For each S C [n], define x5 : {0,1}" — {—1,1} as xs(x) = [[;,cg(—1)". It is well known
that the set {Xs}gc, is an orthonormal basis (called the Fourier basis) for the space of all
functions f : {0,1}" — R. It follows that every function f : {0,1}" — R can be represented

as R
= f(S)xs(a)
SC[n]
where f : {0,1}" - R, and f(S ) is called the Fourier coefficient of f at S C [n].

Definition 2.3. We define the inner product (-,-) on pairs of functions f,g:{0,1}" — R
by
Y. flgl@)= E [f(z)g(x)]

z€{0,1}"

2.2.1 Basic Properties
Proposition 2.4. For f:{0,1}" — R and S C [n], the Fourier coefficient of f at S is
f(S) =(f.xs) Z f(z)xs(x
xG{O 1}n

Proposition 2.5. Consider functions f,g : {0,1}" — R. Since {XS}sg[n] forms an or-
thonormal basis for the space of functions from {0,1}" to R, we get Plancherel’s theorem

= > f(s (Xs: XT) Zf

S,TCln] SCln]
In particular, the orthonormality of the basis gives the known Parseval theorem
- 2
> (FS) = (5.0 =151
5C[n]

where || f|| denotes the Lo-norm of f.



2.2.2 Convolution

We begin by defining the convolution operation.

Definition 2.6 (Convolution). Let f,g: {0,1}" — R. The convolution f*g:{0,1}" — R
1s defined as follows

(Fro)) =5 3 fr@u)ol)

ye{0,1}m

We state the well known convolution theorem.

Proposition 2.7 (The Convolution Theorem). Let f,g: {0,1}" — R.

—_— ~

fxg(5) = f(9)g(5)

2.3 Fourier Coefficients of Product Functions

We prove a simple lemma regarding Fourier coefficients of functions which are product func-
tions. This lemma is useful to analyze Fourier coefficients of some specific functions.

Proposition 2.8. Let f:{0,1}" — R be a function such that f(z) = g(z1) - -+ - g(z,) for
some function g : {0,1} — R. It holds that for S C [n],

where S; = {1} ifi € S and S; = () otherwise.
Proof. By the definition of Fourier coefficient (Proposition [2.4), we get that

fs) = 5 3 flns@)
ze{0,1}"

— 2—171 Z glay) -« g(zn)xs, (x1) ... xs, (2)

ze{0,1}"
1 1
= |5 2 sens @) 5 > gla)xs, (o)
z1€{0,1} zn€{0,1}
— Z]\(Sl) ..... L’q\(Sn)
as needed. O

2.4 Noise Stability

We define the noise stability of a Boolean function.



Definition 2.9 (Noise stability). Let f : {0,1}" — {0,1} be a Boolean function. For
p € [0,1] and x € {0,1}", define Ny(x) to be the distribution of a random element y € {0,1}"
which satisfies Prlx; # y;| = p, independently for all i € [n]. The p-noise stability of f is

NS, (f) = _Pr - [f(z) = f(y)]

$E{071}n7
y~Np(x)

3 Main Results

Let f:{0,1}" — {0,1} be a function that can be computed by a small deMorgan formula
and let g : {0,1}" — {0, 1} be such that g(z) < f(x) for every x € {0,1}". Our first theorem
gives a lower bound on the noise stability of g.

Theorem 3.1. Let f : {0,1}" — {0,1} be a Boolean function computable by a deMorgan
formula of size s. Let g : {0,1}" — {0,1} be a Boolean function such that g='(1) C f~1(1).

-1 —1 —1
o 2n(1)| and vy = |f(1)2+(1)|. For any p € (0,/2], it holds that

NSP(Q)21—2’7/—2])\/3.@.(1_0[_7)

Denote o« =

A useful corollary stating a lower bound on the noise stability of a function f : {0,1}" —
{0,1} that can be computed by a small deMorgan formula. This corollary stems from the
previous theorem when setting ¢g7'(1) = f~1(1).

Corollary 3.2. Let f : {0,1}" — {0,1} be a Boolean function computable by a deMorgan
formula of size s. Denote o = w For any p € (0,1/2], it holds that

NS,(f) >1—-2py/s-a-(1—a)

In addition, we show a lower bound on the Fourier weight of the “light” coefficients of f.

Theorem 3.3. Let f : {0,1}" — {0,1} be a Boolean function computable by a deMorgan

formula of size s. Denote a = w Then, for any € > 0, letting k = %, /SI?TC“ it holds
that

> (7)) 2a0-9)

SCln],
|S|<k

4 Generalization of Khrapchenko’s Bound

In this section we generalize the Khrapchenko bound on the size of deMorgan formulas. We
begin by recalling the original Khrapchenko bound.



Theorem 4.1 ([Khr7l]). Let f : {0,1}" — {0,1} be a Boolean function and let A C
f~41),B C f71(0). Denote H(A, B) = {(a,b)|a € A,b € B,A(a,b) = 1}. It holds that

(A, B)|’

L) 2 K(A B) = Fpes

In this section we prove a lower bound for formula size that can be interpreted as a
generalized version of Khrapchenko’s theorem. Let A, B C {0,1}" and p € [0, 1], we define

Z pA(a,b) (1 . p)n—A(a,b)

acAbeB

Theorem 4.2 (Generalized Khrapchenko bound). Let f : {0,1}* — {0,1} be a Boolean
function and let A C f~1(1),B C f~1(0). It holds that for any 0 < p <1,

(Hy(A, B))”

)2 A B = T

Proof. The proof follows the lines of the proof of Khrapchenko’s bound from [Weg87] (see
Section 8.8 there).

For f: {0,1}* — {0,1} denote K,(f) = maxacs-11),8cs1(0) {Kp(A, B)}. It is enough
to prove that K,(f) is a formal complexity measure (see Lemma 8.1 in [Weg87]). In order
to do so, we prove 3 properties of K,(f), following the original proof, as follows:

. VZ E [n]

o ()

. ( f) = K,(f). The definition of K,(f) is symmetric with respect to A and B.
<

o K,(fVyg) < Ky(f)+ Ky(9). We choose A C (fV g)~'(1) and B C (f \/g) 1(0)
such that K,(4,B) = K,(f V g). Since B C (f V g)~'(0), then B C f~(0) and
B C g7!(0). Partition A into disjoint Ay C f~!(1) and A, C g~'(1). Then H,(A, B) =
H,(A;, B) + Hy(A,, B). Then,

Ky(z ) < 1. Each vector in A (or B, symmetrically) contributes at most
”1 —p)" "t =pto H,(A, B). It follows that K,(z;) < 1.

(Hp(Afv B) + Hp(Aga B))2
([Af] + [Ag]) | Blp

Kp(f Vyg)=

(Hy(Af, B))® | (Hy(Ag, B))’
|Asl|Blp? |44l|Blp*

The claim now follows (as done in [Zwi91]) since for every a;, as € R and every by, by > 0
it holds that

Ky (f) + Kp(g) 2

a? N _2 (a1 + az)?
by by = b+ by



Remark: We consider our bound as a generalization of Khrapchanko’s bound since for
every Boolean function f :{0,1}" — {0,1} and A C f~1(1), B C f~1(0) it holds that

lim K, (A, B) = K(4, B)

We end this section with a lemma that will be useful for the rest of the paper.

Lemma 4.3. Let f : {0,1}" — {0,1} be a Boolean function such that L(f) = s. For
AC f~Y1), BC f710) and C = {0,1}"\ (AU B) it holds that

H,(A, A) = [A] — Hy(A, B) — Hy(A, C)
and thus

H,(A,A) > |Al—+/s-|A|-|B|-p— Hy(A,C)
Notice that when C' =0 (that is A= f~*(1) and B = f~%(0)), it holds that H,(A,C) = 0.

Proof of Lemmal[{.3 First, it is clear, by the definition, that H,(A, A) = H,(A, AUBUC)
H,(A, B)—H,(A,C). Second, we notice that H,(A, AUBUC) = |A|> !, ( )p'(1 p)
|A|, which proves the equality of the lemma For the second part, using Theorem [4.2| we get

that s = L(f) > % So \/s-|A|-|B|-p > H,(A, B) which proves the 1nequahty of
the lemma. O

4.1 Generalized Khrapchenko and Noise Stability

Let f : {0,1}* — {0,1} be a Boolean function, let A C f~'(1), B C f~!(0) and C =
{0,1}"\ (AU B). In this subsection we bound NS, (f) in terms of H,(A, B) and H,(A, C).

Lemma 4.4. Let f:{0,1}" — {0,1} be a Boolean function and p € [0,1]. Let A C f~1(1),
B C f710) and C = {0,1}"\ (AU B). It holds that

C 2H,(A,B)+ H,(AUB,C
NSp(f>Z( _u)_ p( ) )+ p( U ) )
2n AL
Specifically, if C =0, it holds that
A, B
Ns,(f) =1 - L)
Proof. By the definition of noise stability
NS,(f) = _Pr /) = f)
y~Np(z)
> P AN A P B A B 4.1
> br lweAnryedl+ Pr lz€BAy¢eB] (4.1)
y~Np () y~Np(z)



Using simple manipulations we get that

Pr [zreAAye A= Z Pr [xre ANyeAlx=2"] Pr [x=41

2€{0,1}", z€{0,1}", z€{0,1}"
y~Np(2) P01 YN (o)
1
=~ Z Pr [r€e ANy e Alx =2
a'e{0,1}n y~No(@)
! Pr [ye Al
=— r
2" “ Yy~ No(@) Y

= c Aly = Pr =1
Z > Jbr lwedly=y] Pr ly=y

x'eAy e{0,1}"

S e =)
~N
ceAyen’ g

:_Zzp — p)nAEY)

z'eAy'eA

1
- 2—an(A, A)

An analogous calculation shows that

1
P BA Bl=—H,B,B
iy [ € By € B] = 5 H,(B. B)
y~Np()

Plugging these back into equation (4.1]), we get that

NS,(f) 2 o (Hy( A, A) + Hy(B, B)
:2_1n(|A\+\By_QHP(A,B)—HP<AUB,C)>
_(,_IC\ _2H,(A.B) + H,(AU B.C)
()

where the first equality follows from Lemma [4.3]
Notice that if C' = (), then the inequality in equation (4.1)) becomes an equality (from
which the equality in the lemma follows). O

5 Proof of Theorem [3.1]

Let f:{0,1}" — {0,1} be a Boolean function computable by a deMorgan formula of size
s. Let g : {0,1}™ — {0,1} be a Boolean function such that ¢g~'(1) C f~'(1). Denote

9



A=g'1),B=f10)and C = f~1(1)\ g7*(1). Recall that o = F and v = |20,L|. Notice

that w < v (by the definition of H,(AU B, (). Using Lemma (applied for the
function g) and Theorem [£.2] we get that

NS,(g) > (1) - 2B

g
2-py/s-|Al-|B]
>1—-2y- on
=1-2y—2py/s-a- (1 —a—7)

which proves Theorem [3.1]

6 Noise Stability and Fourier Expansion

In this section we prove a known relation between the noise stability of a Boolean function
f:{0,1}" — {0,1} and its Fourier expansion (see e.g. [BKS98, [BJT99, [0’D02]). We note
that our analysis is similar to the analysis in previous proofs of this lemma (see the remark
at the end of this section).

Lemma 6.1. Let f :{0,1}" — {0,1} be a Boolean function. For every p € (0,1/2] it holds
that

NS,(f)=1—2f(0)+2 > (1—2p) ‘SI< (5))

SCln]

Let A, B C {0,1}". Denote by I4 and Ip the characteristic functions of the sets A and
B, respectively. In other words,

IA(x):{l xeA' 7 ]B(x):{l reB

0 otherwise 0 otherwise

Fix p € (0,1/2] and denote by Z, : {0,1}" — [0, 1] the function Z,(z) = p“t®) (1 — p)r—wt®),
Lemma [6.1] is proved using Lemma [£.4] and the following lemma.

Lemma 6.2. Let f:{0,1}" — {0,1}. For any A, B C {0,1}",

ST pAED(1 - Al — g ZIA Z,(9)

a€AbEB SC[n]

Proof. We can rewrite H,(A, B) as

Hy(A,B) = Y Ig(x) Y LuLoy)

ze{0,1}" ye{0,1}n
= 22" (I, % T, Ip)

10



Expanding each function by the appropriate Fourier expansion and using the convolution
theorem (Proposition we get

H,(A,B) = 2. <Z LiS),(S)xs. S E<T>XT>

SCln) TCn]

which proves the claim. O
We will now investigate the Fourier coefficients of Z, and prove the following lemma.

Lemma 6.3. For every S C [n], it holds that

()= L2200

Proof. We first notice that Z,, is a product distribution. That is, if we denote
P r=1
I(z) = .
1l—p 22=0
the function I, : {0,1} — R then

Iy(x) = Lp(x1) - Ip(x2) - - - - Ip(n)
Using Proposition 2.8} it follows that for every S C [n],
7,(8) = I (%(s0) (6.1)
i=1
To calculate this, we prove a simple lemma about the Fourier coefficients of I,,.

Lemma 6.4. It holds that I,({1}) = L2 gnd L(0) = 3.

Proof. By the definition, IAp((Z)) = Eucfo3[p(x)] = 2. The second part also follows directly
from the definition of Fourier coefficients (Proposition [2.4)). ]

Plugging this lemma back into equation (6.1), we get that

z,(s) - L=

which completes the claim. O

We are now ready to prove the main lemma of this section.

11



Proof of Lemmal[6.1 Let f:{0,1}" — {0,1}, let A = f~1(1), B = f~1(0). Fix p € [0,1].
By Lemma [4.4] we know that

2H,(A, B)

NS, (/) = 1 - 2o (6.2
By Lemma [4.3] we get that
Hy(A, B) = |A] — Hp(A, A)
Plugging Lemma into Lemma we get that
— 2
H,(4,4) =2 3 (Ta(9)) (1-2p)"
SC[n]
Denote a0 = | ‘ . Plugging these into equation ([6.2), we get that
NS,(f)=1-2a+2) (f ) (1—2p)S
SC[n]
which proves the lemma (recall that a = f(0)). O

Remark: We note that our analysis is similar to the one done in the previous proofs of
Lemma [6.1] The difference is that most of our analysis works for any A C f~1(1) and
B C f71(0) rather than A = f~1(1) and B = f~(0) and might be of independent interest.

7 Proof of Theorem 3.3

Let f:{0,1}" — {0,1} be a Boolean function computable by a deMorgan formula of size s
and let € > 0. Let A= f~(1), B = f'(0). Denote a = 4 and g = 2. Let p € (0,12 (to
be fixed later).

Using Theorem and Lemma we get that

1—20+2 ) (1 |S|(()>221—2p\/s~a-6
SCln]

Splitting the sum of the left-hand side to “light” Fourier coefficients and “heavy” ones,
we get that

a-pia b o= Y (7)) -2+ 3 (7)) (-2
L Sk
< Y (7)) +a-2" Y (79)
ik s

12



which means that for any k € [n],

> (f9) = a-piai-0-2" Y (7s)
54 e

= a-p/sa-f-(1-2p)f|a- (f(5)>2
SCln)
|S|<k

where the equality holds by Parseval’s theorem (see Proposition . Finally, we get that

1—py/s2 —(1-2p)

N2
> (1) = a :
ST, L= (1 =2)
|S|<k
py/s2
= o —_ —k‘
1—(1-2p)
Setting p = i, we get that
> (i) -
(S ) > afl- p
5 2% (1-(1- ")
|S|<k
2
> 1-—
=« 2% (1—e 1)
2
> 1-—
=z « L

as needed.

8 Applications

In this section we survey some applications of our main theorems.

13



8.1 Approximating Formulas Using Low-Degree Polynomials

A useful consequence of Theorem is that it is possible to approximate Boolean functions
that are computed by small deMorgan formulas by low-degree polynomials. This fact is
formally stated in the next corollary.

Corollary 8.1. Let f: {0,1}" — {0,1} be a Boolean function computable by a deMorgan
formula of size s. For every e > 0, there exists a polynomial p : {0,1}" — R of degree

< %@/sl_—"‘ such that || f — p||? < e-a, where a = || f||*.

(&7

Proof. Let k = 1/s%=2 and let the polynomial p(x) be defined as p(z) = Z f(S)XS(:C).
SC[n]

|S]<k
Using Theorem [3.3] it follows that

If =plI* <e-a

as required. O

8.2 Average Sensitivity of Formulas

A consequence of Corollary is a bound on the average sensitivity of functions that can
be computed by small deMorgan formulas.

Definition 8.2 (Average sensitivity). Let f : {0,1}" — {0,1} be a Boolean function. The
average sensitivity (also known as total influence) of f is

n

— (@)
AS(U) =3 b [7(6) £ £
where £ is x with the it bit flipped.
Fact 8.3 ([KKLSS]). AS(f) =4 g, ISIF(S)2.

Corollary 8.4. Let f: {0,1}" — {0,1} be a Boolean function that can be computed by a
deMorgan formula of size s and let o = ||f||*. Then,

AS(f) <2y/s-a-(1—a)
Proof. Using Corollary [3.2] and Lemma it follows that for any p € (0,1/2],

/s o (T-a) > 2f0) -2 3 (12" (7))
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= 23 (fs)" (~aisi+ (15 o)
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where the last equality holds since f(0) = > e, ( f(S )) . Dividing both sides by p, we get

that

20/s-a-(l—a) > —QZ(f(S))Z(—2|S|+<‘§’>4p)

SC[n]

Taking the limit when p — 0, we get that

as required. O
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