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Abstract

We show a connection between the De Morgan formula size of a Boolean function
f : {0, 1}n → {0, 1} and the noise stability of the function. Specifically, we prove that
for 0 < p ≤ 1/2 it holds that

NSp(f) ≥ 1− 2p
√
L(f) · ‖f‖2 · (1− ‖f‖2)

where NSp(f) is the noise stability of f with noise parameter p, ‖f‖ is the L2 norm of
f , and L(f) is the De Morgan formula size of f . This result stems from a generalization
of Khrapchenko’s bound [Khr71], that might be of independent interest.

Our main result implies the following lower bound:∑
S⊆[n]

δ|S|f̂(S)2 ≥ ‖f‖2 − 1− δ
2

√
L(f)‖f‖2(1− ‖f‖2)

for 0 ≤ δ ≤ 1, where f̂(S) is the Fourier coefficient of f at S. In particular, this
bound implies a concentration result on the spectrum of Boolean functions that can
be computed by small De Morgan formulas. Specifically, for any ε > 0, we show that∑

S⊆[n],
|S|<k

f̂(S)2 ≥ ‖f‖2 (1− ε) where k is roughly 1
2ε

√
L(f)1−‖f‖2

‖f‖2 . We observe that this

concentration result also stems from a relation between the average sensitivity of f and
the original Khrapcheko bound.

In addition, we show that the De Morgan formula size in the results mentioned
above can be replaced by the square of the non-negative quantum adversary bound,
thus giving a (possibly) tighter bound.
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1 Introduction

Noise stability is a central tool for measuring the complexity of Boolean functions. Noise
stability appears in many applications in various fields of theoretical computer science such
as social choise [Kal02] and hardness of approximation [Kho02]. Moreover, noise stability
has many interesting connections to isoperimetric inequalities [Tal95, BKS98] and to Boolean
function analysis [MOO05].

Intuitively, the noise stability with parameter p ∈ [0, 1] of a function f : {0, 1}n → {0, 1}
answers the following question. Given f(x) for x ∈ {0, 1}n, what can we say about f(x⊕ e)
where e ∈ {0, 1}n is a vector such that ei (the ith coordinate of e) is 1 with probability p and
is 0 otherwise? In other words, noise stability (with some noise parameter p) of a function
tells us how the output of a function reacts to noise applied to its input. If the noise stability
is close to 1, then the function is stable and its output is not affected much by noise applied
to its input. On the other hand, if a function has noise stability that is close to 0, then the
output of the function is very sensitive to noise applied to its input.

Definition 1.1 (Noise Stability). Let f : {0, 1}n → {0, 1} be a Boolean function. For
p ∈ [0, 1] and x ∈ {0, 1}n, define Np(x) to be the distribution of a random element y ∈ {0, 1}n
which satisfies Pr[xi 6= yi] = p, independently for all i ∈ [n]. The p-noise stability of f is

NSp(f) = Pr
x∈{0,1}n,
y∼Np(x)

[f(x) = f(y)] .

In this work, we show a connection between the De Morgan formula size of a Boolean
function and the noise stability of the function. A De Morgan formula is a Boolean formula
over the basis B2 = {∨,∧,¬} with fan in at most 2. A De Morgan formula is represented by
a tree such that every leaf is labeled by an input variable and every internal node is labeled
by an operation from B2. A formula is said to compute a function f : {0, 1}n → {0, 1} if on
input x ∈ {0, 1}n it outputs f(x). The computation is done in the natural way from the
leaves to the root. The size of a formula is defined as the number of leaves it contains. For
a Boolean function f let L(f) be the size of the smallest De Morgan formula that computes
f . Let ‖f‖ be the L2 norm of f .

In [Khr71] Khrapchenko gives a technique for proving lower bounds on the De Morgan
formula size of Boolean functions. In this paper, we prove a generalization of Khrapchenko’s
technique and use it in order to prove the following theorem.

Theorem 1.2. Let f : {0, 1}n → {0, 1} be a Boolean function. For every p ∈ (0, 1/2]

NSp(f) ≥ 1− 2p
√
L(f) · ‖f‖2 · (1− ‖f‖2).

Theorem 1.2 implies a lower bound (that depends on L(f)) on the sum Wδ(f) =∑
S⊆[n] δ

|S|f̂(S)2 for every 0 ≤ δ ≤ 1, where f̂(S) is the Fourier coefficient of f at S. Bounds

on Wδ(f) may be very useful and appear in many works (e.g., [KKL88, Tal95]). Formally,
we prove the following corollary.
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Corollary 1.3. Let f : {0, 1}n → {0, 1} be a Boolean function. For every 0 ≤ δ ≤ 1∑
S⊆[n]

δ|S|f̂(S)2 ≥ ‖f‖2 − 1− δ
2

√
L(f)‖f‖2(1− ‖f‖2).

Corollary 1.3 implies a concentration result on the spectrum of functions that can be
computed by small De Morgan formulas.

Theorem 1.4. Let f : {0, 1}n → {0, 1} be a Boolean function computable by a De Morgan

formula of size s. Then, for any ε > 0, letting k = 1
2ε

√
s1−‖f‖2
‖f‖2 −

1−‖f‖2−ε
ε

it holds that

∑
S⊆[n],
|S|<k

(
f̂(S)

)2

≥ ‖f‖2 (1− ε) .

We observe that Theorem 1.4 also stems from a relation between the average sensitivity
of f and the original Khrapcheko bound, as we show in Appendix A.

In addition, we show that the De Morgan formula size in the results mentioned above
(Theorem 1.2, Corollary 1.3 and Theorem 1.4) can be replaced by the square of the non-
negative quantum adversary bound (see Section 5). By replacing the De Morgan formula size
with the square of the non-negative quantum adversary bound, we get (possibly) stronger
bounds since for every Boolean function f it holds that L(f) ≥ Adv(f)2 [LLS06], where
Adv(f) is the non-negative quantum adversary bound of f .

1.1 Previous Work

As we have already mentioned, our main result follows from a generalization of Khrapchenko’s
bound on the size of De Morgan formulas [Khr71]. Various generalizations of Khrapchenko’s
bound were used in the past in numerous works. Zwick [Zwi91] extended the definition of
formula size to handle weighted input variables and generalized Khrapchenko’s bound to
cover the new definition. Koutsoupias [Kou93] was able to extend Khrapchenko’s bound
with a spectral version to give better lower bounds for specific functions. H̊astad [H̊as98]
showed that the shrinkage exponent of Boolean De Morgan formulas (for the exact definition
see [H̊as98]) is 2. One of the components in his proof is a lower bound on the De Morgan
formula size that depends on the probability that some restrictions occur (for the exact
formulation see [H̊as98]). H̊astad proves that indeed this lower bound is a generalization
of Khrapchenko’s bound. Laplante, Lee and Szegedy [LLS06] introduce a new complexity
measure for Boolean functions that is a lower bound on the De Morgan formula size. They
show that several De Morgan formula size lower bounds (including [Khr71, Kou93, H̊as98])
are, in fact, a special case of their method.

In comparison with our Theorem 1.4, previous works give an upper bound on the degree of
an approximating polynomial using tools from quantum complexity. Specifically, for every
Boolean function f , Beals et al. [BBC+01] show that if f has a q-query bounded-error
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quantum algorithm (in the black box model), then there exists a polynomial of degree at
most 2q that approximates f . Moreover, in a line of works in quantum query complexity
[FGG08, ACR+07, RS08, Rei09, Rei11] it is shown that if a Boolean function f : {0, 1}n →
{0, 1} can be computed by a De Morgan formula of size s, then there is a quantum black box
algorithm that computes f in O (

√
s) queries, suffering from a point-wise error of 1/3. By

repeating independent applications of the algorithm, one can increase the number of queries
to O (t ·

√
s) and reduce the point-wise error to 2−t. Combining both of these results proves

that every function f : {0, 1}n → {0, 1} that can be computed by a De Morgan formula of
size s can be approximated by a polynomial of degree O (t ·

√
s) up to point-wise error of

2−t.

2 Preliminaries

We start with some general notation. We denote by [n] the set of numbers {1, 2, . . . , n}. For
i ∈ [n] and for x ∈ {0, 1}n, denote by xi the i-th bit of x. We denote by ∆(x, y) the Hamming
distance between two strings x, y ∈ {0, 1}n (i.e., the number of coordinates in which x and
y differ). In addition, for simplicity, we define 0

0
= 0.

2.1 De Morgan Formulas

Throughout the paper we will only consider De Morgan formulas and not always explicitly
mention it.

Definition 2.1. A De Morgan formula is a Boolean formula with AND, OR and NOT gates
with fan in at most 2.

Definition 2.2. The size of a formula F is the number of leaves in it and is denoted by
L(F ). For a function f : {0, 1}n → {0, 1}, we will denote by L(f) the size of the smallest
formula computing the function f .

2.2 Fourier Analysis

For each S ⊆ [n], define χS : {0, 1}n → {−1, 1} as χS(x) =
∏

i∈S(−1)xi . It is well known
that the set {χS}S⊆[n] is an orthonormal basis (called the Fourier basis) for the space of all
functions f : {0, 1}n → R. It follows that every function f : {0, 1}n → R can be represented
as

f(x) =
∑
S⊆[n]

f̂(S)χS(x)

where f̂ : {0, 1}n → R, and f̂(S) is called the Fourier coefficient of f at S ⊆ [n].

Definition 2.3. We define the inner product 〈·, ·〉 on pairs of functions f, g : {0, 1}n → R
by

〈f, g〉 =
1

2n

∑
x∈{0,1}n

f(x)g(x) = E
x∈{0,1}n

[f(x)g(x)]
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Proposition 2.4. For f : {0, 1}n → R and S ⊆ [n], the Fourier coefficient of f at S is

f̂(S) = 〈f, χS〉 =
1

2n

∑
x∈{0,1}n

f(x)χS(x)

Proposition 2.5. Consider functions f, g : {0, 1}n → R. Since {χS}S⊆[n] forms an or-
thonormal basis for the space of functions from {0, 1}n to R, we get Plancherel’s theorem

〈f, g〉 =
∑

S,T⊆[n]

f̂(S)ĝ(T ) 〈χS, χT 〉 =
∑
S⊆[n]

f̂(S)ĝ(S)

In particular, the orthonormality of the basis gives the known Parseval theorem∑
S⊆[n]

(
f̂(S)

)2

= 〈f, f〉 = ‖f‖2

where ‖f‖ denotes the L2-norm of f .

2.3 Matrix Analysis

Definition 2.6 (Matrix Norm). The norm of an m by n matrix A over the reals is defined
as (see e.g., [HJ90])

‖A‖ = max
u∈Rm,v∈Rn

uTAv

`2(u) · `2(v)

and for x ∈ Rn, `2(x) =
√∑n

i=1 x
2
i (where xi is the ith coordinate of x).

Definition 2.7 (Kronecker Product). Let A ∈ Rk×l and B ∈ Rm×n be matrices. The
Kronecker product (also known as the tensor product) of A and B is a matrix in Rkm×ln

and is defined as

A⊗B =


a11B a12B . . . a1lB
a21B a22B . . . a1lB

...
...

...
...

ak1B ak2B . . . aklB


We also denote by A⊗t ∈ Rkt×lt the Kronecker product of A with itself t times.

3 Generalization of Khrapchenko’s Bound

In this section we generalize Khrapchenko’s bound on the size of De Morgan formulas. We
begin by recalling the original Khrapchenko bound.
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Theorem 3.1 ([Khr71]). Let f : {0, 1}n → {0, 1} be a Boolean function and let A ⊆
f−1(1), B ⊆ f−1(0). Denote H(A,B) = {(a, b)|a ∈ A, b ∈ B,∆(a, b) = 1}. It holds that

L(f) ≥ K(A,B) =
|H(A,B)|2

|A| · |B|

In this section we prove a lower bound for formula size that can be interpreted as a
generalized version of Khrapchenko’s theorem. Let A,B ⊆ {0, 1}n and p ∈ [0, 1], we define

Hp(A,B) =
∑

a∈A,b∈B

p∆(a,b) (1− p)n−∆(a,b)

Theorem 3.2 (Generalized Khrapchenko bound). Let f : {0, 1}n → {0, 1} be a Boolean
function and let A ⊆ f−1(1), B ⊆ f−1(0). It holds that for any 0 < p ≤ 1,

L(f) ≥ Kp(A,B) =
(Hp(A,B))2

|A| · |B| · p2

Proof. The proof follows the lines of the proof of Khrapchenko’s bound from [Weg87] (see
Section 8.8 there).

For f : {0, 1}n → {0, 1} denote Kp(f) = maxA⊆f−1(1),B⊆f−1(0) {Kp(A,B)}. It is enough
to prove that Kp(f) is a formal complexity measure (see Lemma 8.1 in [Weg87]). In order
to do so, we prove 3 properties of Kp(f), following the original proof, as follows:

• ∀i ∈ [n] : Kp(xi) ≤ 1. Each vector in A (or B, symmetrically) contributes at most∑n−1
i=0

(
n−1
i

)
pi+1(1− p)n−i−1 = p to Hp(A,B). It follows that Kp(xi) ≤ 1.

• Kp(¬f) = Kp(f). The definition of Kp(f) is symmetric with respect to A and B.

• Kp(f ∨ g) ≤ Kp(f) + Kp(g). We choose A ⊆ (f ∨ g)−1(1) and B ⊆ (f ∨ g)−1(0)
such that Kp(A,B) = Kp(f ∨ g). Since B ⊆ (f ∨ g)−1(0), then B ⊆ f−1(0) and
B ⊆ g−1(0). Partition A into disjoint Af ⊆ f−1(1) and Ag ⊆ g−1(1). Then Hp(A,B) =
Hp(Af , B) +Hp(Ag, B). Then,

Kp(f ∨ g) =
(Hp(Af , B) +Hp(Ag, B))2

(|Af |+ |Ag|)|B|p2

Kp(f) +Kp(g) ≥ (Hp(Af , B))2

|Af ||B|p2
+

(Hp(Ag, B))2

|Ag||B|p2

The claim now follows (as done in [Zwi91]) since for every a1, a2 ∈ R and every b1, b2 > 0
it holds that

a2
1

b1

+
a2

2

b2

≥ (a1 + a2)2

b1 + b2
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Remark 3.3. We consider our bound as a generalization of Khrapchanko’s bound since for
every Boolean function f : {0, 1}n → {0, 1} and A ⊆ f−1(1), B ⊆ f−1(0) it holds that

lim
p→0
Kp(A,B) = K(A,B).

We end this section with a lemma that will be useful for the rest of the paper.

Lemma 3.4. Let f : {0, 1}n → {0, 1} be a Boolean function such that L(f) = s. For
A ⊆ f−1(1), B ⊆ f−1(0) and C = {0, 1}n \ (A ∪B) it holds that

Hp(A,A) = |A| −Hp(A,B)−Hp(A,C)

and thus

Hp(A,A) ≥ |A| −
√
s · |A| · |B| · p−Hp(A,C)

Notice that when C = ∅ (that is A = f−1(1) and B = f−1(0)), it holds that Hp(A,C) = 0.

Proof of Lemma 3.4. First, it is clear, by the definition, that Hp(A,A) = Hp(A,A∪B∪C)−
Hp(A,B)−Hp(A,C). Second, we notice that Hp(A,A∪B∪C) = |A|

∑n
i=0

(
n
i

)
pi(1−p)n−i =

|A|, which proves the equality of the lemma. For the second part, using Theorem 3.2 we get

that s = L(f) ≥ (Hp(A,B))2

|A|·|B|·p2 . So
√
s · |A| · |B| · p ≥ Hp(A,B) which proves the inequality of

the lemma.

4 Generalized Khrapchenko and Noise Stability

Let f : {0, 1}n → {0, 1} be a Boolean function, let A ⊆ f−1(1), B ⊆ f−1(0) and C =
{0, 1}n \ (A ∪B). In this subsection we bound NSp(f) in terms of Hp(A,B) and Hp(A,C).

Lemma 4.1. Let f : {0, 1}n → {0, 1} be a Boolean function and p ∈ [0, 1]. Let A ⊆ f−1(1),
B ⊆ f−1(0) and C = {0, 1}n \ (A ∪B). It holds that

NSp(f) ≥
(

1− |C|
2n

)
− 2Hp(A,B) +Hp(A ∪B,C)

2n

Specifically, if C = ∅, it holds that

NSp(f) = 1− 2Hp(A,B)

2n

Proof. By the definition of noise stability

NSp(f) = Pr
x∈{0,1}n,
y∼Np(x)

[f(x) = f(y)]

≥ Pr
x∈{0,1}n,
y∼Np(x)

[x ∈ A ∧ y ∈ A] + Pr
x∈{0,1}n,
y∼Np(x)

[x ∈ B ∧ y ∈ B] (4.1)
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Using simple manipulations we get that

Pr
x∈{0,1}n,
y∼Np(x)

[x ∈ A ∧ y ∈ A] =
∑

x′∈{0,1}n
Pr

x∈{0,1}n,
y∼Np(x)

[x ∈ A ∧ y ∈ A|x = x′] Pr
x∈{0,1}n

[x = x′]

=
1

2n

∑
x′∈{0,1}n

Pr
y∼Np(x)

[x ∈ A ∧ y ∈ A|x = x′]

=
1

2n

∑
x′∈A

Pr
y∼Np(x′)

[y ∈ A]

=
1

2n

∑
x′∈A

∑
y′∈{0,1}n

Pr
y∼Np(x′)

[y ∈ A|y = y′] Pr
y∼Np(x′)

[y = y′]

=
1

2n

∑
x′∈A

∑
y′∈A

Pr
y∼Np(x′)

[y = y′]

=
1

2n

∑
x′∈A

∑
y′∈A

p∆(x′,y′)(1− p)n−∆(x′,y′)

=
1

2n
Hp(A,A)

An analogous calculation shows that

Pr
x∈{0,1}n,
y∼Np(x)

[x ∈ B ∧ y ∈ B] =
1

2n
Hp(B,B)

Plugging these back into equation (4.1), we get that

NSp(f) ≥ 1

2n
(Hp(A,A) +Hp(B,B))

=
1

2n
(|A|+ |B| − 2Hp(A,B)−Hp(A ∪B,C))

=

(
1− |C|

2n

)
− 2Hp(A,B) +Hp(A ∪B,C)

2n

where the first equality follows from Lemma 3.4.
Notice that if C = ∅, then the inequality in equation (4.1) becomes an equality (from

which the equality in the lemma follows).

4.1 Proof of Theorem 1.2

Let f : {0, 1}n → {0, 1} be a Boolean function computable by a De Morgan formula of size
s. Denote A = f−1(1), B = f−1(0). Using Lemma 4.1 (where C = ∅) and Theorem 3.2, we
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get that

NSp(f) = 1− 2Hp(A,B)

2n

≥ 1−
2 · p

√
s · |A| · |B|
2n

which proves Theorem 1.2.

4.2 Proof of Corollary 1.3

A well known relation between the noise stability of a Boolean function f : {0, 1}n → {0, 1}
and its Fourier expansion (see e.g., [BKS98, BJT99, O’D02]) is the following.1

Proposition 4.2. Let f : {0, 1}n → {0, 1} be a Boolean function. For every p ∈ (0, 1/2] it
holds that

NSp(f) = 1− 2f̂(∅) + 2
∑
S⊆[n]

(1− 2p)|S|
(
f̂(S)

)2

.

Combining Theorem 1.2 together with Proposition 4.2 and letting δ = 1 − 2p we get
Corollary 1.3.

5 Generalized Khrapchenko and the Adversary Bound

In this section we show that the generalized Khrapchenko bound (Theorem 3.2) is at most the
square of the non-negative quantum adversary bound. The non-negative quantum adversary
bound is defined as follows.

Definition 5.1 (Non-Negative Quantum Adversary Bound). Let f : {0, 1}n → {0, 1} be a
Boolean function. Let Γ be a matrix with rows indexed by elements of f−1(0) and columns
indexed by elements from f−1(1). For every i ∈ [n] let Γi(x, y) = Γ(x, y) if xi 6= yi and 0
otherwise. Then

Adv(f) = max
Γ 6=0,Γ≥0

‖Γ‖
maxi∈[n]‖Γi‖

where the definition of the norm of an m by n matrix appears in Definition 2.6.

Lemma 5.2. Let f : {0, 1}n → {0, 1} be a Boolean function, A ⊆ f−1(1), B ⊆ f−1(0) and
p ∈ (0, 1]. Then

Adv(f) ≥ Hp(A,B)√
|A||B| · p

where Hp(A,B) =
∑

a∈A,b∈B p
∆(a,b) (1− p)n−∆(a,b), as defined in Section 3.

1We state this connection for Boolean function from {0, 1}n to {0, 1} and not from {−1, 1}n to {−1, 1},
as it is usually done. The proof of Proposition 4.2 can be derived following the same lines as the proof of
O’Donnell [O’D02] for the {−1, 1} case.
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Using this lemma, the De Morgan formula size in our results (Theorem 1.2, Corollary 1.3
and Theorem 1.4) can be replaced by the square of the non-negative quantum adversary
bound (following the same proofs). As we have already mentioned, by replacing the De
Morgan formula size with the square of the non-negative quantum adversary bound, we get
stronger bounds since for every Boolean function f it holds that L(f) ≥ Adv(f)2 [LLS06].

Note that a simple corollary of Lemma 5.2 is that Adv(f)2 is lower bounded by the
(standard) Khrapchenko bound (taking p → 0. See Remark 3.3). This lower bound is
known due to [LLS06].

Proof of Lemma 5.2. Define the matrix Γ as follows:

Γ(x, y) =

{
p∆(x,y)(1− p)n−∆(x,y) x ∈ A and y ∈ B
0 otherwise

.

Denote by 1A and 1B the characteristic vectors of the sets A and B, respectively. It holds
that

‖Γ‖ ≥ 1TAΓ1B√
|A||B|

=
Hp(A,B)√
|A||B|

where 1TA denotes the vector 1A transposed.
Now we upper bound ‖Γi‖ (see Definition 5.1). Let

P =

[
1− p p
p 1− p

]
, Q =

[
0 p
p 0

]
Clearly the spectral norm of P is 1 and of Q is p. Moreover, notice that P⊗n is a 2n by 2n

matrix where, if we label rows and columns by binary strings of length n in lexicographic
order, then the (x, y)-entry is p∆(x,y)(1 − p)n−∆(x,y) (recall Definition 2.7). Thus, Γ is a
submatrix of P⊗n. Similarly, Γi is a submatrix of Ri = P⊗i−1⊗Q⊗P⊗n−i. Thus the spectral
norm of Γi is at most the spectral norm of Ri which is p. This proves the lemma.
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A Concentration using Khrapchenko’s Bound

We show that the Fourier spectrum of Boolean functions that can be computed by small
De Morgan formulas is concentrated. Recall that for a function f : {0, 1}n → {0, 1} the
L2 norm of f is denoted ‖f‖, and for a subset S ⊆ [n], the Fourier coefficient of f at S is

denoted f̂(S).

Theorem 1.4 (Restated). Let f : {0, 1}n → {0, 1} be a Boolean function computable by

a De Morgan formula of size s. Then, for any ε > 0, letting k = 1
2ε

√
s1−‖f‖2
‖f‖2 −

1−‖f‖2−ε
ε

it

holds that ∑
S⊆[n],
|S|<k

(
f̂(S)

)2

≥ ‖f‖2 (1− ε) .

The idea of the proof of this theorem was communicated to us by Shengyu Zhang. This
proof improves the result that appeared in a previous version of the paper [GKR12].

We begin with the definition of average sensitivity.

Definition A.1 (Average Sensitivity). Let f : {0, 1}n → {0, 1} be a Boolean function. The
average sensitivity (also known as total influence) of f is

AS(f) =
n∑
i=1

Pr
x∈{0,1}n

[
f(x) 6= f(x(i))

]
where x(i) is x with the ith bit flipped.
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Proof of Theorem 1.4. Using the fact that AS(f) = 4
∑

S⊆[n] |S|f̂(S)2 [KKL88] and splitting
the sum of the right-hand side to “light” Fourier coefficients and “heavy” ones, we get that

AS(f)

4
=

∑
S⊆[n],

0<|S|<k

|S|f̂(S)2 +
∑
S⊆[n],
|S|≥k

|S|f̂(S)2

≥
∑
S⊆[n],

0<|S|<k

f̂(S)2 +
∑
S⊆[n],
|S|≥k

kf̂(S)2

=
∑
S⊆[n],
|S|<k

f̂(S)2 − ‖f‖4 + k

‖f‖2 −
∑
S⊆[n],
|S|<k

f̂(S)2


where we used the fact that f̂(∅) = ‖f‖2 and Parseval’s theorem (see Proposition 2.5).
Therefore, ∑

S⊆[n],
|S|<k

f̂(S)2 ≥ 1

k − 1

(
k‖f‖2 − ‖f‖4 − AS(f)

4

)

=
‖f‖2

k − 1

(
k − ‖f‖2 − AS(f)

4‖f‖2

)
= ‖f‖2

(
1− 1

k − 1

(
AS(f)

4‖f‖2
− (1− ‖f‖2)

))
.

Let A = f−1(1) and B = f−1(0). By the definition of average sensitivity together with
Khrapchenko’s bound (Theorem 3.1) we get that

AS(f) =
n∑
i=1

Pr
x∈{0,1}n

[
f(x) 6= f(x(i))

]
=

2|H(A,B)|
2n

≤
2
√
s · |A||B|

2n

and therefore,

∑
S⊆[n],
|S|<k

f̂(S)2 ≥ ‖f‖2

(
1− 1

k − 1

(
1

2

√
s

1− ‖f‖2

‖f‖2
− (1− ‖f‖2)

))
.
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