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1. INTRODUCTION

Goldreich [2000] proposed a candidate one-way function based on expanders. His con-
struction is parametrized by the choice of a bipartite graph G with n vertices per side
having right-degree d (where d is either constant or grows moderately as O(logn)) and
a boolean predicate P : {0,1}¢ — {0,1}. To compute the function on input z € {0,1}"
we label the vertices on the left by the bits of z, and then label each vertex on the
right by the value of P applied to the labels of its neighbors. The n labels on the right
constitute the output of the function. Goldreich conjectured that his function is hard
to invert when the predicate P is random and the graph G is an expander.

Though Goldreich’s function is simple, it may yet be one-way: Even when d = O(1),
it lies in the complexity class NC° of functions whose every output bit depends on a
constant number of input bits, and by standard cryptographic assumptions there ex-
ist one-way functions and pseudo-random generators computable in NC° [Applebaum
et al. 2006a; 2006b].

We present a rigorous study of Goldreich’s function when the predicate P is either
random or depends linearly on many of its inputs. We assume that the graph G is
drawn uniformly at random; here we diverge from Goldreich’s original proposal.

1.1. Results

Inverting a one-way function f means finding any 2’ € f~!(f(z)), given f(z) for a
random z. We begin our analysis of Goldreich’s function by proving an upper bound on
the expected size of f~1(f(z)).

Next we look at backtracking algorithms for inverting Goldreich’s function. A back-
tracking algorithm exhaustively searches over possible inputs to the function, by as-
signing, at each step, a value of 0/1 to one of the unassigned input bits, and backtrack-
ing whenever an output bit is determined to be incorrect.

We show that for two restricted forms of backtracking algorithms, called “myopic”
and “drunk” backtracking algorithms, with extremely high probability the algorithm
takes an exponential number of steps to invert. (In the case of non-DPLL drunk al-
gorithms, our results reproduce those of Itsykson [2010] and Miller [2009].) A myopic
backtracking algorithm is one in which at each step the algorithm should assign a
value for one of the input bits based on only partial knowledge of the output of the
function. A drunk backtracking algorithm is one in which the value assigned to the
input bits is at each step 0 or 1 uniformly at random.

We further show that these running time lower bounds still hold if we add “DPLL”
elimination rules, which allow the algorithms to search the input space more quickly.

Finally, we can express finding an input in the preimage of an output of Goldre-
ich’s function as a satisfiability problem. We solved this satisfiability problem using
MiniSAT, a competitive publicly available SAT solver, and observed an exponential
increase in running time as a function of the input length.

1.2. Techniques and Proof Overview

1.2.1. The Expected Size of Pre-Images. To calculate the expected size of the preimage,
we first reduce this to computing, for every pair of inputs (z,y), the probability PE
that a single output bit agrees: f(z); = f(y):. Here, the randomness comes from the
uniformly random choice of graph G used for Goldreich’s function. PE is in turn equal
to the probability that the predicate P outputs the same bit when it receives two d-bit
inputs (u,v) which are random but bitwise correlated. More precisely, the i-th pair of
bits (u;, v;) is drawn from a probability distribution « on {0,1}? determined by (x,y).

We wish to show that a random predicate P performs well for all possible probability
distributions « over {0,1}2. Since we cannot directly apply a union bound over this
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infinite set, we instead describe a different, finite set of properties over which we can
(Definition 3.7). We show that these finitely many properties together imply that the
predicate performs well for every . We had to devise this technique in order to extend
our result to random predicates, where we had previously only considered predicates
that depend linearly on many inputs.

1.2.2. Lower Bound for Backtracking Algorithms. Our proof is similar to the proof of
Alekhnovich et al. [2005] that myopic backtracking algorithms take an exponentially
long time to solve systems of linear equations.!

Let A be a myopic or drunk backtracking algorithm. We pick a random « € {0,1}",
and run A on input b = f(z). Our goal is to show that A will run for a long time before
returning any 2’ € f~1(b), but we begin with an easier goal: to show that A will either
run for a long time or return a value that is not exactly equal to z. In the case that f
is an injective function, like in the result of Alekhnovich et al, these goals are one and
the same. But in our general case, we introduce Lemma 3.1 to allow us to reduce the
harder goal to the easier goal using our upper bound on the size of preimages.

Our general strategy to prove the easier goal is similar to that of Alekhnovich et al:
to show first that with high probability .A will choose an incorrect value for a variable,
and second, that it will take a long time to recover from its mistake (using proof com-
plexity lower bounds). We are only able to prove the second part when the mistake the
algorithm made is “locally consistent” (Definition 4.4).

At every point during the execution of A, its partial truth assignment p can be in
one of three states:

1. p is consistent with z.
2. p is not consistent with z, but is locally consistent.
3. p is not locally consistent.

We need to show that the algorithm reaches state 2 with high probability.

In order to make our task simpler, we start by modifying A so that it becomes a clever
algorithm that never enters state 3 before it makes a large number of assignments
(Lemma 4.13). Then we show (in Lemma 5.1 when A is myopic and in Lemma 6.4
when A is drunk) that with high probability, the algorithm reaches state 2.

We have to break away in two further ways from the result of Alekhnovich et al:
First, the predicates we consider are nonlinear. (Linear predicates are not interesting
for our study since they allow Goldreich’s function to be inverted using Gaussian elim-
ination.) Therefore, we have to introduce the notion of “(h, ¢)-balanced” predicates and
generalize the result for this more general class of predicates. Second, a random graph
with non-negligible probability contains small non-expanding sets of nodes. Since un-
like Alekhnovich et al. we consider random graphs rather than expanders, we have
to generalize our results for a weaker notion of expansion which allows such small
non-expanding sets.

1.2.3. DPLL Rules Don’t Help. DPLL elimination rules prune an algorithm’s backtrack-
ing tree to make it faster. These are traditionally defined for algorithms that solve the
CNF satisfiability problem. Unit clause elimination applies when a clause consists of
a single literal ¢, and pure literal elimination applies when the negation ¢ does not ap-
pear in any clause. In both cases, the algorithm is allowed to prune subtrees in which
{ is true.

1'We define myopic algorithms as reading the bits of f(x) in a restricted way. Here we differ from the defi-
nition of Alekhnovich et al, who allow a myopic algorithm to see for free the entire CNF formula describing
the search problem of inverting f, with only the signs of literals restricted. It is worth noting that their work
considers only linear predicates, a case where the two definitions are equivalent.



We adapt these rules to backtracking algorithms for inverting Goldreich’s function.
We show that our lower bound for myopic and drunk backtracking algorithm still ap-
plies, because myopic and drunk algorithms without access to the DPLL pruning rules
can simulate these rules to achieve similar runtimes. We are considering DPLL rules
in a context more general than Alekhnovich et al. [2005], and a “black-box” simulation
is new to this work. To simulate the pruning, we make unit clause assignments imme-
diately, but postpone pure literal assignments until the last possible moment. In the
case of myopic algorithms, a subtle point arises: it is not clear that a myopic algorithm
will be able to gather enough information to find all unit clauses and pure literals. We
show that for the parameters of Goldreich’s function that we have chosen — a ran-
dom graph and a predicate that is random or depends linearly on many inputs — all
unit clauses and pure literals can be found without reading too many more bits of the
output of the function, so the algorithm remains myopic.

Related Work

Goldreich [2000] considered the following algorithm (as an obvious first attack) for
computing z given y = f(x). The algorithm proceeds in n steps, revealing the output
bits one at a time. Let R; be the set of inputs connected to the first i outputs. Then
in the ith step, the algorithm computes the list L; of all strings in {0, 1} which are
consistent with the first i bits of y. The final list L,, enumerates the set f~!(y). Goldre-
ich proves that if the graph satisfies an expansion condition, then the expected size of
one of the sets L; is exponentially large, and so this inversion algorithm runs in time
exponential in the input length. Panjwani [2001] experimentally verified this result.

The above algorithm is a weaker version of a myopic backtracking algorithm where
before assigning values to the bits in R;, the algorithm has no knowledge of y except its
first i bits.? For this reason, our lower bounds for myopic algorithms are more general.

Besides Itsykson’s independent lower bound on drunk DPLL backtracking algo-
rithms mentioned before, there has been other further work since the publication of
the conference version of this work.

Bogdanov and Qiao [2009] present an efficient algorithm for inverting instances of
Goldreich’s function where the number of output bits is much larger than the number
of input bits, and the predicate is correlated with one or two of its inputs. Notice that
Goldreich’s original proposal suggests that the number of input bits be equal to the
number of output bits.

Itsykson and Sokolov [2012; 2013] find a lower bound for the running time of my-
opic and drunk DPLL algorithms for an explicit construction of Goldreich’s function,
which is interesting compared to our results for random graphs. However, their func-
tion partitions the input variables into two parts: o(n) variables which affect the output
non-linearly, and n — o(n) variables which affect the output linearly. The fact that the
non-linear part is small allows an algorithm to invert the function in 2°(") time.

Itsykson and Sokolov [2011] find a lower bound for myopic DPLL algorithms with the
addition of a myopic cut heuristic which allows the algorithm to remove branches from
the backtracking tree. This is significant since previous work, as well as this paper,
rely on the fact that a DPLL algorithm would encounter a large subtree containing
no solutions and would be forced to explore the entire subtree before continuing. The

2We introduce myopic backtracking algorithms in Definitions 2.9 and 2.10. The list L; mentioned above
corresponds to the nodes at level |R;| of the backtracking tree of the myopic backtracking algorithm. To
simulate the algorithm considered by Goldreich by a myopic backtracking algorithm, the scheduler of the
backtracking algorithm does not need to look at the output to decide which variable to assign next, nor to
decide which value to try assigning to that variable first.
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hard formulas they consider are systems of linear equations, which are equivalent to
instances of Goldreich’s function with an XOR predicate.

Using several assumptions including that Goldreich’s function with predicate
MAJ(z1 © - @ 243, Tajz41 D - D Tagys, Tad/z+1 © -+ O x4) is a pseudorandom gen-
erator, Applebaum et al. [2010] build a public-key cryptosystem. This assumption is
stronger than Goldreich’s original conjecture.

Applebaum [2013] constructs pseudorandom generators based on the assumption
that Goldreich’s function with a random predicate and graph is one-way. He constructs
a linear-stretch pseudorandom generator in NC?, a polynomial-stretch pseudorandom
generator when the degree of each output bit is w(1), and a polynomial-stretch gener-
ator in NC° with inverse polynomial distinguishing advantage.

Open Questions

Our work adds motivation for further experimental and rigorous analysis of Goldre-
ich’s construction.

The limitation of the present work is the somewhat artificial nature of both myopic
algorithms and drunk algorithms. Myopic algorithms fail to capture certain natural
“global” heuristics used in SAT solvers. Since the algorithm is required to work only
with partial information on the object given as an input, negative results for myopic
algorithms are similar in spirit (but very different technically) to results on “space
bounded cryptography.” Drunk algorithms are restricted in a way that is more com-
putational than information-theoretic, but the random selection of variable values is
clearly contrived. Despite these limitations, we hope our results will serve as an im-
portant step toward lower bounds for more general classes of algorithms.

Another interesting goal would be to show that no “variation of Gaussian elim-
ination” can invert Goldreich’s function when non-linear predicates are used. Un-
fortunately, it is not clear how to even formalize such a statement. For example,
here is an algorithm for inverting Goldreich’s function with predicates of the form
P(z) =21®...®x4-2®(x4-1A24)) which uses a combination of backtracking and Gaus-
sian elimination: first, consider a graph H on n vertices, where for every constraint of
the form z;, & ... &z, , ® (i, , A x;,) = b; there is an edge between the i;_;-th and
ig-th vertices. Find a vertex cover for the random graph H, and backtrack to set the
values of the variables corresponding to this vertex cover. Once these variables have
been set, the values of the remaining variables can be found using Gaussian elimina-
tion. This will give an improved running time (though still exponential) because the
vertex cover contains a strict subset of the n variables.

2. DEFINITIONS AND STATEMENT OF THEOREMS
2.1. The Problem of Inverting Goldreich’s Function

DEFINITION 2.1. The one-way function candidate f = fp : {0,1}" — {0,1}™
proposed by Goldreich is parametrized by

—a d-ary predicate P : {0,1}¢ — {0,1}, and
—a bipartite graph G with n vertices on the left and m vertices on the right having
right-degree d.

We represent the bipartite graph as G € [n]™*? where [n] = {1,...,n}. In this represen-
tation, the set of vertices on the left is L = [n], the set of vertices on the right is R = [m),
and vertex i on the right is connected with vertices G, 1,. . .,G; q on the left. The function

f = fp.c is defined by

f(x)i = P(zg,,,--.,zq,,) for each i € [m].
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That is, we evaluate P over the neighbors of each right vertex.

As we represent the graph as G € [n]™*9, we are implicitly imposing an ordering on
the set of edges going out of each vertex on the right.

An algorithm A for inverting the function f is said to be successful given some b €
{0,1}™ if it can return some .A(b) € {0,1}" such that f(A(b)) =b.

DEFINITION 2.2. Fix a d-ary predicate P. We say that Goldreich’s function fpc with
random graph G is secure against a class of algorithms if the following holds: For
almost every graph G, for every algorithm A in the class, for almost every input z, the
algorithm A given b = fp () is not successful in time < 29, “Almost every graph G”
and “almost every input x” mean with probability > 1—2-°™) over a uniformly random
choice of x € {0,1}", or G among all bipartite graphs with m = n right nodes of degree
d. The hidden constants in the asymptotic notation O(n) in this definition may depend
on d.

2.2. Expected Size of the Preimage

DEFINITION 2.3. Consider a test on d-ary predicates, where every d-ary predicate
either passes or fails the test. We define properties (A), (B), (B’), (C) on the test as follows:

(A). A uniformly random predicate passes the test with probability 1 — o4(1);

(B). Predicates of the form P =x1® ... ®x4_p ®Q(Ta—n+1,--.,2q) Wwhen d—h = Q(d)
pass the test;

(B’). For every constant 0 < ¢ < %, for large enough d, predicates of the form P =
1D ... 0x4—p D Q(Tg—pt1,--- ,xd§ for h < cd pass the test;

(C). The test can be performed in time 2°(%),

DEFINITION 2.4. For any fixed function f : {0,1}" — {0,1}", we define the ex-
pected size of the preimage under [ as

)[If’l(f(:v))l]-

When this expected size is M, we can think that the function f is M-to-one on average.
We expect that for a good one-way function, M is not too large.

THEOREM 2.5. There exists a test satisfying properties (A), (B), (C) such that when-
ever the predicate P passes the test, Goldreich’s fp ¢ satisfies

pkFrola))] < 0wz "

z~Unif ({0,1}"

G~Unif([n]?*4) z~Unif ({0,1}"

The details of the test emerge in the proof of the theorem, and are also gathered in
Appendix A.

2.3. Backtracking Algorithms

DEFINITION 2.6. At each step of a backtracking algorithm A for inverting Gol-
dreich’s function, i.e. finding x such that f(x) = b, a subset of the variables z1,...,z,
have been assigned binary values and the rest of the variables are free. At the begin-
ning of the backtracking algorithm, all variables are free. The backtracking algorithm
A stops searching a path further if for some i, all the variables ¢, ,,...,vq, , have val-
ues assigned to them and P(zq, ,,...,vq,,) 7# bi. Otherwise, A chooses an assignment
xj < a where z; is a free variable and a € {0,1} is a value for x;. The algorithm first
assigns the value a to variable x; and recursively calls the algorithm. If the algorithm A
does not find x such that f(x) = bin this recursion, it recurses again this time assigning
1 —ato x;. The algorithm stops when there are no free variables and f(z) = b.
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We consider “drunk” and “myopic” backtracking algorithms.

2.4. Drunk Backtracking Algorithm

DEFINITION 2.7. A backtracking algorithm is said to be drunk if in the assignment
xj < a to the current variable, a € {0, 1} is uniformly random and independent of j.

THEOREM 2.8. There exists a test on d-ary predicates satisfying properties (A), (B’),
and (C) such that when predicate P passes the test, Goldreich’s function fp ¢ with ran-
dom graph G is secure against the class of drunk backtracking algorithms.

2.5. Myopic Backtracking Algorithm

DEFINITION 2.9. A myopic backtracking algorithm A for inverting fpa is one
which has a limited view of the given b € {0,1}™ for which it wants to find an = €
Ip, é(b) At each step, the algorithm knows a subset of the bits of b. On the other hand,
the algorithm has full knowledge of P and of G. In the beginning, A knows nothing
about b. At each step, the algorithm is allowed to

—either query a bit of b,
—or choose a pair (j,a); then assign the value a to x; and recurse; if no x € f~1(b) is
found during this recursion, then assign 1 — a to x; and recurse.

When the algorithm recurses, the knowledge of b is preserved; but the knowledge of b is
not passed from one recursion tree to a sibling recursion tree. In other words, when we
return back from a recursion, we leave behind all the knowledge we gained.

DEFINITION 2.10. A myopic backtracking algorithm is called (s,t)-myopic if it
never tries to read more than t bits of b before it has assigned binary values to at least s
variables.

THEOREM 2.11. There exists a test on d-ary predicates satisfying properties (A),
(B’), and (C) such that when predicate P passes the test, there is t = O(n) such that for
any s such that s/n = 2=°4), Goldreich’s function fp.c with random graph G is secure
against the class of (s, t)-myopic backtracking algorithms. The hidden constant in the
asymptotic ©(n) notation depends on d.

2.6. Backtracking Algorithms with DPLL Elimination Rules

DEFINITION 2.12. Assume we are in the middle of a backtracking algorithm trying
to find an element x in the preimage of b under fp: A subset of the variables x4, ...,z
have been assigned binary values and the rest of the variables are free. Let x; be a
free variable and let o € {0,1}. We call z; < a a DPLL assignment if, given all the
already-assigned variables, one of the following two situations happens:

—x; = a is implied from the equation b; = P(xq, ,,...,vq, ) for some i; in this case we
say that a unit clause exists.

—forall i = 1,...,m, switching the value of x; from 1 — a to a can never change the
equations b; = P(xg, ,...,xq,,) to become false; in this case we say that a pure

literal exists.

(The terms “unit clause” and “pure literal” come from the context of CNF formulas: We
have adapted the terminology in the context of Goldreich’s function.) When z; < a is
a DPLL assignment, conditioned on the already assigned values for the variables z1,
..., T, that are not free, if there is no z in the preimage with z; = a, neither is there
an z in the preimage with z; =1 — a.



DEFINITION 2.13. A DPLL backtracking algorithm is similar to an ordinary back-
tracking algorithm except that at each step, for any existing DPLL assignment x; < a,
we have the option of eliminating x; from the list of free variables by assigning a to x;
and recursing (and when this recursion finishes, we do not try assigning 1 — a to x;.)

DPLL drunk backtracking algorithms are simply drunk backtracking algorithms that
are allowed to eliminate as above free variables z; in DPLL assignments z; + a.
Defining DPLL myopic backtracking algorithms involves a certain subtlety: Having
access to the set of DPLL assignment z; < a might reveal extra information about b.
However, we allow a DPLL myopic backtracking algorithm to know the set of DPLL
assignments. Yet, we allow this knowledge to be only passed further down in recur-
sions; we do not allow such knowledge to be passed from a recursion tree to a sibling
recursion tree. Besides knowing the set of DPLL assignments, an (s, ¢)-myopic DPLL
backtracking algorithm for finding = € f~!(b) may not read more than ¢ bits of b before
making at least s non-DPLL assignments to x.

THEOREM 2.14. Theorem 2.8 and Theorem 2.11 respectively hold for DPLL drunk
and DPLL myopic backtracking algorithms as well.

This theorem, as stated in this section, gives super-polynomial lower bounds on the
running time of drunk and myopic DPLL backtracking algorithms for inverting Gol-
dreich’s function with non-negligible probability, when the predicate passes the tests
mentioned in Theorems 2.8 and 2.11, if d is large enough but still constant compared
to n. However, if one looks at the proof of the theorem, the same result holds when
d = o(logn) or when d < clogn for suitably small positive constant c.

3. EXPECTED SIZE OF THE PREIMAGE

Inverting a candidate one-way function f : {0,1}"™ — {0,1}"™ is the problem of finding,
given b € {0,1}™, an element in the preimage f~!(b), where b = f(z) for z € {0,1}" cho-
sen uniformly at random. The problem of finding z itself given b is a harder problem,
but as the following lemma shows, these two problems are related via the expected
size of the preimages under f.

LEMMA 3.1. Let f : {0,1}" — {0,1}™ be a function with expected preimage size
M =E, o1y |71 (f())]. Let Abe an algorithm that, given b € {0,1}™, returns A(b) €
{0,1}™ Choose = uniformly at random from {0,1}" and let b = f(x), so the probability
sample space is {z : x € {0,1}"}. Consider the events E = {x : A(b) =z} and F = {x :
A(b) € f~1(b)}. We have

Pr[F] < 24/ M Pr[E].

PROOF. Consider the event H = {x : |[f~1(b)| < M'}, where we will specify M’ > 0
shortly. We have Pr[F] < Pr[F N H] + Pr[H¢], where H¢ is the complement of H. To
upper-bound Pr[H¢], we use Markov’s inequality and get Pr[H¢] < M/M’'. We also have

Pr(E] > Pr{E|F 0 H] - Pr[F N H] > < - Pr[F 0 H],
so we get Pr[F N H| < M’ Pr[E]. We complete the proof by taking M’ = /M /Pr[E], so
that
Pr[F] < Pr[F N H] + Pr[H] < M’ Pr[E] + M/M' = 2,/M Pr[E] O

The rest of this section is devoted to proving the upper bound of Theorem 2.5 on
the expected size of the preimage for Goldreich’s function. See Section 1.2.1 for an
overview. This theorem was shown for h = 2 and Q(z,y) = x A y in the conference
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version of this paper [Cook et al. 2009]. Itsykson [2010] pointed out that the same
proof works for general predicates @ for A + 1 < d/4. The proof for random predicates
is original to this work. We also mention that Panjwani [2001] has previously done
some experimental analysis of the size of preimages in Goldreich’s function, composed
with itself many times.

Theorem 2.5 concerns the expected size of preimages | f;lc( fra(x))| of Goldreich’s
function fp . We assume the predicate P satisfies a test which we will define later,
and choose the graph G € [n]"*¢ and the input = € {0,1}" uniformly at random.

We begin by observing that the expected size of the preimage M is equal to 27" times
the number of colliding pairs of inputs:

M= E E oL
G~ Unif([n]nxd) :r~Unif({O,1}"')HfP’G(fRG(I))”

. E Hz,y € {0,1}": fpa(z) = fra(y)}

G~Unif([n]?*2)

This allows us to express the expected preimage size in terms of collision probabilities:

M=2 Y Pr [frc(r) = fra(y)]

G~Unif([n]n*d)

z,ye{0,1}"
Recall that the i-th output bit of Goldreich’s function fp depends on the input bits
G, -, Tq, - Since the input indices G; 1,. .., G, q are chosen independently at ran-

dom for each i, for a fixed = and y, the events fp(z); = fp.c(y); for different values of
i are independent:

M =2"" P = )
Z HGNUnif(IEn]"Xd)[fP’G(x) fr.a(y)il

z,y€{0,1}n i=1

We introduce the notation PEp(z,y) = Prgounitmmxe)lfre(@)i = fraly)i (for
Probability of Equality) noticing that the value is the same for every index i:

M= > (27'PEp(z,y)" (1)
z,ye{0,1}™
Now, suppose there are n,, indices j such that z; = a and y; = b; ng + ne1 +

nip + n11 = n. Then PEp(x,y) depends only on the predicate P and the four num-
bers ng,, since the equality fpc(z); = fpc(y); depends only on the pairs of bits
(TG 1, YGia)s -5 (Ta, 4> Ya,. ,)- This motivates the following definition.

DEFINITION 3.2.

— For a pair (z,y) € ({0,1}")?, define NA (for Number of Appearances) by NA (z,y) =
(noo, o1, 10, M11), Where ngy, is the number of indices i such that x; = a and y; = b. If
we let A%(n) = {B:{0,1}%> — N|_ B = n} be the set of ways of putting n balls into four
bins, then NA(z,y) € A%(n). Furthermore, if we let A2 = {p: {0,1}2 > R™'| Y p=1}
be the set of probability distributions over {0,1}%, then NA(z,y)/n € A2 For example,
NA(0110,1000)/4 = (1/4,1/4,1/2,0).

—For a € A%, we define a? to be the distribution over ({0,1}%)? such that (x,y) ~ af
means each pair (z;,y;) is distributed according to « independently. For example, if
« is the uniform distribution, o is also the uniform distribution, and if o assigns
a probability of 1 to the string 01, then o assigns a probability of 1 to the pair
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(0---0,1---1). Finally, H(«) denotes the base-2 entropy of the distribution: H(a) =
= 2ijefo1) %ijlg Qi
The value PEp(x,y) depends only on P and the normalized number of occurrences
NA(z,y)/n.
DEFINITION 3.3. For a predicate P : {0,1}¢ — {0,1} and a probability distribution
a € A2, the probability of equality of P over o is
PEp(a) = Pr [P(x) = P(y).

(z,y)~ad
This allows us to rewrite (1) as
M= > (27'PEp(NA(z,y)/n)"
z,yE{O,l}”

In the above expression, NA(z,y) takes on values in A?(n) depending on the strings
r and y. For any particular 8 € A?(n), the number of pairs =,y € {0,1}" satisfying

NA(z,y) = fisequalto (, , "5 , ). Sowe have:

_ n » )
Y _ﬂeg;(n) (50“601,5107511)(2 PEp(5/n))

(using Stirling’s approximation)
< Y O(@*M 27 PER(B/n))")
BEA2(n)
<IA%(n)| max O((2)~ PEp(a))")
aEA?

=0(n?) maAX(QH(a)_l PEp())".
aEA?

Therefore, in order to prove the lower bound of Theorem 2.5 that M < n0(1)2279(d)",
we have only to show:
Yo € A%, H(a) +1gPEp(a) < 14279, 2)

In sections 3.1 and 3.2, we show that most random predicates and predicates of the
form P, o =21 D ... @ xq_n © Q(Ta_nr1,--.,2q) satisfy (2). It is possible in time 2°(?)
to test whether a predicate has the form P, o, or whether it has the properties we
demand of random predicates in Definition 3.7, so our proof is complete.

3.1. Proofof (2)for P=21® ... D xa—n ® Q(Ta—h+1,.--,Tad)
For predicates of the above form, we have

1+ E[(-1)P@+PW)

PEP(Oé) 9

1+ (H?:_lh E[(_l)rq+yz]) E[(_l)Q(rd—h+17~~~7$d)+Q(yd—h+17---7yd)]
- 2

1+ [T Bl -1y
<
- 2
:1 + Jago + 11 — agp — ap[27"

5 )
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Let P = mil’l{Oé(]() + Qa11, Qo1 + Oll()}. Then:

1 1-92 d—h
PEp(a) S%
d—h

AP

- 2
Given p, the maximum value of H(«) is achieved when oy = o171 and ap1 = aq0; thus
H(a) <14 H(p). Therefore, to prove H(a) + lgPEp(a) < 1+ 2% it suffices to show
H(p) +1g(1 + (1 —p)¥h) <14 27UD, As long as d — h = Q(d), the following lemma
completes the proof with 7 = (d — h)/d.

LEMMA 3.4. V7€ (0,1], 3¢ >0, Vp € [0,1] Vd > 1, H(p) +1g(1+(1—p)™) < 1427,

The proof of this lemma can be found in Section 3.3.

3.2. Proof of (2) for a Random Predicate P
If A% were a small finite set, then we could prove (2) as follows. First, show that for
any particular o € A2, a random predicate with probability 1 — ¢ satisfies H(a) +
lgPEp(a) < 1+ 2794, Then with probability 1 — ¢|A?| this is true for all a € A?
simultaneously, which is exactly (2). Since A? is an infinite set, this doesn’t work, but
our proof is similar in spirit: We will devise a small finite set of properties, each of
which a random predicate P satisfies with high probability, then show that (2) follows
from these properties.

In order to describe this set of properties, we begin with a new way to measure
collisions under a predicate P. We have already seen PEp(a) where a € A?.

DEFINITION 3.5. For 3 € A2(d), the probability of equality of P over 3 is

PER()= Pt [P(x)=P(),

where NA~*(3) denotes the uniform distribution over the set of pairs (x,y) € ({0,1}%)?
satisfying NA(z,y) = f.

The two definitions of PEp are related by PEp(a) = Eg yui(a,a)[PEr(B)], where

Mult(a, d) denotes the multinomial distribution which draws d samples from {0, 1}?
according to the distribution a.

DEFINITION 3.6 (ONE-BIT ENTROPY, (g, Qtua, H* (). Let o € A2
—For a € {0,1}, agx def a(a,0) + a(a, 1) and a., 2o a(0,a) + a(l,a).
— We define the one-bit entropy of a to be H* () o max{H (ao«, 1), H(0o, e1) }-
We now define a small set of properties from which (2) will follow.

DEFINITION 3.7 (COLLISION-AVERSE PREDICATE). For § > 0 and 3 € A?(d), we
say P is (0, 3)-collision averse if

PEp(8) < & + 27404 (8/0-0)/2,

Let E(d) (for Equal) be the set of B € A?(d) such that 3(0,1) = 3(1,0) = 0. Notice that
if (x,y) € NATY(D), then x = y iff B € E(d).
If P is (3, B)-collision averse for every 3 € A%(d) \ E(d), we say P is §-collision averse.
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LEMMA 3.8. Fix any § > 0 and 8 € A?(d)\ E(d). Choose P : {0,1}* — {0,1}
uniformly at random. Then
Pr[P is not (4, 5)-collision averse] < exp(—%25d/poly(d)).

Taking a union bound,

Pr[P is not d-collision averse] < exp(—2°¢~0Uced),

PrOOF OF LEMMA 3.8. Without loss of generality, assume H*(8/d) =
H(Bos/d, B1+/d). Let S C {0,1}? be the support of the marginal distribution on =
when (z,y) ~ NA™!(5): that is, S is the set of strings with 3, zeroes and j3,, ones.

Pick any x € S. If P, P’ : {0,1}¢ — {0, 1} are predicates which differ only at x, then
PEp: (ﬁ) — PEP(,B) < g, where

<22
SIS ()

/

Co = Pr ¥ =xzVy =1]

(@ y)~NA(8)

Fix P arbitrarily on all x ¢ S, but choose the value of P independently at random for
all 2 € S: then K[PEp(3)] = 1, since 8 ¢ E(d). By McDiarmid’s inequality, for any e,

1 2¢2
zeS "z

<oo(-12(4.))

To complete the proof, take ¢ = 2~ 4(H(Bo-/d.f1./d)=0)/2

LEMMA 3.9. There exists § > 0 such that Equation (2) holds for every é-collision
averse predicate. That is, there exist 6,1 > 0 and D € N such that whenever d > D and
a d-ary predicate P is §-collision averse,

Va € A%, H(a) +1gPEp(a) < 1+277
PROOF. Let o € A2. By the concavity of the logarithm function,

lgPBp(a) <16 + 5 (PBe(e) =)

where ¢ will be determined later. Since PEp(a) = E B~Mult(a,d) [PEP ()], we have

1
E
&In2 \ p~Mult(a,d)

lgPEp(a) <lgé + PER(5) ~€). ®)

We assume P is §-collision averse, where § will be determined later. 'I*‘hat means that
whenever 3(0,1) + 3(1,0) > 0, it is the case that PEp(f) < 1 4 2747 (8/d)=0)/2 Gq if
we let E(d) = {f: 8(0,1) = A(1,0) = 0} and 7 = Prg (a3 € E(d)], we have:

E ©PE < 1-4)- E in{1, 14 9-d(" (8/4)=6)/2 E(d
st PEPB) Sy (=) (B Tmin{l, 5+ Y6 & E(d)]

19,1, E (1 9-dO*(B/d)-0)/21|3 o
Fa-y, B ming )15 ¢ E(@)

1ty E (L 9—d(H(8/d)—6)/2y]

-2 +5~Mult(a,d)[mm{2’ 4
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Whenever a random variable X is bounded above by 1, Markov’s inequality gives
E[X] < a + Pr[X > ] for all @ > 0. Taking a = 279%/2 where the value of ¢ still
has to be determined,

PE L1 4 g=0d/ p *(B/d) < 24].
B~Mult(c,d) p(B) =57 + +B~Mu1£(o¢,d)[% (B/d) ]

Now, substitute back in to (3) taking £ = 1+7v:

lgPEp(a) <lg 5 + s (2‘”/ b, /) < 261)

<o 1t —8d/2 * .
<lg—*+3 (2 + BNMB{(%@[H (8/d) < 25])

Since H*(8/d) > H(Bo+/d), we have:

le PE <lg 2 9—0d/2 P L/d) < 28] ).
ePEr(a) Slglp 43 (29924 Pr (. d) < 20

Sampling § ~ Mult(«, d) and looking at 5. is the same as sampling k& ~ Binom (s, d).
So we can rewrite the above as:

lgPEp(a) <lg$* +3 (2—5(1/2 + Pr [H(k/d) < 25]) : (4)

k~Binom (g« ,d)

Since lgPEp(a) < 0, the claim of the lemma follows when H(a) < 1; so henceforth
we assume H(«) > 1, and hence H*(«) > 1/2. We may further assume without loss of
generality that #(ao.) > 1/2. Let po € (0, 1) be the unique number satisfying #(py) =

%; we know «ag. € [po,1 — po]. We now introduce a technical lemma which is proved in

Section 3.3:

LEMMA 3.10. For every py € (0, %], there exists 6 > 0 such that for all sufficiently
large d € N,

Vp € [po, 1 — pol, kairE)Ir‘n(p d)[’H(k:/d) < 20) + 9-0d/2 < 9=bd/3,

Apply this lemma to get § > 0, and substitute back into (4):
lgPEp(a) <lg(1+7) —1+3-2799/3,
Now, the aim of this Lemma is to bound #(«) + 1lg PEp(«). We have so far:
H(a) +1gPEp(a) <H(a) +1g(1+7) — 1432793
<H(ago + a11) +1g(1+~) +3-2794/3,

Now, v = Pr[B(0,1) = 3(1,0) = 0] = (ago + a11)%. Apply Lemma 3.4, taking 7 = 1 and
p=1—(ago + @11). Then:

H(a) +1gPEp(a) <1+27 +3.2704/3,
Take 1 < min{e, §/3} and d sufficiently large that 2-7¢ > 2-<? 4 3. 2794/3 to complete
the proof. O
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3.3. Proof of Lemmas 3.4 and 3.10

Proof of Lemma 3.4.. Assume 7 € (0, 1] is given. First we show that we can choose
positive D and ¢’ such that

Vp e [0,1], Vd > D, H(p) +1g(1+ (1 —p)™?) < 14274 (5)

We prove this by considering four possible cases for the value of p, namely, p € (€1, 1],
p € (e2/d,e1], p € (27%%, e3/d], p € [0,27 %], where €1, €2, €3 are positive constants to be
chosen. We will choose the numbers D and €, ¢, €2, €3 as we go along, but according to
the following dependency graph:

€2 > €1

AN

e D
€3
—Case 1: p > ¢;. Then
Hp) +lg(1+(1—p) ) <1+ (1—e)lge <1427
fore; <1,¢ < —37lg(1—€1),d> D > —2lglge/(r1g(1l — €1)).

For the remaining three cases, p is small. Using the Taylor expansion of lg around 2,
we get

(1-p)md—1 <1+e—wd—1

le(1+ (1 —p)™) <1
g+ (@ =p") <1+ ——go—= 21n2

—Case 2: p € (e2/d, €1]. Then
—TE€2 __ 1
- < 1’
2ln2 —
if we choose €; small enough that e; <1/2 and H(e;) < (1 —e"72)/(21In2).

H(p) +1lg(1+ (1 —p)™") < H(er) +1+

For the remaining two cases we fix e; = (27) 1. Now, 7pd < %, and we have the approx-

imation

e—Tpd _ |

—_— < 1 2 1
s < (Pls(l/p) +2p) +

—Case 3:p € (2797 ¢y/d].

For e3 < ;{5 and d > D for sufficiently large D (depending on €3): 1g(1/p) — ;15d+2 <
0.

Tpd

Hp)+1+ T 1n2

_
- 1+p(1g(1/p) - md+2) .

—Case 4: p < 274,
For ¢ < %63 and d > D for sufficiently large D (depending on e3): plg(1/p) <
e3d2— s < 274,
We have proved (5). It remains to prove the lemma for d € [1, D). Let f(p,d) = H(p) +
lg(1 + (1 —p)™@). Since f is a continuous function on the compact set [0,1] x [1, D], it
achieves a finite maximum M = f(p., d,) on this set. It is easy to see that M € (1,2).
Let € = min{¢’, —D~11g(M — 1)}. Then for d € [1, D], f(p,d) < M < 1+ 27, and for
de (D,), fip.d) <1+2<d<1427¢
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Proof of Lemma 3.10.. Let Dy denote the Kullback-Leibler divergence

1-g

I—p

Fix A > 0 to be small enough that A\ < 1/2 and for any p € [py, 1 — po],
Dir(Alp) > H(A).

q
Dkr(qllp) = qlgg +(1-q)lg

Now, choose any p € [pg, 1 — po].
[H(k/d) < H(N)] =Pr[k/d < \] + Pr[k/d > 1 — )]

Pr
k~Binom (p,d)
(Without loss of generality, assume p < % ) <2Pr[k/d < )]
(Apply Chernoff’s bound.) <2exp(—Dxr(M|p)d)
<2exp(—H(N)d).

Complete the proof by taking § = #()\)/2 and taking d to be sufficiently large that
2exp(—H(\)d) < 2704/3 —2704/2 g

4. LOCALLY CONSISTENT PARTIAL ASSIGNMENT

In this section, we assume we are given an instance of Goldreich’s function f = fp¢ :
{0,1}™ — {0, 1}™ together with b € {0,1}™. We want to analyze a backtracking algo-
rithm A that tries to find an element in the preimage f~!(b). A crucial concept in this
analysis will be that of a locally consistent partial assignment. In order to introduce
this concept, we will introduce some preliminary concepts.

DEFINITION 4.1 (PARTIAL ASSIGNMENT). A partial assignment is a function p :
[n] — {0,1,}. Its set of fixed variables is Vars(p) = p=1({0,1}). Its set of free variables
is p~t({*}). Its size is defined to be |p| = |Vars(p)|. Given f : {0,1}" — {0,1}™, the
restriction of f by p, denoted f|,, is the function obtained by fixing the variables in
Vars(p) and allowing the rest of the variables of f to vary.

For a partial assignment p, an index j € [n], and a value a € {0,1}, we define the
partial truth assignment p|z; < a] by

a, L=7;
p(i), i#3j.

DEFINITION 4.2 (BOUNDARY, NEIGHBORHOOD, AND EXPANSION). Let G € [n]™*
be a bipartite graph as in Definition 2.1. Let I C R be a subset of vertices on the right.
Its neighborhood I'(I) C L is the set of all nodes adjacent to nodes in I. For i € I, the
boundary of i in I, denoted 0Ori, is the set of nodes in L with one edge to i but no other
edges to I. The boundary of I, denoted JI, is the set of all nodes j € L such that there is
exactly one edge from j to I. Equivalently, 0I = |J,.; Ori.

G is an (r,c)-boundary expander if for all I C R such that |I| < r, we have |01| > c|I|.

DEFINITION 4.3 (CLOSURE). Let G € [n]™*? be a bipartite graph as in Defini-
tion 2.1. Assume G is an (r,c)-boundary expander. Fix a subset of input nodes J C L.
We say a subset of output nodes I C R of size |I| < r/2 is a closure for J if the subgraph
of G obtained by deleting nodes in J UT(I) and nodes in I is an (r/2,c/2)-boundary
expander.

play (i) = {

Note that a closure for a set of left-nodes is a set of right-nodes.

DEFINITION 4.4 (LOCALLY CONSISTENT PARTIAL ASSIGNMENT). Let f be Gol-
dreich’s function for graph G and predicate P. Let b € {0,1}™ and let p be a partial
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assignment. For a set of output nodes I C R, we say p is consistent with I if p can be
extended to some x' € {0,1}" such that f(z'); = b;. We say p is locally consistent if
there exists a closure I for Vars(p) such that p is consistent with I. We say p is globally
consistent if p is consistent with R.

4.1. Backtracking Trees and Resolution Proofs

DEFINITION 4.5 (BACKTRACKING TREE). The running of a backtracking algo-
rithm A in finding a solution to the equation fpa(v) = b can be modeled by a back-
tracking tree. Each node of the backtracking tree is labeled by a partial assignment
p:[n] = {0,1,*}, where p; = * means variable x; is free and p; # * means variable x;
is assigned the value p;. We measure the running time of algorithm A in terms of the
number of nodes in its backtracking tree.

The root of the backtracking tree is labeled by the empty partial assignment x". If at
a step of the backtracking, the current partial assignment is p and algorithm A chooses
the assignment x; < a where z; is a free variable and a € {0, 1}, then the left child of
the current node is labeled by p|z; < a]. If the current node has a right child, the label
of this right child is plx; < 1 — a).

For example, here is part of a backtracking tree. One of the nodes is boxed. The label
of that node is a partial assignment that assigns values 0, 1, 0 to variables x5, 7, and
xg respectively.

*TL

/
/
/
/

[t5 = 0,27 = 1,28 :0]‘

A - - T~ ~ &
In this subsection, we motivate the definition of locally consistent partial assign-
ments by showing that a backtracking subtree with a root that is labeled by a locally

consistent but globally inconsistent partial assignment has exponential size.

DEFINITION 4.6 (TREE-LIKE RESOLUTION PROOF). IfC =aV Dand C' = -aV D'
are two clauses each consisting of an OR of literals, C and C' together imply D VvV D’.
In this case, DV D’ is called the resolution of C and C'. Let ® be a CNF formula. A
resolution proof for refuting ® is a sequence of clauses C1,Cs,...,C; where C; is the
empty clause, and fori=1,...,1,

—either C; is a clause appearing in P,
—or C; is the resolution of two clauses that appear before C; in the sequence.

If each clause in the sequence (except the last clause C}) is used exactly once to imply
a later clause in the sequence through a resolution, then the resolution proof is called
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tree-like. The length of the resolution proofis I. The width of the resolution proof is the
width of the maximum-width clause among C1,...,C,.

LEMMA 4.7. (Refer to for example [Iwama and Miyazaki 1999, Proposition 1]) Let
p be the label of the root of a subtree of a backtracking tree for finding a solution x
to fpc(x) = b. One can express fpc(x) = b by a CNF formula ® by translating each
constraint P(zg, ,,...,xq,,) = b; into < 2¢ clauses of width d. Define ®, to be the CNF
formula which is the restriction of ® by p. If no solution x is found in this subtree, then
®|, has a tree-like resolution proof of length no bigger than the number of nodes in the
subtree.

PROOF. To each node labeled p’ in this subtree, we can in the following recursive
way associate a clause C,, over the free variables of p such that C, is false under the
partial assignment p’:

— For a leaf node labeled p’, one of the constraints P(z¢, ,,...,zq,,) # b; is not satis-
fiable under p’. Therefore at least one clause C, exists in ®|, that is not satisfiable
under p'.

— For a node labeled p’ with left and right children p' = p/[z; + a] and p" = p'[z; +
1 — al, if either of the two clauses C, or C,- does not include the variable z;, then
choose that clause as C,/, otherwise fet C, be the resolution of C; and C,-.

In this way, the labels of a postorder tree traversal of the subtree rooted at p can give
a tree-like resolution proof for refuting ®|,. O

DEFINITION 4.8 (ROBUST PREDICATE). Let 0 < h < d be an integer. The predicate
P :{0,1}% — {0,1} is h-robust if after any partial assignment of values to the input
variables of P that lets > h of the input variables of P be free, the predicate P can still
take both of the two possible values of 0 and 1 as its value. For example, the predicate
that sums all its inputs modulo 2 is 0-robust.

THEOREM 4.9. [Ben-Sasson and Wigderson 2001] The length of any tree-like reso-
lution refutation of a CNF formula V is at least 2=, where w is the minimal width
of a resolution refutation of ¥, and wy is the maximal width of a clause in V.

LEMMA 4.10. Consider running a backtracking algorithm for solving fpc(z) = b.
Assume that the algorithm reaches a locally consistent but globally inconsistent partial
assignment p. Assume P is h-robust. Then in the backtracking tree, the subtree rooted
at p has size at least 2(¢/2=h)r/4=d

PROOF. (Our proof follows the proof of [Alekhnovich et al. 2005, Lemma 8], which
in turn uses the Ben-Sasson-Wigderson measure [2001].) Let ®|, be as in Lemma 4.7.
By Theorem 4.9, it suffices to show that every resolution refutation of ®|, has width at

least w % (/2 — h)r/4.

Since p is locally consistent, there exists a closure I for Vars(p) and p can be extended
to some ' € {0,1}" such that f(z'); = b;. Let J = Vars(p) UT(I). We will prove the
stronger statement that every resolution refutation of ®(,,—, ) has width at least w.

For a clause C on the variables z;\; and a set I' C R\ I, we say I’ implies C if for

every = such that (f(z); = by Az = 2)), the clause C is satisfied by 2. We define the
measure of C to be

u(C) =min{|I'|: I' C R\ I, and I’ implies C}.

Since p is globally inconsistent, this measure is well-defined. Assume x(C) < r/2, and
let I’ be a smallest subset of R\ I which implies C. No vertex i € I’ contains more than
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h neighbors in ;i \ J that do not appear in C, since otherwise, by the h-robustness of
the predicate P, then I’ \ {i} would also imply C. Since I is a closure for Vars(p), we
know |01’ \ J| > ¢|I'|/2, so C consists of at least (¢/2 — h)u(C) variables. Thus we have
proved:

width(C)

For any clause C, u(C) is either < R—h

or > r/2. (#)

We have:

(1) u(C) =1 for any clause C' in the CNF formula @[, ,—,").

(2) u(C) > r/2 for the empty clause C = False (because of (#) and because the empty
clause has positive measure p(C).)

(3) p is subadditive: If C5 is the resolution of Cy and Cy, then u(Cs) < u(Co) + u(Ch),
because whenever ) implies Cj and I] implies C, it follows that I U I] implies Cs.

Putting 1, 2 and 3 together, we find that every resolution refutation of ®(, =) contains

a clause C' whose measure is in the range (r/4,r/2]. By (#), the width of C is at least
w = (¢/2 — h)r/4, which completes the proof. O

4.2. Clever Backtracking

For the analysis of drunk and myopic backtracking algorithms, we consider the left-
most node in the backtracking tree among nodes labeled by locally consistent partial
assignments. In order to argue about this particular partial assignment more easily,
we modify the backtracking algorithm into a so-called clever backtracking algorithm
such that this particular partial assignment appears on the left-most branch of the
tree.

DEFINITION 4.11 (LOCALLY FORCED ASSIGNMENT). Let f be Goldreich’s func-
tion, let b € {0,1}™, let p be a partial assignment, and let j € [n]\ Vars(p). We say
an assignment x; < a is locally forced if p[z; < a] is locally consistent but p[z; < 1 — a]
is not. Otherwise we say the assignment is locally unforced.

DEFINITION 4.12 (CLEVER BACKTRACKING). Let A be a backtracking algorithm
for finding a solution x to fpc(x) = b. The algorithm Ais clever if whenever the current
partial assignment is p and the assignment x; < 1 — a is locally forced, the algorithm
does not first try the assignment z; < a.

Given a backtracking algorithm A, we can give a clever version C(A) of A as follows:
C(A) is similar to A except that at each step when the current partial assignment is p,
if A chooses the assignment x; < a to try first, the clever version C(A) checks whether
zj < 1 — ais locally forced. If x; <— 1 — a is locally forced, C(A) tries the assignment
xj < 1 — a first instead of z; < a.

It is clear that the running time of the clever version of any backtracking algorithm
A is as good as the algorithm A itself, since the clever algorithm only delays searching
those subtrees that we are sure do not contain any solution in the preimage f~1(b).

Here is our main lemma about clever backtracking algorithms. We will defer its
proof to the next section when we have developed the necessary tools.

LEMMA 4.13. Consider a clever backtracking algorithm A. Assume the predicate P
is h-robust for h < ¢/2 — 1. The algorithm will make at least |cr/4] locally unforced
assignments on its leftmost branch. Furthermore, the partial assignment p obtained on
this branch after |cr/4| locally unforced assignments is locally consistent.

4.3. Some Properties of Closures and Consistency
LEMMA 4.14. IfI C Ris a closure for J C L, then I is a closure also for JUT(I).
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PRrROOF. The statement follows directly from the definition of closure. O

LEMMA 4.15. Analogous to [Alekhnovich et al. 2005, Lemma 6].
Let J C L have size |J| < cr/4. Then there exists a closure C for J such that |C| <
2¢ Y J).

PROOF. Call I C R nonexpanding if |01 \ J| < c|I|/2. For a nonexpanding I we have
|0I| < c|I|/2 + |J|. If, furthermore, |I| < r, by the (r, c)-boundary-expansion of G we
have |0I| > c|I|, so |I| < 2¢71|J| < r/2. Therefore a nonexpanding I C R has either > r
vertices or < r/2 vertices.

Let C be a largest nonexpanding set with < r/2 vertices. (C might be empty.) We
claim that C is a closure for J. Indeed, let S be any subset of R\ C with < r/2 vertices.
It suffices to show that |05\ (JUL'(C))| > ¢|S|/2. Suppose otherwise: then S is nonempty,
and also [9(C U S)\ J| < |0C\ J|+ |05\ (JUT(C))| < |C|/2 + ¢|S|/2 = |C U S|/2.
Then C' U S is a nonexpanding set with < r vertices, and therefore < r/2 vertices. This
contradicts our assumption that C' was a largest nonexpanding set with < r/2 vertices.

Finally, we showed at the start of the proof that |C| < 2¢71|J|. O

LEMMA 4.16. Analogous to [Alekhnovich et al. 2005, Lemma 7].
A partial assignment p is consistent with all I C R having size |I| < r/2if p is locally
consistent and P is h-robust for h < ¢/2. The same is true about p if p is consistent with
a closure C for Vars(p) \ A where A C Vars(p) and P is h-robust for h < ¢/2 — | A|.

PROOF. (We only prove the second statement of the Lemma: The statement about
locally consistent p follows from the second statement by fixing A = ().)

Let I be a smallest set such that p is not consistent with I. Assume that, contrary
to the statement of the lemma, |I| < r/2. We know I’ = I\ C is non-empty. Define
J = Vars(p) UT'(C). Since C is a closure for Vars(p) \ 4, we have |01’ \ J| > ¢|I'|/2 — |A|.
In particular, there must be some i € I’ with |0pi \ J| > [¢/2 — |A]].

Since I is a smallest set with which p is not consistent, p is consistent with I \ {:}.
So extend p to a partial assignment 2’ which satisfies (f(2'));\ (i} = br\(;}- Since P is a
[¢/2 — |A| — 1]-robust predicate, we can modify input bits in the set |0y \ J| and leave
all other input bits the same to produce an input 2" such that (f(z")); = b;. Since 2" is
equal to 2’ on every input bit in I'(7 \ {i}), we have (f(2")); = b;. This contradicts the
assumption that p is not consistent with I. O

We are now ready to prove Lemma 4.13.

PROOF OF LEMMA 4.13. Consider the running of clever algorithm A for s steps on
its leftmost branch of its backtracking tree. Let p°, ..., p*, where |Vars(p?)| = i, be the
sequence of the partial assignments appearing on the nodes of this leftmost branch.
Let F be the set of indices j € Vars(p®) of variables z; whose assignment by A during
this branch was locally forced. Let U, = Vars(p®) \ Fs.

We first prove by induction on s the following claim:

If C is a closure for U, then F; C T'(C), and thus by Lemma 4.14 C is a
closure for Vars(p®).

The base case s = 0 is obvious. Now assume the claim is true for s — 1, and we want
to prove the claim for s. Since C is a closure for U, it is also a closure for the smaller
set Us_1, hence F,_y C I'(C). If F,_1 = F§, we are done with the proof of the claim.
Otherwise, p* = p*~ [z, + a], where p® is locally consistent but p*~![z; < 1 — a] is not
locally consistent. p° is consistent with a closure I for Vars(p®). Thus, by Lemma 4.16,
p° is consistent with C. If j € I'(C'), we are done with the proof of the claim. Otherwise,

p' = p*lz; + 1 — d] is also consistent with C. By an application of Lemma 4.16
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with A = {j}, we know p’ is consistent with I which is also a closure for Vars(p’). This
contradicts the fact that p’ is not locally consistent, proving the claim.
In order to prove the Lemma itself, it suffices to prove the following two facts:

(1) If |Ug| < |er/4], there exists a closure C for Vars(p®) (and therefore s < n).
(2) If |Us_1| < [cr/4] and p*~! is locally consistent, then p® is locally consistent.

To prove the first fact, notice that by Lemma 4.15 there exists a closure C for U,. By
the claim we proved earlier, C is also a closure for Vars(p®).

To prove the second fact, let C' be the closure for Vars(p®) which is guaranteed to
exist by the first fact. If p® is not locally consistent, neither is p*~![z; + 1 — a] locally
consistent because A is clever. Therefore, both p*~![z; < a] and p*~'[z; + 1 — a] are
not consistent with C. But this exactly means p°~! is not consistent with C; hence
by Lemma 4.16, p*~! is not locally consistent. This contradiction proves the second
fact. O

5. DRUNK BACKTRACKING ALGORITHMS
The goal of this section is to prove Theorem 2.8.

5.1. Probability of Correct Guess

Notice that the clever version C(A) of a drunk algorithm A is also randomized when-
ever it makes a locally unforced assignment.

LEMMA 5.1 (MAIN DRUNK LEMMA). Let A be a drunk backtracking algorithm for
inverting Goldreich’s function. Assume that we are guaranteed that C(A) makes at least
s’ locally unforced assignments on the left-most branch of its backtracking tree as e.g.
by Lemma 4.13. Choose ' € {0,1}" and let b = fpa(z'). When b is given as input to

C(A), let p*" be the resulting partial assignment on the left-most branch after s' locally
unforced assignments. The probability, over the randomness of algorithm C(A), that p*
can be extended to ' is exactly 2% .

PROOF. We shall prove this by induction on s’. The statement for the base case
s’ = 01is clear: ™ can always be extended to z.

For s’ > 1, let ,o‘f;cf be the partial assignment just before the s’-th non-forced assign-
ment is made. Since p{.; is obtained from p* ~! by adding some locally forced assign-
ments, we know that pf;/ef can be extended to 2’ if and only if p* ~* can be.

Furthermore, to get from p{; to p*, the drunk algorithm .4 makes a choice z; + a

where Prla = 0] = Prla = 1] = 1/2. Since this step is not locally forced, the clever
version C(A) allows first trying the choice of a for x;, which is not equal to 2, with
probability 1/2. Therefore,
Prp* extendable to z'] =Pr|p.; extendable to 2’| Pr[a = z;|p{.; extendable to 2]
—Pr[p® ! extendable to z'] - 1/2
=2+ 1/2=2"%,
O

5.2. Choice of Predicate and Graph

For Lemmas 4.10 and 4.13, we need that the predicate P be h-robust for small h. The
following lemma provides two classes of predicates that satisfy this.
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LEMMA 5.2. The predicate P = 21 ® ... ® xqg—p ® Q(xg—nt1,-..,2d) is h-robust. A
random predicate P on d variables is ©(log d)-robust with probability 1 — o4(1).

PROOF. Predicates of the form P =z, ® ... ® 24— ® Q(x4—p+t1,...,xq) are h-robust,
since any subset of 4 + 1 variables includes at least one of the variables z1,...,24_p.

Now assume P is a random d-ary predicate. Let p be any partial assignment on d
variables which fixes all but » + 1 variables. Let E, be the event that the predicate P

becomes constant under the partial assignment p. We have Pr[E,| = 2.0-2""" = 912"
P is h-robust if for none of the 2¢-"~1 (hil) partial assignments p, the event E, holds.
Taking a union bound,

d 41
Pr[P is not h-robust] < 2471 g1-2""
h+1

< 2d7h72h+1dh+1

= 04(1),
for h = ©(logd). O

In this paper we analyze Goldreich’s function fpc where G € [n]"*¢ is a random
bipartite graph. For Lemmas 4.10 and 4.13, the graph G should be a boundary ex-
pander, but there is a non-negligible (i.e. inverse polynomial in n) probability that G
is not a good boundary expander. However, the following Lemma shows that always
except with probability exponentially small in n the graph is an “imperfect” boundary
expander. In the next subsection, we shall see that our results about drunk algorithms
when G is a boundary expander also work when G is an imperfect boundary expander.

DEFINITION 5.3 (IMPERFECT EXPANSION). A graph G € [n]"*? is an rypaa-
imperfect (r, ¢)-boundary expander if there exists a subset Iy,qa C R of size |Inad| < Tbad
such that G\ (Ivaa U T'(Ibad)), i.e. the graph obtained by removing vertices Ip.q and
['(Iyaq) from G, is an (r,c)-boundary expander. We call I,,,4 an extraneous set of G.

LEMMA 5.4. A random bipartite graph G € [n]"*¢ with n left nodes and n right
nodes, and of right-degree d, is with probability 1 — (1/4)™=4 an rpaq-imperfect (r,c)-
boundary expander for any ¢ = d — Q(d), provided r + ryaq < Tmax(n, d, ¢), where ryayx =

PROOF. Let ¢ = (¢ + d)/2. Let I1,.q be a largest set of right-nodes I C R of size at
most r + rpaq such that |T'(1)| < ¢/|I|. Remove Iy.q and I'(Ip.q) from G. Then any set
S of < 7+ Thad — [Ibaa| right vertices in G\ (Ihaga U T'(Jbaa)) has at least ¢/|S| distinct
neighbors, and hence has at least (2¢ — d)|S| = ¢|S| boundary neighbors (because every
non-boundary neighbor is connected via > 2 edges to S). Thus in order to show G is an
rbad-imperfect (r, ¢)-boundary expander, we just need to show that |I.q| < rpaq-

We note that the probability that a specific set I of i right nodes has < ¢’i neighbors

is at most
n dil\ 4 ne L") i\ Y
(o) (5) = () ()
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Thus the probability that |Iya4| > rbad is at most

DRI CY I RO

i=Tpad+1 i=Tphaq+1

+Tbad i d—c'—1 i
’ /
_ § : v C/dfc 61+c .
n

i=Tpadt1

Let a; = (£)4-¢~1¢d=¢ ¢l Define
n N1 (A —
— g(4clel+c ) 1/(d—c'-1) _ Q(n/d)
For i < rpax, we have a; < 1/4. Thus the above sum is at most (1/4)™=4. O

5.3. Coping with Imperfect Expansion

LEMMA 5.5. Let f = fg.p:{0,1}" — {0,1}™ be an instance of Goldreich’s function.
Let I C R be a set of right-nodes in G and define f = fie\n,p {0, 1} — {0, 1ym=I,

Sample x' € {0,1}" uniformly at random and let b = f(z') and b = f(z') = br\s- Let A
be a drunk backtracking algorithm for inverting f that returns the exact solution z' in
time < maxtime with probability p. Then there exists a drunk backtracking algorithm
A’ for inverting f(z') that given br\1 with probability at least p2~ Pl returns the exact
solution ' in time < maxtime + |T'(I)|.

A first attempt to prove Lemma 5.5 is to have A’ convert the output b € {0, 1}m= 0]

into a complete output b € {0,1}™ by guessing the output values b; randomly. This
guess would be correct with probability 2-/I, and A’ could then try to emulate the
original algorithm 4 on the complete input b, by making the same decision that A
would make at each node of the backtracking tree. The trouble with this approach is
that when A reaches a node whose partial assignment is inconsistent with a bit in by, it
can backtrack. A’ is only allowed to backtrack from nodes which are inconsistent with
bits in b, and so A’ may be forced to explore backtracking subtrees that A is allowed to
skip. To fix this problem, we guess the input bits x’F( n instead of guessing the output

bits b[.

PROOF. A’ will begin by assigning values to the bits 2(;) in a drunk (random) way.

With probability 2-T(Dl the resulting partial assignment p agrees with 2/. We are
not interested in the behavior of A’ if the partial assignment p does not agree with
x. But if it agrees, then we continue A’ as if A were running. However, sometimes
A tries to assign a value to a variable in I'(]): In this case, A’ has already assigned
the correct value to that variable and A’ does not need to assign a new value. Clearly,
since p agrees with 2/, A will never backtrack because of the inconsistency of its current
partial assignment with a bit b; where i € I. Rather, A will backtrack because of an
inconsistency with a bit b; where i € R\ I; but, in this case A’ will also backtrack. To
summarize, conditioned on p agreeing with 2/, the running time of A’ is at most |T'(J)|
steps more than the running time of A, and if A finds z’ so does .A’. The statement of
the lemma follows. O

5.4. Putting It All Together

PROOF OF THEOREM 2.8. Given predicate P, we first check that P satisfies the test
that implies the upper bound of Theorem 2.5. Next, we check that P is h-robust for
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h = d/2 — Q(d). If both checks are satisfied, we say that the predicate has passed the
test. By Lemma 5.2, the test satisfies properties (A), (B’), and (C).

Let G € [n]"*? be chosen uniformly at random. By Theorem 2.5 and Markov’s
inequality, fpc has expected preimage size < M? with probability > 1 — 1/M for
M = nPM227°n_ Also let ¢ = d/2 + h. Then ¢ = d — Q(d), and by Lemma 5.4,
a random G € [n]"*? is an r,q-imperfect (r, c)-boundary expander with probability
1—2-0027%) for p = O(n/d), rhaq = O(n279D) and r 4 rpaq < Tmax(n, d, ¢), with ex-
traneous set Ij,.q. To summarize, with probability 1 — 9—n2" % +0(logn) gyer the choice
of G, both G is an r,,q-imperfect (r, ¢c)-boundary expander and fp ¢ has expected preim-
age size < M?. We show that in this case, any drunk backtracking algorithm A cannot
invert f = f P,G\I..a With high probability efficiently.

Let A be a drunk backtracking algorithm. Choose = € {0, 1}" uniformly at random
andletb = f P,G\Iyaq (7). By Lemma 4.13, in finding an element in the preimage of b the
clever version C(.A) of A makes at least |cr/4]| = Q(n) locally unforced assignments on
the left-most branch of its backtracking tree. Let p be the partial assignment on the
left-most branch after |cr/4| locally unforced assignments. By Lemma 4.13, p is locally
consistent, and by Lemma 5.1, with probability 1 — 2=(") the partial assignment p
does not agree with x. Assume p does not agree with z. Then

— either p is globally consistent in which case C(A) returns C(A)(b) # = from its search
of the backtracking tree rooted at p,

—or p is globally inconsistent, in which case, by Lemma 4.10, C(A)(b) spends
2(c/2=h)r/4=d gsteps in searching the backtracking tree rooted at p. Noticing that
¢/2 — h = Q(d), this amounts to 2°(") steps.

In either case, C(.A) and hence .A does not return z as output in time better than 2°("),
So A outputs  in time better than 2°(") with probability < p = 2=,

By Lemma 5.5, drunk backtracking algorithms for f = fp ¢ itself also cannot return
x given b = f(z) in time better than 2°(™) with probability better than p2/T(/bad)l =
2-9(") because |I'(Ipad)| < d|Ipaa| = O(n2-9D),

By Lemma 3.1, drunk backtracking algorithms cannot return any element in the
preimage fp E(b) in time better than 2°(") with probability better than 2v/1/22-9(n),
This probability is at most 2~¢(9” where C(d) only depends on d and is positive for
large enough d. This completes the proof. O

6. MYOPIC BACKTRACKING ALGORITHMS
The goal of this section is to prove Theorem 2.11.

6.1. Choice of Predicate and Graph

To prove the security of Goldreich’s function against drunk backtracking algorithms,
we assumed the predicate P was h-robust, that the graph G was an (r, ¢)-expander,
and that G and P were such that fp had small preimages. In the case of myopic
backtracking algorithms, we add one more condition on P and one more condition on
G.

DEFINITION 6.1 ((h,€)-BALANCED PREDICATE). For a predicate P : {0,1}¢ —
{0,1}, real number e, € [0,1/2), and integer h € [0,d — 1], we say predicate P is
(h, ena1)-balanced if after fixing all but h + 1 variables,

| Pr[P(z1, . ..,2q) = 0| fixed variables] — 3| < epal.
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For example, the predicate P, n = 21 @ -+ ® xqg—2 ® (T4—1 A x4q) is (2,0)-balanced and
(1, %)-balanced. The predicate that sums all its inputs modulo 2 is (0,0)-balanced. A
predicate is h-robust iff there is some ey, € [0, 1) such that P is (h, epa)-balanced.

In other work, a balanced predicate is often defined as one where |[P~1(0)| = |[P71(1)| =
24=1, We would call this a (d — 1,0)-balanced predicate.

LEMMA 6.2. A random predicate on d variables is (0(log ﬁ), €pal)-balanced with
probability 1 — exp[—poly(d/eva)]. Predicates of the form Pn,qg = x1 & -+ & xq_p &
Q(zd4—h+1,--.,2q) are (h,0)-balanced.

PROOF. Let p be any partial assignment which fixes all but » + 1 variables. There
are 2" inputs consistent with p: call them zf,... 20, ,,. Let E, be the event that P is
not balanced under the partial assignment p: E, = {|#{i : P(zf) = 1} —2"| > 2h+1¢ ).

P is balanced if for none of the Qd"”‘l(hil) partial assignments p, the event E,
holds. By a Chernoff bound, Pr[E,| < 2¢~%=2""" Taking a union bound,

2 h+2
bal2

d
P[P is not (h, epa)-balanced] < 297"~ (h 4 1) 96
< 2d_hdh+16_€%a12h+2
=exp[(h+1)Ind + (d — h)In2 — ¢,,2"+2].

Finally, to show the desired result, take h = O(log ﬁ)

To see that the predicate Py g(z1,...,24) = 21 ® -+ @ x4—n D Q(Ta—n+1,...,2Zq) 18
(h,0)-balanced, notice that any subset of 4 + 1 variables includes at least one of the
variables z1,...,zq_p. O

LEMMA 6.3. A bipartite graph G € [n]"*? chosen uniformly at random from [n]"*4,
with n left nodes, n right nodes, and of right-degree d has with probability > 1 — 27 "bad
at most np,q left nodes of degree > dy;, provided diegs > 2ed and npaq > 2en2~ <

PROOF. The probability that there are > ny,.q left vertices of degree > dj.g is at most
the probability that there exists a set S of ny,.q left vertices such that at least ny,qdics
of the edges of the graph have an endpoint in S. For each set S of ny,,q left vertices, this
happens with probability at most

d
< nd > (nbad)"baddlefc < < nde >nbad et (nbad)"baddle“ < 9—dnpaa
— f— b

Nbad dlefs n Nbad dlefs n

where the last inequality is true provided di.;y > 2de. Now by a union bound, the
probability that such an S exists is at most

MNbad
n 9—dnbad < ne 9—dnbad < 27 ad
Nbad Nbad

provided ny,,q > 2ne2=%. O

6.2. Probability of a Correct Guess
LEMMA 6.4 (MAIN MYOPIC LEMMA). Let A be an (s,r)-myopic backtracking algo-

rithm for inverting Goldreich’s function fp g, where s = 27°Dn. Assume that we are
guaranteed that A makes at least s assignments on the left-most branch of its back-
tracking tree before it stops searching that path. Let P be any (h, ey )-balanced pred-
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icate where ep, = 27U, and let G € [n]™*¢ be any (r,c)-boundary expander with
m = O(n) where all but ny.q = 2~ Dn of the left-nodes have degree O(d).

Choose z' € {0,1}™ uniformly at random and let b = fpa(z'). When b is given as
input to A, let p*(b) be the resulting partial assignment on the left-most branch after
s assignments. The probability, over the randomness of ' € {0,1}", that p*(b) can be
extended to x' is at most 2-2 ",

LEMMA 6.5. Assume G is an (r,c)-boundary expander of right-degree d, with at
most nyaq left-nodes of degree bigger than deg.. Let h > 0 be a real number and assume
¢ > h+ 1. Let W be a set of left-nodes of G. Then there exists U C W such that

W — nbaa
2dleftd

and for every A C R with |A| <, there is some i € A such that |04\ U| > h.
PROOF. Let ¢ = [¢ — h — 1]. Construct U using the following algorithm:

U] >

—U + 2.

¢ ifi € W and i has degree at most djcs;

0 otherwise.

— The following invariant holds every time the following while loop checks its loop
condition: every right-node connected to a left-node j has at most ¢ — n; adjacent
left-nodes in U.

—while 3i, n; > 0,

—U «+ U U {i}.
— For every j € L distinct from i, if ¢ and j have a common neighbor, then n; +
max{0,n; — 1}.

In the beginning, >, n; > ¢(|W| — npaq), and in the end, >, n; = 0. At each step, > . n;

decreases by at most ¢ + djert (d — 1). Therefore the number of steps we took is

W] = mbaa) - W] = nbaa
¢ + dleft (d - 1) o 2dleftd
By the loop invariant, every right-node has at most ¢ adjacent left-nodes in U. Let

A C R have size |A| < r. Then by the expansion of G, there is some i € A such that
|04i| > c. It follows that [04i \U| >c—¢é¢>h. O

PROOF OF LEMMA 6.4. As the myopic algorithm A runs, it may query bits of b =
f(2') in order to decide which assignment to try next. Let T'(b) C [m] be the set of
indices of bits of b that A queries after following the leftmost branch for s steps. Since
A is (s,r)-myopic, we know |T'(b)| < r. The decisions of A are based only on the bits in
T'(b), so whenever by, = br(y), it must be that p*(b') = p*(b) and T(V') = T'(b).

For any b € {0,1}", define the set
Ei) = {33‘/ S {O, 1}” : f(:z:’)T(l;) = AT(B)}.

We begin by showing that the sets {E; : b € {0,1}"} form a partition of {0,1}". These
sets cover all of {0, 1}" because 2’ € Ey(,/ for every 2’ € {0,1}". Now assume, for S
{0,1}", the sets Ej; and Ej; share a string 2’. Then f(2') 1) = I;T(B)’ so T(f(2)) = T(b)
and similarly T(f(2")) = T(¥). Thus, T(b) = T(V'), and by ;) = (")) = V') This
means that any two intersecting sets E; and E;, are equal.

—For every i € L, set n; « {

U] >

25



Since the sets Ej; partition {0,1}", we can prove the Lemma by showing that for
every b, the probability that p* can be extended to 2/, conditioned on event 2’ € E;, is

_g—o(d)
at most 272 7'n,

Therefore from now on we fix b. Conditioning on the event 2’ € E; fixes p°. By
Lemma 6.5 with W = Vars(p®), there exists a set of input nodes U C Vars(p*) of size

(5 — Npaq)/(2dO(d)) = 27°(Dn such that every subset of T'(b) has boundary expansion
> h outside U. We know that
Pr[p® can be extended to 2|2’ € E;] < Pr[ay; = pj|a’ € Ej),
so it suffices to show
Prlzy = yla’ € ;) =272 """, 6)

for y = pj.
Here is a two-sentence overview of the proof of (6) for any y € {0,1}IYI. We first
show that zy has little influence on the distribution of bT(B)' Then by Bayes’ rule, we

conclude that the bits by, ;) do not contain much information about ;.

Order the nodes in 7'(b) as vy, va, . . . V()| such that for every 1 < i < |T'(b)|, we have
IT(T) \ (T(Ti—1) UU)| > h+ 1 for T; = {v1,...,v;}. This ordering is possible because
every subset of T'(b) has a node with boundary > h outside U. For any y € {0,1}IV], we
have

|7(b)]

Ty = y] = H Pr[b'ui = Z;'Ui sz‘—l = BTi_me = y}
=1

Prlz’ € E;

E[(% _ ebal)\T(bH? (% + Gbal)lT(b)‘L
since P is (h, epa)-balanced and since for every 1 < i < |T'(b)|, v; has at least h + 1
neighbors outside I'(7;_;) and U. Using Bayes’ rule, for any y, 3’ € {0,1}V],
Prlzy, =y |2" € E;] :Pr[m’ € Ejlzy =y Prlay = 9/]
Prlzy, = yla’ € E;]  Pr[a’ € Ejloy, = y] Prlzy = ]
_ Pra’ € Ejlzy =y
- Pr[a’ € Ejlzl; =y

N 1— 21 [T(b)| .
T\ 1+ 26pal
Fixing y and summing the above inequality over all ¢/ € {0, 1}V, we get

T(b
) g (1= 20 7O
Prlzy, = yla’ € Ej] — 1+ 2€par

Since |U| = 27°@n, e,y = 24D and |T(b)| < m = O(n), Equation (6) follows. O

6.3. Clever Myopic Algorithms
We will need a stronger version of Lemma 4.15.

LEMMA 6.6. Let J C L have size |J| < cr/4. Then there exists a closure C for J such
that |C| < 2¢7YJ| and |0C \ J| < c|C|/2.

Furthermore, if C' is any set such that |C'| < 2¢71|J| and |0C" \ J| < c|C’|/2, then we
can pick C to be a superset of C'.
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PROOF. The proof is the same as the proof of Lemma 4.15, except for the following
change. Instead of saying “Let C be a largest nonexpanding set with < r/2 vertices”,
the proof should say “Let C be a largest superset of C’ which is nonexpanding and has
< r/2 vertices.” We know there is such a set because C’ itself is a superset of C’ which
is nonexpanding and has < r/2 vertices. O

Consider a myopic backtracking algorithm .4 and the clever version C(A). In order to
decide which assignment to make next, C(.A) queries the same bits of b that .4 would,
but it also checks at every step whether the partial assignment is locally consistent.
Since C(.A) makes this additional kind of query, it is not clear whether C(.A) is myopic.
However, as the following lemma shows, it is possible to create a myopic algorithm
which behaves in the same way as C(A) by reading a limited number of additional bits
of b.

LEMMA 6.7. Let Abe an (s,t)-myopic backtracking algorithm for inverting Goldre-
ich’s function fpq. If G is an (r,c)-boundary expander, s < cr/4 and P is a (¢/2 — 1)-
robust predicate, then there is an (s,t+2c~'s)-myopic backtracking algorithm A’ which
has the same backtracking tree as C(A).

PROOF. During the task of finding = € fp g(b), algorithm A’ will maintain a set
C C R of right-nodes of G. Whenever A’ adds a new node i to C, it will also query the
corresponding bit b;. When A’ finishes exploring a subtree and consequently forgets
some bits of b, it removes the corresponding nodes from the set C: so A’ always knows
every bit b; for i € C. The algorithm will use this knowledge of b in order to emulate
the clever decisions made by C(A).

A’ will maintain the following invariant at every point in its execution where it
has assigned values to less than s variables. Let p be the current partial assignment,
let ; < o be the next assignment that A would make at this point, and let J =
Vars(p) U {j}. Then C is a closure for J, |C| < 2¢7|J|, and [0C \ J| < ¢|C|/2. Since
s < er/4, Lemma 6.6 ensures that A’ can maintain this invariant.

Now, whenever C(A) makes a new assignment, it makes the same assignment z; < a
that A would make, unless z; < 1 — a is locally forced. Therefore, to see that A’ can
emulate C(A), all that remains is to show that the bits b; for i € C always provide
enough information to determine whether any partial assignment to the variables in
J is locally consistent. Indeed, if a partial assignment to J is consistent with C, then
it is locally consistent by definition, and conversely, if it is locally consistent, then by
Lemma 4.16 it is consistent with C. O

6.4. Coping with Imperfect Expansion

So far, when studying the behavior of myopic backtracking algorithms, we have as-
sumed that the graph used to construct Goldreich’s function is an (r, ¢)-boundary ex-
pander. However, as discussed in Section 5.2, the probability that a graph is not a
boundary expander is non-negligible. Here we show that the results in this section
also apply to imperfect boundary expanders, analogously to Lemma 5.5.

LEMMA 6.8. Let f = fa.p:{0,1}" — {0,1}™ be an instance of Goldreich’s function.
Let I C R be a set of right-nodes in G and define f = fe\n,p 10,1} — {0, 1y,
Sample &' € {0,1}" uniformly at random and let b = f(z) and b = f(z) = br\1-

Let A be an (s,t)-myopic backtracking algorithm for inverting f that returns the exact
solution =’ in time < maxtime with probability p. Then there exists an (s,t)-myopic

backtracking algorithm A’ for inverting f(z') that given br\ with probability at least
p2~ T returns the exact solution x' in time < maxtime + |T'(I)|.
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PROOF. The proof of Lemma 5.5 gives us a randomized backtracking algorithm .4’
which with probability > p2~ Tl returns ' in time < maxtime + |T'()|. This algo-
rithm is (s, t)-myopic, since while it is guessing the bits xr(;) it does not look at b at all,
and the rest of its decisions are made according to the myopic algorithm 4. O

6.5. Putting It All Together

PROOF OF THEOREM 2.11. The proof is the same as the proof of Theorem 2.8 in
Section 5.4, with the following changes.

— We test the predicate P with the same test as in Theorem 2.8, but we additionally
test that P is (h, ena1)-balanced for h = d/2 — Q(d) and e, = 2-d) If both the old
and new tests are satisfied, we say that P has passed the test. By Lemma 6.2, this
new test satisfies properties (A), (B’), and (C).

— We use Lemma 6.3 to show that a random G has with probability 1 — 2-27%n ng
more than ny.q = 2en2~¢ left vertices of degree > 2ed.

— Rather than assuming A is a drunk algorithm, we assume A is (s, t)-myopic, where
s=2"°Dpandt=1r/2=Q(n/d). Let &' = min{s, |cr/4|} = 27°(Dn. Then Ais (s, t)-
myopic. By Lemma 6.7, the clever version C(A) is (s',¢ + r/2)-myopic, so we can
apply Lemma 6.4 to C(A). As for the success probability of algorithm A on fp 1,
in finding z itself, instead of the upper bound of p = 2-°("), we get the upper bound
of p=2-2"""n,

— We use Lemma 6.8 where the proof of Theorem 2.11 uses Lemma 5.5. This shows
a drunk backtracking algorithm on fp  has success probability of at most 2-27""n
in finding z itself. This shows that the success probability of finding any element in

the preimage is at most 2V M22-2°“n_and this completes the proof.

O

7. MYOPIC AND DRUNK DPLL BACKTRACKING ALGORITHMS
Here we prove Theorem 2.14.

7.1. Simulating DPLL Algorithms

Let us forget myopic and drunk algorithms for a moment, and compare backtracking
algorithms as described by Definition 2.6 to DPLL backtracking algorithms described
by Definition 2.13. Both kinds of algorithm have the option at every step of taking a
free variable z; and a bit a and trying first the assignment z; < a and then, if no
solution was found on that branch, the assignment z; -~ 1 — a. A DPLL algorithm is
also able to make a DPLL assignment z; < a and skip the alternative assignment
zj < 1 — a. The following lemma shows that this additional ability does not help a
DPLL alg;orithm, except to decrease the number of nodes it must explore by a factor of
at most 2¢.

LEMMA 7.1. Let fpc be an instance of Goldreich’s function, where P is any d-ary
predicate and G is any graph. For any DPLL backtracking algorithm D, there is a (non-
DPLL) backtracking algorithm S(D) which simulates D: When algorithms D and S(D)
are given b and asked to find some x € fp IG(b), then they both return the same result,

and the backtracking tree of S(D) contains at most 2¢ times as many nodes as that of D.
PROOF. Whenever D makes a non-DPLL assignment z; < a, the simulation S(D)
makes the same assignment. However, if D makes a DPLL assignment z; < a, then

the behavior of S(D) depends on whether the assignment is a unit clause or a pure
literal.
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If 2; « a is a pure literal, S(D) postpones making this assignment by adding it to a
“to-do list” of pure literal assignments. The following invariant is always maintained:

If the union of the current partial assignment of S(D) together with its to-
do list contradicts any equation b; = fpq(x); = P(zg,,,-..,2q, ), then the
current partial assignment without the to-do list contradicts that same equa-
tion.

This means that whenever D returns back from a recursion because some bit b; has
been contradicted, S(D) can also return back in < 2¢—1 steps by exhaustively assigning
values to all of the variables ¢, ,,...,zq, , which are still free. (Assuming P is non-
trivial, it has at most d — 1 free variables at this point, and 2¢ — 1 is the number of
nodes in a complete binary tree of depth d — 1.)

The other possible action D might take is to assign a unit clause z; < a. This means
that there is some output bit i such that the equation b; = P(zg, ,,...,zq,,) implies
z; = a. In this case, S(D) first makes the assignment z; <— 1 — a. Together with the
assignments in the to-do list, this contradicts the equation b, = P(2q, ,,...,2q, ), SO
by the invariant, S(D) can exhaust the branch in < 2¢ — 1 steps. S(D) is then free to
make the DPLL assignment z; < a.

If D succeeds in finding a complete input # € f~!(b), then S(D) proceeds to make
all the pure literal assignments in its to-do list, and arrives at the same complete
assignment z. O

7.2. Drunk DPLL Algorithms

LEMMA 7.2. If D is a drunk DPLL backtracking algorithm, then there is a non-
DPLL backtracking algorithm S'(D) that relates to D in the same way as S(D) in
Lemma 7.1, except that S'(D) is drunk, and also might return a different x € f~1(b)
from the one S(D) returns.

PROOF. The simulation S(D) from the proof of Lemma 7.1 makes four kinds of as-
signment. The first kind copies the non-DPLL assignments made by D. These are al-
ready drunk, so §'(D) can behave the same way. The second kind of assignment is
made when S(D) is exhaustively assigning values some set of < d — 1 variables. In this
case, we lose nothing by having S’'(D) behave the same way except to try each pair of
assignments z; <— 0 and z; < 1 in a random order. The third kind of assignment is
when D has assigned a unit clause z; < a. In this case, S(D) first tries the incorrect
assignment z; < 1—a, but we lose nothing by having S’(D) try the assignments z; < a
and z; < 1 — a in random order.

The fourth and final kind of assignment S(D) makes is when D has found a solution
x € f71(b), and S(D) proceeds to make all the assignments in its to-do list of pure
literal assignments, in the same order they were added to the list. In this case, S'(D)
will make the assignments in reverse order, and will chose the bit to assign randomly
in each case. If z; < a is a pure literal with respect to a partial assignment p, then it
is still a pure literal with respect to any p’ which extends p. Therefore, if S’(D) makes
assignments in its to-do list in reverse order, then at each step, the remaining assign-
ments still form a sequence of pure literal assignments. Now, if the last assignment
on the to-do list is z; <— a and S’(D) drunkenly assigns z; < 1 — a instead, let 2’ be
the full assignment we get by applying the remaining pure literals from the to-do list.
Now, either f(z') = b, in which case we continue making assignments in the to-do list
in reverse order, or for some i, f(z'); # b;, and since the remaining assignments are all
pure literals, there is no way to satisfy b; = P(zq, ,,..., ¢, ,) given the values already
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assigned. In the latter case, we exhaust all possible assignments to those variables in
< 24— 1 steps, and continue with the correct assignment z; < a. O

PROOF OF THEOREM 2.14 FOR DPLL DRUNK BACKTRACKING ALGORITHMS. The
theorem in the case of DPLL drunk backtracking algorithms follows immediately from
Theorem 2.8 and Lemma 7.2. O

7.3. Myopic DPLL Algorithms

DEFINITION 7.3 (NONMONOTONE PREDICATE). Let 0 < h < d be an integer. The
predicate P : {0,1}% — {0,1} is h-nonmonotone iff after any partial assignment of
values to the input variables of P that lets > h of the input variables be free, the resulting
restricted predicate is not constant and has the following additional property. Pick any
input bit x; among the > h + 1 unrestricted inputs. Then either the restricted predicate
does not depend on x;, or the restricted predicate is not monotone in x;.

LEMMA 7.4. The predicate P = 1 @ -+ ® x4—p ® Q(Td—h+1,---,24) is (h + 1)-
nonmonotone. A random predicate P on d variables is ©(logd)-nonomonotone with
probability 1 — o4(d).

PROOF. By Lemma 5.2, we may assume that P is h-robust, and so only the “addi-
tional property” part of Definition 7.3 remains to be shown.

If we fix all but h + 1 input bits and select an input bit z; among those &+ 1, then the
probability that a random d-ary predicate is monotone nondecreasing in z; is exactly
(3/ 4)2h. Taking a union bound, the probability that for any choice of i + 1 variables,
together with an index 7 among those h + 1 and a way of fixing the remaining d — h — 1
variables, the predicate becomes monotone in z; is at most

2( d )2d—h—1(h+1)(3/4)2",

h+1
which is exp(— poly(d)) if we take h = ©(logd).
Now, consider a predicate P, g =21 ® - ® x4—p D Q(Ta—p+1, - - -, £q4) Where Q is any

h-ary predicate. Consider any subset S C [d] of i + 2 variable indices, together with an
index i C S and a partial assignment p that fixes x4, 5. We are to show that after the
assignments in p are fixed, P either does not depend on z; or is not monotone in z;. We
have two cases.

Case 1.. 1 < i < d — h. Then z; is not one of the inputs to the predicate Q. Since
|S| > h + 2, there is at least one other unrestricted input z; that is not an input to @,
so our predicate has the form z; © z; © P'(2[4)\ (;,;3)- This is not monotone in x;.

Case 2.. d — h+1 < i < d. In this case, z; is an input to Q. Since |S| > h + 1, there
is at least one unrestricted input z; that is not an input to @), so our predicate has the
form x; © P'(x;, x(q)\ (s,;7) Where P’ is a (d — 1)-ary predicate. We may assume that after
assignments in p are fixed, P’ does not ignore z;, so there is some value & for x5 ;1
which is consistent with p and such that P’(0,z) # P'(1, Z). For different values of z;,
then, P increases or decreases with x;, so P is not monotone in z;. O

LEMMA 7.5. Let fg p be an instance of Goldreich’s function for graph G and an h-
nonmonotonoe predicate P. Consider the execution of a DPLL backtracking algorithm
which is searching for v € f~1(b), where the current partial assignment is p. Let I C R
be a set of indices such that every node in R\ I has at least h + 1 distinct neighbors
which are not in Vars(p). Then without reading any bits b; for i ¢ I, it is possible to
know all the DPLL assignments which can be made starting from p.
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PROOF. In order to know which unit clause assignments can be made, iterate
through the bits b; for ¢ € I. In each case, check whether, given p, the equation
b; = P(zg, ,,...,rq,,) together with p implies any variable z; has a particular value
a. If any of these equations force z; to take a value a, then z; < « is a unit clause.

Finding all the pure literal assignments requires a bit more work. For every possible
assignment z; < a, check whether it is a pure literal assignment as follows. First,
iterate through all output bits b; — even the ones we are not allowed to read — and in
each case, consider the equation b; = P(z¢, ,,...,zq,,). Even if we don’t know b;, we
can still check whether, after fixing the variables in p, the truth of the equation can
ever depend on the value of z; (equivalently, whether P ignores the input z; once p
is fixed). If the truth never depends on z;, we call output b; passive with respect to
x;. Now, iterate through the bits b; for ¢ € I, and note which of the equations b; =
P(zg,,,..-,q,,) can never be changed to false by setting x; = a. Call these output
bits monotone toward x; = a. If x; is only connected to outputs which are passive with
respect to z; and outputs i € I which are monotone toward =; = a, then z; < a is a
pure literal assignment.

What is left is to show that the above procedure finds every unit clause and pure
literal assignment.

If x; + a is a unit clause assignment, then there must be some output bit b; such
that the equation b; = P(zg,,,...,2q,,) implies x; = a. Since P is h-nonmonotone,
this implies that output ¢ must be connected to < h inputs not in Vars(p), so ¢ € I, and
so the above procedure finds the assignment.

If x; < ais a pure literal, then given p, every output bit b; connected to z; is either
passive with respect to z; or is monotone toward z; = a. Now, if an output bit b;
is not passive with respect to z; but is monotone toward =; = a, then since P is h-
nonmonotone, b; must be connected to < h inputs which are not in Vars(p). Therefore,
the above procedure will find z; - a. O

PROOF OF THEOREM 2.14 FOR DPLL MYOPIC BACKTRACKING ALGORITHMS.
Given a predicate P, we first check that P satisfies the test of Theorem 2.11. We then
check that P is h-nonmonotone, for h = d/2 — Q(d). If both checks are satisfied, we say
that the predicate has passed the test. By Lemma 7.4, the test satisfies properties (A),
(B’), and (C).

Let t,on_pprr, be the value given by Theorem 2.11 such that Goldreich’s function
is secure against (s, t,on—ppLL)-myopic backtracking algorithms. The proof of Theo-
rem 2.11 guarantees that we can have t,o,_pprLr, = Q(n/d).

Let G € [n]"*? be chosen uniformly at random. Let ¢ = d/2 + h. Then ¢ = d — Q(d),
and by Lemma 5.4, G is an rp.q-imperfect (r, c)-boundary expander with probability
Z 1-— 27@(n/d) fOI‘ r= Q(n/d), r S tnon—DPLL: Thad = T/B; and T 4 Thad S Tnlax(n; d; C);
with extraneous set Ij,.q.

Given s such that s/n = 27°(9n_ let D be an (s, t)-myopic DPLL backtracking algo-
rithm, where ¢t = /3 = Q(n/d). Let s’ = min{s, |cr/6]} = 27°@n. Then D is an (s',t)-
myopic DPLL algorithm. By Lemma 7.1, there is a non-DPLL algorithm S(D) which
produces the same result as D and takes at most 2¢ as long. We will show that S(D)
can be turned into a myopic algorithm too: that is, we will design an (s, ¢,on—DpPLL)-
myopic backtracking algorithm S§’(D) which has the same backtracking tree as S(D).
Theorem 2.11 tells us that Goldreich’s function is secure against (s, t,on—ppL1)-myopic
non-DPLL backtracking algorithms. Thus, Goldreich’s function is secure against S'(D)
and hence also against D.

When finding a preimage x € f~(b) to Goldreich’s function, the myopic DPLL algo-
rithm D, and therefore its simulation S(D), uses two sources of information. In order
to behave in the same way as S(D), the myopic algorithm S’ (D) must obtain both kinds
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of information. First, S(D) reads bits of b, but it reads no more than ¢ = r/3 bits before
it has assigned values to s’ variables. In order to have this information, S’(D) reads
the same bits of b that D does. Second, S(D) knows at all times the set of all DPLL
assignments that can be made. To obtain this knowledge, S'(D) will maintain a set
C C R of right-nodes of G, and §’(D) will make sure it has always read all the bits in
C by reading b; whenever it adds a node i to C. (The set C plays the same role here
as in the proof of Lemma 6.7.) C will always contain every node in the extraneous set
Ihaq. In addition, S§’(D) will maintain the following invariants:

— O\ Ipaa is a closure for Vars(p) \ T'(Ipaq) in the graph G = G\ (Inaq U T (Ipad)).
— O\ Ipaa| < 2¢ 1| Vars(p)|.
—10C'\ (Vars(p) UT (Ipaa))| < ¢|C\ Ipadl/2-

By Lemma 6.6, applied to the graph G instead of the imperfectly expanding G, al-
gorithm &’(D) can maintain these properties as long as it has assigned less than
s’ < |er/4] variables. By Lemma 7.5, reading the bits in the set C is enough for S'(D)
to know all the DPLL assignments that can be made, and so §'(D) has enough knowl-
edge to behave in the same way as S(D). Before assigning values to s’ variables, S'(D)
reads at most r/3 bits of b; because D read them, at most 7,4 = 7/3 bits from Iy.q,
and at most 2¢™'s’ = r/3 bits from C \ Ipa.q, so S'(D) is (s',r)-myopic, and therefore
(SlytnonfDPLL)'myopic' U

8. MINISAT EXPERIMENT

Inverting Goldreich’s function can be seen as the task of solving a constraint satis-
faction problem with a planted solution. This suggests the use of a general-purpose
SAT solver to solve the constraint satisfaction problem. We performed an experiment
using MiniSat version 2.0 beta [Eén and Sorensson 2003; Eén and Biere 2005], which
is one of the best publicly available SAT solvers. We always use the degree-five pred-
icate Ps(x) = x1 ® xo ® x3 @ (x4 A x5). For each trial, we choose a new random graph
of right-degree 5. MiniSat requires a boolean formula in conjunctive normal form as
input, so we represent each constraint P(z;,,z,,%;,,%;,,%j;) = v; by 16 clauses: one
for each truth assignment to z;,, - - - , z;, that would violate the constraint.

We ran MiniSat on a Lenovo T61 laptop with 2GB of RAM and a 2.00GHz Intel
T7300 Core Duo CPU. Fig. 1 plots the number of seconds taken to find a solution
versus the input size n. The graph is plotted on a logarithmic scale. The time appears
to grow exponentially in n.
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A. TESTING THE PREDICATE P

Each theorem in Section 2 asserts the existence of a test for the suitability of a pred-
icate P for use by Goldreich’s function. The details of these tests emerge as each the-
orem is proved. A reader who wishes to understand the statements of the theorems
need only refer to properties (A), (B) and (B’) described in Definition 2.3 in order to
understand the kinds of predicates that will pass this test.

A reader studying the proofs in this paper might find it useful to see in one place
all of the properties we require of the predicate in each theorem. As a convenience, we
gather them here. Note that every test described below can be performed in time 29(4)
as required by property (C).

— For Theorem 2.5, which bounds the expected size of pre-images, P should have the
form P, o = 21®.. . ©xq—n®Q(Td—h+1,- - -, xq) or be d-collision averse (Definition 3.7).
Here, the value of h can be any function of d as long as d—h = Q(d) (property (B) from
the theorem statement). The value of ¢ is determined in the proof of Lemma 3.9.

— For Theorem 2.8 (about drunk backtracking algorithms) we additionally require P to
be h-robust (Definition 4.8). The value of & may grow as cd for any constant 0 < ¢ < 1
(property (B’) from the theorem statement).

— For Theorem 2.11 (about myopic backtracking algorithms) the predicate must sat-
isfy all the above conditions, and must also be (h, €,,,1)-balanced (Definition 6.1) for
some ep, = 27D

— Theorem 2.14 concerns DPLL drunk and DPLL myopic algorithms. For DPLL drunk
algorithm, the test is the same as for Theorem 2.8. For DPLL myopic algorithms, the
predicate must be h-nonmonotone (Definition 7.3) for h = d/2 — Q(d) and satisfy the
test from Theorem 2.11.
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