
Sliding Windows with Limited Storage

Paul Beame
Computer Science and Engineering

University of Washington
Seattle, WA 98195-2350

beame@cs.washington.edu

Raphaël Clifford∗

Department of Computer Science
University of Bristol

Bristol BS8 1UB, United Kingdom
clifford@cs.bris.ac.uk

Widad Machmouchi
Computer Science and Engineering

University of Washington
Seattle, WA 98195-2350

widad@cs.washington.edu

Abstract

We consider time-space tradeoffs for exactly computing frequency moments and order statistics over
sliding windows [16]. Given an input of length 2n− 1, the task is to output the function of each window
of length n, giving n outputs in total. Computations over sliding windows are related to direct sum
problems except that inputs to instances almost completely overlap.

• We show an average case and randomized time-space tradeoff lower bound of T · S ∈ Ω(n2) for
multi-way branching programs, and hence standard RAM and word-RAM models, to compute the
number of distinct elements, F0, in sliding windows over alphabet [n]. The same lower bound
holds for computing the low-order bit of F0 and computing any frequency moment Fk for k 6= 1.
We complement this lower bound with a T · S ∈ Õ(n2) deterministic RAM algorithm for exactly
computing Fk in sliding windows.

• We show time-space separations between the complexity of sliding-window element distinctness
and that of sliding-window F0 mod 2 computation. In particular for alphabet [n] there is a very
simple errorless sliding-window algorithm for element distinctness that runs in O(n) time on av-
erage and uses O(log n) space.

• We show that any algorithm for a single element distinctness instance can be extended to an al-
gorithm for the sliding-window version of element distinctness with at most a polylogarithmic
increase in the time-space product.

• Finally, we show that the sliding-window computation of order statistics such as the maximum
and minimum can be computed with only a logarithmic increase in time, but that a T · S ∈ Ω(n2)
lower bound holds for sliding-window computation of order statistics such as the median, a nearly
linear increase in time when space is small.

∗This work was done while visiting The University of Washington, Seattle, WA.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 178 (2012)

1 Introduction

Direct sum questions in a computational model ask how the complexity of computing many instances of a
function f on independent inputs increases as the number of instances grows. The ideal direct sum theorem
shows that computing n independent instances of f requires an Ω(n) factor increase in computing resources
over computing a single instance of f .

Valuable though direct sum theorems can be, they require an increase in the number of inputs equal to
the number of instances and hence do not increase the complexity of the resulting function when measured
relative to the input size1. We are interested in how the complexity of computing many copies of a function
f can grow when the inputs overlap so that the total size of the input is not much larger than the input size
for a single function2.

A particularly natural circumstance in which one would want to evaluate many instances of a function
on overlapping inputs occurs in the context of time series analysis. For many functions computed over
sequences of data elements or data updates, it is useful to know the value of the function on many different
intervals or windows within the sequence, each representing the recent history of the data at a given instant.
In the case that an answer for every new element of the sequence is required, such computations have been
termed sliding-window computations for the associated functions [16].

We focus on the questions of when the sliding-window versions of problems increase their complexity,
and under what circumstances one can prove significantly larger lower bounds for these sliding-window
versions than can be shown for the original functions. Unlike an ordinary direct sum lower bound, a positive
answer will yield a proportionately better lower bound relative to the input size. The complexity measure we
use is the time required for a given amount of storage; i.e., we study time-space tradeoffs of these sliding-
window problems. Given the general difficulty of proving lower bounds for single output functions, in
addition to the goal of obtaining proportionately larger lower bounds, comparing the difficulty of computing
sliding-window versions of functions f and g may be easier than comparing them directly.

Many natural functions have previously been studied for sliding windows including entropy, finding
frequent symbols, frequency moments and order statistics, which can be computed approximately in small
space using randomization even in one-pass data stream algorithms [16, 7, 6, 19, 20, 14, 13]. Approximation
is required since exactly computing these values in this online model can easily be shown to require large
space. The interested reader may find a more comprehensive list of sliding-windows results by following
the references in [13].

We focus on many of these same statistical functions and consider them over inputs of length 2n − 1
where the sliding-window task is to compute the function for each window of length n, giving n outputs in
total. We write f�n to denote this sliding-window version of a function f .

Our main results concern the computation of frequency moments and element distinctness over sliding
windows. Frequency moment F0 is the number of distinct elements in the input. The element distinctness
problemED, determining whether all input elements are distinct, is the special case of testing whether F0 is
equal to the number of inputs. ED is often considered the decision problem that best tracks the complexity
of integer sorting, a problem for which we already know tight time-space tradeoff lower bounds [11, 8] on
general sequential computation models like multi-way branching programs and RAMs, as well as matching

1In contrast, so-called direct product theorems show that the success probability declines exponentially in n.
2Computing many copies of a function on overlapping inputs (selected via a combinatorial design) was used as the basis for the

Nisan-Wigderson pseudorandom generator construction [22], though in that case the total input size is much larger than that of the
original function.

2

comparison-based upper bounds [23]. (As is usual, the input is assumed to be stored in read-only memory
and the output in write-only memory and neither is counted towards the space used by any algorithm. The
multi-way branching program model simulates standard RAM models that are unit-cost with respect to time
and log-cost with respect to space. Therefore in discussing complexity, we measure space usage in bits
rather than words.)

We prove time-space lower bounds for computing the sliding-window version of any frequency moment
Fk for k 6= 1. In particular, the time T and space S to compute F�n

k must satisfy T · S ∈ Ω(n2). (F1

is simply the size of the input, so computing its value is always trivial.) Moreover, we show that the same
lower bound holds for computing just the parity of the number of distinct elements, F0 mod 2, in each
window. The bounds are proved directly for multi-way branching programs which imply lower bounds for
the standard RAM and word-RAM models, as well as for the data stream models discussed above. The best
previous lower bounds for computing any of these sliding window problems are much smaller time-space
tradeoff lower bounds that apply to the computation of a single instance of Fk. In particular, for any k 6= 1,
an input has distinct elements if and only if Fk = n, so these follow from previous lower bounds for ED.
Ajtai [4] showed that any linear time solution for ED (and hence Fk) must use linear space. No larger
time lower bound is known unless the space S is no(1). In that case, the best previous lower bound for
computing ED (and hence Fk) is a T ∈ Ω(n

√
log(n/S)/ log log(n/S)) lower bound shown in [10]. This

is substantially smaller than our T · S ∈ Ω(n2) lower bound.
We complement our lower bound with a comparison-based RAM algorithm for any F�n

k which has
T · S ∈ Õ(n2), showing that this is nearly an asymptotically tight bound, since it provides a general RAM
algorithm that runs in the same time complexity for any polynomial-sized input alphabet3.

Our lower bounds for frequency moment computation hold for randomized algorithms even with small
success probability 2−O(S) and for the average time and space used on inputs in which the values are inde-
pendently and uniformly chosen from [n].

It is interesting to contrast our lower bounds for the sliding-window version of F0 mod 2 with those for
the sliding-window version of ED. It is not hard to show that on average for integers independently and
uniformly chosen from [n], ED can be solved with T ·S ∈ Õ(n). This can be extended to an algorithm that
has a similar T · S ∈ Õ(n) bound for ED�n on this input distribution. This formally proves a separation
between the complexity of sliding-window F0 mod 2 and sliding-windowED. Interestingly, this separation
is not known to exist for one window alone.

In fact, we show that the similarity between the complexities of computing ED and ED�n on average
also applies to the worst-case complexity of deterministic and randomized algorithms. We give a general
reduction which shows that for any space bound S, by using space S∗ ∈ S+O(log2 n), one can convert any
algorithm A for ED running in time T into an algorithm A∗ that solves ED�n in time T ∗ ∈ O(T log2 n)
or alternatively T ∗ ∈ O(T log n) if T ∈ Ω(n1+δ). That is, there is no sliding-window analogue of a direct
sum result for ED.

These results suggest that in the continuing search for strong lower complexity lower bounds, F0 mod 2
may be a better choice as a difficult decision problem than ED.

Finally, we discuss the problem of computing the tth order statistic in each window. For these problems
we see the full range of relationships between the complexities of the original and sliding-window versions
of the problems. In the case of t = n (maximum) or t = 1 (minimum) we show that computing these
properties over sliding windows can be solved by a comparison based algorithm in O(n log n) time and
only O(log n) bits of space and hence there is no sliding-windows analogue of a direct sum result for these

3As is usual, we use Õ to suppress polylogarithmic factors in n.

3

problems. In contrast, we show that a T · S ∈ Ω(n2) lower bound holds when t = αn for any fixed
0 < α < 1. Even for algorithms that only use comparisons, the expected time for errorless randomized
algorithms to find the median in a single window is T ∈ Ω(n log logS n) [15] and there is an errorless
randomized algorithm that precisely matches this bound [15]. Hence for many values of S there is an
approximate direct sum analogue for these sliding-window order statistics.

Related work While sliding-windows versions of problems have been considered in the context of online
and approximate computation, there is little research that has explicitly considered any such problems in the
case of exact offline computation. One instance where a sliding-windows problem has been considered is a
lower bound for generalized string matching due to Abrahamson [2]. This lower bound implies that for any
fixed string y ∈ [n]n with n distinct values, H�n

y requires T · S ∈ Ω(n2/ log n) where decision problem
Hy(x) is 1 if and only if the Hamming distance between x and y is n. This bound is an Ω(log n) factor
smaller than our lower bound for sliding-window F0 mod 2.

One of the main techniques to derive time-space tradeoffs for branching programs was introduced in
[11] by Borodin and Cook and was generalized to a number of other problems (e.g., [26, 2, 3, 8, 21, 24]).
Our lower bounds draw on this method but require some additional work to adapt it to the case of computing
frequency moments.

In addition to lower bounds that apply to unrestricted models such as RAMs and general branching
program models, some of the problems we consider have been considered in structured comparison-based
models. Borodin et al. [12] gave a time-space tradeoff lower bound for computingED (and hence any Fk for
k 6= 1) on comparison branching programs of T 2·S ∈ Ω(n3) and since S ≥ log2 n, T ·S ∈ Ω(n3/2

√
log n)).

Yao [25] improved this to a near-optimal T ·S ∈ Ω(n2−ε(n)), where ε(n) = 5/(lnn)1/2. Since our algorithm
for computing F�n

k is comparison-based, this lower bound is not far from matching our upper bound for the
sliding-window version of Fk.

Finally, we note that previous research implies a separation between the complexities of ED and
F0 mod 2 in the context of quantum query algorithms: ED has quantum query complexity Θ(n2/3) (lower
bound in [1] and matching quantum query algorithm in [5]). On other hand, the lower bounds in [9] imply
that F0 mod 2 has quantum query complexity Ω(n).

Organization In the remainder of this section we more formally define the � operator, the statistical
functions we consider, and the multi-way branching program model. In Section 2 we present our lower
bound for computing frequency momentsFk andF0 mod 2 over sliding windows followed by a comparison-
based algorithm that yields a nearly matching upper bound. In Section 3 we give our algorithms for element
distinctness over sliding windows which show the separation between F0 mod 2 and ED and the fact that
sliding windows do not signicantly increase the complexity of ED. Finally in Section 4 we give our upper
and lower bounds for sliding-window computation of order statistics.

Sliding windows Let D and R be two finite sets and f : Dn → R be a function over strings of length
n. We define the operation SLIDING-WINDOW, denoted �, that takes f and returns a function f�t :
Dn+t−1 → Rt, defined by f�t(x) = (f(xi . . . xi+n−1))

t
i=1. We concentrate on the case that t = n and

apply the SLIDING-WINDOW operator to the functions Fk, Fk mod 2, ED, and Ot, the tth order statistic.
We will use the notation F (j)

k (resp. f
(j)
i) to denote the kth frequency moment (resp. the frequency of

symbol i) of the string in the window of length n starting at position j.

4

Frequency moments, element distinctness, and order statistics Let a = a1a2 . . . , an be a string of n
symbols from a linearly ordered set. We define the kth frequency moment of a, Fk(a), as Fk(a) =

∑
i∈D f

k
i ,

where fi is the frequency (number of occurrences) of symbol i in the string a andD is the set of symbols that
occur in a. Therefore, F0(a) is the number of distinct symbols in a and F1(a) = |a| for every string a. The
element distinctness problem is a decision problem defined as: ED(a) = 1 if F0(a) = |a| and 0 otherwise.
We write EDn for the ED function restricted to inputs a with |a| = n. The tth order statistic of a, Ot, is
the tth smallest symbol in a. Therefore On is the maximum of the symbols of a and Odn

2
e is the median.

Branching programs Let D and R be finite sets and n and m be two positive integers. A D-way branch-
ing program is a connected directed acyclic graph with special nodes: the source node and possibly many
sink nodes, a set of n inputs and m outputs. Each non-sink node is labeled with an input index and every
edge is labeled with a symbol fromD, which corresponds to the value of the input indexed at the originating
node. In order not to count the space required for outputs, as is standard, we assume that each edge can be
labelled by some set of output assignments. For a directed path π in a branching program, we call the set of
indices of symbols queried by π the queries of π, denoted by Qπ and we denote the set of answers to those
queries as Aπ (we drop the subscript π when it is understood from the context).

A branching program computes a function f : Dn → Rm by starting at the source and then proceeding
along the nodes of the graph by querying the inputs associated with each node and following the correspond-
ing edges. In the special case that there is precisely one output, without loss of generality, any edge with this
output may instead be assumed to be unlabelled and lead to a unique sink node associated with its output
value.

A branching program B is said to compute a function f if for every x ∈ Dn, the output of B on x,
denoted B(x), is equal to f(x). A computation (in B) on x is a directed path, denoted πB(x), from the
source to a sink in B whose queries to the input are consistent with x. The time T of a branching program is
the length of the longest path from the source to a sink and the space S is the logarithm base 2 of the number
of the nodes in the branching program. Therefore, S ≥ log T where we write log x to denote blog2 xc from
here on.

A branching program B computes f under µ with error at most η iff B(x) = f(x) for all but an η-
measure of x ∈ Dn under distribution µ. A randomized branching program B is a probability distribution
over deterministic branching programs with the same input set. B computes a function f with error at most
η if for every input x ∈ Dn, PrB∼B[B(x) = f(x)] ≥ 1 − η. The time (resp. space) of a randomized
branching program is the maximum time (resp. space) of a deterministic branching program in the support
of the distribution.

A branching program is leveled if the nodes are divided into an ordered collection of sets each called a
level where edges are between consecutive levels only. Any branching program can be leveled by increasing
the space S by an additive factor of log T . Since S ≥ log T , in the following we assume that our branching
programs are leveled.

2 Frequency Moments over Sliding Windows

We begin with our main lower bound for computing frequency moments over sliding windows and then
derive a nearly matching upper bound.

5

2.1 A general sequential lower bound for F�n
k and (F0 mod 2)�n

We derive a time-space tradeoff lower bound for randomized branching programs computing F�n
k for k 6= 1.

In fact, we show that the lower bound holds even when computing (F0 mod 2)�n. (Note that the parity of
Fk, k ≥ 1 is exactly equal to the parity of n; thus the outputs of (Fk mod 2)�n are all equal to n mod 2.)

Theorem 2.1. For k = 0 or k ≥ 2. There is a constant δ > 0 such that any [n]-way branching program of
time T and space S that computes F�n

k with error at most η, 0 < η < 1− 2−δS , for input randomly chosen
uniformly from [n]2n−1 must have T · S ∈ Ω(n2). The same lower bound holds for (F0 mod 2)�n.

Corollary 2.2. Let k = 0 or k ≥ 2.

• The average time T and average space S needed to compute (Fk)
�n(x) for x randomly chosen

uniformly from [n]2n−1 satisfies T · S ∈ Ω(n2).

• There is a δ > 0 such that for 0 < η < 1 − 2−δS , any η-error randomized RAM or word-RAM
algorithm computing (Fk)

�n using time T and space S satisfies T · S ∈ Ω(n2).

Proof of Theorem 2.1. We derive the lower bound for F�n
0 first. Afterwards we show the modifications

needed for k ≥ 2 and for computing (F0 mod 2)�n. For convenience, on input x ∈ [n]2n−1, we write yi for
the output Fk(xi, . . . , xi+n−1).

We use the general approach of Borodin and Cook [11] together with the observation of [3] of how
it applies to average case complexity and randomized branching programs. In particular, we divide the
branching program B of length T into layers of height q each. Each layer is now a collection of small
branching programs B′, each of whose start node is a node at the top level of the layer. Since the branching
program must produce n outputs for each input x, for every input x there exists a small branching program
B′ of height q in some layer that produces at least nq/T > S outputs. There are at most 2S nodes in B and
hence there are at most 2S such small branching programs among all the layers of B. One would normally
prove that the fraction of x ∈ [n]2n−1 for which any one such small program correctly produces the desired
number of outputs is much smaller than 2−S and hence derive the desired lower bound. Usually this is done
by arguing that the fraction of inputs consistent with any path in such a small branching program for which
a fixed set of outputs is correct is much smaller than 2−S .

This basic outline is more complicated in our argument. One issue is that if a path in a small programB′

finds that certain values are equal then the answers to nearby windows may be strongly correlated with each
other; for example, if xi = xi+n then yi = yi+1. Such correlations risk making the likelihood too high that
the correct outputs are produced on a path. Therefore, we reason using the number of outputs from positions
that are not duplicated in the previous window instead of the total number of outputs produced, arguing that
with high probability there will be a linear number of such positions.

A second issue is that inputs for which the value of F0 in a window happens to be extreme, say n - all
distinct - or 1 - all identical - allow an almost-certain prediction of the value of F0 for the next window. We
will use the fact that under the uniform distribution, cases like these almost surely do not happen; indeed the
numbers of distinct elements in every window almost surely falls in a range close to their mean and in this
case the value in the next window will be predictable with probability bounded below 1 given the value in
the previous ones. In this case we use the chain rule to compute the overall probability of correctness of the
outputs.

We start by analyzing the likelihood that an output of F0 is extreme.

6

Lemma 2.3. Let a be chosen uniformly at random from [n]n. Then the probability that the output of F0(a)
is between 0.5n and 0.85n is at least 1− 2e−n/50.

Proof. For a = a1 . . . an uniformly chosen from [n]n,

E[F0(a)] =
∑
`∈[n]

Pr
a

[∃i ∈ [n] such that ai = `] = n[1− (1− 1/n)n] .

Hence 0.632n < (1 − 1/e)n < E[F0(a)] ≤ 0.75n. Define a Doob martingale Dt, t = 0, 1, . . . , n with
respect to the sequence a1 . . . an by Dt = E[F0(a) | a1 . . . at]. Therefore D0 = E[F0(a)] and Dn = F0(a).
Applying the Azuma-Hoeffding inequality, we have

Pr
a

[F0(a) /∈ [0.5n, 0.85n]] ≤ Pr
a

[|F0(a)− E[F0(a)| ≥ 0.1n] ≤ 2e−2
(0.1n)2

n = 2e−n/50,

which proves the claim.

Write Wi to denote the contents, {xi, . . . , xi+n−1}, of the i-th window, which is associated with output
yi. We will also be interested in the number of positions j > n such that xj /∈Wj−n.

Lemma 2.4. Let x be chosen uniformly at random from [n]2n−1 with n ≥ 2. With probability at least
1− 4ne−n/50,

(a) all outputs of F�n
0 (x) are between 0.5n and 0.85n, and

(b) the number of positions j > n such that xj /∈Wj−n is at least n/24.

Proof. We know from Lemma 2.3 and the union bound that part (a) is false with probability at most
2ne−n/50. To provide a similar tail bound for part (b) as well, we will need the following argument.

Let the indicator variable Ij = 1 if xj /∈ Wj−n and 0 otherwise. Similarly let Jj = 1 if xj /∈
{x1, . . . , xj−1, xj+1, . . . , x2n−1} and 0 otherwise. Now let X =

∑2n−1
j=n+1 Ij be the number of positions

j > n such that xj /∈ Wj−n and also define Y =
∑2n−1

j=n+1 Jj . It is immediate that X ≤ Y and hence a
lower tail bound for Y will give us a lower tail bound for X . Assuming n ≥ 2, we now have

E(Y) = (n− 1)(1− 1/n)2n−2 ≥ n/8.

In order to provide the desired tail bound we observe that Y is the number of symbols in x that occur exactly
once. This can be reformulated in terms of a classic balls and bins problem where the balls are the randomly
chosen symbols of the input and bins are letters of the alphabet. In this terminology Y represents the number
of bins that contain exactly one ball. Following the approach taken to this problem in [17], it follows that
the random variables Jj are negatively associated and hence that Y is more closely concentrated around
its mean than if they were fully independent. It also therefore follows that we can apply a Chernoff bound
directly to our problem, giving

P
(
X ≤ n

24

)
≤ P

(
Y ≤ n

24

)
≤ P

(
Y ≤ E(X)

3

)
≤ e−

n
36

We now get the desired bound for parts (a) and (b) combined by another application of the union bound.

7

Correctness of a small branching program for computing outputs in unique positions Let B′ be an
[n]-way branching program of height q and let π be a path in B′ with queries Q ∈ [2n− 1]. An index ` > n
is said to be unique if x` /∈W`−n ∩Q. In order to measure the correctness of the small branching program,
we will restrict out attention to outputs that are produced at positions that are unique. We now upper-bound
the probability that a small branching program correctly computes outputs of F�n

0 at many unique positions
in the input.

Let E be the event that all outputs of F�n
0 (x) are between 0.5n and 0.85n.

Lemma 2.5. Let r > 0 be a positive integer, let ε ≤ 1/10, and let B′ be an [n]-way branching program of
height q = εn. Let π be a path in B′ with queries Q on which outputs from at least r unique positions are
produced. Then for random x uniformly chosen from [n]2n−1,

Pr
[
these r outputs are correct for F�n

0 (x), E
∣∣πB′(x) = π

]
≤ (17/18)r.

Proof. Let zi1 , . . . , zir be the outputs from unique positions produced by B′ along π, and let Q and A be
the queries and the answers to those queries along π. We upper bound the probability that all of yi1 =
zi1 , . . . , yir = zir hold.

For output yi, we call xi the left border of the window Wi and call xi+n−1 its right border. We compute
the difference between two consecutive outputs yi and yi−1. If the left border xi−1 of yi−1 appears in the
ith window Wi, then its contribution to the value of yi is the same as for yi−1; otherwise we should decrease
yi−1 by 1 to get yi. Similarly, if the right border xi+n−1 of yi appears in the (i− 1)st window Wi−1, it has
the same contribution to yi and yi−1; otherwise, we need to increase yi−1 by 1 to get yi. Formally we have

yi − yi−1 = 1{xi+n−1 6∈Wi−1} − 1{xi−1 6∈Wi}. (1)

In order to compute the correctness of the outputs yi1 , yi2 , . . . , yir , we apply the chain rule:

Pr [yi1 = zi1 , . . . , yir = zir , E|πB′(x) = π]

=

r∏
`=1

Pr
[
yj` = zj` , E

∣∣yj1 = zj1 , . . . , yj`−1
= zj`−1

, πB′(x) = π
]

(2)

Revealing new information In order to bound the individual probabilities in equation (2), we reveal for
each j` the following information:

• the value of the indicator 1{xj`−1 6∈Wj`
}, and

• the value of the output yj`−1.

8

We denote by E`−1 the event {yj1 = zj1 , . . . , yj`−1
= zj`−1

}. The information we reveal corresponds to
the following in equation (2):

Pr [yj` = zj` , E|E`−1, πB′(x) = π]

=

n∑
m=1

∑
b∈{0,1}

Pr
[
yj` = zj` , E

∣∣∣yj`−1 = m, 1{xj`−1 6∈Wj`
} = b, E`−1, πB′(x) = π

]
× Pr

[
yj`−1 = m, 1{xj`−1 6∈Wj`

} = b, E
∣∣∣E`−1, πB′(x) = π

]
≤ max
m∈[0.5n,0.85n]

b∈{0,1}

Pr
[
yj` = zj` , E

∣∣∣yj`−1 = m, 1{xj`−1 6∈Wj`
} = b, E`−1, πB′(x) = π

]
≤ max
m∈[0.5n,0.85n]

b∈{0,1}

Pr
[
yj` = zj`

∣∣∣yj`−1 = m, 1{xj`−1 6∈Wj`
} = b, E`−1, πB′(x) = π

]
,

where the penultimate inequality follows since the event E can only hold if yj`−1 is between 0.5n and 0.85n.
We compute the output yj` based on the values of the outputs produced by B′ and the information we

reveal. Since the outputs yj1 , yj2 , . . . , yj` are all produced at unique positions, the answers in A do not give
any information about the occurrences of xj`+n−1 inWj`−1. Moreover, yj` takes values in {m,m+1,m−1}
depending on the values of the indicators in equation (1).

First observe that if xj`+n−1 is not queried, then the conditioning πB′(x) = π and E`−1 has no effect
on it and xj`+n−1 is uniformly chosen from [n] and the probability that it equals any one of the m distinct
values appearing in the window Wj`−1 is precisely m/n.

Now assume that xj`+n−1 is queried. Wj`−1 contains precisely m distinct values, out of which there
can be at most q values appearing in the answers A to the queries in Q. Even if the queried positions are
not in this window, the values of yj1 , . . . , yj`−1

may imply that some of the values appearing in the answers
A occur in Wj`−1 and some do not. Let q′ ≤ q denote the number that are guaranteed to appear in Wj`−1
and q′′ ≤ q − q′ denote the number that are guaranteed not to appear in Wj`−1. Note that by the uniqueness
of xj`+n−1, xj`+n−1 does not contribute to either q′ or q′′. Let W be the set of m − q′ remaining distinct
values taken at unqueried positions in Wj`−1. Since the input distribution is uniform, by symmetry, any
set W consistent with the above constraints is equally likely and hence W is a uniformly chosen set of
m − q′ distinct elements from an alphabet Σ of size n − q′′ which contains xj`+n−1. By symmetry, the
probability that the random set W ⊂ Σ contains xj`+n−1 is the same as the probability that a random
element s = xj`+n−1 ∈ Σ is contained in W ⊂ Σ which is precisely (m− q′)/(n− q′′).

For a ∈ {−1, 0, 1} and c ∈ {0, 1}, we have

Pr
[
yj` = m+ a

∣∣∣yj`−1 = m, 1{xj`−1 6∈Wj`
} = b, E`−1, πB′(x) = π

]
= Pr

[
1{xj`+n−1 6∈ Wj`−1} = c

∣∣∣yj`−1 = m, 1{xj`−1 6∈Wj`
} = b, E`−1, πB′(x) = π

]
,

where c is given by the following: c = 0 if a = −1, 1 if a = 1, and b if a = 0. Therefore the probability
above reduces to the probability of xj`+n−1 appearing (c = 1) or not appearing (c = 0) in Wj`−1. Since
q = εn, we have Pr [s ∈W] ≤ m

n−q ≤
0.85n
n−εn ≤

0.85n
n(1−ε) ≤ 0.85/(1− ε) ≤ 17/18 since ε ≤ 1/10. Similarly,

Pr [s 6∈W] ≤ 1 − m−q
n ≤ 1 − 0.5n−εn

n ≤ 0.5 + ε ≤ 0.6 since ε ≤ 1/10. Plugging in the larger of these
upper bounds in equation (2), we get:

Pr
[
zi1 , . . . , zir are correct for F�n

0 (x), E
∣∣πB′(x) = π

]
≤ (17/18)r,

9

which proves the lemma.

Putting the Pieces Together We now combine the above lemmas. Suppose that TS ≤ n2/4800 and let
q = n/10. We can assume without loss of generality that S ≥ log n since we need T ≥ n to determine even
a single answer.

Consider the fraction of inputs in [n]2n−1 on which B correctly computes F�n
0 . By Lemma 2.4, For

input x chosen uniformly from [n]2n−1, the probability that E holds and x has at least n/24 outputs at
unique positions is at least 1− 4ne−n/50. Therefore, in order to be correct on any such x, B must correctly
produce outputs from at least n/24 outputs at unique positions in x.

For every such input x, by our earlier outline, one of the 2S [n]-way branching programs B′ of height q
contained in B produces at least r = [n/24]q/T ≥ 20S correct outputs at unique positions of F�n

0 (x) of
input x.

Therefore, for all but a 4ne−n/50 fraction of inputs x on which B is correct, E holds for x and there is
one of the ≤ 2S branching programs B′ in B of height q such that the path π = πB′(x) produces at least
20S outputs at unique positions in x that are correct for x.

Consider a single such program B′. By Lemma 2.5 for any path π in B′, the fraction of inputs x such
that πB′(x) = π for which 20S of these outputs are correct for x and produced at unique positions, and E
holds for x is at most (17/18)20S < 3−S . By Proposition 2.4, this same bound applies to the fraction of
all inputs x with πB′(x) = π for which 20S of these outputs are correct from x and produced at unique
positions, and E holds for x is at most (17/18)20S < 3−S .

Since the inputs following different paths inB′ are disjoint, the fraction of all inputs x for which E holds
and which follow some path in B′ that yields at least 20S correct answers from distinct runs of x is less than
3−S . Since there are at most 2S such height q branching programs, one of which must produce 20S correct
outputs from distinct runs of x for every remaining input, in total only a 2S3−S = (2/3)S fraction of all
inputs have these outputs correctly produced.

In particular this implies that B is correct on at most an 4ne−n/50 + (2/3)S fraction of inputs. For n
sufficiently large this is smaller than 1 − η for any η < 1 − 2−δS for some δ > 0, which contradicts our
original assumption. This completes the proof of Theorem 2.1.

Lower Bound for F�n
k , k ≥ 2 We modify the proof of Theorem 2.1 to prove the claim for integer k ≥ 2.

We use the same hard distribution for the input, where the number of distinct numbers in each sliding window
is within the range [0.5n, 0.85n] with high probability. We follow the same analysis for the correctness of
a path π in a branching program, along which at least r outputs from r unique positions are produced. The
main difference is in computing the difference between consecutive outputs:

yi − yi−1 =

[(
f (i−1)xi+n−1

+ 1
)k
−
(
f (i−1)xi+n−1

)k]
+

[(
f (i−1)xi−1

− 1
)k
−
(
f (i−1)xi−1

)k]
(3)

If xi+n−1 does not appear in the (i− 1)st window {xi−1, . . . , xi+n−2}, then the first term’s contribution to
the sum is exactly 1, otherwise it is strictly bigger than 1. Similarly, if xi−1 does not appear in that window,
then the second term’s contribution to the sum is exactly -1, otherwise it is strictly smaller than -1.

In order to compute the probability of correctness an output yj` , we reveal the following information (in
the same fashion we did in the case k = 0):

• the value of the output right before the `th output, yj`−1,

10

• the number of distinct elements in the (j` − 1)st window {xj`−1, . . . , xj`+n−2}, F
(j`−1)
0 ,

• the frequency of the left border xj`−1 in the window Wj`−1, f (j`−1)j`−1 .

Denoting the event {yj`−1 = M,F
(j`−1)
0 = m, f

(j`−1)
j`−1 = fL, for some values M ∈ N, m ∈ [n] and

fL ∈ [n] by EI , we upper bound the probability of correctness of yj` by:

Pr
x

[yj` = zj` , E|EI , E`−1, πB′(x) = π] ≤ max
m∈[0.5n,0.85n]

M, fL

Pr
x

[yj` = zj` |EI , E`−1, πB′(x) = π]

We write the probability of correctness of yj` in terms of the difference in Equation 3:

max
m,M, fL

Pr
x

[yj` = zj` |EI , E`−1, πB′(x) = π]

= max
m,M, fL, fR

Pr [yj` − yj`−1 = zj` −M |EI , E`−1, πB′(x) = π]

= max
m,M, fL

Pr[(f (j`−1)xj`+n−1
+ 1)k − (f (j`−1)xj`+n−1

)k + (fL − 1)k − fkL = zj` −M |

EI , E`−1, πB′(x) = π]

= max
m,M, fL

Pr
[
f (j`−1)xj`+n−1

= h(fL, zj` ,M)
∣∣∣EI , E`−1, πB′(x) = π

]
≤ max

m,M, fL
Pr
[
1{xj`+n−1∈Wj`−1} = c

∣∣∣EI , E`−1, πB′(x) = π
]

for some c ∈ {0, 1}

where h(fL, zj` ,M) is the integer solution to the equation: (f + 1)k − fk = zj` −M − (fL − 1)k − fkL.
This equation was derived by applying equation (3) to the difference of the two consecutive outputs yj` and
yj`−1 and replacing all the revealed variables by their values. The last inequality follows from the fact that
f
(j`−1)
xj`+n−1 = 0 iff 1{xj`+n−1∈Wj`−1} = 0. This last probability is upper bounded by 17/18 for both values of
c as in the analysis of the case k = 0. The rest of the proof follows.

Lower bound for (F0 mod 2)�n We prove a time-space tradeoff TS ∈ Ω(n2) for the problem of com-
puting the parity of F0 for each sliding window, (F0 mod 2)�n. We describe how to modify the proof of
Theorem 2.1 to derive the lower bound.

Using the same hard distribution on the inputs, we guarantee that F0 for all windows takes values in the
range [0.5n, 0.85n]. When the input is chosen at random from [n]2n−1, this happens with high probability,
as we showed in Lemma 2.4. Moreover, under the same distribution, a linear fraction of the outputs will be
produced at unique positions as shown in Lemma 2.4.

We follow the same technique of dividing the branching program into layers of height q = εn and then
computing the correctness of a path π in a small branching program in computing r outputs produced at r
unique positions.

To upper bound the probability of correctness of the r outputs, we apply the chain rule and we reveal
information in the same fashion as we did for F�n

0 : for an output yj` of (F0 mod 2)�n (taking values in
{0, 1}), we reveal:

• the value of the indicators 1{xj`−1 6∈Wj`
}, denoted by b ∈ {0, 1} and

• the value of F (j`−1)
0 , the number of distinct elements in the window of the output right before yj` .

11

Therefore, the probability of correctness of yj` is upper bounded by:

max
m∈[0.5n,0.85n]

b∈{0,1}

Pr
[
yj` = zj` , E

∣∣∣F (j`−1)
0 = m, 1{xj`−1 6∈Wj`

} = b, E`, πB′(x) = π
]
.

Therefore, for a, c ∈ {0, 1} the probability of correctness of yj` is given by (we drop the range of m in
the following for convenience):

max
m, b

Pr
[
yj` = zj` , E

∣∣∣F (j`−1)
0 = m, 1{xj`−1 6∈Wj`

} = b, E`, πB′(x) = π
]

= max
m, b

Pr
[
yj` = a, E

∣∣∣F (j`−1)
0 = m, 1{xj`−1 6∈Wj`

} = b, E`, πB′(x) = π
]

= max
m, b

Pr
[
1{xj`+n−1 6∈ Wj`

} = c, E
∣∣∣F (j`−1)

0 = m, 1{xj`−1 6∈Wj`
} = b, E`, πB′(x) = π

]
,

where c is given by the following: c = b if a = m mod 2 and 1 − b otherwise. Hence the probability
of correctness of yj` can be upper bounded by 17/18 as we show in the proof of Theorem 2.1, and the
remaining steps of the proof follow to yield a time-space tradeoff T · S ∈ Ω(n2).

2.2 A time-space efficient algorithm for F�n
k

We now show that the above time-space tradeoff lower bound is nearly optimal even for restricted RAM
models.

Theorem 2.6. There is a comparison-based deterministic RAM algorithm for computing F�n
k for any fixed

integer k ≥ 0 with time-space tradeoff T · S ∈ O(n2 log2 n) for all space bounds S with log n ≤ S ≤ n.

Proof. We denote the i-th output by yi = Fk(xi, . . . , xi+n−1). We first compute y1 using the comparison-
based timeO(n2/S) sorting algorithm of Pagter and Rauhe [23]. This algorithm produces the list of outputs
in order by building a space S data structureD over the n inputs and then repeatedly removing and returning
the index of the smallest element from that structure using a POP operation. We perform POP operations
on D and keep track of the last index popped. We also will maintain the index i of the previous symbol seen
as well as a counter that tells us the number of times the symbol has been seen so far. When a new index j
is popped, we compare the symbol at that index with the symbol at the saved index. If they are equal, the
counter is incremented. Otherwise, we save the new index j, update the running total for Fk using the k-th
power of the counter just computed, and then reset that counter to 1.

Let S′ = S/ log n. We compute the remaining outputs in n/S′ groups of S′ outputs at a time. In
particular, suppose that we have already computed yi. We compute yi+1, . . . , yi+S′ as follows:

We first build a single binary search tree for both xi, . . . , xi+S′−1 and for xi+n, . . . , xi+n+S′−1 and
include a pointer p(j) from each index j to the leaf node it is associated with. We call the elements
xi, . . . , xi+S′−1 the old elements and add them starting from xi+S′−1. While doing so we maintain a counter
cj for each index j ∈ [i, i + S′ − 1] of the number of times that xj appears to its right in xi, . . . , xi+S′−1.
We do the same for xi+n, . . . , xi+n+S′−1, which we call the new elements, but starting from the left. For
both sets of symbols, we also add the list of indices where each element occurs to the relevant leaf in the
binary search tree.

We then scan the n− S′ elements xi+S′ , . . . , xi+n−1 and maintain a counter C(`) at each leaf ` of each
tree to record the number of times that the element has appeared.

12

For j ∈ [i, i+ S′ − 1] we produce yj+1 from yj . If xj = xj+n then yj+1 = yj . Otherwise, we can use
the number of times the old symbol xj and the new symbol xj+n occur in the window xj+1, . . . , xj+n−1 to
give us yj+1. To compute the number of times xj occurs in the window, we look at the current head pointer
in the new element list associated with leaf p(j) of the binary search tree. Repeatedly move that pointer to
the right if the next position in the list of that position is at most n + j − 1. Call the new head position
index `. The number of occurrences of xj in xj+1, . . . , xS′ and xn+1, . . . , xn+j is now cj + c`. The head
pointer never moves backwards and so the total number of pointer moves will be bounded by the number of
new elements. We can similarly compute the number of times xj+n occurs in the window by looking at the
current head pointer in the old element list associated with p(j + n) and moving the pointer to the left until
it is at position no less than j + 1. Call the new head position in the old element list `′.

Finally, for k > 0 we can output yj+1 by subtracting (1 + cj + c` + C(p(j)))k − (cj + c` + C(p(j))k

from yj and adding (1+cj+n+c`′+C(p(j+n)))k−(cj+n+c`′+C(p(j+n))k. When k = 0 we compute
yj+1 by subtracting the value of the indicator 1cj+c`+C(p(j))=0 from yj and adding 1cj+n+c`′+C(p(j+n))=0.

The total storage required for the search trees and pointers is O(S′ log n) which is O(S). The total time
to compute yi+1, . . . , yi+S′ is dominated by the n− S′ increments of counters using the binary search tree,
which is O(n logS′) and hence O(n logS) time. This computation must be done (n − 1)/S′ times for a
total of O(n

2 logS
S′) time. Since S′ = S/ log n, the total time including that to compute y1 is O(n

2 logn logS
S)

and hence T · S ∈ O(n2 log2 n).

3 Element Distinctness is easier than F0 mod 2

In this section we investigate the complexity of ED�n and show that it is strictly easier than (F0 mod 2)�n.
This fact is established by giving a particularly simple errorless algorithm for ED�n which runs in linear
time on average on random inputs with alphabet [n] and hence also beats our strong average-case lower
bound for (F0 mod 2)�n.

We also give a deterministic reduction showing that the complexity of ED�n is very similar to that of
ED. In particular, ED�n can be computed with at most an O(log2 n) additive increase in the space and
O(log2 n) multiplicative increase in time more than required to compute a single instance of ED. This
shows that any deterministic or randomized algorithm for ED that satisfies T · S ∈ o(n2/ log3 n) would
provide a worst-case separation between the complexities of ED�n and (F0 mod 2)�n.

3.1 A fast average case algorithm for ED�n with alphabet [n]

We show a simple average case 0-error sliding-window algorithm for ED�n. When the input alphabet is
chosen uniformly at random from [n], the algorithm runs in O(n) time on average using O(log n) bits of
space. By way of contrast, in Section 2 we proved an average case time-space lower bound of T ·S ∈ Ω(n2)
for (F0 mod 2)�n under the same distribution.

The method we employ is as follows. We start at the first window of length n of the input and perform
a search for the first duplicate pair starting at the right-hand end of the window and going to the left. We
check if a symbol at position j is involved in a duplicate by simply scanning all the symbols to the right of
position j within the window. If the algorithm finds a duplicate in a suffix of length x, it shifts the window
to the right by n − x + 1 and repeats the procedure from this point. If it does not find a duplicate at all in
the whole window, it simply moves the window on by one and starts again.

13

In order to establish the running time of this simple method, we will make use of the following birthday-
problem-related facts.

Lemma 3.1. Assume that we sample i.u.d. with replacement from the range {1 . . . n}. Let X be a discrete
random variable that represents the number of samples taken when the first duplicate is found. Then

Pr (X ≥ n/2) ≤ e−
n−4
8 . (4)

and there exists an absolute constant B > 0 such that

E(X2) ≤ Bn. (5)

Proof. For any x we have

Pr(X ≥ x) =
x−1∏
i=1

(
1− i

n

)
≤

x−1∏
i=1

e−
i
n ≤ e−

(x−1)2

2n .

Inequality (4) follows by substituting x = n/2 which yields Pr
(
X ≥ n

2

)
≤ e−

n−4
8 . To prove inequality (5),

recall that for non-negative valued discrete random variables

E(X) =
∞∑
x=1

Pr(X ≥ x).

Observe that

E(X2) =
∞∑
x=1

Pr(X2 ≥ x) =
∞∑
x=1

Pr(X ≥
√
x)

≤
∞∑
x=1

e−
(
√
x−1)2

2n ≤
∫ ∞
x=0

e−
(
√
x−1)2

2n dx.

The final integral is bounded above by a constant multiple of n and so there exists a B such that E(X2) ≤
Bn.

We can now show the running time of our average case algorithm for ED�n.

Theorem 3.2. Assume that the input is sampled i.u.d. with replacement from alphabet [n]. ED�n can be
solved in T ∈ O(n) time on average and space S ∈ O(log n) bits.

Proof. Let U be a sequence of values sampled uniformly from [n]. Let M be the index of the first duplicate
in U found when scanning from the right and let X = n −M . Let W (X) be the number of comparisons
required to find X . Using our naive duplicate finding method we have that W (X) ≤ X(X + 1)/2. It also
follows from inequality (5) that E(W) ≤ Bn.

Let R(n) be the total running time of our algorithm and note that R(n) ≤ n3/2. Furthermore the
residual running time at any intermediate stage of the algorithm is at most R(n).

Let us consider the first window and let M1 be the index of the first duplicate from the right and let
X1 = n −M1. If X1 ≥ n/2, denote the residual running time by R(1). We know from (4) that Pr(X1 ≥
n/2) ≤ e−

n−4
8 . If X1 < n/2, shift the window to the right by M1 + 1 and find X2 for this new window. If

14

X2 ≥ n/2, denote the residual running time by R(2). We know that Pr(X2 ≥ n/2) ≤ e−
n−4
8 . If X1 < n/2

and X2 < n/2 then the algorithm will terminate, outputting ‘not all distinct’ for every window.
The expected running time is then

E(R(n)) = E (W (X1)) + E
(
R(1)

)
Pr
(
X1 ≥

n

2

)
+ Pr

(
X1 <

n

2

) [
E
(
W (X2)

∣∣∣X1 <
n

2

)
+ E

(
R(2)

)
Pr
(
X2 ≥

n

2

∣∣∣X1 <
n

2

)]
≤ Bn+

n3

2
e−

n−4
8 +Bn+

n3

2
e−

n−4
8 ∈ O(n)

The inequality follows from the followings three observations. We know trivially that Pr(X1 < n/2) ≤
1. Second, the number of comparisons W (X2) does not increase if some of the elements in a window are
known to be unique. Third, Pr(X2 ≥ n/2 ∧X1 < n/2) ≤ Pr(X2 ≥ n/2) ≤ e−

n−4
8 .

We note that similar results can be shown for inputs uniformly chosen from the alphabet [cn] for any
constant c.

3.2 Sliding windows do not significantly increase the complexity of element distinctness

As preparation for the main results of this section, we first give a deterministic reduction which shows
how the answer to an element distinctness problem allows one to reduce the input size of sliding-window
algorithms for computing ED�m

n .

Lemma 3.3. Let n > m > 0.

(a) If EDn−m+1(xm, . . . , xn) = 0 then ED�m
n (x1, . . . , xn+m−1) = 0m.

(b) If EDn−m+1(xm, . . . , xn) = 1 then define

i. iL = max{j ∈ [m− 1] | EDn−j+1(xj , . . . , xn) = 0} where iL = 0 if the set is empty and

ii. iR = min{j ∈ [m− 1] | EDn−m+j(xm, . . . , xn+j) = 0} where iR = m if the set is empty.

Then

ED�m
n (x1, . . . , xn+m−1) = 0iL1m−iL ∧ 1iR0m−iR ∧ ED�m

m−1(x1, . . . , xm−1, xn+1, . . . , xn+m−1)

where each ∧ represents bit-wise conjunction.

Proof. The elements M = (xm, . . . , xn) appear in all m of the windows so if this sequence contains
duplicated elements, so do all of the windows and hence the output for all windows is 0. This implies part
(a).

If M does not contain any duplicates then any duplicate in a window must involve at least one element
from L = (x1, . . . , xm−1) or from R = (xn+1, . . . , xn+m−1). If a window has value 0 because it contains
an element of L that also appears in M , it must also contain the rightmost such element of L and hence
any window that is distinct must begin to the right of this rightmost such element of L. Similarly, if a
window has value 0 because it contains an element of R that also appears in M , it must also contain the
leftmost such element of L and hence any window that is distinct must end to the left of this leftmost such

15

element of R. The only remaining duplicates that can occur in a window can only involve elements of both
L and R. In order, the m windows contain the following sequences of elements of L ∪R: (x1, . . . , xm−1),
(x2, . . . , xm−1, xn+1), . . ., (xm−1, xn+1, . . . , xn+m−2), (xn+1, . . . , xn+m−1). These are precisely the se-
quences for which ED�m

m−1(x1, . . . , xm−1, xn+1, . . . , xn+m−1) determines distinctness. Hence part (b) fol-
lows.

We use the above reduction in input size to show that any efficient algorithm for element distinctness
can be extended to solve element distinctness over sliding windows at a small additional cost.

Theorem 3.4. If there is an algorithm A that solve element distinctness, ED, using time at most T (n) and
space at most S(n), where T and S are nondecreasing functions of n, then there is an algorithm A∗ that
solves the sliding-window version of element distinctness, ED�n

n , in time T ∗(n) that is O(T (n) log2 n) and
space S∗(n) that is O(S(n) + log2 n). Moreover, if T (n) is O(nβ) for β > 1, then T ∗(n) is O(nβ log n).

If A is deterministic then so is A∗. If A is randomized with error at most ε then A∗ is randomized with
error o(1/n). Moreover, if A has the obvious 1-sided error (it only reports that inputs are not distinct if it is
certain of the fact) then the same property holds for A∗.

Proof. We first assume that A is deterministic. Algorithm A∗ will compute the n outputs of ED�n
n in n/m

groups of m using the input size reduction method from Lemma 3.3. In particular, for each group A∗ will
first call A on the middle section of input size n−m+ 1 and output 0m if A returns 0. Otherwise, A∗ will
do two binary searches involving at most 2 logm calls to A on inputs of size at most n to compute iL and
iR as defined in part (b) of that lemma. Finally, in each group, A∗ will make one recursive call to A∗ on a
problem of size m.

It is easy to see that this yields a recurrence of the form

T ∗(n) = (n/m)[cT (n) logm+ T ∗(m)].

In particular, if we choose m = n/2 then we obtain T ∗(n) ≤ 2T ∗(n/2) + 2cT (n) log n. If T (n) is O(nβ)
for β > 1 this solves to T ∗(n) = O(nβ log n). Otherwise, it is immediate from the definition of T (n) that
T (n) must be Ω(n) and hence the recursion for A∗ has O(log n) levels and the total cost associated with
each of the levels of the recursion is O(T (n) log n).

Observe that the space for all the calls to A can be re-used in the recursion. Also note that the algorithm
A∗ only needs to remember a constant number of pointers for each level of recursion for a total cost of
O(log2 n) additional bits.

We now suppose that the algorithm A is randomized with error at most ε. For the recursion based on
Lemma 3.3, we use algorithm A and run it C = O(log n) times on input (xm, . . . , xn), taking the majority
of the answers to reduce the error to o(1/n2). In case that no duplicate is found in these calls, we then
apply the noisy binary search method of Feige, Peleg, Raghavan, and Upfal [18] to determine iL and iR
with error at most o(1/n2) by using only C = O(log n) calls to A. (If the original problem size is n we will
use the same fixed number C = O(log n) of calls to A even at deeper levels of the recursion so that each
subproblem has error o(1/n2).) There are only O(n) subproblems so the final error is o(1/n). The rest of
the run-time analysis is the same as in the deterministic case.

If A has only has false positives (if it claims that the input is not distinct then it is certain that there is a
duplicate) then observe that A∗ will only have false positives.

16

4 Order Statistics in Sliding Windows

We first show that when order statistics are extreme, their complexity over sliding windows does not signif-
icantly increase over that of a single instance.

Theorem 4.1. There is a deterministic comparison algorithm that computesMAX�n
n (equivalentlyMIN�n

n)
using time T ∈ O(n log n) and space S ∈ O(log n).

Proof. Given an input x of length 2n − 1, we consider the window of n elements starting at position dn2 e
and ending at position n+ dn2 e − 1 and find the largest element in this window naively in time n and space
O(log n); call it m. Assume without loss of generality that m occurs between positions dn2 e and n, that is,
the left half of the window we just considered. Now we slide the window of length n to the left one position
at a time. At each turn we just need to look at the new symbol that is added to the window and compare it
to m. If it is larger than m then set this as the new maximum for that window and continue.

We now have all outputs for all windows that start in positions 1 to dn2 e. For the remaining outputs,
we now run our algorithm recursively on the remaining n + dn2 e-long region of the input. We only need
to maintain the left and right endpoints of the current region. At each level in the recursion, the number of
outputs is halved and each level takes O(n) time. Hence, the overall time complexity is O(n log n) and the
space is O(log n).

In contrast when an order statistic is near the middle, such as the median, we can derive a significant sep-
aration in complexity between the sliding-window and a single instance. This follows by a simple reduction
and known time-space tradeoff lower bounds for sorting [11, 8].

Theorem 4.2. Let P be a branching program computing O�n
t in time T and space S on an input of size

2n − 1, for any t ∈ [n]. Then T · S ∈ Ω(t2) and the same bound applies to expected time for randomized
algorithms.

Proof. We give lower bound for O�n
t for t ∈ [n] by showing a reduction from sorting. Given a sequence s

of t elements to sort taking values in {2, . . . , n − 1}, we create a 2n − 1 length string as follows: the first
n− t symbols take the same value of n, the last n− 1 symbols take the same value of 1 and we embed the t
elements to sort in the remaining t positions, in an arbitrary order. For the first window, Ot is the maximum
of the sequence s. As we slide the window, we replace a symbol from the left, which has value n, by a
symbol from the right, which has value 1. The tth smallest element of window i = 1, . . . , t is the ith largest
element in the sequence s. Then the first t outputs of O�n

t are the t elements of the sequence s output in
increasing order. The lower bound follows from [11, 8]. As with the bounds in Corollary 2.2, the proof
methods in [11, 8] also immediately extend to average case and randomized complexity.

For the special case t = dn2 e (median), we note that the best lower bound known for the single-input
version of the median problem is T ∈ Ω(n log logS n) derived in [15] for S ∈ ω(log n) and this is tight for
the expected time of errorless randomized algorithms.

Acknowledgements

In this research, Paul Beame and Widad Machmouchi were supported by NSF grants CCF-0830626 and
CCF-1217099 and Raphaël Clifford was supported by EPSRC grant EP/J011940/1. The authors would like

17

to thank Aram Harrow for a number of insightful discussions and helpful comments during the preparation
of this paper.

References

[1] S. Aaronson and Y. Shi. Quantum lower bounds for the collision and the element distinctness problems.
Journal of the ACM, 51(4):595–605, 2004.

[2] K. R. Abrahamson. Generalized string matching. SIAM Journal on Computing, 16(6):1039–1051,
1987.

[3] K. R. Abrahamson. Time–space tradeoffs for algebraic problems on general sequential models. Journal
of Computer and System Sciences, 43(2):269–289, October 1991.

[4] M. Ajtai. A non-linear time lower bound for Boolean branching programs. Theory of Computing,
1(1):149–176, 2005.

[5] A. Ambainis. Quantum walk algorithm for element distinctness. SIAM Journal on Computing,
37(1):210–239, 2007.

[6] A. Arasu and G. S. Manku. Approximate counts and quantiles over sliding windows. In Proceedings of
the Twenty-Third Annual ACM Symposium on Principles of Database Systems, pages 286–296, 2004.

[7] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues in data stream systems.
In Proceedings of the Twenty-First Annual ACM Symposium on Principles of Database Systems, pages
1–16, 2002.

[8] P. Beame. A general sequential time-space tradeoff for finding unique elements. SIAM Journal on
Computing, 20(2):270–277, 1991.

[9] P. Beame and W. Machmouchi. The quantum query complexity of AC0. Quantum Information &
Computation, 12(7–8):670–676, 2012.

[10] P. Beame, M. Saks, X. Sun, and E. Vee. Time-space trade-off lower bounds for randomized computa-
tion of decision problems. Journal of the ACM, 50(2):154–195, 2003.

[11] A. Borodin and S. A. Cook. A time-space tradeoff for sorting on a general sequential model of com-
putation. SIAM Journal on Computing, 11(2):287–297, May 1982.

[12] A. Borodin, F. E. Fich, F. Meyer auf der Heide, E. Upfal, and A. Wigderson. A time-space tradeoff for
element distinctness. SIAM Journal on Computing, 16(1):97–99, February 1987.

[13] V. Braverman, R. Ostrovsky, and C. Zaniolo. Optimal sampling from sliding windows. Journal of
Computer and System Sciences, 78(1):260–272, 2012.

[14] A. Chakrabarti, G. Cormode, and A. McGregor. A near-optimal algorithm for computing the entropy
of a stream. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 328–335, 2007.

18

[15] T. M. Chan. Comparison-based time-space lower bounds for selection. ACM Transactions on Algo-
rithms, 6(2):26:1–16, 2010.

[16] M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining stream statistics over sliding windows.
SIAM Journal on Computing, 31(6):1794–1813, 2002.

[17] D. P. Dubashi and A. Panconesi. Concentration of Measure for the Analysis of Randomized Algorithms.
Cambridge University Press, 2009.

[18] U. Feige, P. Raghavan, D. Peleg, and E. Upfal. Computing with noisy information. SIAM Journal on
Computing, 23(5):1001–1018, 1994.

[19] L. K. Lee and H. F. Ting. Maintaining significant stream statistics over sliding windows. In Pro-
ceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 724–732,
2006.

[20] L. K. Lee and H. F. Ting. A simpler and more efficient deterministic scheme for finding frequent items
over sliding windows. In Proceedings of the Twenty-Fifth Annual ACM Symposium on Principles of
Database Systems, pages 290–297, 2006.

[21] Y. Mansour, N. Nisan, and P. Tiwari. The computational complexity of universal hashing. Theoretical
Computer Science, 107:121–133, 1993.

[22] N. Nisan and A. Wigderson. Hardness vs randomness. Journal of Computer and System Sciences,
49:149–167, 1994.

[23] J. Pagter and T. Rauhe. Optimal time-space trade-offs for sorting. In Proceedings 39th Annual Sym-
posium on Foundations of Computer Science, pages 264–268, Palo Alto, CA, November 1998. IEEE.

[24] M. Sauerhoff and P. Woelfel. Time-space tradeoff lower bounds for integer multiplication and graphs
of arithmetic functions. In Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of
Computing, pages 186–195, San Diega, CA, June 2003.

[25] A. C. Yao. Near-optimal time-space tradeoff for element distinctness. In 29th Annual Symposium on
Foundations of Computer Science, pages 91–97, White Plains, NY, October 1988. IEEE.

[26] Y. Yesha. Time-space tradeoffs for matrix multiplication and the discrete Fourier transform on any
general sequential random-access computer. Journal of Computer and System Sciences, 29:183–197,
1984.

19

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

