Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 178 (2012)

Sliding Windows with Limited Storage

Paul Beame Raphaél Clifford
Computer Science and Engineering Department of Computer Science
University of Washington University of Bristol
Seattle, WA 98195-2350 Bristol BS8 1UB, United Kingdom
beame@cs.washington.edu clifford@cs.bris.ac.uk
Widad Machmouchi

Computer Science and Engineering
University of Washington
Seattle, WA 98195-2350

widad@cs.washington.edu

March 29, 2013

Abstract

We consider time-space tradeoffs for exactly computing frequency moments and order
statistics over sliding windows [16]. Given an input of length 2n — 1, the task is to output
the function of each window of length n, giving n outputs in total. Computations over sliding
windows are related to direct sum problems except that inputs to instances almost completely
overlap.

e We show an average case and randomized time-space tradeoff lower bound of T"- S €
(n?) for multi-way branching programs, and hence standard RAM and word-RAM
models, to compute the number of distinct elements, Fj, in sliding windows over al-
phabet [n]. The same lower bound holds for computing the low-order bit of F, and
computing any frequency moment Fj, for k£ # 1. We complement this lower bound
withaT - S € O~(n2) deterministic RAM algorithm for exactly computing F}, in sliding
windows.

e We show time-space separations between the complexity of sliding-window element dis-
tinctness and that of sliding-window F{y mod 2 computation. In particular for alphabet
[n] there is a very simple errorless sliding-window algorithm for element distinctness
that runs in O(n) time on average and uses O(logn) space.

e We show that any algorithm for a single element distinctness instance can be extended
to an algorithm for the sliding-window version of element distinctness with at most a
polylogarithmic increase in the time-space product.

e Finally, we show that the sliding-window computation of order statistics such as the
maximum and minimum can be computed with only a logarithmic increase in time,
but that a 7' - S € Q(n?) lower bound holds for sliding-window computation of order
statistics such as the median, a nearly linear increase in time when space is small.

ISSN 1433-8092

1 Introduction

Direct sum questions in a computational model ask how the complexity of computing many in-
stances of a function f on independent inputs increases as the number of instances grows. The
ideal direct sum theorem shows that computing n independent instances of f requires an (n)
factor increase in computing resources over computing a single instance of f.

Valuable though direct sum theorems can be, they require an increase in the number of inputs
equal to the number of instances. We are interested in how the complexity of computing many
copies of a function f can grow when the inputs overlap so that the total size of the input is not
much larger than the input size for a single function!.

A particularly natural circumstance in which one would want to evaluate many instances of a
function on overlapping inputs occurs in the context of time series analysis. For many functions
computed over sequences of data elements or data updates, it is useful to know the value of the
function on many different intervals or windows within the sequence, each representing the recent
history of the data at a given instant. In the case that an answer for every new element of the
sequence is required, such computations have been termed sliding-window computations for the
associated functions [16].

We focus on the questions of when the sliding-window versions of problems increase their
complexity, and under what circumstances one can prove significantly larger lower bounds for
these sliding-window versions than can be shown for the original functions. Unlike an ordinary di-
rect sum lower bound, a positive answer will yield a proportionately better lower bound relative to
the input size. The complexity measure we use is the time required for a given amount of storage;
i.e., we study time-space tradeoffs of these sliding-window problems. Given the general difficulty
of proving lower bounds for single output functions, in addition to the goal of obtaining propor-
tionately larger lower bounds, comparing the difficulty of computing sliding-window versions of
functions f and g may be easier than comparing them directly.

Many natural functions have previously been studied for sliding windows including entropy,
finding frequent symbols, frequency moments and order statistics, which can be computed approx-
imately in small space using randomization even in one-pass data stream algorithms [16, 7, 6, 19,
20, 14, 13]. Approximation is required since exactly computing these values in this online model
can easily be shown to require large space. The interested reader may find a more comprehensive
list of sliding-windows results by following the references in [13].

We focus on many of these same statistical functions and consider them over inputs of length
2n — 1 where the sliding-window task is to compute the function for each window of length n,
giving n outputs in total. We write fE" to denote this sliding-window version of a function f.

Our main results concern the computation of frequency moments and element distinctness over
sliding windows. Frequency moment Fj is the number of distinct elements in the input. The ele-

!Computing many copies of a function on overlapping inputs (selected via a combinatorial design) was used as the
basis for the Nisan-Wigderson pseudorandom generator construction [22], though in that case the total input size is much
larger than that of the original function.

ment distinctness problem E'D, determining whether all input elements are distinct, is the special
case of testing whether Fj is equal to the number of inputs. E'D is often considered the decision
problem that best tracks the complexity of integer sorting, a problem for which we already know
tight time-space tradeoff lower bounds [11, 8] on general sequential computation models like multi-
way branching programs and RAMs, as well as matching comparison-based upper bounds [23].
(As is usual, the input is assumed to be stored in read-only memory and the output in write-only
memory and neither is counted towards the space used by any algorithm. The multi-way branching
program model simulates standard RAM models that are unit-cost with respect to time and log-cost
with respect to space. Therefore in discussing complexity, we measure space usage in bits rather
than words.)

We prove time-space lower bounds for computing the sliding-window version of any frequency
moment Fj, for k # 1. In particular, the time 7" and space .S to compute F) ,53” must satisfy 7' - S €
Q(n?). (I is simply the size of the input, so computing its value is always trivial.) Moreover,
we show that the same lower bound holds for computing just the parity of the number of distinct
elements, Fy mod 2, in each window. The bounds are proved directly for multi-way branching
programs which imply lower bounds for the standard RAM and word-RAM models, as well as
for the data stream models discussed above. The best previous lower bounds for computing any
of these sliding window problems are much smaller time-space tradeoff lower bounds that apply
to the computation of a single instance of Fj. In particular, for any k£ # 1, an input has distinct
elements if any only if), = n, so these follow from previous lower bounds for ED. Ajtai [4]
showed that any linear time solution for £'D (and hence F}) must use linear space. No larger time
lower bound is known unless the space S is n°(1). In that case, the best previous lower bound
for computing ED (and hence Fy)is a T' € Q(n+/log(n/S)/loglog(n/S)) lower bound shown
in [10]. This is substantially smaller than our 7" - S € Q(n?) lower bound.

We complement our lower bound with a comparison-based RAM algorithm for any FEH" which
has T'- S € O(n?), showing that this is nearly an asymptotically tight bound, since it provides a
general RAM algorithm that runs in the same time complexity for any polynomial-sized input
alphabet?.

Our lower bounds for frequency moment computation hold for randomized algorithms even
with small success probability 2-°(5) and for the average time and space used by deterministic
algorithms on inputs in which the values are independently and uniformly chosen from [n].

It is interesting to contrast our lower bounds for the sliding-window version of Fi mod 2 with
those for the sliding-window version of E'D. It is not hard to show that on average for integers
independently and uniformly chosen from [n], ED can be solved with T - S € O(n) This can
be extended to an algorithm that has a similar T - S € O(n) bound for ED®" on this input
distribution. This formally proves a separation between the complexity of sliding-window Fy mod
2 and sliding-window E'D. Interestingly, this separation is not known to exist for one window
alone.

2As is usual, we use O to suppress polylogarithmic factors in n.

In fact, we show that the similarity between the complexities of computing ED and EDBrn
on average also applies to the worst-case complexity of deterministic and randomized algorithms.
We give a general reduction which shows that for any space bound .S, by using space S* € S +
O(log2 n), one can convert any algorithm A for E'D running in time 7" into an algorithm A* that
solves ED®" in time T* € O(T log® n) or alternatively T* € O(T logn) if T € Q(n'*+?). That
is, there is no sliding-window analogue of a direct sum result for £ D.

These results suggest that in the continuing search for strong lower complexity lower bounds,
Fp mod 2 may be a better choice as a difficult decision problem than £ D.

Finally, we discuss the problem of computing the ¢ order statistic in each window. For these
problems we see the full range of relationships between the complexities of the original and sliding-
window versions of the problems. In the case of ¢ = n (maximum) or ¢ = 1 (minimum) we
show that computing these properties over sliding windows can be solved by a comparison based
algorithm in O(n log n) time and only O(log n) bits of space and hence there is no sliding-windows
analogue of a direct sum result for these problems. In contrast, we show thata T - S € Q(n?)
lower bound holds when ¢ = an for any fixed 0 < o < 1. Even for algorithms that only use
comparisons, the expected time for errorless randomized algorithms to find the median in a single
window is T € Q(nloglogg n) [15] and there is an errorless randomized algorithm that precisely
matches this bound [15]. Hence for many values of .S there is an approximate direct sum analogue
for these sliding-window order statistics.

Related work While sliding-windows versions of problems have been considered in the context
of online and approximate computation, there is little research that has explicitly considered any
such problems in the case of exact offline computation. One instance where a sliding-windows
problem has been considered is a lower bound for generalized string matching due to Abraham-
son [2]. This lower bound implies that for any fixed string y € [n|™ with n distinct values, H. yBH"
requires T - S € (n?/logn) where decision problem H,(x) is 1 if and only if the Hamming
distance between z and y is n. This bound is an 2(logn) factor smaller than our lower bound for
sliding-window Fj mod 2.

One of the main techniques to derive time-space tradeoffs for branching programs was intro-
duced in [11] by Borodin and Cook and was generalized to a number of other problems (e.g.,
[26, 2, 3, 8, 21, 24]). Our lower bounds draw on this method but require some additional work to
adapt it to the case of computing frequency moments.

In addition to lower bounds that apply to unrestricted models such as RAMs and general
branching program models, some of the problems we consider have been considered in structured
comparison-based models. Borodin et al. [12] gave a time-space tradeoff lower bound for comput-
ing ED (and hence any F}, for k # 1) on comparison branching programs of 72 - S € Q(n?)
and since S > logyn, T - S € Q(n’?\/logn)). Yao [25] improved this to a near-optimal
TS € Qn><M), where ¢(n) = 5/(Inn)'/2. Since our algorithm for computing F{™" is
comparison-based, this lower bound is not far from matching our upper bound for the sliding-
window version of F.

Finally, we note that previous research implies a separation between the complexities of D
and Fp mod 2 in the context of quantum query algorithms: F D has quantum query complexity
@(nz/ 3) (lower bound in [1] and matching quantum query algorithm in [5]). On other hand, the
lower bounds in [9] imply that 7y mod 2 has quantum query complexity Q(n).

Organization In the remainder of this section we more formally define the H operator, the statis-
tical functions we consider, and the multi-way branching program model. In Section 2 we present
our lower bound for computing frequency moments Fj, and Fiy mod 2 over sliding windows fol-
lowed by a comparison-based algorithm that yields a nearly matching upper bound. In Section 3
we give our algorithms for element distinctness over sliding windows which show the separation
between Fy mod 2 and E'D. Finally in Section 4 we give our upper and lower bounds for sliding-
window computation of order statistics.

Sliding Windows Let D and R be two finite sets and f : D™ — R be a function over strings
of length n. We define the operation SLIDING-WINDOW, denoted H, that takes f and returns a
function fB . D=1 . R! defined by f&(x) = (f(x...2isn_1))'_;. We concentrate on
the case that ¢ = n and apply the SLIDING-WINDOW operator to the functions Fj, Fj mod 2,
ED, and Oy, the t'" order statistic. We will use the notation F,g]) (resp. fi(])Y to denote the k"
frequency moment (resp. the frequency of symbol 7) of the string in the window of length n starting
at position j.

Frequency Moments, Element Distinctness, and Order Statistics Leta = ajaz...,a, be a
string of n symbols from a linearly ordered set. We define the k" frequency moment of a, F},(a), as
Fi(a) = > icp fik, where f; is the frequency (number of occurrences) of symbol ¢ in the string a
and D is the set of symbols that occur in a. Therefore, Fyy(a) is the number of distinct symbols in a
and Fi(a) = |a| for every string a. The element distinctness problem is a decision problem defined
as: ED(a) = 1if Fy(a) = |a| and 0 otherwise. We write E'D,, for the ED function restricted to
inputs a with |a| = n. The t** order statistic of a, Oy, is the t'* smallest symbol in a. Therefore
O, is the maximum of the symbols of a and O(%] is the median.

Branching programs Let D and R be finite sets and n and m be two positive integers. A D-way
branching program is a connected directed acyclic graph with special nodes: the source node and
possibly many sink nodes, a set of n inputs and m outputs. Each non-sink node is labeled with
an input index and every edge is labeled with a symbol from D, which corresponds to the value
of the input indexed at the originating node. In order not to count the space required for outputs,
as is standard, we assume that each edge can be labelled by some set of output assignments. For
a directed path 7 in a branching program, we call the set of indices of symbols queried by 7 the
queries of m, denoted by Q); we denote the answers to those queries by A, : @ — D and the
outputs produced along 7 as a partial function Z : [m| — R.

A branching program computes a function f : D™ — R™ by starting at the source and then
proceeding along the nodes of the graph by querying the inputs associated with each node and
following the corresponding edges. In the special case that there is precisely one output, without
loss of generality, any edge with this output may instead be assumed to be unlabelled and lead to a
unique sink node associated with its output value.

A branching program B is said to compute a function f if for every x € D", the output of B on
x, denoted B(x), is equal to f(x). A computation (in B) on x is a directed path, denoted 7p(z),
from the source to a sink in B whose queries to the input are consistent with . The time 7' of a
branching program is the length of the longest path from the source to a sink and the space S is
the logarithm base 2 of the number of the nodes in the branching program. Therefore, S > logT
where we write log x to denote log, x.

A branching program B computes f under p with error at most n iff B(x) = f(x) for all but
an n-measure of z € D" under distribution y. A randomized branching program B is a probability
distribution over deterministic branching programs with the same input set. B computes a function
f with error at most 7 if for every input x € D", Prp..g[B(z) = f(z)] > 1 — n. The time (resp.
space) of a randomized branching program is the maximum time (resp. space) of a deterministic
branching program in the support of the distribution.

A branching program is levelled if the nodes are divided into an ordered collection of sets each
called a level where edges are between consecutive levels only. Any branching program can be
leveled by increasing the space S by an additive factor of log T'. Since S > log T, in the following
we assume that our branching programs are leveled.

2 Frequency Moments over Sliding Windows

We begin with our main lower bound for computing frequency moments over sliding windows and
then derive a nearly matching upper bound.

2.1 A general sequential lower bound for 7" and (F; mod 2)®"

We derive a time-space tradeoff lower bound for randomized branching programs computing Fkﬁ"
for k = 0 and k£ > 2. Further, we show that the lower bound also holds for computing (Fp mod
2)53”. (Note that the parity of F} for k > 1 is exactly equal to the parity of n; thus the outputs of
(F}, mod 2)®" are all equal to n mod 2.)

Theorem 2.1. Let k = 0 or k > 2. There is a constant 6 > 0 such that any [n]-way branching
program of time T and space S that computes F) kBa" with error at mostn, 0 < n < 1 — 279 for
input randomly chosen uniformly from [n)*"~! must have T - S € Q(n?). The same lower bound
holds for (Fy mod 2)%",

Corollary 2.2. Letk =0ork > 2.

e The average time T and average space S needed to compute (F;,)®"(z) for x randomly
chosen uniformly from [n)*"~! satisfies T - S € Q(n?).

e For0 < n < 1—27% any n-error randomized RAM or word-RAM algorithm computing
(F})®" using time T and space S satisfies T - S € Q(n?).

Proof of Theorem 2.1. We derive the lower bound for FOEE” first. Afterwards we show the modifica-
tions needed for k > 2 and for computing (£ mod 2)®". For convenience, on input z € [n]?"~1,
we write y; for the output Fy(x;, ..., Titn—1).

We use the general approach of Borodin and Cook [11] together with the observation of [3]
of how it applies to average case complexity and randomized branching programs. In particular,
we divide the branching program B of length 7' into layers of height g each. Each layer is now a
collection of small branching programs B’, each of whose start node is a node at the top level of the
layer. Since the branching program must produce 7 outputs for each input x, for every input x there
exists a small branching program B’ of height ¢ in some layer that produces at least ng/T > S
outputs. There are at most 2° nodes in B and hence there are at most 2° such small branching
programs among all the layers of B. One would normally prove that the fraction of z € [n]?"~!
for which any one such small program correctly produces the desired number of outputs is much
smaller than 2=5 and hence derive the desired lower bound. Usually this is done by arguing that
the fraction of inputs consistent with any path in such a small branching program for which a fixed
set of outputs is correct is much smaller than 275,

This basic outline is more complicated in our argument. One issue is that if a path in a small
program B’ finds that certain values are equal, then the answers to nearby windows may be strongly
correlated with each other; for example, if z; = z;4, then y; = y;11. Such correlations risk
making the likelihood too high that the correct outputs are produced on a path. Therefore, instead
of considering the total number of outputs produced, we reason about the number of outputs from
positions that are not duplicated in the input and argue that with high probability there will be a
linear number of such positions.

A second issue is that inputs for which the value of Fj in a window happens to be extreme,
say n - all distinct - or 1 - all identical, allow an almost-certain prediction of the value of Fj for
the next window. We will use the fact that under the uniform distribution, cases like these almost
surely do not happen; indeed the numbers of distinct elements in every window almost surely fall
in a range close to their mean and in this case the value in the next window will be predictable with
probability bounded below 1 given the value in the previous ones. In this case we use the chain
rule to compute the overall probability of correctness of the outputs.

We start by analyzing the likelihood that an output of Fj is extreme.

Lemma 2.3. Let a be chosen uniformly at random from [n|™. Then the probability that Fy(a) is
between 0.5n and 0.85n is at least 1 — 2e~"/%0,

Proof. For a = aj .. .ay uniformly chosen from [n]",

E[Fy(a)] = Z Pr[3i € [n] such thata; = ¢] = n[l — (1 —1/n)"].
Le[n] ¢
Hence 0.632n < (1 — 1/e)n < E[Fy(a)] < 0.75n. Define a Doob martingale D;, t = 0,1,...,n

with respect to the sequence a; . .. a, by D; = E[Fy(a) | a1 ... a¢]. Therefore Dy = E[Fy(a)] and
D,, = Fy(a). Applying the Azuma-Hoeffding inequality, we have

(0.1n)2
Pr[Fy(a) ¢ [0.5n,0.85n]] < Pr]|Fy(a) — E[Fp(a)] > 0.1n] < 2e 275 = 2¢/50,
a a
which proves the claim. O
We say that z; is unique in x iff x; ¢ {x1,...,2j-1,Zj41,...,Topn—1}.

Lemma 2.4. Let x be chosen uniformly at random from [n)*"~! with n > 2. With probability at

least 1 — 4ne_”/50,

(a) all outputs of F§" () are between 0.5n and 0.85n, and

(b) the number of positions j < n such that x; is unique in x is at least n/24.

Proof. We know from Lemma 2.3 and the union bound that part (a) is false with probability at
most 2ne~"/%0. For any j < n, let U; be the indicator variable of the event that j is unique in
zandU =3, U;. Now E(U;) = (1 — 1/n)?" 250 E(U) = (n —1)(1 —1/n)?*""2 > n/8
for n > 2. Observe also that this is a kind of typical “balls in bins” problem and so, as discussed
in [17], it has the property that the random variables U; are negatively associated; for example,
for disjoint A, A" C [n — 1], the larger >, 4 Uj is, the smaller . ,, U; is likely to be. Hence,
it follows [17] that U is more closely concentrated around its mean than if the U; were fully
independent. It also therefore follows that we can apply a Chernoff bound directly to our problem,
giving Pr[U < n/24] < Pr[U < E(U)/3] < e 22U)/9 < ¢=n/36 We obtain the desired bound
for parts (a) and (b) together by another application of the union bound. 0

Correctness of a small branching program for computing outputs in 7-unique positions

DEFINITION 2.1. Let B’ be an [n]-way branching program and let 7 be a source-sink path in B’
with queries Qr and answers Ay : Qr — [n]. An index { < n is said to be T-unique iff either (a)

14 ¢ Qxr, or (b) Aﬂ(@ ¢ AW(QW - {E})

In order to measure the correctness of a small branching program, we restrict our attention
to outputs that are produced at positions that are m-unique and upper-bound the probability that
a small branching program correctly computes outputs of FOE” at many 7-unique positions in the
input.

Let & be the event that all outputs of F:2"(z) are between 0.5n and 0.85n.

Lemma 2.5. Let r > 0 be a positive integer, let ¢ < 1/10, and let B' be an [n]-way branching
program of height ¢ = en. Let 7 be a path in B’ on which outputs from at least r w-unique positions
are produced. For random x uniformly chosen from [n]?"~1,

Pr[these r outputs are correct for F™(x), € | mpi(x) = 7] < (17/18)".

Proof. Roughly, we will show that when & holds (outputs for all windows are not extreme) then,
conditioned on following any path 7 in B’, each output produced for a 7-unique position will
have only a constant probability of success conditioned on any outcome for the previous outputs.
Because of the way outputs are indexed, it will be convenient to consider these outputs in right-to-
left order.

Let 7 be a path in B’,), be the set of queries along 7, A, : Qr — [n] be the answers along
m, and Z, : [n] — [n] be the partial function denoting the outputs produced along 7. Note that
7wp(x) = 7 if and only if z; = A, (i) forall i € Q.

Letl <4 <19 < ... <1, <n be the first r of the w-unique positions on which 7 produces
output values; i.e., {i1,...,i,} C dom(Z,). Define z;, = Z(i1),..., 2, = Zz(ir).

We will decompose the probability over the input x that £ and all of y;, = 2;,,...,y;, = 2,
hold via the chain rule. In order to do so, for ¢ € [r], we define event & to be 0.5n < Fo(i) (x) <
0.85n for all 7 > 7,. We also write & &' €. Then

Prlyi, = ziyy - ¥, = 2in, € | () = 7]
T
=Pr[& | mp(x) = 7] - HPr[y,-Z = Zi,, Eo-1 | Yigsr = Zigyrs -+ Yir = Zips €ty wp(x) = 7|
/=1
,
< HPT[ZJM = Zi, | Yigrr = Rigyrr -+ Yir = Zipy 537 7.‘-B'(w) = 7T]' (1)
=1

We now upper bound each term in the product in (1). Depending on how much larger 7441 is
than 4y, the conditioning on the value of y;,,, may imply a lot of information about the value of
Yi,» but we will show that even if we reveal more about the input, the value of y;, will still have a
constant amount of uncertainty.

For i € [n], let W; denote the vector of input elements (z;, ..., Z;1,—1), and note that y; =
Fo(W;); we call W; the i" window of x. The values y; for different windows may be closely
related. In particular, adjacent windows W; and W;; have numbers of distinct elements that can
differ by at most 1 and this depends on whether the extreme end-points of the two windows, x; and
Ti+n, appear among their common elements C; = {11, ..., Zj+n—1}. More precisely,

In light of (2), the basic idea of our argument is that, because i, is m-unique and because of the
conditioning on &, there will be enough uncertainty about whether or not z;, € Cj, to show that
the value of y;, is uncertain even if we reveal

1. the value of the indicator 1{% n@Ciy) and

2. the value of the output y;,41.

We now make this idea precise in bounding each term in the product in (1), using Gy, 1 to
denote the event {y;,., = zi,.\» -+, Yi, = Zi, }-

Pr[yie = Zi, ‘ Goi1, &, TR (q:) = 71-]

n
= Z Z Pr[yig = Zj, | Yip+1 = M, l{xie_._ngcie} = bv g€+175€,7TB'(1’) = 7T]
m=1be{0,1}

X Prlyi,+1 =m, Vo pngci,y =0 | Gey1, &, o () = 7]

= mE[OI.I’SlTELi,)é.SSTL] Pr[yiz = Zj, ‘ Yig+1 =M, l{l’iz+n€0ig} = 0,041, WB'(x) = 7T]
be{0,1}
me[or.gg,)é.ssn] tf {2i #Ci,} = Zig =M T |
be{0,1} Yipg+1 = M, 1{$ig+n€0ig} =b,Gr11, &, () = 7] 3)

where the inequality follows because the conditioning on &, implies that y;,41 is between 0.5n
and 0.85n and the last equality follows because of the conditioning together with (2) applied with
i = ig. Obviously, unless z;, —m+b € {0, 1} the probability of the corresponding in the maximum
in (3) will be 0. We will derive our bound by showing that given all the conditioning in (3), the
probability of the event {x;, & C;, } is between 2/5 and 17/18 and hence each term in the product
in (1) is at most 17/18.

Membership of z;, in C;,: First note that the conditions y;,41 = m and 1{% nCi} = b
together imply that C;, contains precisely m — b distinct values. We now use the fact that ¢, is
m-unique and, hence, either iy ¢ Qr or A (i) ¢ Ar(Qr — {i¢}).

First consider the case that iy ¢ (). By definition, the events y;,11 = m, 1{% ngCi} = b,
&r, and Gy 1 only depend on x; for i > i, and the conditioning on 7w/ () = = is only a property
of x; for i € (). Therefore, under all the conditioning in (3), ;, is still a uniformly random value
in [n]. Therefore the probability that z;, € Cj, is precisely (m — b)/n in this case.

Now assume that iy € Q. In this case, the conditioning on 7p/(x) = 7 implies that z;, =
Ay (ip) is fixed and not in A, (Qr — {i¢}). Again, from the conditioning we know that C;, contains
precisely m — b distinct values. Some of the elements that occur in C;, may be inferred from the
conditioning — for example, their values may have been queried along m — but we will show that
there is significant uncertainty about whether any of them equals A (iz). In this case we will show
that the uncertainty persists even if we reveal (condition on) the locations of all occurences of the
elements A, (Q, — {i¢}) among the x; for i > i,.

Other than the information revealed about the occurences of the elements A, (Qr—{i¢}) among
the x; for ¢ > 44, the conditioning on the events y;,41 = m, l{miﬁng@é} =, &, and Gy 1, only

9

biases the numbers of distinct elements and patterns of equality among inputs z; for 7 > . Further
the conditioning on 7p/(,) = 7 does not reveal anything more about the inputs in C;, than is given
by the occurences of A (Q~ — {is}). Let A be the event that all the conditioning is true.

Let ¢ = |Ax(Qr — {ir})] < g — 1 and let ¢ < ¢ be the number of distinct elements
of Ar(Qr — {i¢}) that appear in C;,. Therefore, since the input is uniformly chosen, subject
to the conditioning, there are m — b — ¢ distinct elements of C;, not among A, (Qr — {i¢}),
and these distinct elements are uniformly chosen from among the elements [n] — A, (Qr — {i¢}).
Therefore, the probability that any of these m —b—¢"” elements is equal to x;, = A (i) is precisely
(m—0b—4¢")/(n — ¢') in this case.

It remains to analyze the extreme cases of the probabilities (m—b)/n and (m—b—q")/(n—q’)
from the discussion above. Since ¢ = en, ¢’ < ¢’ < ¢—1,and b € {0, 1}, we have the probability
Pr(z;, € Cj, | Al < ;g < 0870 < B00% < 0.85/(1—¢) < 17/18 since e < 1/10. Similarly,
Prlz;, ¢ C;, | A] <1—"20 <1 — 092" < 054+ ¢ < 3/5since e < 1/10. Plugging in the
larger of these upper bounds in (1), we get:

r|zi,,- .., 2. are correct for), mp(x) =7 < ,
Pr[z;, . for FE2"(x), € < (17/18)"

which proves the lemma. O

Putting the Pieces Together We now combine the above lemmas. Suppose that 7'S < n? /4800
and let ¢ = n/10. We can assume without loss of generality that S > logy n since we need T > n
to determine even a single answer.

Consider the fraction of inputs in [n]?"~! on which B correctly computes FOEE”. By Lemma 2.4,
for input o chosen uniformly from [r]?"~!, the probability that £ holds and there are at least /24
positions j < n such that z; is unique in z is at least 1 — 4ne~"/%0_ Therefore, in order to be
correct on any such z, B must correctly produce outputs from at least n/24 outputs at positions
J < n such that z; is unique in .

For every such input 2, by our earlier outline, one of the 2° [n]-way branching programs B’ of
height ¢ contained in B produces correct output values for F{7"(z) in at least 7 = (n/24)q/T >
20 positions j < n such that x; is unique in .

We now note that for any B’, if 7 = mp/(x) then the fact that ; for j < n is unique in z
implies that j must be m-unique. Therefore, for all but a 4ne~"/50 fraction of inputs x on which B
is correct, £ holds for x and there is one of the < 2° branching programs B’ in B of height ¢ such
that the path 7 = mp/(z) produces at least 20.S outputs at 7-unique positions that are correct for x.

Consider a single such program B’. By Lemma 2.5 for any path 7 in B’, the fraction of inputs
x such that 7/ (z) = 7 for which 205 of these outputs are correct for = and produced at 7-unique
positions, and £ holds for z is at most (17/18)2%S < 35, By Proposition 2.4, this same bound
applies to the fraction of all inputs with wp/(x) = 7 for which 20 of these outputs are correct
from z and produced at 7-unique positions, and £ holds for z is at most (17/18)20% < 375,

10

Since the inputs following different paths in B’ are disjoint, the fraction of all inputs z for
which £ holds and which follow some path in B’ that yields at least 20S correct answers from
distinct runs of z is less than 3. Since there are at most 2° such height ¢ branching programs,
one of which must produce 20.S correct outputs from distinct runs of x for every remaining input,
in total only a 2°37° = (2/3) fraction of all inputs have these outputs correctly produced.

In particular this implies that B is correct on at most a 4ne~"/%0 4 (2/3) fraction of inputs.
For n sufficiently large this is smaller than 1 — 7 for any < 1 — 2795 for some § > 0, which
contradicts our original assumption. This completes the proof of Theorem 2.1. O

Lower bound for (F{ mod 2)53” We describe how to modify the proof of Theorem 2.1 for com-
puting F{7" to derive the same lower bound for computing (EFy mod 2)". The only difference is
in the proof of Lemma 2.5. In this case, each output y; is Fo(W;) mod 2 rather than Fy(W;) and
(2) is replaced by

i = (it + 1{93¢€Ci} - 1{1i+n¢ci}) mod 2.)
The extra information revealed (conditioned on) will be the same as in the case for FOBH” but,

because the meaning of y; has changed, the notation y;,+1 = m is replaced by Fo(W;,+1) = m,
Yi,+1 18 then m mod 2, and the upper bound in (3) is replaced by

me[ol.?i}o(.%n] Pr{lg, ¢c;,y =(2i, —m +b) mod 2 |

be{0,1} Fo(Wips1) = m, g, gc,y = 0,901, &0, mpr () = 7]

The uncertain event is exactly the same as before, namely whether or not z;, € C;, and the condi-
tioning is essentially exactly the same, yielding an upper bound of 17/18. Therefore the analogue
of Lemma 2.5 also holds for (Fy mod 2)®* and hence the time-space tradeoff of T'- S € Q(n?)
follows as before.

Lower Bound for F,EB", k > 2 We describe how to modify the proof of Theorem 2.1 for comput-
ing FOEE” to derive the same lower bound for computing FkEB" for k£ > 2. Again, the only difference
is in the proof of Lemma 2.5. The main change from the case of FOBH” is that we need to replace (2)

relating the values of consecutive outputs. For £ > 2, recalling that f]@ is the frequency of symbol
7 in window W;, we now have

Vi — Yit1 = [(fé?)k - (- 1)k] = [(f;jﬁj?)k — (D - 1)k] . 5)

We follow the same outline as in the case £ = 0 in order to bound the probability that y;, = z;, but
we reveal the following information, which is somewhat more than in the k£ = 0 case:

1. yi,+1, the value of the output immediately after y;,,

2. Fy(Wj,41), the number of distinct elements in W, 1, and

11

3. féiﬂi), the frequency of x;,n, in Wj,41.

For M € N,m € [n]and 1 < f < m, define Cps,,, s be the event that y;, 11 = M, Fo(Wj,41) =
m, and féi‘;ﬂ) = f. Note that Cpy,,,, ¢ only depends on the values in W, 1, as was the case for
the information revealed in the case & = 0. As before we can then upper bound the /** term in the
product given in (1) by
Prly;, =z, | C) o, (x) = 6
me[or.gr?,)é.sml e = #ie | Catim 1, Ger, €0 o () = 7 ©
MEeN, fe[m]

14

Nk . k
Now, by (5), given event Cpy,pn,, 7, We have y;, = 2;, if and only if z;,— M = [(ff,(;?)) — (f;gﬁ) — 1)]—

[k- (f — 1)’“], which we can express as as a constraint on its only free parameter fq(;?,

N , k
(£90) = (£ =1) =z - M = 4 (7= D
Observe that this constraint can be satisfied for at most one positive integer value of fgﬁ) and that,
by definition, fzif,) > 1. Note that féiﬁ) = 1if and only if z;, ¢ C;,, where C;, is defined as in
the case £ = 0. The probability that ngZ) takes on a particular value is at most the larger of the

probability that féﬁﬁ) = 1 or that fa(;i‘;) > 1 and hence (6) is at most

me[or.glg,}é.gf)n} Pr[l{xle €Ci£} =c ‘ CM,m,f, g€+17 gf) Uv:1 (.’lf) = 7T]

MeN, fe[m],ce{0,1}

We now can apply similar reasoning to the k£ = 0 case to argue that this is at most 17/18: The only
difference is that Cy,y, s replaces the conditions y;,+1 = Fo(Wj,41) =mand 1 (2ipin@Cif} = b. It
is not hard to see that the same reasoning still applies with the new condition. The rest of the proof
follows as before.

2.2 A time-space efficient algorithm for F,Ean

We now show that the above time-space tradeoff lower bound is nearly optimal even for restricted
RAM models.

Theorem 2.6. There is a comparison-based deterministic RAM algorithm for computing F, ,EE” for
any fixed integer k > 0 with time-space tradeoff T - S € O(n?log® n) for all space bounds S with
logn < S <n.

Proof. We denote the i-th output by y; = Fp(z;,...,Titn—1). We first compute y; using the

comparison-based time O(n?/S) sorting algorithm of Pagter and Rauhe [23]. This algorithm pro-
duces the list of outputs in order by building a space S data structure D over the n inputs and then

12

repeatedly removing and returning the index of the smallest element from that structure using a
POP operation. We perform POP operations on D and keep track of the last index popped. We
also will maintain the index 7 of the previous symbol seen as well as a counter that tells us the
number of times the symbol has been seen so far. When a new index j is popped, we compare the
symbol at that index with the symbol at the saved index. If they are equal, the counter is incre-
mented. Otherwise, we save the new index j, update the running total for F}, using the k-th power
of the counter just computed, and then reset that counter to 1.

Let S’ = S/logy n. We compute the remaining outputs in /S’ groups of S’ outputs at a time.
In particular, suppose that we have already computed y;. We compute y; 41, ..., ¥;+s’ as follows:

We first build a single binary search tree for both x;, ..., ;15 —1 and for ;1n, ..., Titnts—1
and include a pointer p(j) from each index j to the leaf node it is associated with. We call the
elements z;, ...,2;+s 1 the old elements and add them starting from z;s/_1. While doing so
we maintain a counter c; for each index j € [i,7 + S’ — 1] of the number of times that z; appears
to its right in x;, ..., x;4.97—1. We do the same for x;4y, ..., T;1nts—1, Which we call the new
elements, but starting from the left. For both sets of symbols, we also add the list of indices where
each element occurs to the relevant leaf in the binary search tree.

We then scan the n — S’ elements x; s, . . ., Z;1,—1 and maintain a counter C'(¢) at each leaf
¢ of each tree to record the number of times that the element has appeared.

For j € [i,i + S’ — 1] we produce yj41 from y;. If z; = 4, then y; 11 = y;. Otherwise,
we can use the number of times the old symbol x; and the new symbol x;,, occur in the window
Tjyl,.--,Tjyn—1 to give us y;1. To compute the number of times x; occurs in the window, we
look at the current head pointer in the new element list associated with leaf p(j) of the binary
search tree. Repeatedly move that pointer to the right if the next position in the list of that position
is at most n + j — 1. Call the new head position index /. The number of occurrences of z; in
Tjt1y.--,2s and Ty y1,...,Tnyj 18 NOW ¢j + co. The head pointer never moves backwards and
so the total number of pointer moves will be bounded by the number of new elements. We can
similarly compute the number of times x;,, occurs in the window by looking at the current head
pointer in the old element list associated with p(j 4+ n) and moving the pointer to the left until it is
at position no less than j + 1. Call the new head position in the old element list ¢'.

Finally, for k& > 0 we can output ;1 by subtracting (1 + ¢; + ¢, + C(p(j)))* — (¢j + o +
C(p(4))* from y; and adding (1 + ¢jin + co + C(p(j + n)))* = (¢j4n + co + C(p(j + n))*.
When k = 0 we compute y; by subtracting the value of the indicator 1. ., c(p(j))=0 from y;
and adding 1., ¢, +C(p(j+n))=0-

The total storage required for the search trees and pointers is O(S"logn) which is O(S). The
total time to compute y; 41, - . -, Y;+s is dominated by the n — S’ increments of counters using the
binary search tree, which is O(nlogS’) and hence O(nlog S) time. This computation must be
done (n — 1)/5’ times for a total of O("%S#S) time. Since S” = S/ log n, the total time including

that to compute y; is O(mfnlogs) and hence T' - S € O(n?log?n). O

13

3 Element Distinctness is easier than F{ mod 2

In this section we investigate the complexity of ED®" and show that it is strictly easier than
(Fp mod 2)53”. This fact is established by giving a particularly simple errorless algorithm for
ED®" which runs in linear time on average on random inputs with alphabet [n] and hence also
beats our strong average-case lower bound for (Fy mod 2)%".

We also give a deterministic reduction showing that the complexity of ED®n ig very similar
to that of E£D. In particular, ED®" can be computed with at most an O(log? n) additive increase
in the space and O(log2 n) multiplicative increase in time more than required to compute a single
instance of £ D. This shows that any deterministic or randomized algorithm for £ D that satisfies
T - S € o(n?/log®n) would provide a worst-case separation between the complexities of £FD®"
and (Fy mod 2)%,

3.1 A fast average case algorithm for £ D®" with alphabet [1]

We show a simple average case O-error sliding-window algorithm for ED®" When the input
alphabet is chosen uniformly at random from [n], the algorithm runs in O(n) time on average
using O(logn) bits of space. By way of contrast, in Section 2 we proved an average case time-
space lower bound of T - S € Q(n?) for (Fy mod 2)®" under the same distribution.

The method we employ is as follows. We start at the first window of length n of the input and
perform a search for the first duplicate pair starting at the right-hand end of the window and going
to the left. We check if a symbol at position j is involved in a duplicate by simply scanning all the
symbols to the right of position j within the window. If the algorithm finds a duplicate in a suffix
of length z, it shifts the window to the right by n — x 4 1 and repeats the procedure from this point.
If it does not find a duplicate at all in the whole window, it simply moves the window on by one
and starts again.

In order to establish the running time of this simple method, we will make use of the following
birthday-problem-related facts which we prove in Appendix A.

Lemma 3.1. Assume that we sample i.u.d. with replacement from the range {1 ...n} withn > 4.
Let X be a discrete random variable that represents the number of samples taken when the first
duplicate is found. Then

(7)

We also have that
E(X?) < 4n. (8)

We can now show the running time of our average case algorithm for EDBn,

Theorem 3.2. Assume that the input is sampled i.u.d. with replacement from alphabet [n)]. EDHn
can be solved in T' € O(n) time on average and space S € O(logn) bits.

14

Proof. Let U be a sequence of values sampled uniformly from [n] with n > 4. Let M be the index
of the first duplicate in U found when scanning from the right and let X = n — M. Let W (X) be
the number of comparisons required to find X. Using our naive duplicate finding method we have
that W (X) < X(X + 1)/2. Tt also follows from inequality (8) that E(TV) < 4n.

Let R(n) be the total running time of our algorithm and note that R(n) < n3/2. Furthermore
the residual running time at any intermediate stage of the algorithm is at most R(n).

Let us consider the first window and let M; be the index of the first duplicate from the right
and let X1 = n — M. If X1 > n/2, denote the residual running time by RM . We know from (7)
that Pr(X; > n/2) < e"16. If X; < n/2, shift the window to the right by M; + 1 and find
X for this new window. If Xo > n/2, denote the residual running time by R®) . We know that
Pr(Xy >n/2) < e 6. If X; < n/2and X5 < n/2 then the algorithm will terminate, outputting
‘not all distinct’ for every window.

The expected running time is then

n

E(R(n)) = E(W(X1)) + B (RW) Pr (X, > 5)

+Pr (Xl < g) [E (W(Xg)‘Xl < g) Vv E (R<2>) Pr (X2 > g‘Xl < g)}
’I’L3 n 7’L3 n
<dn+ Ee_ﬁ +4n + ?S_TG € O(n)

The inequality follows from the followings three observations. We know trivially that Pr(X; <
n/2) < 1. Second, the number of comparisons W (X32) does not increase if some of the elements
in a window are known to be unique. Third, Pr(Xs > n/2 A X1 < n/2) < Pr(Xy > n/2) <
e 16, O

We note that similar results can be shown for inputs uniformly chosen from the alphabet [cn]
for any constant c.

3.2 Sliding windows do not significantly increase the complexity of element distinct-
ness

As preparation for the main results of this section, we first give a deterministic reduction which
shows how the answer to an element distinctness problem allows one to reduce the input size of
sliding-window algorithms for computing £ D?m.

Lemma 3.3. Letn > m > 0.
(@) If EDp_pps1 (T, ..., &n) = 0 then EDP™ (21, ... 2y i) = 0™
(b) If EDyp—i1(Tm, - .., xy) = 1 then define
i. i, = max{j € [/m —1] | EDp_jt1(xj,...,x,) = 0} where if, = 0 if the set is empty

and

15

ii. i = min{j € [m — 1] | EDyp—ym4j(@m, ..., Znyj) = 0} where ip = m if the set is
empty.

Then
EDELam(l'l, ce, -Tn+mfl) = OiL 1m_iL A\ 1iR0m_iR A EDETI (:L‘l, ey Tm—1,Tn41, - - ,l’ner,l)

where each N represents bit-wise conjunction.

Proof. The elements M = (xy,...,2y) appear in all m of the windows so if this sequence con-
tains duplicated elements, so do all of the windows and hence the output for all windows is 0. This
implies part (a).

If M does not contain any duplicates then any duplicate in a window must involve at least one

element from L = (x1,...,Zpy—1) or from R = (Xp41,...,Tntm—1). If a window has value
0 because it contains an element of L that also appears in M, it must also contain the rightmost
such element of L and hence any window that is distinct must begin to the right of this rightmost
such element of L. Similarly, if a window has value O because it contains an element of R that
also appears in M, it must also contain the leftmost such element of L and hence any window that
is distinct must end to the left of this leftmost such element of R. The only remaining duplicates
that can occur in a window can only involve elements of both L and R. In order, the m windows

contain the following sequences of elements of LU R: (1, ..., Zm—1), (T2, Tim—1, Tnt1)s - - -
(Tm—1, Tn+1y - s Tntm—2)s (Tntl,--., Tntm—1). These are precisely the sequences for which
EDFETl(xl, ey Tm—1,Tntl, - - -, Tntm—1) determines distinctness. Hence part (b) follows. [

We use the above reduction in input size to show that any efficient algorithm for element dis-

tinctness can be extended to solve element distinctness over sliding windows at a small additional
cost.

Theorem 3.4. If there is an algorithm A that solve element distinctness, F D, using time at most
T'(n) and space at most S(n), where T and S are nondecreasing functions of n, then there is an
algorithm A* that solves the sliding-window version of element distinctness, ED?", in time T*(n)
that is O(T (n) log® n) and space S*(n) that is O(S(n) + log? n). Moreover, if T(n) is O(n?) for
B > 1, then T*(n) is O(nP logn).

If A is deterministic then so is A*. If A is randomized with error at most € then A* is random-

ized with error o(1/n). Moreover, if A has the obvious 1-sided error (it only reports that inputs are
not distinct if it is certain of the fact) then the same property holds for A*.

Proof. We first assume that A is deterministic. Algorithm A* will compute the n outputs of EDEE"
in n/m groups of m using the input size reduction method from Lemma 3.3. In particular, for each
group A* will first call A on the middle section of input size n — m + 1 and output 0™ if A returns
0. Otherwise, A* will do two binary searches involving at most 2 log m calls to A on inputs of size
at most n to compute 77, and i as defined in part (b) of that lemma. Finally, in each group, A* will
make one recursive call to A* on a problem of size m.

16

It is easy to see that this yields a recurrence of the form
T*(n) = (n/m)[cT(n)logm + T*(m)].

In particular, if we choose m = n/2 then we obtain 7" (n) < 27%(n/2) 4+ 2¢T'(n) logn. If T'(n)
is O(n?) for 3 > 1 this solves to T*(n) = O(n®logn). Otherwise, it is immediate from the
definition of T'(n) that T'(n) must be 2(n) and hence the recursion for A* has O(logn) levels and
the total cost associated with each of the levels of the recursion is O(7'(n) logn).

Observe that the space for all the calls to A can be re-used in the recursion. Also note that the
algorithm A* only needs to remember a constant number of pointers for each level of recursion for
a total cost of O(log® n) additional bits.

We now suppose that the algorithm A is randomized with error at most €. For the recursion
based on Lemma 3.3, we use algorithm A and run it C' = O(logn) times on input (z,, ..., %),
taking the majority of the answers to reduce the error to o(1/n?). In case that no duplicate is
found in these calls, we then apply the noisy binary search method of Feige, Peleg, Raghavan, and
Upfal [18] to determine iz, and i with error at most o(1/n?) by using only C' = O(logn) calls to
A. (If the original problem size is n we will use the same fixed number C' = O(logn) of calls to A
even at deeper levels of the recursion so that each subproblem has error o(1/n?).) There are only
O(n) subproblems so the final error is 0o(1/n). The rest of the run-time analysis is the same as in
the deterministic case.

If A has only has false positives (if it claims that the input is not distinct then it is certain that
there is a duplicate) then observe that A* will only have false positives. O

4 Order Statistics in Sliding Windows

We first show that when order statistics are extreme, their complexity over sliding windows does
not significantly increase over that of a single instance.

Theorem 4.1. There is a deterministic comparison algorithm that computes M AXEE” (equiva-
lently MIN®") using time T € O(nlogn) and space S € O(logn).

Proof. Given an input x of length 2n— 1, we consider the window of n elements starting at position
[5] and ending at position n+ [5 | —1 and find the largest element in this window naively in time n
and space O(logn); call it m. Assume without loss of generality that m occurs between positions
[5] and n, that is, the left half of the window we just considered. Now we slide the window of
length n to the left one position at a time. At each turn we just need to look at the new symbol that
is added to the window and compare it to m. If it is larger than m then set this as the new maximum

for that window and continue.

We now have all outputs for all windows that start in positions 1 to [%]. For the remaining
outputs, we now run our algorithm recursively on the remaining n + [% |-long region of the input.

17

We only need to maintain the left and right endpoints of the current region. At each level in the
recursion, the number of outputs is halved and each level takes O(n) time. Hence, the overall time
complexity is O(nlog n) and the space is O(logn). O

In contrast when an order statistic is near the middle, such as the median, we can derive a sig-
nificant separation in complexity between the sliding-window and a single instance. This follows
by a simple reduction and known time-space tradeoff lower bounds for sorting [11, 8].

Theorem 4.2. Let P be a branching program computing OtEH" in time T and space S on an input
of size 2n — 1, for any t € [n]. Then T - S € Q(t?) and the same bound applies to expected time
for randomized algorithms.

Proof. We give lower bound for OEE" for t € [n] by showing a reduction from sorting. Given a
sequence s of ¢ elements to sort taking values in {2,...,n — 1}, we create a 2n — 1 length string
as follows: the first n — ¢ symbols take the same value of n, the last n — 1 symbols take the same
value of 1 and we embed the ¢ elements to sort in the remaining ¢ positions, in an arbitrary order.
For the first window, O; is the maximum of the sequence s. As we slide the window, we replace
a symbol from the left, which has value n, by a symbol from the right, which has value 1. The
t'h smallest element of window i = 1, ...t is the i*" largest element in the sequence s. Then the
first ¢ outputs of OtEE” are the ¢ elements of the sequence s output in increasing order. The lower
bound follows from [11, 8]. As with the bounds in Corollary 2.2, the proof methods in [11, 8] also
immediately extend to average case and randomized complexity. O

For the special case ¢ = [% | (median), we note that the best lower bound known for the single-
input version of the median problem is 7' € §2(nloglogg n) derived in [15] for S € w(logn) and
this is tight for the expected time of errorless randomized algorithms.

Acknowledgements

The authors would like to thank Aram Harrow for a number of insightful discussions and helpful
comments during the preparation of this paper.

References

[1] S. Aaronson and Y. Shi. Quantum lower bounds for the collision and the element distinctness
problems. Journal of the ACM, 51(4):595-605, 2004.

[2] K. R. Abrahamson. Generalized string matching. SIAM Journal on Computing, 16(6):1039—
1051, 1987.

18

(3]

[4]

(5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

K. R. Abrahamson. Time—space tradeoffs for algebraic problems on general sequential mod-
els. Journal of Computer and System Sciences, 43(2):269-289, October 1991.

M. Ajtai. A non-linear time lower bound for Boolean branching programs. Theory of Com-
puting, 1(1):149-176, 2005.

A. Ambainis. Quantum walk algorithm for element distinctness. SIAM Journal on Comput-
ing, 37(1):210-239, 2007.

A. Arasu and G. S. Manku. Approximate counts and quantiles over sliding windows. In
Proceedings of the Twenty-Third Annual ACM Symposium on Principles of Database Systems,
pages 286-296, 2004.

B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues in data
stream systems. In Proceedings of the Twenty-First Annual ACM Symposium on Principles
of Database Systems, pages 1-16, 2002.

P. Beame. A general sequential time-space tradeoff for finding unique elements. SIAM Jour-
nal on Computing, 20(2):270-277, 1991.

P. Beame and W. Machmouchi. The quantum query complexity of AC°. Quantum Informa-
tion & Computation, 12(7-8):670-676, 2012.

P. Beame, M. Saks, X. Sun, and E. Vee. Time-space trade-off lower bounds for randomized
computation of decision problems. Journal of the ACM, 50(2):154-195, 2003.

A. Borodin and S. A. Cook. A time-space tradeoff for sorting on a general sequential model
of computation. SIAM Journal on Computing, 11(2):287-297, May 1982.

A. Borodin, F. E. Fich, F. Meyer auf der Heide, E. Upfal, and A. Wigderson. A time-space
tradeoff for element distinctness. SIAM Journal on Computing, 16(1):97-99, February 1987.

V. Braverman, R. Ostrovsky, and C. Zaniolo. Optimal sampling from sliding windows. Jour-
nal of Computer and System Sciences, 78(1):260-272, 2012.

A. Chakrabarti, G. Cormode, and A. McGregor. A near-optimal algorithm for computing
the entropy of a stream. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 328-335, 2007.

T. M. Chan. Comparison-based time-space lower bounds for selection. ACM Transactions on
Algorithms, 6(2):26:1-16, 2010.

M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining stream statistics over sliding
windows. SIAM Journal on Computing, 31(6):1794-1813, 2002.

19

[17]

[18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

D. P. Dubashi and A. Panconesi. Concentration of Measure for the Analysis of Randomized
Algorithms. Cambridge University Press, 2009.

U. Feige, P. Raghavan, D. Peleg, and E. Upfal. Computing with noisy information. SIAM
Journal on Computing, 23(5):1001-1018, 1994.

L. K. Lee and H. F. Ting. Maintaining significant stream statistics over sliding windows.
In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 724-732, 2006.

L. K. Lee and H. F. Ting. A simpler and more efficient deterministic scheme for finding
frequent items over sliding windows. In Proceedings of the Twenty-Fifth Annual ACM Sym-
posium on Principles of Database Systems, pages 290-297, 2006.

Y. Mansour, N. Nisan, and P. Tiwari. The computational complexity of universal hashing.
Theoretical Computer Science, 107:121-133, 1993.

N. Nisan and A. Wigderson. Hardness vs randomness. Journal of Computer and System
Sciences, 49:149-167, 1994.

J. Pagter and T. Rauhe. Optimal time-space trade-offs for sorting. In Proceedings 39th Annual
Symposium on Foundations of Computer Science, pages 264-268, Palo Alto, CA, November
1998. IEEE.

M. Sauerhoff and P. Woelfel. Time-space tradeoff lower bounds for integer multiplication and
graphs of arithmetic functions. In Proceedings of the Thirty-Fifth Annual ACM Symposium
on Theory of Computing, pages 186—195, San Diega, CA, June 2003.

A. C. Yao. Near-optimal time-space tradeoff for element distinctness. In 29th Annual Sym-
posium on Foundations of Computer Science, pages 91-97, White Plains, NY, October 1988.
IEEE.

Y. Yesha. Time-space tradeoffs for matrix multiplication and the discrete Fourier transform on
any general sequential random-access computer. Journal of Computer and System Sciences,
29:183-197, 1984.

20

A Proof of Lemma 3.1

Assume that the input is chosen uniformly from an alphabet ¥ with |X| > 4. We will first establish
a basic result about the probability of finding the first duplicate after at least x samples. Taking the
random variable X to be as in Lemma 3.1, we show the following fact.

(z—1)2

Lemma A.l. Pr(X > x) <e 2.

Proof. The proof relies on the fact that 1 —x < e™*.

()

X>a:

E}s
}—A}—‘

i

=]

IN

-
i=1
2

T

e A

IN

Inequality (7) now follows by substituting z = n/2 and |X| = n into Lemma A.1 giving

5l

Pr(ng)ge*

To prove inequality (8), recall that for non-negative valued discrete random variables

X) = iPr(X > x).
r=1

Observe that

21

ECCC ISSN 1433-8092
http://eccc.hpi-web.de

