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Abstract

Newman’s theorem states that we can take any public-coin communication proto-
col and convert it into one that uses only private randomness with only a little increase
in communication complexity. We consider a reversed scenario in the context of infor-
mation complexity: can we take a protocol that uses private randomness and convert
it into one that only uses public randomness while preserving the information revealed
to each player?

We prove that the answer is yes, at least for protocols that use a bounded number
of rounds. As an application, we prove new direct sum theorems through the com-
pression of interactive communication in the bounded-round setting. Furthermore,
we show that if a Reverse Newman’s Theorem can be proven in full generality, then
full compression of interactive communication and fully-general direct-sum theorems
will result.
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1 Introduction

Information cost was introduced by a series of papers [CSWY01, BYJKS04, JRS03,
BBCR10, BR11] as a complexity measure for two-player protocols. Internal informa-
tion cost measures the amount of information that each player learns about the input of
the other player while executing a given protocol. In the usual setting of communication
complexity we have two players, Alice and Bob, each having an input x and y, respec-
tively. Their goal is to determine the value f(x, y) for some predetermined function f .
They achieve the goal by communicating to each other some amount of information about
their inputs according to some protocol.

The usual measure considered in this setting is the number of bits exchanged by Alice
and Bob, whereas the internal information cost measures the amount of information trans-
ferred between the players during the communication. Clearly, the amount of information
is upper bounded by the number of bits exchanged but not vice versa. There might be a
lengthy protocol (say even of exponential size) that reveals very little information about
the players’ inputs.

In the recent years, a substantial research effort was devoted to proving the converse
relationship between the information cost and the length of protocols, i.e., to proving that
each protocol can be simulated by another protocol that communicates only the number
of bits corresponding to the information cost of the original protocol. Such results are
known as compression theorems. [BBCR10] prove that a protocol that communicates
C bits and has internal information cost I can be replaced by another protocol that
communicates O(

√
I · C) bits. For the case when the inputs of Alice and Bob are sampled

from independent distributions they also obtain a protocol that communicates O(I · logC)
bits. These conversions do not preserve the number of rounds. In a follow up paper [BR11]
consider a bounded round setting and give a technique that converts the original q-round
protocol into a protocol with O(q · log I) rounds that communicates O(I + q log q

ε ) bits
with additional error ε.

All known compression theorems are in the randomized setting. We distinguish two
types of randomness — public and private. Public random bits are seen by both communi-
cating players, and both players can take actions based on these bits. Private random bits
are seen only by one of the parties, either Alice or Bob. We use public-coin (private-coin)
to denote protocols that use only public (private) randomness. If a protocol uses both
public and private randomness, we call it a mixed-coin protocol.

Simulating a private-coin protocol using public randomness is straightforward: Alice
views a part of the public random bits as her private random bits, Bob does the same using
some other portion of the public bits, and they communicate according to the original
private-coin protocol. This new protocol communicates the same number of bits as the
original protocol and computes the same function. In the other direction, an efficient
simulation of a public-coin protocol using private randomness is provided by Newman’s
Theorem [New91]. Sending over Alice’s private random bits to make them public could
in general be costly as they may need say polynomially many public random bits, but
Newman showed that it suffices for Alice to transfer only O(logn+ log 1

δ ) random bits to
be able to simulate the original public-coin protocol, up to an additional error of δ.

In the setting of information cost the situation is quite the opposite. Simulating public
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randomness by private randomness is straightforward: one of the players sends a part of
his private random bits to the other player and then they run the original protocol using
these bits as the public randomness. Since the random bits contain no information about
either input, this simulation reveals no additional information about the inputs; thus the
information cost of the protocol stays the same. This is despite the fact that the new
protocol may communicate many more bits than the original one.

However, the conversion of a private-randomness protocol into a public-randomness
protocol seems significantly harder. For instance, consider a protocol in which in the
first round Alice sends to Bob her input x bit-wise XOR-ed with her private randomness.
Such a message does not reveal any information to Bob about Alice’s input — as from
Bob’s perspective he observes a random string — but were Alice to reveal her private
randomness to Bob, he would learn her complete input x. This illustrates the difficulty
in converting private randomness into public.

We will generally call “Reverse Newman’s Theorem” (R.N.T.) a result that makes
randomness public in an interactive protocol without revealing more information. This
paper is devoted to attacking the following:

R.N.T. Question. Can we take a private-coin protocol with information
cost I and convert it into a public-coin protocol with the same behavior and
information cost Õ(I)?

Interestingly, the known compression theorems [BBCR10, BR11, JPY12] give com-
pressed protocols that use only public randomness, and hence as a by-product they give a
conversion of private-randomness protocols into public-randomness equivalents. However,
the parameters of this conversion are far from the desired ones.1 In Section 6 we show that
the R.N.T. question represents the core difficulty in proving full compression theorems;
namely, we will prove that any public-coin protocol that reveals I bits of information can
already be compressed to a protocol that uses Õ(I) bits of communication, and hence a
fully general R.N.T. would result in fully general compression results, together with the
direct-sum results that would follow as a consequence.

Main contributions. Our main contribution is a Reverse Newman’s Theorem in
the bounded-round scenario. We will show that any q-round private-coin protocol can be
converted to an O(q)-round public-coin protocol that reveals only additional Õ(q) bits of
information (Theorem 3.1). Our techniques are new and of interest. Our main technical
tool is a conversion of one round private-randomness protocols into one round public-
randomness protocols. This conversion proceeds in two main steps. After discretizing the
protocol so that the private randomness is sampled uniformly from some finite domain,
we convert the protocol into what we call a 1-1 protocol, which is a protocol having the
property that for each input and each message there is at most one choice of private ran-
dom bits that will lead the players to send that message. We show that such a conversion
can be done without revealing too much extra information. Indeed, the conversion is very
simple and natural; however, providing a good bound on the leaked information is rather
difficult. In the second step we take any 1-1 protocol and convert it into a public-coin
protocol while leaking only a small additional amount of information about the input.

1We discuss the differences in more detail in Section 7.
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This part relies on constructing special bipartite graphs that contain a large matching
between the right partition and any large subset of left vertices.

Furthermore, we will prove two compression results for public-randomness protocols: a
round-preserving compression scheme to be used in the bounded-round case, and a general
(not round-preserving) compression scheme which can be used with a fully general R.N.T.
Either of these protocols achieves much better parameters than those currently available
for general protocols (that make use of private randomness as well as public).

As a result of our R.N.T. and our round-preserving compression scheme, we will get
a new compression result for general (mixed-coin) bounded-round protocols. Whereas
previous results for the bounded-round scenario [BR11] gave compression schemes with
communication complexity similar to our own result, their protocols were not round-
preserving. We prove that a q-round protocol that communicates C bits and reveals
I bits of information can be compressed to an O(q)-round protocol that communicates
O(I + q log( q(n+C)

δ )) bits. As a consequence we will also improve the bounded-round
direct-sum theorem of [BR11].

Organization of the paper. In Section 3 we discuss our Reverse Newman’s Theo-
rem. In Section 4 we show the conversion of a general one-round protocol to a 1-1 protocol,
and in Section 5 we provide the conversion of a private-randomness 1-1 protocol into a
public-randomness protocol. In Section 6 we will prove our compression results. Finally,
Section 7 will be devoted to applications to direct product theorems.

2 Preliminaries

We use capital letters to denote random variables, calligraphic letters to denote sets, and
lower-case letters to denote elements in the corresponding sets. So typically A is a random
variable distributed over the set A, and a is an element of A. We use ∆ (A,A′) to denote
the statistical distance between random variables A and A′. We assume the reader is
familiar with statistical distance, as well as the basics of communication complexity and
information theory. For the unfamiliar reader, we include definitions and basic facts in
Appendix A.

We will be dealing with protocols that have both public and private randomness; this
is not very common, so we will give the full definitions, which are essentially those of
[BBCR10, BR11]. We will also be working exclusively in the distributional setting, and
our compression and direct theorem results will follow also in the usual setting, with
roughly the same parameters, by the use of Yao’s Principle in its Information Complexity
variants [Bra12] (these details will be left for the full version of the paper). So from here
onwards, we will assume that the input is given to two players, Alice and Bob, by way
of two random variables X,Y sampled from a possibly correlated distribution µ over the
support X × Y.

A private-coin protocol π with output set Z is defined as a rooted tree, called the
protocol tree, in the following way:

1. Each non-leaf node is owned by either Alice or Bob.
2. If v is a non-leaf node belonging to Alice, then:
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(a) The children of v are owned by Bob and form a set C(v) and each element of
C(v) is uniquely labeled with a binary string;

(b) Associated with v is a set Rv, and a function Mv : X ×Rv → C(v).
3. The situation is analogous for Bob’s nodes.
4. With each leaf we associate an output value in Z.

On input x, y the protocol is executed as follows:

1. Set v to be the root of the protocol tree.
2. If v is a leaf, the protocol ends and outputs the value associated with v.
3. If v is owned by Alice, she picks a string r uniformly at random from Rv and sends

the label of Mv(x, r) to Bob, they both set v = M(x, r), and return to the previous
step. Bob proceeds analogously on the nodes he owns.

A general, or mixed-coin, protocol is given by a distribution over private-coin proto-
cols. The players run such a protocol by using shared randomness to pick an index r
(independently of X and Y ) and then executing the corresponding private-coin protocol
πr. A protocol is called public-coin if every Rv has size 1, i.e., no private randomness is
used.

We let π(x, y, r, r(a), r(b)) denote the messages exchanged during the execution of π,
for given inputs x, y, and random choices r, r(a) and r(b), and Outπ(x, y, r, r(a), r(b)) be
the output of π for said execution. The random variable R is the public randomness, R(a)

is Alice’s private randomness, and R(b) is Bob’s private randomness; we use Π to denote
the random variable π(X,Y,R,R(a), R(b)).

Definition 1. The worst-case communication complexity of a protocol π, CC(π), is the
maximum number of bits that can be transmitted in a run of π on any given input and
choice of random strings. The average-case communication complexity of a protocol π,
with respect to the input distribution µ, denoted ACCµ(π), is the average number of bits
that are transmitted in an execution of π, for inputs drawn from µ. The worst-case number
of rounds of π, RC(π), is the maximum depth reached in the protocol tree by a run of π on
any given input. The average-case number of rounds of π, w.r.t. distribution µ, denoted
ARCµ(π), is the average depth reached in the protocol tree by an execution of π on input
distribution µ.

Definition 2. The (internal) information cost of protocol π with respect to µ is:

ICµ(π) = I(Y : R,Π|X) + I(X : R,Π|Y ).

Definition 3. A protocol π is said to compute function f : X × Y → Z with error
probability ε over distribution µ if

Pr
µ,R,R(a),R(b)

[Outπ(x, y, r, r(a), r(b)) = f(x, y)] ≥ 1− ε.

Many of our technical results require that the protocol uses a limited amount of ran-
domness at each step. This should not be surprising—this is also a requirement of New-
man’s theorem. This motivates the following definition.
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Definition 4. A protocol π is an `-discrete protocol if |Rv| ≤ 2` at every node of the
protocol tree.

When a protocol is `-discrete, we say that it uses ` bits of randomness for each message;
when ` is clear from context, we omit it. While the standard communication model allows
players to use an infinite amount of randomness at each step, this is almost never an issue,
since one may always “round the message probabilities” to a finite precision. This intuition
is captured in the following observation.

Observation 1. Suppose π is a private-coin protocol. Then, there exists an `-discrete
protocol π′ with ` = O(log(|X |) + log(|Y|) + CC(π)) such that (i) CC(π′) ≤ CC(π), (ii)
RC(π′) ≤ RC(π), and (iii) for all x, y we have

∆
(
Π′(x, y,R(a), R(b)),Π(x, y,R(a), R(b))

)
≤ 2−Ω(`).

Furthermore, for any input distribution µ, the error of π′ is at most the error of π plus
2−`. Equally small differences hold between ACCµ(π′), ARCµ(π′), and their π equivalents,
and ICµ(π′) is within a constant of ICµ(π).

We provide a full proof of Observation 1 in Appendix A.2. Hence, while working
exclusively with discretized protocols, our theorems will also hold for non-discretized
protocols, except with an additional exponentially small error term. We consider this
error negligible, and hence avoid discussing it beyond this point; the reader should bear in
mind, though, that when we say that we are able to simulate a discretized protocol exactly,
this will mean that we can simulate a general protocol with sub-inverse-exponential 2−Ω(`)

error.
We are particularly interested in the case of one-way protocols. In a one-way protocol,

Alice sends a single message to Bob, who must determine the output. A one-way protocol
π is thus given by a function Mπ : X ×R 7→ M; on input x Alice randomly generates r
and sends Mπ(x, r). Note that if π is private-coin, then ICµ(π) = I(X : M(X,R(a))|Y ),
and similarly, if π uses public randomness, then ICµ(π) = I(X : R,M(X,R)|Y ).

Finally, we close this section with a further restriction on protocols, which we call 1-1.
Proving an R.N.T. result for 1-1 protocols will be a useful intermediate step in the general
R.N.T. proof.

Definition 5. π is a 1-1 protocol if Mπ(x, ·) is 1-1 for all x.

3 Towards a Reverse Newman’s Theorem

Our main result is the following:

Theorem 3.1 (Reverse Newman’s Theorem, bounded-round version). Let π be an arbi-
trary, `-discretized, mixed-coin, q-round protocol, and let C = CC(π), n = log |X |+log |Y|.
Suppose that π’s public randomness R is chosen from the uniform distribution over the
set R, and π’s private randomness R(a) and R(b) is chosen from uniform distributions
over the sets R(a) and R(b), respectively.
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Then there exists a public-coin, q-round protocol π̃, whose public randomness R′ is
drawn uniformly from R×R(a)×R(b), and that has the exact same transcript distribution,
i.e., for any input pair x, y and any message transcript t,

Pr[π(x, y,R,R(a), R(b)) = t] = Pr[π̃(x, y,R′) = t],

and such that for any distribution µ giving the input (X,Y ),

(1) ICµ(π̃) ≤ ICµ(π) +O (q log (n+ `)) .

We seem to have very little room for changing π, but actually there is one change that
we are allowed to make. If Alice, for instance, wishes to send a message M = M(x, r(a))
in protocol π, and noticing that r(a) is picked uniformly, she might instead send message
M(x, σx(r(a))), where σx is some permutation of R(a). The permutation σx will somehow
“scramble” the formerly-private now-public randomness R(a) into some new string r̃(a) =
σx(r(a)) about which Bob hopefully knows nothing. This “scrambling” keeps the protocol
exactly as it was, changing only which private randomness results in which message. We
will see that this can be done in such a way that, in spite of knowing r(a), Bob has no
hope of knowing r̃(a) = σx(r(a)), unless he already knows x to begin with.

As suggested by the O(·)-term of (1), Theorem 3.1 will be derived from the following
one-way version, to be proven in Sections 4 and 5. A complete proof of Theorem 3.1 from
Theorem 3.2 is given in Appendix B.

Theorem 3.2 (R.N.T. for one-way protocols). For any one-way private-coin discretized
protocol π there exists a one-way public-coin discretized protocol π′ such that π and π′

generate the same message distributions, and for any input distribution (X,Y ) ∼ µ, we
have

ICµ(π′) ≤ ICµ(π) +O(log log(|X | · |R|)) .

We conjecture, furthermore, that a fully general R.N.T. holds:

Conjecture 3.3. Theorem 3.1 holds with (1) replaced by

ICµ(π̃) ≤ Õ(ICµ(π)),

where Õ(·) suppresses terms and factors logarithmic in ICµ(π) and CC(π).

In Sections 6 and 7, we show that R.N.T.s imply fully general compression of in-
teractive communication, and hence the resulting direct-sum theorems in information
complexity. This results in new compression and direct-sum theorems for the bounded-
round case. We believe that attacking Conjecture 3.3, perhaps with an improvement of
our techniques, is a sound and new approach to proving these theorems.

4 R.N.T. for 1–1, one-way protocols

Before we proving Theorem 3.2, let us prove the special case of 1–1 protocols.
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Theorem 4.1. Given a one-way private-coin 1–1 protocol π, there is a one-way public-
coin protocol π′ generating the same message distribution, and such that for any input
distribution µ, we have

ICµ(π′) ≤ ICµ(π) +O(log log |X |) .

We sketch the proof in the case that µ is uniform2, leaving the proof to Appendix D.
Let Mπ : X × R 7→ M be the function Alice uses to generate her message. It will be
helpful to think of Mπ as a table, with rows corresponding to possible inputs x, columns
corresponding to possible choices of the private random string r, and the (x, r) entry being
the message Mπ(x, r). Note that

ICµ(π) = I(X : Mπ(X,R(a))|Y ) = H(X|Y )−H
(
X|Y,Mπ(X,R(a))

)
= H(X)−H

(
X|Mπ(X,R(a))

)
.

Similarly, we have ICµ(π′) = H(X)−H(X|R,Mπ′(X,R)). Thus, to measure the difference
between ICµ(π) and ICµ(π′), it suffices to compareH(X|Mπ(x,R(a))) andH(X|R,Mπ′(X,R)).
Suppose that Bob has received message m. In the scenario where he does not know Alice’s
(private) randomness, the remaining entropy of X is

H(X|Mπ(X,R(a)) = m) = log |Sm|, where Sm = {x| ∃r such that Mπ(x, r) = m} .

On the other hand, in π′ Bob does know r; in this case the remaining entropy is

H(X|R = r,Mπ′(X,R) = m) = log |Sm,r|, where Sm,r = {x|M(x, r) = m}.

It could happen that Sm,r has on average fewer elements than Sm, which would result in
a smaller uncertainty about x and hence a larger information cost. However, if we could
ensure that every set Sm gets broken into at most d different sets Sm,r, then we intuitively
expect the entropy log |Sm,r| to be only log d bits smaller than log |Sm|.

Our strategy to prove Theorem 4.1 will be to find a way of permuting each row of
our table, in such a way that any message m is split among few columns. This can be
approximately achieved by a certain combinatorial construction, which we call a matching
graph.

Definition 6. An (m,n, d, δ)-matching graph is a bipartite graph G = (A ∪ B, E) such
that |A| = m, |B| = n, deg(u) = d for each u ∈ A, and such that for all A′ ⊆ A with
|A′| = n, GA′∪B has a matching of size at least n(1− δ).

In Appendix D, we use the Probabilistic Method to prove the following lemma, which
shows that matching graphs with sufficiently good parameters always exist.

Lemma 4.2. A (kN,N, d, δ)-matching graph exists with d = 2+ln k
δ2 + ln(1/δ)

δ .
2To prove Theorem 3.1, it is crucial that our technical results work for any input distribution. In the

complete analysis, we compare the conditional entropy terms in ICµ(π) and ICµ(π′) by conditioning on
Y = y; this induces a possibly-arbitrary distribution on X. Fortunately, we are able to handle arbitrary
distributions. Again, this is discussed in more detail in Appendix D.
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Now the proof of Theorem 4.1 proceeds as follows. Let A = M be the set of all
messages and B = R be the set of all random choices. For each row of our table, let
A′ = M(x,R) be the set of messages on that row, and extend the partial matching between
A′ and R to a perfect matching φx : R → A′. The new protocol π′ sets Mπ′(x, r) = φx(r)
for each r ∈ R. Then it will be seen that, at least approximately, no message m can be
sent to more than d different columns, where d is the degree of our graph, and that this is
enough to ensure that the uncertainty about X is preserved, even when the randomness
is made public. The proofs for results in this section appear in Appendix D.

5 R.N.T. for general one-way protocols

Theorem 3.2 follows naturally from Theorem 4.1, together with the following theorem,
which makes a protocol 1-1 by adding a small amount of communication.

Theorem 5.1 (Making the protocol 1–1 while revealing little information). Given a
one-round discrete private-coin protocol π, there is a one-round 1-1 discrete private-coin
protocol π′ whose message is of the form3

Mπ′(x, r) = (Mπ(x, r), J(x, r)),

and such that
ICµ(π′) ≤ ICµ(π) +O(log log(|X ||R|)).

Proof of Theorem 3.2. Suppose π is a one-way discrete protocol. Let π2 be the 1-1 proto-
col guaranteed by Theorem 5.1, and let π3 be the protocol guaranteed by Theorem 4.1 ap-
plied to π2. Note that π3’s message is of the form Mπ3(X,R) = (Mπ(X,R), J(X,R)), since
it is equidistributed withMπ2 . Furthermore, we have ICµ(π3) ≤ ICµ(π)+O(log log(|X ||R|)).
Now, create a protocol π4, which is identical to π3, except that Alice omits J(X,R). It is
easy to see that Mπ4 and Mπ are equidistributed and that

ICµ(π4) ≤ ICµ(π3) ≤ ICµ(π) +O(log log(|X ||R|)) .

This completes the proof.

Now we sketch the proof of Theorem 5.1. The message Mπ′ is defined in a very
straightforward way. We again think of Mπ as a table, and fix some ordering r1 < r2 < . . .
of R. Then the second part J(x, r) will be set to the number of times Mπ(x, r) appeared
in the same row up to the column r, i.e.,

J(x, r) = |{r′ ≤ r|Mπ(x, r′) = Mπ(x, r)}|.

Then we will prove that, for every message m and every possible value y for Y , the
following holds:

I(X :J(X,R)|Mπ(X,R) = m,Y = y)
= H(X|Mπ(X,R) = m,Y = y)−H(X|Mπ(X,R) = m,Y = y, J(X,R))
≤ O(log log |X ||R|).

3On any input x and any choice of randomness r, Mπ′ (x, r) is obtained by taking Mπ(x, r) and adding
some additional communication J(x, r).
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How do we interpret the quantities above? Let us give some intuition by considering
the simpler case where X is uniformly distributed (conditioned on Y = y). Then X|m
has the following distribution: for wx the number of times that m appears in row x,
and T =

∑
xwx be the total number of times m appears in the protocol table, we have

Pr[X = x|m] = wx/T .
Or, we can think of X|m as being given by the following process: we have shape S

formed by a collection of squares, arranged in left-justified rows, one row for each x, and
wx squares on row x, denoted (x, 1), (x, 2), . . . , (x,wx). Then X|m is obtained by the
distribution which selects the row x from a randomly chosen square (x, j) in the shape
S. With this second image, it is now easy to see that for a given j, the distribution of
the random variable X|m, j is obtained by selecting the row x from a randomly chosen
square (x, j) (j is now fixed).

Hence, we wish to bound the difference between the overall entropy H(X|m) of the
distribution induced by the entire shape S, and the average entropy H(X|m,J) of the
distributions induced by the columns of S. Obtaining this bound, it turns out, is not
trivial. The proofs and required definitions are in Appendix E.

6 Compression for public-coin protocols

We present in this section two results of the following general form: we will take a public-
coin protocol π that reveals little information, and “compress” it into a protocol ρ that
uses little communication to perform the same task with about the same error probability.
It turns out that the results in this setting are simpler and give stronger compression than
in the case where Alice and Bob have private randomness (such as in [BBCR10, BR11]).
We present two bounds, one that is dependent on the number of rounds of π, but which
is also round-efficient, in the sense that ρ will not use many more rounds than π; and one
that is independent of the number of rounds of π, but where the compression is not as
good when the number of rounds of π is small.4

Theorem 6.1. Suppose there exists a public-coin protocol π to compute f over the dis-
tribution µ with error probability ε, and let C = CC(π), I = ICµ(π). Then there exists a
public-coin protocol ρ that computes f over µ with error ε+ δ, and with

ACCµ(ρ) = O

(
I log CC(π)

δ

)
.

Let us ignore the public randomness of π for now, and explain how we will show that
any deterministic protocol π can be simulated with communication roughly:

I(Y : Π|X) + I(X : Π|Y ) = H(Π|X) +H(Π|Y )
4It appears that Theorem 6.1 was discovered independently by Denis Pankratov [Pan12]. Our proof is

a bit different: we discovered it originally while studying the compression problem in a Kolmogorov com-
plexity setting (as in [BKV08]), and our proof for the Shannon setting arises from the proper “translation”
of that earlier proof. Actually, it turns out that an improved analysis of the [BBCR10] compression scheme
is possible in the case of public-coin protocols, and this is how the theorem is proven in [Pan12]. We opt
to include our own proof, which makes the paper self-contained, and is, in our opinion, more elementary.
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(the last equality follows because H(Π|X,Y ) = 0, since the transcript Π is a function of
X and Y ). Given her input x, Alice knows the distribution of Π|x, and she can hence
organize the set Π(a) = π(x,Y) into a weighted binary tree T (a), as follows:

1. The root is the largest common prefix (lcp) of the transcripts in Π(a), and the
remaining nodes are defined inductively.

2. If we have node τ , then we let its children be τ0τ0 and τ1τ1, where τi is the lcp of
the transcripts in Π(a) beginning with τi.

3. The leaves t of T (a) have weight w(t) = Pr[π(X,Y ) = t|X = x].

In this way, the leaves of T (a) are exactly Π(a), and are weighted according to the distri-
bution of Π(x, Y |x). The weight of a non-leaf node in the tree is the sum of the weights
of its descendant leaves. Bob forms a similar tree T (b) from the image Π(b) = π(X , y).

Now it must hold that π(x, y) is the unique leaf that is in both T (a) and T (b). Alice
and Bob then proceed in stages to find the common leaf: at a given stage they have agreed
that certain partial transcripts, which are nodes in their respective trees, are prefixes of
π(x, y). They then each choose a candidate transcript, which is a leaf extending their
partial transcript, and find the lcp of their two candidate transcripts, i.e., find the first bit
at which their candidate transcripts disagree. Now, because one of the players actually
knows what that bit should be (that bit depends either on x or on y), the player who
got it wrong can change her/his bit to its correct value, and this will give either Alice or
Bob a new partial transcript in her/his tree which extends the previous partial transcript
she/he had. They proceed this way until they both know π(x, y). It will be seen that
there is a way of picking the candidate transcripts so that the total probability mass under
the nodes they have agreed upon halves at every correction, and this will be enough to
show that Alice will only need to correct her candidate transcript H(Π|X) times (and
Bob H(Π|Y ) times) on average. Efficient protocols for finding the lcp of two strings will
then give us the required bounds. We give the full proof in Appendix C.1.

This procedure offers no guarantee on the number of rounds of the compressed protocol
ρ. It is possible to compress a public-coin protocol on a round-by-round basis while
preserving, up to a multiplicative constant, the total number of rounds used.

Theorem 6.2. Suppose there exists a public-coin protocol π to compute f over the input
distribution µ with error probability ε, and let I = ICµ(π) and q = RC(π). Then there
exists a public-coin protocol ρ that computes f over µ with error ε+δ, and with ACCµ(ρ) =
O(I + q log q

δ ) and ARCµ(ρ) = O(q).5

The idea of the proof is to show the result one round at a time. In round i, Alice, say,
must send a certain message mi to Bob. From Bob’s point of view, this message is drawn
according to the random variable Mi = Mi(X̃, y, r,m1, . . . ,mi−1) where X̃ is Alice’s input
conditioned on Bob’s input being y, on the public randomness r, and on the messages
m1, . . . ,mi−1 that were previously exchanged. However, we will show that there is a sub-
protocol σi that can simulate round i with very small error by using constantly-many
rounds and

O(H(Mi|y, r,m1, . . . ,mi−1)) = I(X : Mi|y, r,m1, . . . ,mi−1)
5Note that this compression does not depend on the communication complexity at all.
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bits of communication on average. Then putting these sub-protocols together, and trun-
cating the resulting protocol whenever the communication or the number of rounds is
excessive, we obtain the protocol ρ which simulates π.

The procedure to compress each round is achieved through an interactive variant
of the Slepian-Wolf theorem [SW73, RW05, BKV08]. We could not apply the known
theorem directly, however, since they were made to work on a more restrictive, single-
round scenario (whereas we are allowed a constant number of rounds on average), and
the error guarantee in that case is not enough to put the different sub-protocols together
with a sufficiently small total error. We give the full proof in Appendix C.2.

7 Applications

From the combination of Theorems 3.1 and 6.2, we can obtain a new compression result
for general protocols.

Corollary 7.1. Suppose there exists a mixed-coin, q-round protocol π to compute f over
the input distribution µ with error probability ε, and let C = CC(π), I = ICµ(π), n =
log |X | + log |Y|. Then there exists a public-coin, O(q)-round protocol ρ that computes f
over µ with error ε+ δ, and with

(2) CC(ρ) ≤ O
(
I + q log

(
q(n+ C)

δ

))
.

As we will see in the following sub-section, this will result in a new direct sum theorem
for bounded-round protocols. In general, given that we have already proven Theorem
6.1, and given that this approach shows promise in the bounded-round case, it becomes
worthwhile to investigate whether we can prove Conjecture 3.3 with similar techniques.

7.1 Direct-sum theorems for the bounded-round case

The following theorem was proven in [BBCR10, Theorem 12]:

Theorem 7.2. Suppose that there is a q-round protocol πk that computes k copies of f
with communication complexity C and error ε, over the k-fold distribution µk. Then there
exists a q-round mixed-coin protocol π that computes a single copy of f with communication
complexity C and the same error probability ε, but with information cost ICµ(π) ≤ 2C

k for
any input distribution µ.

As a consequence of this theorem, and of Corollary 7.1, we will be able to prove a
direct sum theorem.

Theorem 7.3 (Direct sum theorem for the bounded-round case). There is some constant
d such that, for any input distribution µ and any 0 < ε < δ < 1, if f requires, on average,

C + q log
(
q(n+ C)
δ − ε

)
bits of communication, to be computed over µ with error δ in dq (average) rounds, then
f⊗k requires kC bits of communication, in the worst case, to be computed over µ⊗k with
error ε in q rounds.
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Proof. Suppose that we could compute f⊗k in (worst-case) q rounds with kC bits of
(worst-case) communication with error ε on distribution µk. Then by Theorem 7.2, there
is a protocol π for computing f using kC bits of communication and 2C bits of information.
Hence by Corollary 7.1, there is a public-coin protocol ρ for computing f on µ using
O
(
C + q log q(n+C)

δ−ε

)
many bits of average communication, in O(q) rounds on average,

with error δ.

7.2 Comparison with previous results

We may compare Theorem 7.1 with the results of [BR11]. In that paper, the (n + C)
factor is missing inside the log of equation (2), but the number of rounds of the compressed
protocol is O(q log I) instead of O(q). A similar difference appears in the resulting direct-
sum theorems.

We remark that the compression of Jain et al. [JPY12] is also achieved with a round-
by-round proof. Our direct-sum theorem is incomparable with their more ambitious
direct-product result. It is no surprise, then, that the communication complexity of their
compression scheme is O( qIδ ), i.e., it incurs a factor of q, whereas we pay only an additive
term of Õ(q).. However, their direct-product result also preserves the number of rounds
in the protocol, whereas in our result the number of rounds is only preserved within a
constant factor.
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A More Preliminary Definitions

Definition 7 (Statistical Distance). The statistical distance between random variables
A,A′ (also known as total variation distance) is

∆
(
A,A′

)
=
∑
a∈A
|Pr[A = a]− Pr[A′ = a]| .

A.1 Facts and definitions of information theory

For a given probability random variable A distributed over the support A, its entropy is

H(A) =
∑
a∈A

pa log 1
pa
,

where pa = Pr[A = a]. Given a second random variable B, the conditional entropy
H(A|B) equals

Eb∈B[H(A|B = b)].
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In this paper, and when clear from the context, we denote a conditional distribution
A|B = b more succinctly by A|b.

We let I(A : B) denote the Shannon mutual information between A and B:

I(A : B) = H(A)−H(A|B) = H(B)−H(B|A).

Fact A.1 (Chain rule).

I(A1 . . . Ak : B|C) = I(A1 : B|C) +
k∑
i=2

I(Ai : B|C,A1, . . . , Ai−1)

Fact A.2. Let A be some random variable and pa = Pr[A = a]. Then

Pr
a∈A

[pa < 2−
1
ε
H(A)] ≤ ε.

Fact A.3. For any two random variables A,B over the same universe U , it holds that

|H(A)−H(B)| ≤ log(|U|)∆ (A,B) + 1,

A.2 Proof of Observation 1

Proof. Let π be given by its protocol tree; for each node v, let its corresponding function
be Mv : X ×R → C(v) (if it is Alice’s node) or Mv : Y ×Rv → C(v).

We let π′ be given by the same protocol tree but where the functions Mv are restricted
to a finite set R′v of size ≤ k = 210`, with ` = log |X ||Y|+ CC(π). Hence by construction
π′ has the same worst-case communication and number of rounds as π.

Let Rv be a random variable uniformly distributed over Rv and R′v be a random
variable uniformly distributed over R′v.

Claim 1. For any node v of Alice’s there is a choice of R′v of given size such that

|Pr[Mv(x,Rv) = m]− Pr[Mv(x,R′v)]| ≤ 2−4`

for every x and m. The obvious analogue holds for Bob’s nodes.

We prove that R′v exists by the probabilistic method. Let R̃ = {r1, . . . , rk} be a
random variable obtained by picking k elements uniformly from Rv. Let Pm denote the
random variable that is

Pm = Pr[Mv(x, R̃) = m] =
∑k
i=1[Mv(x, ri) = m?]

k
.

By linearity of expectation we find that:

E[Pm] =
∑k
i=1 E[Mv(x, ri) = m?]

k
= Pr[Mv(x,Rv) = m].

And hence by Hoeffding’s inequality we conclude that:

Pr[|Pm − Pr[Mv(x,Rv) = m]| > 2−4`] ≤ 2 exp
(
−2−8`

k

)
� 2−`.
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Hence by a union bound there must exist a choice for R̃ such that

|Pm − Pr[Mv(x,Rv) = m]| ≤ 2−4`

holds for every x and m; this is our R′v.
Now fix x, y; from the claim it follows that for any transcript t,

|Pr[π(x, y) = t]− Pr[π′(x, y) = t]|

is at most 23`, which in turn implies that

∆
(
Π(x, y,R(a), R(b)),Π′(x, y,R(a), R(b))

)
≤ 2−2`.

This results in the a difference of ≤ 2−` in success probability, average communication
complexity, and average number of rounds, for any given input distribution.

To prove that there is a small difference in information cost, note that:

I(Π : X|Y ) = H(π(X,Y,R)|Y )−H(π(X,Y,R)|X,Y ),

and then use Fact A.3 conclude that

1. |H(π(X,Y,R)|Y = y)−H(π′(X,Y,R′)|Y = y)| = O(1) for all y, and

2. |H(π(X,Y,R)|X = x, Y = y)−H(π′(X,Y,R′)|X = x, Y = y)| = O(1) for any x, y,
and hence

3. |I(Π : X|Y )− I(Π′ : X|Y )| = O(1),

Now, by a symmetric reasoning for Bob, we find that |ICµ(π)− ICµ(π)| = O(1).

B Proofs of Section 3

Let us prove Theorem 3.1 as a consequence of Theorem 3.2.

Proof of Theorem 3.1. The new protocol π̃ first picks public randomness r according to R
and then proceeds by simulating π|r on a round-per-round basis. Since π is `-discrete, the
private randomness used in each round is a binary string of length ≤ `, picked uniformly
at random from some set, and independently from the remaining rounds; i.e., that R(a) =
R(a,1)× . . .×R(a,q) for random variables R(a,j) uniformly distributed over R(a,j) ⊆ {0, 1}`.
The same will hold for R(b), and the message πj for round j depends only on x (or y),
r(a,j) (or r(b,j)), and on the previous messages. Now suppose we wish to simulate round
j + 1 of π, and that we have already successfully simulated π up to round j, which cost
us at most

I(X : Π≤j |Y, r) + I(Y : Π≤j |X, r) +O(j log(n+ C))

bits of information. Suppose w.l.o.g. that it is Alice’s turn to communicate, and that
messages m1, . . . ,mj have been exchanged up to this point. Then round j+1 is simulated
thus: we consider the one-way private-coin protocol Mv(x, r(a,j+1)) where v is the node in
π’s protocol tree after the path m1, . . . ,mj , and we run M ′v instead, as given by Theorem
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3.2. As per that theorem, for the distribution of the inputs X|r,m≤j and Y |r,m≤j , the
information revealed will be

I(X : M ′(X,R(a,j+1)), R(a,j+1)|r, Y,m≤j)
≤ I(X : M(X,R(a,j+1))|r, Y,m≤j) +O(log(n+ C)).

When averaged over Π1, . . . ,Πj (recall that the message distribution is always preserved),
the left-hand side becomes the information cost of our new protocol on round j + 1, and
the right-hand side becomes I(X : Πj+1|Y, r,Π≤j) +O(log(n+C)), which when added to
the previous information cost is exactly

I(X : Π≤j+1|Y, r) + I(Y : Π≤j+1|X, r) +O((j + 1) log(n+ C)).

C Proofs of Section 6

C.1 Proof of Theorem 6.1

We prove Theorem 6.1 by constructing an interactive protocol that makes use of a special
device, which we call lcp box. This is a conceptual interactive device with the following
behavior: Alice takes a string x and puts it in the lcp box, Bob takes a string y and puts
it in the lcp box, then a button is pressed, and Alice and Bob both learn the least index
j such that xj 6= yj ; if no such j exists, they both learn that x = y. We will charge them
logn bits of communication for each use of the lcp box, where n = max(|x|, |y|).

The use of an lcp box can be simulated with an error-prone implementation:

Lemma C.1 ([FPR94]). There is a randomized public-coin protocol such that on input
two n-bit strings x, y, it outputs the first index j such that xj 6= yj with probability at
least 1− ε, if such an j exists, and otherwise outputs that the two strings are equal, with
worst-case communication complexity O(log(n/ε)).

Proof. In the first message, Bob sends to Alice information about the size of Z. This
requires O(log |Z|) bits. Alice sets n = |z|, m = dlog |Z|ε e, and uses the first n×m public
random bits as a n×m matrix H over GF2. (Consecutive blocks of m random bits form
rows of the matrix.) She computes z ·H and sends the result to Bob. Thus, the length
of her message is m = O(log |Z|ε ). Bob for each string z′ ∈ Z uses the first |z′| ×m public
random bits as a |z′|×m matrix H ′ over GF2, and computes z′ ·H ′. If he finds z′ such that
z ·H = z′ ·H ′ then he assumes that z = z′ and announces to Alice that z ∈ Z. Otherwise
he knows that z 6∈ Z, and announces that to Alice. Bob can only make a mistake when
for some string z′ ∈ Z which differs from z, zH = z′H ′. However, this happens only with
probability at most |Z| · 2−m ≤ ε.

Corollary C.2. Any protocol ρ̃ that uses an lcp box ` times on average can be simulated
with error δ by a protocol ρ that does not use an lcp box, and communicates an average
of O(` log( `δ )) extra bits.
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Proof. The protocol ρ simulates ρ̃ by replacing each use of the lcp box with the protocol
given by Lemma C.1 with error parameter ε = δ2

4` . The logn bits of communication have
been accounted for, and hence the ρ’s extra communication is O(` log `

δ ) on average. To
bound the error, notice that by Markov’s inequality the probability that the number of
calls to the lcp box (in a random run of ρ̃) is greater than 2

δ ` is less than δ/2. But
conditioned on not having such a large number of calls, the probability that we make an
error in any of our simulations of the lcp box is at most δ/2 by a union bound. Hence, ρ
will correctly simulate ρ̃ with error probability at most δ.

Using an lcp box will allow us to ignore error events until the very end of the proof,
avoiding an annoying technicality that offers no additional insight.

Proof of Theorem 6.1. We first define a protocol ρ̃ using an lcp box as follows. On inputs
x and y, Alice and Bob first pick the shared randomness r in the same way as in protocol
π. Then, Alice organizes Π(a) = π(x,Y, r) into the prefix-tree T (a), as follows:

1. The root is the largest common prefix (lcp) of the transcripts in Π(a), and the
remaining nodes are defined inductively.

2. If we have node τ , then we let its left child be the lcp of the transcripts in Π(a)

beginning with τ0, and its right child the lcp of those beginning with τ1.

3. The leaves t of T (a) have weight w(t) = Pr[π(X,Y, r) = t|X = x].

In this way, the leaves of T (a) are exactly Π(a), and are weighted according to the distri-
bution of Π(x, Y |x, r). We use the convention that the weight of a non-leaf node in the
tree is the sum of the weights of its descendant leaves.

Bob forms a similar tree T (b) from the image Π(b) = π(X , y, r). It can be seen that
Π(a) ∩ Π(b) = {π(x, y, r)}, because every leaf in T (a) is of the form π(x, y′, r) for some y′,
and every leaf in T (b) is of the form π(x′, y, r) for some x′, and clearly if t = π(x, y′, r) =
π(x′, y, r), then it must also hold that t = π(x, y, r).

This suggests that we might find π(x, y, r), by running a generic protocol to uncover
the common leaf of T (a) and T (b). This is harder than set intersection, and such a generic
protocol would hence require Ω(|Π(a)| + |Π(b)|) communication [KS89]. So we must nec-
essarily exploit the fact that our trees arise from a protocol. We will now conclude the
proof by showing that Alice and Bob can determine the intersection Π(a) ∩Π(b) by using
an lcp box O(ICµ(π)) many times on average.

In the descriptions below, we will use t(a) (and t(b)) to designate a leaf of T (a) (resp.
T (b)), and τ (a) (τ (b)) to designate an arbitrary node of T (a) (resp. T (b)). Alice and Bob
will proceed in stages s = 1, 2, . . . to find a common leaf of T (a) and T (b):

(1) At the beginning of stage s, they will have agreed that certain nodes in their respective
trees — τ (a)(s) ∈ T (a) and τ (b)(s) ∈ T (b) — are prefixes of π(x, y, r). In the first stage,
τ (a)(1) and τ (b)(1) will be the roots of the trees.

(2) Then Alice picks a candidate leaf t(a) that is a successor of τ (a)(s), and Bob picks a
candidate leaf t(b) that is a successor of τ (b)(s).
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(3) They then use an lcp box to find the least position j for which t
(a)
j 6= t

(b)
j . If there is

no such j then they both have t(a) = t(b) = π(x, y, r), and the simulation terminates.

(4) Now, if in the protocol π it was Alice’s turn to communicate bit j, then — in protocol
ρ̃ — Alice sets τ (a)(s + 1) = τ (a)(s), and Bob will set τ (b)(s + 1) as explained in the
next item. Then they proceed to the next stage.

(5) Bob looks at the node τ̂ (b) given the first j − 1 bits of his candidate leaf t(b). Now
suppose that t(b) is a left successor of τ̂ (b). Then Bob will set τ (b)(s + 1) to be the
right child of τ̂ (b). The node τ (b)(s+ 1) is called the “flip” of t(b) at position j.
Note that τ̂ (b) must be a node in the tree T (b), since π(x, y, r) is prefixed by τ̂ (b)

and has a different bit than t(b) on the j-th position (namely, the j-th bit of t(a)).
Because every left child of τ̂ (b) will have the same bit as t(b) at position j, we see that
π(x, y, r) can not be a left successor of τ̂ (b). Hence π(x, y, r) must be a successor of
τ (b)(s + 1), and the property required by item (1) is preserved for stage s + 1. Of
course, a symmetric argument holds when t(b) is a right successor of τ̂ (b), and a similar
reasoning is applied if in protocol π it was Bob’s turn to communicate bit j (then it
will be Alice who changes her prefix).

The property required by item (1) ensures that Alice and Bob will eventually agree
on π itself. All that is left for us to specify is how Alice and Bob pick their candidate. We
will show that for any weighted binary prefix tree T , and for any prefix τ ∈ T , there is a
way of picking a candidate leaf t extending τ such that any “flip” of t will have at most
half the weight of τ . Then this implies that weight of either τ (a)(s) or τ (b)(s) will halve
at each stage.

The candidate is picked as follows: we let τ1 = τ to begin with; if we have already
defined τi, then we choose τi+1 to be whichever child (left or right) has higher weight,
(arbitrarily) opting for the left child if both weights are equal. When we reach a leaf, this
is our candidate. Define wi to be the weight of τi. Suppose τ ′ is a flip of our candidate,
i.e., τ ′ is the one child of τi, for some i for which τi+1 is the other child. Then by our
choice of τi+1, τ ′ has weight at most wi/2 ≤ w1/2, as intended.

Now we can finish the analysis. For a given inputs x, y, and a given transcript t, let

p(a)(x, t) = Pr[π(x, Y |x, r) = t] p(b)(y, t) = Pr[π(X|y, y, r) = t].

On inputs x and y, with t = π(x, y, r), Alice will correct her prefix no more than log 1
p(a)(x,t)

times, because the probability of the descendant leaves of her current prefix halves with
each correction. A similar thing happens to Bob, and hence the total number of stages
that Alice and Bob run on input x, y is bounded by

log 1
p(a)(x, t)

+ log 1
p(b)(y, t)

.

Taking the average over µ, this is exactly ICµ(πr) stages. For instance, for a fixed x, the
left-hand term, averaged over Y |X = x, is

Ey∈Y |x
[
log 1

pt

]
=

∑
t∈π(x,Y,r)

p(a)(x, t) log 1
p(a)(x, t)

= H(Π|x, r).
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Now averaging over X, we get exactly H(Π|X, r) = I(Y : Π|X, r). An averaging of the
right-hand term will give us I(X : Π|Y, r). Finally, averaging over the choice of r, we get
a global average of ICµ(π) stages.

The protocol ρ̃ simulates π perfectly; Alice and Bob make one use of the lcp box per
stage, on two strings whose length is at most CC(π), hence ACCµ(ρ̃) ≤ ICµ(π) log CC(π).
Hence by Corollary C.2 we can replace each use of the lcp box with the protocol given
by Lemma C.1. This is our protocol ρ, which simulates π with error δ and average
communication:

ACCµ(ρ) = O

(
ICµ(π) log CC(π)ICµ(π)

δ

)
= O

(
ICµ(π) log CC(π)

δ

)
.

C.2 Proof of Theorem 6.2

In a similar fashion to the proof of Theorem 6.1, we will make use of a special interactive
device, which we call a membership box. Its behavior is as follows: one player takes a
string z and puts it in the membership box, the other player takes a set of strings Z and
puts it in the box, a button is pressed, and then both players will know whether z ∈ Z
or not, and whenever z ∈ Z, then the second player will additionally know which string
z is. Each use of the box costs the players log |Z| bits of communication and 3 rounds.

As before, there exists a procedure to simulate the use of a membership box:

Lemma C.3. Suppose that Alice is given a string z, and Bob is given a finite set Z.
Then there exists a randomized public-coin protocol which outputs whether z ∈ Z, and in
that case Bob will know what z is, except with a failure probability of at most ε. A run of
this protocol uses exactly 3 rounds and O(log |Z|ε ) bits of communication.

From this we get an analogue of Corollary C.2.

Corollary C.4. Any protocol ρ̃ that uses a membership box ` times on average can be sim-
ulated with error δ by a protocol ρ that does not use a membership box, and communicates
an average of O(` log( `δ )) more bits and O(`) more rounds than ρ̃.

Now we begin by showing how we may compress one round. Suppose that Alice and
Bob are given inputs (X̃, Ỹ ) drawn according to the distribution µ̃, and that Alice wishes
to send a message m = M(x̃) to Bob which is the result of applying the function M to
her input x. Suppose that this costs her I bits of information, i.e., that

I(X̃ : M(X̃)|Ỹ ) = I.

Then we will construct a protocol σ that succeeds in communicating messagem to Bob,
using only, on average, a constant number of rounds and O(dIe) bits of communication.
More formally:

Theorem C.5. Let M : X →M be any deterministic one-way protocol, and let µ be the
distribution of the inputs (X̃, Ỹ ). Then there exists a deterministic protocol σ that makes
use of a membership box, in a way such that:
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1. The average communication of σ w.r.t. the distribution µ is ACCµ(σ) = O(I(X̃ :
M(X̃)|Ỹ ) + 1),

2. σ uses the membership box at most 2 times on average, and

3. After σ is run on the inputs x, y, both players know M(x).

Proof. For a given choice of inputs, let My denote the random variable M(X̃) conditioned
on the event Ỹ = y, let m = M(x) be Alice’s message, and let ` be an upper bound on
the length of M(X̃).

The protocol proceeds as follows. Bob calculates the quantity

hy = dI(X̃ : M(X̃)|y) = H(My)e,

by computing the probability masses of the distribution of My. Then Alice and Bob use
the membership box in stages, to try and let Bob know what m is. In stage 1, Bob begins
by considering the set

M1 = {m′|Pr[My = m′] ≥ 2−2hy}.

Then Alice and Bob use the membership box with string m and set M1, respectively. If
it turns out that m ∈ M1, then both players know m and the protocol will be over. If it
happens that m 6∈ M1, then the players move on into the next stage. On the j-th stage
of doing this, Bob is takes the set:

Mj = {m′|Pr[My = m′|My 6∈ M1 ∪ . . . ∪Mj−1] ≥ 2−2hy}.

Then they repeat what they did in the first stage, but with Bob using the setMj instead
of M1.

By construction it is clear that |Mj | ≤ 22hy , and hence Alice and Bob pay 2hy bits of
communication (and 3 rounds) per stage.

Now let us analyze the first stage. Using Fact A.2, we find that m ∈M1 will happen
with probability ≥ 1/2 over the choice of x. Thus with probability ≥ 1/2, σ will be over
in a single stage.

Now for stage j. Conditioned on reaching stage j, i.e. conditioned on the event Ej ≡
My 6∈ M1 ∪ . . .∪Mj−1, the entropy of My can only go down and is hence at most hy, so
we find that we may use Fact A.2 again, to conclude that, conditioned on Ej , My ∈ Mj

will happen with probability ≥ 1/2 over the choice of x. Hence, conditioned Ej , σ will
conclude at the end of stage j with the correct message, with probability ≥ 1/2.

It can thus be seen that the protocol reaches stage j with probability at most 2−j+1

(i.e. Prx[Ej ] ≤ 2−j+1). Hence the average number of stages is at most

1 + 1
2 + 1

4 + . . . = 1 +
∞∑
i=1

1
2i = 2.

Because by construction |Mj | ≤ 22hy , each stage costs us at most 2hy bits of communi-
cation; then the average communication is O(hy), and the average number of rounds is
constant.
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Now we proceed to show compression for a general protocol π with q rounds. Let us
begin by assuming that π is deterministic.

Theorem C.6. Let π be any deterministic q-round protocol, and let µ be the distribution
of the inputs (X,Y ). Then there exists a randomized protocol ρ̃ that makes use of a
membership box to achieve the following properties.

1. The average communication of ρ̃ is ACCµ(ρ̃) = O(ICµ(π) + q);

2. The average number of rounds of ρ̃ is ARCµ(ρ̃) = O(q);

3. ρ̃ uses the membership box O(q) times on average; and

4. After ρ̃ is run on the inputs x, y, both players know π(x, y).

Proof. Let π be a given deterministic q-round protocol. We define a protocol ρ̃ that
simulates π by using the one-round compression of Theorem C.5 on a round-per-round
basis. For a tuple m<j = (m1, . . . ,mj−1) of j − 1 strings, let πj,m<j (x, y) denote the
message communicated of the j-th round of π, for inputs x and y and supposing that m<j

is the content of the messages communicated in the previous rounds. Then πj,m<j (x, y)
is either a function of x or of y, depending on whose turn of communicating it is. Let
π<j(x, y) = (π1(x, y), . . . , πj−1,m<j−1(x, y)) be the content of the first j − 1 rounds of π
when run on inputs x, y.

Suppose that j rounds have been simulated by ρ̃, and that the messages m1 =
π1(x, y), . . . ,mj−1 = πj−1,m<j−1(x, y) have been agreed upon (by using the membership
box). Let X̃ and Ỹ be Alice and Bob’s inputs conditioned on these events; i.e.,

(X̃, Ỹ ) = (X,Y )|π<j(X,Y ) = m<j .

Suppose that it is Alice’s turn to communicate, so that πj,m<j (x, y) is a function of x, say
M(x). Then Alice sends the message M(x) to Bob by running the protocol σ of Theorem
C.5, for the inputs X̃ and Ỹ . This will cost her an average of

ACCµ(σ) = O(I(X̃ : M(X̃)|Ỹ ) + 1)

bits of communication, ARCµ(σ) = O(1) rounds and O(1) uses of the membership box.
If it is Bob’s turn to communicate, i.e. πj,m<j (x, y) = M(y), then they reverse their
positions, and the average communication cost will instead be

ACCµ(σ) = O(I(Ỹ : M(Ỹ )|X̃) + 1).

In either case, after executing σ both players will have agreed on the message πj,m<j (x, y)
of round j, while using an average of O(1) rounds, O(1) calls to the membership box, and

O(I(X̃ : M(X̃)|Ỹ ) + I(Ỹ : M(Ỹ )|X̃) + 1)

bits of communication, which is (a constant multiple of) the information cost of round
j of π, conditioned on π<j(X,Y ) = m<j . The theorem now follows from the chain rule
(Fact A.1).
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Theorem 6.2 now follows as an easy corollary.

Proof of Theorem 6.2. To compress a public-coin protocol π using a membership box,
Alice and Bob pick public randomness according to π’s public randomness distribution,
and then run the protocol of the previous theorem that simulates πr on distribution µ
using a membership box. This results in a protocol ρ̃ that has average communication
ACCµ(ρ̃) = O(ICµ(π) + q), average number of rounds ARCµ(ρ̃) = O(q), and uses the
membership box O(q) times on average.

By Corollary C.4, ρ̃ can be replaced by a protocol ρ with ACCµ(ρ) = ICµ(π)+q+q log q
δ ,

and ARCµ(ρ) = O(q), that simulates ρ̃, and thus π, with error δ. This concludes the
proof.

D Proofs for Section 4

Proof of Lemma 4.2. We show the existence of such a graph using a probabilistic argu-
ment. Let A = {u1, . . . , ukN} and B = {v1, . . . , vn}. Construct a random graph G by
choosing d random neighbors independently for each u ∈ A. For any A′ ⊆ A of size
N , let EA′ be the event that GA′∪B does not have a matching of size N(1 − δ), and let
Bad :=

∨
A′ EA′ . Note that the lemma holds if Pr[Bad] < 1.

Next, we bound Pr[EA′ ]. Let N (u) denote the neighborhood of a vertex u. Consider
the following procedure for generating a matching for GA′∪B:

Find-Matching
1 M ← ∅
2 V ← ∅
3 for i← 1 to N
4 if N (ui) 6⊆ V
5 pick arbitrary vi ∈ N (ui) \ V
6 M ←M ∪ {(ui, vi)}
7 V ← V ∪ {vi}
8 return M

Let X1, . . . , XN be indicator variables for the event that the matching increased at step
i, and let Y1, . . . , YN to be i.i.d. random coins with Pr[Yi = 1] = e−dδ. Define BadA′ to be
the event that

∑
iXi < N(1−δ). In other words, BadA′ is the event that Find-Matching

fails to return a large enough matching for GA′∪B. For any i, the matching fails to increase
at step i only when all neighbors of ui have already been matched. It follows that

Pr[Xi = 0] =
(∑

j<iXj

N

)d
.

Furthermore, assuming that a large matching has not been found by step i, we have

(3) Pr[Xi = 0] < (1− δ)d < Pr[Yi = 1] .

In fact, we claim the following.

Claim 2. Pr[EA′ ] ≤ Pr[BadA′ ] ≤ Pr[
∑
i Yi > δN ].
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It remains to bound this latter probability. We use the following claim, with p := e−dδ.

Claim 3. Let Y1, . . . , YN be i.i.d. biased coins, with Pr[Yi = 1] = p < δ < 1. Then,

Pr
[∑

Yi > δN
]
< exp(δN(1 + ln(p/δ))) .

Next, we bound the number of subsets A′ ⊂ A of size N , with the following claim.

Claim 4. There are at most exp(N(1 + ln k)) subsets of A of size N .

Taking the two claims together, we have

Pr[BAD] ≤ exp (N(1 + ln k)) · exp (δN(1 + ln(p/δ)))
= exp (N +N ln k + δN + δN ln(1/δ) + δN ln p)
= exp

(
N +N ln k + δN + δN ln(1/δ)− dδ2N

)
< 1 ,

where the final inequality uses d = (2 + ln k)/δ2 + ln(1/δ)/δ.

Now let us prove the claims.

Proof of Claim 2. For a string x ∈ {0, 1}N , let x≤i denote the substring x1 · · ·xi, and
call x bad if |x| < N(1− δ). For 0 ≤ j ≤ n, consider the random variable

D(j) = X1 . . . Xj(1− Yj+1) . . . (1− YN ).

Now notice that for any string v of length i, it holds that Pr[D(i)
≤i = v] = Pr[D(i+1)

≤i = v].
We have two cases:

• If |v| ≥ N(1− δ), then

Pr[D(i) is bad|D(i)
≤i = v] = Pr[D(i+1) is bad|D(i+1)

≤i = v] = 0;

• If |v| < N(1− δ), then from equation (3) we get

Pr[D(i)
i+1 = 1|D(i)

≤i = v] = Pr[Yi+1 = 0| ~X≤i = v]

> Pr[Xi+1 = 1| ~X≤i = v]
= Pr[D(i+1)

i+1 = 1|D(i+1)
≤i = v] = 0.

So in either case we conclude that

Pr[D(i+1) is bad] ≤ Pr[D(i) is bad],

and the claim follows. �
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Proof of Claim 3. Let Y :=
∑
Yi, and let µ := E[Y ]. Note that µ = pN . Also, let

ψ := δ/p− 1. Using the multiplicative version of the Chernoff bound, we have

Pr[
∑

Yi > δN ] = Pr[Y > pN · (δ/p)]
= Pr[Y > µ(1 + ψ)]

<

(
eψ

(1 + ψ)(1+ψ)

)µ
= exp

(
µ

(
δ

p
− 1− δ

p
ln(δ

p
)
))

= exp
(
pN

δ

p

(
1− p

δ
− ln δ + ln p

))
= exp (δN − pN + δN ln(1/δ) + δN ln p)
< exp (δN (1 + ln(1/δ) + ln p)) .

�

Proof of Claim 4. There are
(kN
N

)
subsets of A of size N . By Stirling’s Formula, we have(

kN

N

)
≤ (kN)N

N ! ≤
(
kNe

N

)N
= exp(N(1 + ln k)) .

�

Proof of Theorem 4.1. Let k = log |X | and N = |R|. Assume without loss of generality
that M = M(X ,R); then |M| ≤ 2kN . Now let G be (2kN,N, d, δ)-matching graph
having M as its left set and R as its right set, for δ = 1

2k2 . For these parameters, we are
assured by Lemma 4.2 that such a matching graph exists having left-degree d ≤ O(k5).

We construct the new protocol M ′ as follows:
For each x ∈ X letMx = M(x,R) be the set of messages that might be sent on input

x. Noticing that |Mx| = N , consider a partial G-matching betweenMx and R pairing all
but a δ-fractionMx; then define a bijection φx : R →Mx by setting φx(r) = m if {m, r}
is an edge in the matching, and pairing the unmatched m and r’s arbitrarily (possibly
using edges not in G). Finally, set M ′(x, r) = φx(r).

Since M ′(x, r) = M(x, σ(r)) for some permutation σ, it is clear that M and M ′

generate the same transcript.
Now we prove that M ′ does not reveal much more information than M . Let the input

(X̃, Ỹ ) be given by an arbitrary distribution µ. It holds that

I(X̃ : M ′, R|Ỹ )− I(X̃ : M |Ỹ ) = Ey∈Ỹ [I(X̃ : M ′, R|Ỹ = y)− I(X̃ : M |Ỹ = y)].

Hence the result follows if we simply let X denote the random variable X̃|(Ỹ = y),
for an arbitrary y, and prove that I(X : M ′, R) − I(X̃ : M) = O(log k). Since I(X :
M ′, R) − I(X : M) = H(X|M) − H(X|M ′, R), the result will follow if H(X|M ′, R) ≥
H(X|M)−O(log k).

A triple (x, r,M(x, r)) will be called a cell of message m = M(x, r). A given pair
{m, r} will be called good when {m, r} is an edge of G, and a cell (x, r,m) is called good
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if {m, r} is good. Also, let us call a message m good if its good cells make up at least a
1 − 1

k fraction of the probability mass of m. We will say “bad” as a shorthand for “not
good.” The following claim will be proven later:

Claim 5. For our choice of parameters, Pr[M ′(X,R) is bad] < 1
k .

Now, if Rm denotes the random variable R conditioned on M ′(X,R) = m, then

(4) H(X|M ′, R) = Em∼M ′(X,R)[H(X|M ′ = m,Rm)].

For each fixed m, the right-hand entropy equals

(5) H(X|M ′ = m,Rm) = H(X|M ′ = m)− I(X : R|M ′ = m).

But I(X : R|M ′ = m) = H(Rm) − H(Rm|M ′ = m,X) = H(Rm), because since M ′ is
1–1, if we know m and x then r is completely determined. Now because M and M ′ are
equidistributed for every x, then from (4) and (5), we get:

H(X|M ′, R) = H(X|M)−H(R|M ′).

All that is left to do is bound H(R|M ′). For any fixed m we have H(Rm) ≤ k, because r
is a function of m (which is given) and x (which is k-bits long). Hence,

H(R|M ′) ≤ Pr[M ′ is good]Egood m[H(Rm)] + Pr[M ′ is bad]k.

And for good m,

H(Rm) ≤ Pr[{m,Rm} is good]H(Rm|good {m,Rm}] + Pr[{m,Rm} is bad]k.

We now have that Pr[M ′ is bad] and Pr[{m,Rm} is bad] are both less than 1
k , by Claim 5

and assuming that m is good, respectively. Furthermore, conditioned on {m,Rm} being
good, the support of Rm is at most d = O(k5), and hence H(Rm|good {m,Rm}] is at
most log d = O(log k); hence we obtain

H(X|M ′, R) ≥ H(X|M)−O(log k).

Proof. (Claim 5) Suppose that Pr[M ′(X,R) is bad] > 1
k . Then the probability that

(X,R,M ′(X,R)) is a bad cell is at least

Pr[M ′(X,R) is bad] Pr[(X,R,M ′(X,R))is bad|M ′(X,R) is bad] > 1
k2 .

But then there must exist a choice of x such that Pr[(x,R,M ′(x,R)) is bad] > 1
k2 , which

implies that, for this x, there is a 1
k2 fraction of the (r,M ′(x, r)) pairs that are not edges

of G, and hence not part of the matching. But this contradicts the fact that our matching
gives at most a δ < 1

k2 fraction of unmatched vertices.
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E Proofs of Section 5

Proof of Theorem 5.1. We think of M(·, ·) as a table, which we will call the M -table,
where the inputs x ∈ X are the rows and the random choices r ∈ R are the columns, and
fix some ordering r1 < r2 < . . . of R. The second part J(x, r) of M̃ will be set to the
number of times M(x, r) appeared in the same row up to the column r, i.e.,

J(x, r) = |{r′ ≤ r|M(x, r′) = M(x, r)}|.

From this point onwards, let us fix the message m, as well as Bob’s input y, and let Xm

denote the random variable X|M(X,R) = m,Y = y, Rm denote R|M(X,R) = m,Y = y,
and Jm denote J(X,R)|M(X,R) = m,Y = y. The supports of Xm and Rm will be
denoted Xm andRm, respectively. We will settle the theorem by proving that the following
holds, regardless of our choice of m or y:

I(Xm : Jm) = H(Xm)−H(Xm|Jm) = O(log log |X ||R|).

The full result will then follow by averaging over y and m. To prove this equality we will
reduce it to a question about certain combinatorial objects that we non-descriptionally
call shapes. Let us start by making the simplifying assumption that the input distribution
µ is uniform over X × Y. What do Xm and Jm look like in this particular case? Well, if
we let wx = |{r ∈ R|M(x, r) = m}| be the number of m-entries in row x, and T =

∑
xwx

be the total number of m-entries in the M -table, then

Pr[Xm = x] = wx
T
.

Also, if we let hi = |{x ∈ Xm|wx ≥ i}| then it holds that T =
∑
i hi and

Pr[Jm = i] = hi
T
.

So we can represent the distributions of Xm and Jm by a single combinatorial object,
called a simple shape, in the following way: our simple shape Sm will have |Xm| rows of
squares, precisely wx squares on row x, for a total of T squares, and the i-th column will
then have hi squares, like so:

1 2 3 . . . w1

1 2 3 4 5 . . . w2

. . .
1 2 . . . wN

Figure 1: A simple shape.

The simple shape Sm has the property that if we pick a square at random the row
will be distributed like Xm and the column will be distributed like Jm. In general, an
arbitrary simple shape S is a set of (x, i) squares obeying certain rules (cf. Section E.1),
and we may define wx, hi, and T as before. Then the entropy loss of S is

el(S) =
∑
x

wx
T

log T

wx
−
∑
i

hi
T

log hi,
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where x ranges over the rows and i over the columns. We now have that I(Xm : Jm) =
el(Sm). All we need to do is prove good bounds on el(S).

To deal with the general case, where (X,Y ) can be arbitrarily distributed, we will
need a more general notion of shape. The new shapes are similar, but we further divide
each square into smaller pieces, and think of each piece as a unit of probability mass. A
shape is now a pair S = (S, s) of a simple shape S together with a function s : S → N such
that s(x, i) is the number of pieces in the (x, i)-square of S. We define wx =

∑
i s(x, i),

hi =
∑
x s(x, i) and T =

∑
x,i s(x, i). This induces a random variable (X̃, J̃) distributed

over the squares of S, obtained by picking a piece uniformly at random from S, i.e.
Pr[(X̃, J̃) = (x, i)] = s(x,i)

T ; the entropy loss is now

el(S) = H(X̃)−H(X̃|J̃).

We will be able to show (Theorem E.1) that el(S) ≤ O(log log T ). Therefore, to
finish the proof of the theorem, it suffices to show that there is some shape Sm such that
I(Xm : Jm) = el(Sm) +O(1), and for which T = O((|X ||R|)O(1)).

Let S denote the support of (Xm, Jm). Then the squares of Sm are the pairs in S:
row x of Sm has vx squares (x, 1), . . . , (x, vx), where vx = |{r ∈ R|M(x, r) = m}| is
the number of random choices which can result in sending message m on input x. To
specify the number of units of mass in each of these squares, we first construct a suitable
discretization of the distribution of (Xm, Jm). Noticing that Pr[(Xm, Jm) = (x, j)] is the
same for each j in the support of Jm (because the column Rm is uniformly chosen), define
p̃x as the integer such that

Px,j := Pr[(Xm, Jm) = (x, j)] = p̃x + dx
V

dx ∈ [0, 1),

for a given value V to be given later. Then square (x, j) will have exactly s(x, j) = p̃x
units of probability mass. This induces a pair of random variables (X̃m, J̃m) distributed
on S, with

P̃x,j := Pr[(X̃m, J̃m) = (x, j)] = p̃x∑
(x,j)∈S p̃x

.(6)

Since p̃x = Px,jV − dx, we get the bounds:

Px,j −
1
V
≤ Px,jV − dx

V
≤ P̃x,j = Px,jV − dx

V −
∑

(x,j)∈S dx
≤ Px,jV

V − |S|

To bound the right-hand side, we take the Taylor series expansion of az
z−b at z = +∞,

which is
a+

∞∑
i=1

abi

zi
.

From this we find, for a = Px,j , b = |S|, V ≥ 4|S||X |2|R|2, that:

|Px,j − P̃x,j | ≤
1

2|X |2|R|2 .

Hence the following:
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Claim 6. Let ε = 1
|X ||R| ; then ∆

(
Xm, X̃m

)
≤ ε; ∆

(
Jm, J̃m

)
≤ ε; and, for every j,

∆
(
Xm|Jm = j, X̃m|J̃n = j

)
≤ ε.

Together with this claim, Fact A.3 implies that H(Xm) = H(X̃m) + O(1), and that,
for every j, H(Xm|Jm = j) = H(X̃m|J̃m = j) + O(1), and hence that H(Xm|Jm) =
H(X̃m|J̃m) +O(1). Therefore,

I(Xm : Jm) = I(X̃m : J̃m) +O(1) = el(Sm) +O(1),

and this concludes the proof.

E.1 Shapes

Definition 8. A simple shape is a finite set S of pairs of positive natural numbers, called
squares, obeying the following:

1. (Row axiom) If (x, i) ∈ S and i ≥ 2 then (x, i− 1) ∈ S.

A shape S is a pair (S, s) of a simple shape together with a function s : N2 → N, obeying
the following:

1. (Mass is in squares) s(x, i) = 0 if (x, i) 6∈ S and s(x, i) > 0 if (x, i) ∈ S.

If s(x, i) = k, then we say that S has k units of mass in the (x, i)-square. Associated
with S we define the quantities: T =

∑
(x,i)∈S s(x, i) is the total mass in S; for each x,

wx =
∑
i:(x,i)∈S s(x, i) is the row-mass; for each i, hi =

∑
x:(x,i)∈S s(x, i) is the column-

mass.
A shape S = (S, s) is called regular if it obeys the following:

• (Regularity axiom) s(x, ·) is constant within each row.

We can visualize a simple shape as a finite collection of squares, arranged in left-
justified rows. A shape is simply a filling of the squares with positive natural numbers,
and the shape is regular when in each row we have the same positive number in each
square. An example of a regular shape is:

10 10 10 10 10
5 5 5
15 15 15 15
40
50 50

Figure 2: A regular shape.

We now define some further notions associated with a given shape; for simple shapes,
the same notions are valid by setting s(x, i) = 1.
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Definition 9. A given shape S = (S, s), induces some associated random variables (X, I)
on the squares of S, given by:

Pr[(X, I) = (x, i)] = s(x, i)
T

.

The entropy loss of S is now defined to be el(S) = I(X : I) = H(X)−H(X|I).

The precise equation for el(S) is:

el(S) =
∑
x

wx
T

log T

wx
−
∑
i

hi
T

(∑
x

s(x, i)
hi

log hi
s(x, i)

)
,

and this can be expanded to:

el(S) = log T − 1
T

(∑
x

wx logwx +
∑
i

(
hi log hi −

∑
x

s(x, i) log s(x, i)
))

.

Our main theorem in this section is the following:

Theorem E.1. For any regular shape S, el(S) ≤ O(log log T ).6

The proof is rather intricate and will be divided into several parts. We will first show
that S can be approximated by a fairly rough shape S ′, so that S ′ is “close” to S, and
this will in particular imply that el(S) and el(S ′) are about the same. Then el(S ′) itself
will be shown to be small. The notion of “close” is based on the following definitions:

Definition 10 (distance). Let G be an infinite weighted graph whose vertices are the
shapes. An edge {S,S ′} is present if S ′ can be obtained from S by adding or removing
one unit of mass, i.e., s′(y, j) = s(y, j)− 1 (or +1) for some square (y, j). The weight of
the edge {S,S ′} is | el(S)− el(S ′)|.

The distance between two shapes δ(S,S ′) is now the weight of the shortest (least-
weight) path between S and S′.

Note that when S,S ′ are not neighbors, δ(S,S ′) does not necessarily equal | el(S) −
el(S ′)|; by the triangle inequality, however, it does hold that | el(S ′)− el(S)| ≤ δ(S,S ′).

Suppose that {S,S ′} is an edge of G, say s′(x, i) = s(x, i) + 1. Then:

el(S)− el(S ′) = log T − log(T + 1)− 1
T (T + 1) (W + V )

W =
∑
x

(T + 1)wx logwx − Tw′x logw′x

V =
∑
i

(T + 1)hiH(X|i)− Th′iH(X ′|i)

Let us develop the terms W , taking into account the cancellations arising from the fact
that w′x = wx for all x 6= z, and w′z = wz + 1.

W =
∑
x

wx logwx + Twz(logwz − log(wz + 1))− T log(wz + 1) = O(T log T )

6We have constructed a regular shape for which this bound is optimal, meaning that our very simple
renumbering scheme can not be hoped to do any better. The precise statements and proofs will be left
for the full version of the paper.
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Now we proceed similarly for V , using the fact that h′i = hi for all i 6= j, and h′j = hj + 1
(this implies that X ′|i = X|i for i 6= j).

V =
∑
i

hiH(X|i) + Thj(H(X|j)−H(X ′|j))− TH(X ′|j)

The partial term H(X|j)−H(X ′|j) can be expanded in a similar way to show an upper
bound of O( log hj

hj
), and thus V = O(M logM) also. Recalling that lnT − ln(T + 1) < 2

T

for positive T , it can be seen that:

| el(S)− el(S ′)| = O

( log T
T

)
From this it follows:

Corollary E.2. If there is a path of length ` between S and S ′ in G, and T ≤ T ′, then
δ(S,S ′) ≤ O( ` log T ′

T ).

Now we are ready to prove Theorem E.1:

Proof. (Theorem E.1) Let S = (S, s) be a given regular shape with total mass T . We will
construct a larger regular shape S ′ = (S′, s) with the following properties:

(i) The rows of S ′ can be partitioned into ` = O((log T )4)-many blocks (sets of rows)
X1, . . . ,X`, such that the rows x of each block have the same number of squares.

(ii) There is a path between S ′ and S of length T
log T ′ .

From item (i) it follows that el(S ′) is at most O(log log T ). To see this, consider the
random variables (X ′, I ′) associated with S ′. Then X ′ is of the form (K,XK), where K
first chooses a block Xk (with probability 1

T

∑
x∈Xk wx), and then Xk chooses a row inside

Xk. The entropy loss is:

el(S ′) = I(X ′ : I ′) = I(K : I ′) + I(XK : I ′|K).

By assumption, let vk be the number of squares (x, i) ∈ S′, for the rows x ∈ Xk. Then
because S ′ is regular, we have that

Pr[Xk = x] = vks
′(x, 1)
T

= vks
′(x, i)
T

for every k and i. But then Xk|I = i has exactly the same distribution as Xk, and thus
I(XK : I ′|K) = 0. Therefore we conclude that el(S ′) = I(K : I ′) ≤ H(K) ≤ log ` ≤
O(log log T ).

Now from item (ii) and Corollary E.2, it holds that el(S) ≤ el(S ′)+O(1) = O(log log T ).
Here is how we construct S ′. From the regularity of S ′, let dx = s(x, 1) denote the

number of units of mass in each square of row x, and let vw = wx
dx

denote the number of
squares in row x. Let B =

(
1 + 1

6(1+log T )

)
. Now for every 1 ≤ k1 ≤ k2 ≤ 6(log T )2 let

Xk1,k2 be the subset of rows x of S, such that:

vx > 2 log T and Bk1−1 ≤ dx < Bk1 and Bk2−1 ≤ wx < Bk2 .
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Also, for 1 ≤ k ≤ 3(1 + log T ), let Xk denote the rows of S that have exactly vx = k
squares. It is clear that every row of S must be in one of the blocks Xk or Xk1,k2 . The
shape S ′ assigns dBk2−k1−1e squares to the rows in Xk1,k2 , and s(x, i) = dx units of mass
to each square in row x, for a total row-mass of w′x = dxbBk2−k1+1c. The rows in Xk are
given exactly k squares, with s(x, i) = dx units of mass per square; i.e., there is no change
for these rows.

It is clear that S ′ satisfies (i) by construction. Let us prove that (ii) is also satisfied.
First notice that the shape is exactly the same for the rows with ≤ 3(1 + log T ) squares.
For the remaining rows, we can use the inequalities:

(7) Bk2−k1−1 ≤ vx = wx
dx

< Bk2−k1+1.

From the left-hand side we derive

w′x ≤ B2wx + dx <

(
B2 + 1

2(1 + log T )

)
wx,

i.e., the row-masses of S ′ are at most C-times larger than the corresponding row-masses
of S, with

C = B2 + 1
2 log T ≤ 1 + 1

1 + log T .

On the other hand, from the right-hand side of (7) we find that wx ≤ w′x.
So here is a path from S ′ to S along the edges of G: we go to each row x of S ′, and

we remove units of mass from the last square of the row until w′x = wx. How many units
must be moved? Because w′x ≤ Cwx, in row x we only need to remove at most 1

1+log T wx

units. Summing over all the rows, we remove a total of no more than T
1+log T units, so

this upper bounds the length of this path from S ′ to S. The item (ii) now follows from
the fact that T ′ ≤ B2T , and hence log T ′ ≤ 1 + log T .

In the full version of the paper we will present a lower bound of el(S) ≥ log log T−O(1)
for a specific shape S, implying that no improvement of Theorem 5.1 is possible without
changing J(x, r).
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