
Abstract

Newman’s theorem states that we can take any public-coin communication proto-
col and convert it into one that uses only private randomness with but a little increase
in communication complexity. We consider a reversed scenario in the context of infor-
mation complexity: can we take a protocol that uses private randomness and convert
it into one that only uses public randomness while preserving the information revealed
to each player?

We prove that the answer is yes, at least for protocols that use a bounded num-
ber of rounds. As an application, we prove new direct sum theorems through the
compression of interactive communication in the bounded-round setting. To obtain
this application, we prove a new one-shot variant of the Slepian-Wolf coding theorem,
interesting in its own right.

Furthermore, we show that if a Reverse Newman’s Theorem can be proven in
full generality, then full compression of interactive communication and fully-general
direct-sum theorems will result.

1 Introduction

Information cost was introduced by a series of papers [CSWY01, BYJKS04, JRS03,
BBCR10, BR11] as a complexity measure for two-player communication protocols. Inter-
nal information cost measures the amount of information that each player learns about
the input of the other player while executing a given protocol. In the usual setting of com-
munication complexity we have two players, Alice and Bob, each having an input x and y,
respectively. Their goal is to determine the value f(x, y) for some predetermined function
f . They achieve the goal by communicating to each other some amount of information
about their inputs according to some protocol.

The usual measure considered in this setting is the number of bits exchanged by Alice
and Bob, whereas the internal information cost measures the amount of information trans-
ferred between the players during the communication. Clearly, the amount of information
is upper bounded by the number of bits exchanged but not vice versa. There might be a
lengthy protocol (say even of exponential size) that reveals very little information about
the players’ inputs.

In recent years, a substantial research effort was devoted to proving the converse
relationship between the information cost and the length of protocols, i.e., to proving
that a protocol which reveals only I bits of information can be simulated by a different
protocol which communicates only (roughly) I bits. Such results are known as compression
theorems. [BBCR10] prove that a protocol that communicates C bits and has internal
information cost I can be replaced by another protocol that communicates O(

√
I · C) bits.

For the case when the inputs of Alice and Bob are sampled from independent distributions
they also obtain a protocol that communicates O(I · logC) bits. These conversions do not
preserve the number of rounds. In a follow up paper [BR11] consider a bounded round
setting and give a technique that converts the original q-round protocol into a protocol
with O(q · log I) rounds that communicates O(I + q log q

ε ) bits with additional error ε.
All known compression theorems are in the randomized setting. We distinguish two

types of randomness — public and private. Public random bits are seen by both communi-
cating players, and both players can take actions based on these bits. Private random bits
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are seen only by one of the parties, either Alice or Bob. We use public-coin (private-coin)
to denote protocols that use only public (private) randomness. If a protocol uses both
public and private randomness, we call it a mixed-coin protocol.

Simulating a private-coin protocol using public randomness is straightforward: Alice
views a part of the public random bits as her private random bits, Bob does the same using
some other portion of the public bits, and they communicate according to the original
private-coin protocol. This new protocol communicates the same number of bits as the
original protocol and computes the same function. In the other direction, an efficient
simulation of a public-coin protocol using private randomness is provided by Newman’s
Theorem [New91]. Sending over Alice’s private random bits to make them public could
in general be costly as they may need e.g., polynomially many public random bits, but
Newman showed that it suffices for Alice to transfer only O(logn+ log 1

δ ) random bits to
be able to simulate the original public-coin protocol, up to an additional error of δ.

In the setting of information cost the situation is quite the opposite. Simulating public
randomness by private randomness is straightforward: one of the players sends a part of
his private random bits to the other player and then they run the original protocol using
these bits as the public randomness. Since the random bits contain no information about
either input, this simulation reveals no additional information about the inputs; thus the
information cost of the protocol stays the same. This is despite the fact that the new
protocol may communicate many more bits than the original one.

However, the conversion of a private-randomness protocol into a public-randomness
protocol seems significantly harder. For instance, consider a protocol in which in the
first round Alice sends to Bob her input x bit-wise XOR-ed with her private randomness.
Such a message does not reveal any information to Bob about Alice’s input — as from
Bob’s perspective he observes a random string — but were Alice to reveal her private
randomness to Bob, he would learn her complete input x. This illustrates the difficulty
in converting private randomness into public.

We will generally call “Reverse Newman’s Theorem” (R.N.T.) a result that makes
randomness public in an interactive protocol without revealing more information. This
paper is devoted to attacking the following:

R.N.T. Question. Can we take a private-coin protocol with information
cost I and convert it into a public-coin protocol with the same behavior and
information cost Õ(I)?

Interestingly, the known compression theorems [BBCR10, BR11, JPY12] give com-
pressed protocols that use only public randomness, and hence as a by-product they give a
conversion of private-randomness protocols into public-randomness equivalents. However,
the parameters of this conversion are far from the desired ones.1 In Section 4 we show that
the R.N.T. question represents the core difficulty in proving full compression theorems;
namely, we will prove that any public-coin protocol that reveals I bits of information can
already be compressed to a protocol that uses Õ(I) bits of communication, and hence a
fully general R.N.T. would result in fully general compression results, together with the
direct-sum results that would follow as a consequence. This was discovered independently

1We discuss the differences in more detail in Section 5.
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by Denis Pankratov, who in his MSc thesis [Pan12] extended the analysis of the [BBCR10]
compression schemes to show that they achieve full compression in the case when only
public randomness is used. Our compression scheme is similar but slightly different: we
discovered it originally while studying the compression problem in a Kolmogorov com-
plexity setting (as in [BKV08]), and our proof for the Shannon setting arises from the
proper “translation” of this proof; we include it for completeness and because we think it
makes for a more elementary proof.

Main contributions. Our main contribution is a Reverse Newman’s Theorem in
the bounded-round scenario. We will show that any q-round private-coin protocol can be
converted to an O(q)-round public-coin protocol that reveals only additional Õ(q) bits of
information (Theorem 3.1). Our techniques are new and interesting. Our main technical
tool is a conversion of one round private-randomness protocols into one round public-
randomness protocols. This conversion proceeds in two main steps. After discretizing the
protocol so that the private randomness is sampled uniformly from some finite domain, we
convert the protocol into what we call a 1-1 protocol, which is a protocol having the prop-
erty that for each input and each message there is at most one choice of private random
bits that will lead the players to send that message. We show that such a conversion can
be done without revealing too much extra information. In the second step we take any 1-1
protocol and convert it into a public-coin protocol while leaking only a small additional
amount of information about the input. This part relies on constructing special bipartite
graphs that contain a large matching between the right partition and any large subset of
left vertices.

Furthermore, we will prove two compression results for public-randomness protocols:
a round-preserving compression scheme to be used in the bounded-round case, and a
general (not round-preserving) compression scheme which can be used with a fully general
R.N.T. Either of these protocols achieves much better parameters than those currently
available for general protocols (that make use of private randomness as well as public).
The round-preserving compression scheme is essentially a constant-round average-case
one-shot version of the Slepian-Wolf coding theorem [SW73], and is interesting in its own
right.

As a result of our R.N.T. and our round-preserving compression scheme, we will get
a new compression result for general (mixed-coin) bounded-round protocols. Whereas
previous results for the bounded-round scenario [BR11] gave compression schemes with
communication complexity similar to our own result, their protocols were not round-
preserving. We prove that a q-round protocol that reveals I bits of information can be
compressed to an O(q)-round protocol that communicates O(I + 1) + q log( qnδ ) bits, with
additional error δ. As a consequence we will also improve the bounded-round direct-sum
theorem of [BR11].

Organization of the paper. In Section 3 we discuss our Reverse Newman’s Theo-
rem. In Section 4 we will prove our compression results. Section 5 will give applications
to direct-sum theorems. Finally, Section 6 is dedicated to showing alternatives to the
constructions we have presented, as well as bounds that prevent further improvement to
our techniques.
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2 Preliminaries

We use capital letters to denote random variables, calligraphic letters to denote sets, and
lower-case letters to denote elements in the corresponding sets. So typically A is a random
variable distributed over the set A, and a is an element of A. We will also use capital
and lower-case letters to denote integers numbering or indexing certain sequences. We
use ∆(A,A′) to denote the statistical distance between random variables A and A′:

∆
(
A,A′

)
= 1

2
∑
a∈A
|Pr[A = a]− Pr[A′ = a]| .

2.1 Information theory

For a given probability random variable A distributed over the support A, its entropy is

H(A) =
∑
a∈A

pa log 1
pa
,

where pa = Pr[A = a]. Given a second random variable B that has a joint distribution
with A, the conditional entropy H(A|B) equals

Eb∈B[H(A|B = b)].

In this paper, and when clear from the context, we denote a conditional distribution
A|B = b more succinctly by A|b.

Fact 2.1. If A has n possible outcomes then

H(A) ≤ logn.

Fact 2.2.

H(A|B) ≤ H(A) ≤ H(A,B), H(A|B,C) ≤ H(A|C) ≤ H(A,B|C).

Fact 2.3.

H(A,B) = H(A) +H(B|A), H(A,B|C) = H(A|C) +H(B|A,C).

We let I(A : B) [I(A : B|C)] denote the Shannon mutual information between A and
B (conditional to C):

I(A : B) = H(A)−H(A|B) = H(B)−H(B|A),
I(A : B|C) = H(A|C)−H(A|B,C) = H(B|C)−H(B|A,C).

Notice that the first inequality in Fact 2.2 does not apply to Shannon information:
I(A : B|C) may be larger than I(A : B) (let say C = A+B and A,B be independent).

Fact 2.4 (Chain rule).

I(A1, . . . , Ak : B|C) = I(A1 : B|C) +
k∑
i=2

I(Ai : B|C,A1, . . . , Ai−1)
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Here A1, . . . , Ak stands for a random variable in the set of k-tuples and Ai stands for
its ith projection.

Fact 2.5. A and B are independent conditional to C (which means that whatever outcome
c of C we fix, A and B become independent conditional to the event C = c) if and only if
I(A : B|C) = 0.

Fact 2.6. If A and B are independent conditional to D then

I(A : C|B,D) = I(A : BC|D) ≤ I(A : C|D).

Fact 2.7. If A and C are independent conditional to the pair B,D then

I(A : B,C|D) = I(A : B|D).

Fact 2.8. For any two random variables A,B over the same universe U , it holds that

|H(A)−H(B)| ≤ log(|U|) ∆(A,B) + 1,

2.2 Two-player protocols

We will be dealing with protocols that have both public and private randomness; this
is not very common, so we will give the full definitions, which are essentially those of
[BBCR10, BR11]. We will also be working exclusively in the distributional setting, and
our compression and direct theorem results will follow also in the usual (worst-case ran-
domized) setting, with roughly the same parameters, by the use of Yao’s Principle in its
Information Complexity variants [Bra12] (these details will be left for the full version of
the paper). So from here onwards, we will assume that the input is given to two players,
Alice and Bob, by way of two random variables X,Y sampled from a possibly correlated
distribution µ over the support X × Y.

A private-coin protocol π with output set Z is defined as a rooted tree, called the
protocol tree, in the following way:

1. Each non-leaf node is owned by either Alice or Bob.
2. If v is a non-leaf node belonging to Alice, then:

(a) The children of v are owned by Bob; each child is labeled with a binary string,
and the set C(v) of labels of v’s children is prefix-free.

(b) Associated with v is a set Rv, and a function Mv : X ×Rv → C(v).
3. The situation is analogous for Bob’s nodes.
4. With each leaf we associate an output value in Z.

On input x, y the protocol is executed as follows:

1. Set v to be the root of the protocol tree.
2. If v is a leaf, the protocol ends and outputs the value associated with v.
3. If v is owned by Alice, she picks a string r uniformly at random from Rv and sends

the label of Mv(x, r) to Bob, they both set v := Mv(x, r), and return to the previous
step. Bob proceeds analogously on the nodes he owns.
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A general, or mixed-coin, protocol is given by a distribution over private-coin proto-
cols. The players run such a protocol by using shared randomness to pick an index r
(independently of X and Y ) and then executing the corresponding private-coin protocol
πr. A protocol is called public-coin if every Rv has size 1, i.e., no private randomness is
used.

We let π(x, y, r, rA, rB) denote the messages exchanged during the execution of π,
for given inputs x, y, and random choices r, rA and rB, and Outπ(x, y, r, rA, rB) be the
output of π for said execution. The random variable R is the public randomness, RA
is Alice’s private randomness, and RB is Bob’s private randomness; we use Π to denote
the random variable π(X,Y,R,RA, RB). We assume WLOG that R,RA, and RB are
uniformly distributed.

Definition 1. The worst-case communication complexity of a protocol π, CC(π), is the
maximum number of bits that can be transmitted in a run of π on any given input and
choice of random strings. The average communication complexity of a protocol π, with
respect to the input distribution µ, denoted ACCµ(π), is the average number of bits that
are transmitted in an execution of π, for inputs drawn from µ. The worst-case number of
rounds of π, RC(π), is the maximum depth reached in the protocol tree by a run of π on
any given input. The average number of rounds of π, w.r.t. µ, denoted ARCµ(π), is the
average depth reached in the protocol tree by an execution of π on input distribution µ.

Definition 2. The (internal) information cost of protocol π with respect to µ is:

ICµ(π) = I(Y : Π, R,RA|X) + I(X : Π, R,RB|Y )

Here the term I(Y : R,Π, RA|X) stands for the amount of information Alice learns
about Bob’s input after the execution of the protocol (and the meaning of the second
term is similar). This term can be re-written in several different ways:

I(Y : Π, R,RA|X) = I(Y : Π|X,R,RA) = I(Y : Π, R|X,RA),
I(Y : Π, R,RA|X) = I(Y : Π, R|X) = I(Y : Π|X,R).

Here the first equality holds, as Bob’s input Y is independent from randomness R,RA
conditional to X, which is obvious (see Fact 2.6 from the preliminaries). The second
equality holds, since Y is independent from randomness R conditional to X,RA, which is
also obvious.

The third equality holds, as Y is independent fromRA conditional to Π, X,R (Fact 2.7).
This independence follows from the rectangle property of protocols: for every fixed Π, X,R
the set of all pairs ((Y,RB), RA) producing the transcript Π is a rectangle and thus the
pair (Y,RB) (and hence Y ) is independent from RA conditional to Π, X,R. The forth
equality is proven similarly to the first and the second ones.

The expressions I(Y : Π, R|X) and I(Y : Π|X,R) for the information revealed to
Alice are the most convenient ones and we will use them throughout the paper. Similar
transformations can be applied to the second term in Definition 2.

Definition 3. A protocol π is said to compute function f : X × Y → Z with error
probability ε over distribution µ if

Pr
µ,R,RA,RB

[Outπ(x, y, r, rA, rB) = f(x, y)] ≥ 1− ε .
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Many of our technical results require that the protocol uses a limited amount of ran-
domness at each step. This should not be surprising—this is also a requirement of New-
man’s theorem. This motivates the following definition.

Definition 4. A protocol π is an `-discrete protocol2 if |Rv| = 2` at every node of the
protocol tree.

When a protocol is `-discrete, we say that it uses ` bits of randomness for each message;
when ` is clear from context, we omit it. While the standard communication model allows
players to use an infinite amount of randomness at each step, this is almost never an issue,
since one may always “round the message probabilities” to a finite precision. This intuition
is captured in the following observation.

Observation 1. Suppose π is a private-coin protocol. Then, there exists an `-discrete
protocol π′ with ` = O(log(|X |) + log(|Y|) + CC(π)) such that (i) CC(π′) ≤ CC(π), (ii)
RC(π′) ≤ RC(π), and (iii) for all x, y we have

∆
(
Π′(x, y,RA, RB),Π(x, y,RA, RB)

)
≤ 2−Ω(`).

Furthermore, for any input distribution µ, the error of π′ is at most the error of π plus
2−`. Equally small differences hold between ACCµ(π′), ARCµ(π′), and their π equivalents,
and ICµ(π′) is within an additive constant of ICµ(π).

We provide a full proof of Observation 1 in Appendix A. Hence, while working exclu-
sively with discretized protocols, our theorems will also hold for non-discretized protocols,
except with an additional exponentially small error term. We consider this error negli-
gible, and hence avoid discussing it beyond this point; the reader should bear in mind,
though, that when we say that we are able to simulate a discretized protocol exactly, this
will imply that we can simulate any protocol with sub-inverse-exponential 2−Ω(`) error.

We are particularly interested in the case of one-way protocols. In a one-way protocol,
Alice sends a single message to Bob, who must determine the output. A one-way protocol
π is thus given by a function Mπ : X × R 7→ M; on input x Alice randomly generates
r and sends Mπ(x, r). Note that if π is private-coin, then ICµ(π) = I(X : M(X,RA)|Y ),
and similarly, if π is public-coin, then ICµ(π) = I(X : R,M(X,R)|Y ).

Finally, we close this section with a further restriction on protocols, which we call
1–1. Proving an R.N.T. result for 1–1 protocols will be a useful intermediate step in the
general R.N.T. proof.

Definition 5. A one-way protocol π is a 1–1 protocol if Mπ(x, ·) is 1–1 for all x.

3 Towards a Reverse Newman’s Theorem

Our main result is the following:
2In a discrete protocol, we restrict only the amount of private randomness in this definition. It is

perhaps natural to also restrict the public randomness, but we will not need to.
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Theorem 3.1 (Reverse Newman’s Theorem, bounded-round version). Let π be an arbi-
trary, `-discrete, mixed-coin, q-round protocol, and let C = CC(π), n = max{log |X |, log |Y|}.
Suppose that π’s public randomness R is chosen from the uniform distribution over the
set R, and π’s private randomness RA and RB is chosen from uniform distributions over
the sets RA and RB, respectively.

Then there exists a public-coin, q-round protocol π̃, whose public randomness R′ is
drawn uniformly from R×RA×RB, and that has the exact same transcript distribution,
i.e., for any input pair x, y and any message transcript t,

Pr[π(x, y,R,RA, RB) = t] = Pr[π̃(x, y,R′) = t],

and for any distribution µ giving the input (X,Y ),

ICµ(π̃) ≤ ICµ(π) +O (q log (2n`)) . (1)

We conjecture, furthermore, that a fully general R.N.T. holds:

Conjecture 3.2. Theorem 3.1 holds with (1) replaced by

ICµ(π̃) ≤ Õ(ICµ(π)),

where Õ(·) suppresses terms and factors logarithmic in ICµ(π) and CC(π).

In Sections 4 and 5, we show that R.N.T.s imply fully general compression of in-
teractive communication, and hence the resulting direct-sum theorems in information
complexity. This results in new compression and direct-sum theorems for the bounded-
round case. We believe that attacking Conjecture 3.2, perhaps with an improvement of
our techniques, is a sound and new approach to proving these theorems.

Starting to prove Theorem 3.1 we first notice that it suffices to show it only for
protocols π without public randomness (with an absolute constant in the O-notation).
Indeed, fixing any outcome r of the random variable R, we obtain a protocol without
public randomness, denoted by πr. Using the expression

I(X : Π|Y,R) + I(Y : Π|X,R)

for information cost of π, we see that it equals the average information cost of the protocol
πr. Therefore, assuming that we are able to convert πr into a public-coin protocol π̃r,
as in Theorem 3.1, we can let the protocol π̃ pick a random r and then run π̃r. As the
information cost of the resulting protocol π̃ again equals the average information cost of
π̃r, the inequality (1) follows from similar inequalities for πr and π̃r.

As suggested by the O(q log(2n`))-term of (1), Theorem 3.1 will be derived from its
one-way version.

3.1 R.N.T. for one-way protocols

Theorem 3.3 (R.N.T. for one-way protocols). For any one-way private-coin `-discrete
protocol π there exists a one-way public-coin `-discrete protocol π′ such that π and π′

generate the same message distributions, and for any input distribution (X,Y ) ∼ µ, we
have

ICµ(π′) ≤ ICµ(π) +O(log(2n`)),
where n = log |X |.
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Proof. We first sketch the proof. The public randomness R′ used by the new proto-
col π′ will be the very same randomness R used by π. So we seem to have very little
room for changing π, but actually there is one change that we are allowed to make. Let
Mπ : X ×R 7→ M be the function Alice uses to generate her message. It will be helpful
to think of Mπ as a table, with rows corresponding to possible inputs x, columns corre-
sponding to possible choices of the private random string r, and the (x, r) entry being the
message Mπ(x, r). Noticing that r is picked uniformly, Alice might instead send message
M(x, φx(r)), where φx is some permutation of R. In other words, she may permute each
row in the table using a permutation φx for the row x. The permutation φx will “scram-
ble” the formerly-private now-public randomness R into some new string r̃ = φx(r) about
which Bob hopefully knows nothing. This “scrambling” keeps the message distribution
exactly as it was, changing only which R results in which message. We will see that
this can be done in such a way that, in spite of knowing r, Bob has no hope of knowing
r̃ = φx(r), unless he already knows x to begin with.

To understand what permutation φx we need, we first note the following. Let M ′ =
Mπ′(X,R) denote the message that the protocol π′ we have to design sends for input X
and public randomness R. Then the information cost of π′ is

I(M ′, R : X|Y ).

The information cost of the original protocol π is

I(M : X|Y ) = I(M ′ : X|Y ),

where the equality holds as the distributions of the triples (M,X, Y ) and (M ′, X, Y )
are identical (regardless of the chosen permutations φx). Thus the difference between
information costs of π′ and π equals

I(M ′, R : X|Y )− I(M ′ : X|Y ) = I(R : X|M ′, Y ),

which is at most H(R|M ′, Y ). If we permute each row of the table in such a way that
every message m appears in at most d = (n · `)O(1) columns, then

H(R|M ′, Y ) = O(logn`),

as the entropy of any random variable with at most d outcomes does not exceed log d.
Unfortunately, it may happen that there are no such permutations. For instance, this is
the case when a row has the same message m in every column.

We will show that if this is not the case, and, moreover, each row has pairwise different
messages, then we can “almost” achieve the goal: one can permute each row in such a
way that with probability at least 1 − 1/n2 the message M ′ = Mπ′(X,R) appears in at
most d = (n · `)O(1) columns. Thus we first prove Theorem 3.3 for the special case of 1–1
protocols, i.e. for protocols where each row has pairwise different messages.

The proof of Theorem 3.3 for 1–1 protocols. We first will construct a special bipartite
graph G, which we call a matching graph. Its left nodes will be possible messages m and
its right nodes will be random strings r. Our strategy will be to find a way of permuting
each row of our table so that for every row x and most columns r (in row x) the message
Mπ′(x, r) in the cell (x, r) of the table is connected by an edge to r in the graph G.
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Definition 6. An (m, `, d, δ)-matching graph is a bipartite graph G = (M∪R, E) such
that |M| = 2m, |R| = 2`, deg(u) = d for each u ∈ M, and such that for all M′ ⊆ M
with |M′| = 2`, GM′∪R has a matching of size at least 2`(1− δ).

We first use the Probabilistic Method to prove the following lemma, which shows that
matching graphs with sufficiently good parameters always exist.

Lemma 3.4. For all integer ` ≤ m and positive δ there is an (m, `, d, δ)-matching graph
with d = O(m/δ).

In Section 6.1 we will show that the lemma holds also d = O((m− `)/δ2) + ln(1/δ)/δ
(Lemma 6.1). That bound has better dependence on m, ` (especially when m− `� m).
However, it has worse dependence on δ. In Section 6.2 we show a lower bound of d =
Ω((m− `)/δ), which almost matches our upper bounds.

Proof. Hall’s theorem [Hal35] states that if in a bipartite graph every left subset of car-
dinality i ≤ L has at least i neighbors then every left subset of cardinality i ≤ L has a
matching in the graph.

Thus it suffices to construct a bipartite graph having this property for L = (1− δ)2`.
By union bound, a random graph fails to have this property with probability at most

L∑
i=1

2mi2`i(i/2`)di.

Here 2mi is an upper bound for the number of i-element left subsets M′, 2`i is an upper
bound for the number of i − 1-element right subsets R′, and (i/2`)di is an upper bound
for the probability that all neighbors of M′ fall into R′. For L = (1 − δ)2` this sum is
upper bounded by a geometric series

L∑
i=1

[2m2`(1− δ)d]i.

Thus we are done, if the base of this series 2m2`(1−δ)d is less than 1/2, say, which happens
for d = O(m/δ).

Now the proof of Theorem 3.3 for 1–1 protocols proceeds as follows. Let n = log |X |
and ` = log |R|. Assume without loss of generality thatM = M(X ,R); then |M| ≤ 2n+`.
Now let G be (n+ `, `, d, δ)-matching graph havingM as a subset of its left set and R as
its right set, for δ = 1

n2 . For these parameters, we are assured by Lemma 3.4 that such a
matching graph exists having left-degree d = O((n+ `)n2).

We construct the new protocol π′ as follows. For each x ∈ X let Mx = M(x,R) be
the set of messages that might be sent on input x. Noticing that |Mx| = 2`, consider a
partial G-matching between Mx and R pairing all but a δ-fraction of Mx; then define a
bijection M ′x : R →Mx by setting M ′x(r) = m if (m, r) is an edge in the matching, and
pairing the unmatched m and r’s arbitrarily (possibly using edges not in G). Finally, set
M ′(x, r) = M ′x(r).

Since M ′(x, r) = M ′x(r) for some bijection M ′x between R and Mx, it is clear that M
and M ′ generate the same transcript distribution for any input x.
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Now we prove that M ′ does not reveal much more information than M . We have
seen that the difference between the information costs of π′ and π is at most H(R|M ′, Y ).
Thus suffices to show that H(R|M ′, Y ) is at most the logarithm of the left degree of the
matching graph plus a constant. As H(R|M ′, Y ) is the average of H(R|M ′, Y = y) over
all choices of y, it suffices to show that

H(R|M ′, Y = y) ≤ log d+ 3

for every y. While proving this inequality, we will drop the condition Y = y to simplify
notation.

Let us introduce a new random variable K, which is a function of X,R,M ′ and takes
the value 1 if (M ′, R) is an edge of the matching graph and is equal to 0 otherwise. Recall
that for every x the pair (M ′(x,R), R) is an edge of the matching graph with probability
at least 1 − 1/n2. Therefore, K = 0 with probability at most 1/n2. Call a message m
bad if the probability that K = 0 conditional to M ′ = m (that is, the fraction of rows x,
among all rows containing m, such that m was not matched within the graph in the row
x) is more than 1/n. Obviously, M ′ is bad with probability less than 1/n.

The conditional entropy H(R|M ′) is the average of

H(R|M ′ = m)

over a randomly chosen m. Notice that H(R|M ′ = m) is at most the log-cardinality of
X , because in 1–1 protocols R is a function of the pair (M ′, X). Thus H(R|M ′ = m) ≤ n
for all m, and hence the total contribution of all bad m’s in H(R|M ′) is at most 1. Thus
it suffices to show that for all good m,

H(R|M ′ = m) ≤ log d+ 2.

To this end notice that

H(R|M ′ = m) ≤ H(K|M ′ = m) +H(R|K,M ′ = m) ≤ 1 +H(R|K,M ′ = m).

Thus it is enough to prove that H(R|K,M ′ = m) ≤ log d + 1 for all good m. Again,
H(R|K,M ′ = m) can be represented as the weighted sum of two terms,

H(R|K = 1,M ′ = m) and H(R|K = 0,M ′ = m).

The former term is at most log d, because when K = 1 and M ′ = m we can specify R
by the number of the edge (m,R) in the matching graph. The latter term is at most
n, however its weight is at most 1/n, since m is good. This completes the proof of
Theorem 3.3 for 1-1 protocols.

The proof of Theorem 3.3 in general case. The general case follows naturally from
1-1-case and the following lemma, which makes a protocol 1–1 by adding a small amount
of communication.

Lemma 3.5 (Making the protocol 1–1 while revealing little information). Given a one-
round `-discrete private-coin protocol π, there is a one-round 1–1 `-discrete private-coin
protocol π′ whose message is of the form3

Mπ′(x, r) = (Mπ(x, r), J(x, r)),
3On any input x and any choice of randomness r, Mπ′ (x, r) is obtained by taking Mπ(x, r) and adding

some additional communication J(x, r).
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and such that
ICµ(π′) ≤ ICµ(π) + log `+ 1.

Proof. We think of M(·, ·) as a table, where the inputs x ∈ X are the rows and the random
choices r ∈ R are the columns, and fix some ordering r1 < r2 < . . . of R. The second part
J(x, r) of Mπ′ will be the ordinal number of the message M(x, r) inside the row x i.e.,

J(x, r) = |{r′ ≤ r|M(x, r′) = M(x, r)}|.

This ensures that Mπ′ is 1–1.
The difference between the information costs of π′ and π is

I(M,J : X|Y )− I(M : X|Y ) = I(J : X|Y,M).

Thus, it suffices to show that for every particular y,m we have4

I(J : X|Y = y,M = m) ≤ log `+ 1. (2)

Fix any y and m, and drop the conditions Y = y,M = m to simplify the notation.
Obviously, I(J : X) = H(J) − H(J |X). For any fixed x the random variable J has
the uniform distribution over the set {1, 2, . . . ,Wx}, where Wx stands for the number of
occurrences of the message m in row x of the table.

Let us partition x’s into ` classes so that if x is in the ith class then 2i−1 ≤ Wx < 2i.
Let Z = Zy,m be the class to which X belongs. Its entropy is at most log ` and hence we
have

I(J : X) ≤ I(J : X|Z) +H(Z) ≤ I(J : X|Z) + log `.

Thus it suffices to show that for every i we have

I(J : X|Z = i) ≤ 1.

Notice that
H(J |Z = i) ≤ i,

as for all x in ith class we have Wx ≤ 2i. On the other hand,

H(J |X,Z = i) ≥ i− 1,

as for every x in ith class we have Wx ≥ 2i−1 and the distribution of J conditional to
X = x, Y = y,M = m,Z = i is uniform. Thus

I(J : X|Z = i) = H(J |Z = i)−H(J |X,Z = i) ≤ i− (i− 1) = 1.

4In Section 6.3 we will prove a corresponding lower bound, implying that this upper-bound is tight up
to a constant term.
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Now we are able to finish the proof of Theorem 3.3 in the general case. Suppose π is a
given one-way private-coin `-discrete protocol. Let π2 be the 1–1 protocol guaranteed by
Lemma 3.5, and let π3 be the protocol constructed from π2 in the proof of Theorem 3.3
for 1-1 case. Note that π3’s message is of the form Mπ3(X,R) = (Mπ(X,R), J(X,R)),
since it is equidistributed with Mπ2 . Furthermore, we have

ICµ(π3) ≤ ICµ(π) +O(log 2n`).

Now, create a protocol π4, which is identical to π3, except that Alice omits J(X,R). Since
for each x the message Mπ4(x, r) sent by π4 equals M(x, φx(r)) for some permutation φx
of R, it is clear that M and M ′ generate the same transcript distribution for any input
x. And

ICµ(π4) ≤ ICµ(π3) ≤ ICµ(π) +O(log 2n`) .

This completes the proof of Theorem 3.3.

3.2 R.N.T. for many-round protocols

Let us prove Theorem 3.1 as a consequence of Theorem 3.3.

Proof of Theorem 3.1. Let c be the constant hidden in O-notation in Theorem 3.3 so that
every one round private-coin `-discrete protocol π with |X |, |Y| ≤ 2n can be converted into
one round public-coin protocol π′ generating the same distribution on transcripts with

IC(π′) ≤ IC(π) + c log 2n`.

We are given a q-round private-coin protocol ρ and will simulate it by a public-coin
protocol ρ′ with

IC(ρ′) ≤ IC(ρ) + 2qc log 2n`.

The transformation of ρ into ρ′ is as one can expect: in each node v of the protocol tree ρ
we use a permutation of messages that depends on the input of the player communicating
in that node. More specifically, let m<j denote the concatenation of messages sent by
ρ′ up to round j. In jth round of ρ′ we apply the protocol ρ′m<j , which is obtained
by the transformation of Theorem 3.3 from the 1-round sub-protocol ρm<j of ρ rooted
from the node m<j of the protocol tree of ρ. This change does not affect the probability
distribution over messages sent in each node and hence the resulting protocol ρ′ generates
exactly the same distribution on transcripts. The protocol ρ′ uses the same randomness
as ρ; however, unlike ρ it uses public and not private randomness.

We have to relate now the information cost of ρ′ to that of ρ. To this end we split the
information cost of ρ′ into the sum of information costs of each round of ρ′. Specifically,
by the Chain rule (Fact 2.4) the amount of information revealed by ρ′ to Bob (say) equals

I(X : M1, R1, . . . ,Mq, Rq|Y ) =
∑
j

I(X : Mj , Rj |Y,M<j , R<j).

where Rj denotes randomness used in the jth round of ρ′ and Mj = ρ′M<j
(X,Rj) denotes

the message sent in the jth round of ρ′.
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From I(R<j : Mj , Rj |Y,M<j) = 0, we conclude from Theorem 3.3 — using Facts 2.5
and 2.6 from the preliminaries — that

I(X : Mj , Rj |Y,M<j , R<j) ≤ I(X : Mj , Rj |Y,M<j) ≤ I(X : Mj |Y,M<j) + c log 2n`,

where I(X : Mj |Y,M<j) in the right hand side is the information cost of jth round of
the original protocol ρ. Summing up this inequality over all j = 1, . . . , q and applying the
Chain rule to ρ we see that

I(X : M1, R1, . . . ,Mq, Rq|Y ) ≤ I(X : M1, . . . ,Mq|Y ) + qc log 2n`.

The similar inequality for the amount of information revealed by ρ and ρ′ to Alice is
proved in a similar way.

4 Compression for public-coin protocols

We present in this section two results of the following general form: we will take a public-
coin protocol π that reveals little information, and “compress” it into a protocol ρ that
uses little communication to perform the same task with about the same error probability.
It turns out that the results in this setting are simpler and give stronger compression than
in the case where Alice and Bob have private randomness (such as in [BBCR10, BR11]).
We present two bounds, one that is dependent on the number of rounds of π, but which
is also round-efficient, in the sense that ρ will not use many more rounds than π; and one
that is independent of the number of rounds of π, but where the compression is not as
good when the number of rounds of π is small. We begin with the latter.

Theorem 4.1. Suppose there exists a public-coin protocol π to compute f : {0, 1}n ×
{0, 1}n → Z over the distribution µ with error probability δ′, and let C = CC(π), I =
ICµ(π). Then for any positive δ there is a public-coin protocol ρ computing f over µ with
error δ′ + δ, and with ACCµ(ρ) = O(I · log(2Cn/δ)).

Proof. Our compression scheme is similar, but not identical, to that of [BBCR10]—the
absence of private randomness allows for a more elementary proof.

It suffices to prove the theorem only for deterministic protocols—the case for public-
coin protocols can be proved as follows. By fixing any outcome r of randomness R of a
public-coin protocol π, we obtain a protocol πr without public randomness and can apply
Theorem 4.1 to πr. The average communication length of the resulting deterministic pro-
tocol ρr is at most O(I(πr) · log(2Cn/δ)). Thus the average communication of the public-
coin protocol ρ that chooses a random r and runs ρr will be at most O(I · log(2Cn/δ)).

Thus we have to show that any deterministic protocol π can be simulated with com-
munication roughly:

I(Y : Π|X) + I(X : Π|Y ) = H(Π|X) +H(Π|Y )

(the equality follows because H(Π|X,Y ) = 0, since the transcript Π is a function of X and
Y ). As we do not relate in this theorem the round complexity of ρ to that of π, we may
assume that in the protocol π every message is just a bit (and the turn to communicate
does not necessarily alternate). In other words, the protocol tree has binary branching.
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Given her input x, Alice knows the distribution of Π|x, and she can hence compute
the conditional probability Pr[π(X,Y ) = t|X = x] for each leaf t of the protocol tree.
We will use the notation wa(t|x) for this conditional probability. Likewise Bob computes
wb(t|y) = Pr[π(X,Y ) = t|Y = y]. Now it must hold that π(x, y) is the unique leaf such
that both wa(t|x), wb(t|y) are positive. Alice and Bob then proceed in stages to find that
leaf: at a given stage they have agreed that a certain partial transcript, which is a node
in the protocol tree of π, is a prefix of π(x, y). Then each of them chooses a candidate
transcript, which is a leaf extending their partial transcript (the candidate transcripts
of Alice and Bob may be different). Then they find the largest common prefix (lcp) of
their two candidate transcripts, i.e., find the first bit at which their candidate transcripts
disagree. Now, because one of the players actually knows what that bit should be (that
bit depends either on x or on y), the player who got it wrong can change her/his bit to
its correct value, and this will give the new partial transcripts they agree upon. They
proceed this way until they both know π(x, y).

It will be seen that the candidate leaf can be chosen in such a way that the total
probability mass under the nodes they have agreed upon halves at every correction, and
this will be enough to show that Alice will only need to correct her candidate transcript
H(Π|X) times (and Bob H(Π|Y ) times) on average. Efficient protocols for finding the
lcp of two strings will then give us the required bounds.

We first construct an interactive protocol that makes use of a special device, which
we call lcp box. This is a conceptual interactive device with the following behavior: Alice
takes a string u and puts it in the lcp box, Bob takes a string v and puts it in the lcp
box, then a button is pressed, and Alice and Bob both learn the largest common prefix
of u and v. Using an lcp box will allow us to ignore error events until the very end of the
proof, avoiding an annoying technicality that offers no additional insight.

Lemma 4.2. For any given probability distribution µ over input pairs and for every
deterministic protocol π with information cost I (w.r.t. µ) and worst case communication
C there is a deterministic protocol ρ̃ with zero communication computing the same function
with the same error probability (w.r.t. µ) as π, and using lcp box for C-bitstrings at most
I times on average (w.r.t. µ).

Proof. On inputs x and y, in the new protocol ρ̃Alice and Bob compute weights wa(t|x), wb(t|y)
of every leaf of the protocol tree of π, as explained above. Furthermore, for every binary
string s let wa(s|x) denote the sum of weights wa(t|x) over all leaves t under s. Define
wb(s|y) in a similar way.

The protocol ρ̃ runs in stages: before each stage i Alice and Bob have agreed on a
binary string s = si−1, which is a prefix of π(x, y). Initially s = s0 is empty.

On stage i Alice defines the candidate transcript ta as follows: she appends 0 to
s = si−1 if wa(s0|x) > wa(s1|x) and she appends 1 to s otherwise. Let s′ denote the
resulting string. Again, she appends 0 to s′ if wa(s′0|x) > wa(s′1|x) and she appends 1
to s′ otherwise. She proceeds in this way until she gets a leaf of the tree (by construction
its weight is positive). Bob defines his candidate transcript tb in a similar way. Then
they put ta and tb in the lcp box and they learn the largest common prefix s′ of ta and
tb. By construction both wa(s′|x) and wb(s′|y) are positive and hence s′ is a prefix of
π(x, y). Recall that no leaf of the protocol tree is a prefix of another leaf. Therefore either
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s′ = ta = tb, in which case they stop the protocol, as they both know π(x, y). Or s′ is a
proper prefix of both ta and tb. If the node s′ of the protocol tree belongs to Alice, then
Bob’s next bit is incorrect, and otherwise Alice’s next bit is incorrect. They both add the
correct bit to s′ and let si be the resulting string.

Each time Alice’s bit is incorrect wa(s|x) decreases by a factor of 1/2, and similarly
each time Bob’s bit is incorrect wb(s|y) decreases by a factor of 1/2. At the start we have
wa(s|x) = wb(s|y) = 1 and at the end we have wa(s|x) = wa(π(x, y)|x) and wb(s|y) =
wb(π(x, y)|y). Hence they use lcp box at most

log2 1/wa(π(x, y)|x) + log2 1/wb(π(x, y)|y)

times. By definition of the conditional entropy the average of log2 1/wa(π(X,Y )|X) is
equal to H(Π|X) and the average of log2 1/wb(π(X,Y )|Y ) equals H(Π|Y ). Thus Alice
and Bob use lcp box at most I times on average.

Now we have to transform the protocol of Lemma 4.2 to a randomized public-coin
protocol computing f that does not use an lcp box, with additional error δ. The use of
an lcp box can be simulated with an error-prone implementation:

Lemma 4.3 ([FPR94]). For every positive ε and every natural C there is a randomized
public-coin protocol such that on input two C-bit strings x, y, it outputs the largest common
prefix of x, y with probability at least 1 − ε; its worst-case communication complexity is
O(log(C/ε)).

From this lemma we obtain the following corollary.

Lemma 4.4. For every positive δ any protocol ρ̃ to compute f : {0, 1}n×{0, 1}n → Z that
uses an lcp box ` ≤ 2n times on average for strings of length at most C can be simulated
with error δ by a protocol ρ that does not use an lcp box, and communicates O(` log(2Cn

δ ))
bits more on average.

Proof. The protocol ρ simulates ρ̃ by replacing each use of the lcp box with the protocol
given by Lemma 4.3 with some error parameter ε (to be specified later). The simulation
continues while the total communication is less than n. Once it becomes n, we stop the
simulation and Alice just sends her input to Bob.

Notice that the additional error probability introduced by the failure of the protocol
of Lemma 4.3 is at most ε`: for each input pair (x, y) the error probability is at most
εi(x, y), where i(x, y) stands for the number of times we invoke lcp box for that particular
pair, and the average of εi(x, y) over (x, y) equals ε`. Thus if we take ε ≤ δ/`, the error
probability introduced by failures of the lcp box is it most δ.

Each call of lcp box costs O(log(C/ε). Thus the communication of ρ is at most

O(` log(C/ε)) + (`ε)(2n)

more on average than that of ρ̃. Here the first term is an upper bound for the average
communication over all triples (x, y, randomness for lcp box) such that no lcp failure
occurs and the second term accounts for the average communication over all remaining
triples.

Let ε = δ/2n (which is less than δ/`, as we assume that ` ≤ 2n) so that the average
communication be at most O(` log(2Cn

δ ) + `δ) = O(` log(2Cn
δ )).
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We are now able to finish the proof of the theorem. Notice that the information cost
of the initial protocol is at most 2n. Hence we can apply Lemma 4.4 for ` = I to the
protocol of Lemma 4.2. The average communication of the resulting protocol ρ is at most
O(I · log(2Cn/δ)).

The proof of Theorem 4.1 offers no guarantee on the number of rounds of the com-
pressed protocol ρ. It is possible to compress a public-coin protocol on a round-by-round
basis while preserving, up to a multiplicative constant, the total number of rounds used.

Theorem 4.5. Suppose there exists a public-coin protocol π to compute f : {0, 1}n ×
{0, 1}n → Z over input distribution µ with error probability δ′, and let I = ICµ(π) and
q = RC(π). Then for every positive δ there exists a public-coin protocol ρ that computes f
over µ with error δ′+δ, and with ACCµ(ρ) = O(I+1)+q log(nq/δ) and ARCµ(ρ) = O(q).

Proof. Again it suffices to prove the theorem for deterministic protocols π. The idea of
the proof is to show the result one round at a time. In round i, Alice, say, must send a
certain message mi to Bob. From Bob’s point of view, this message is drawn according to
the random variable Mi = Mi(X̃, y,m1, . . . ,mi−1) where X̃ is Alice’s input conditioned
on Bob’s input being y and on the messages m1, . . . ,mi−1 that were previously exchanged.
We will show that there is a sub-protocol σi that can simulate round i with small error
by using constantly-many rounds and with

O(H(Mi|y,m1, . . . ,mi−1)) = O(I(X : Mi|y,m1, . . . ,mi−1))

bits of communication on average. Then putting these sub-protocols together, and trun-
cating the resulting protocol whenever the communication is excessive, we obtain the
protocol ρ which simulates π.

The procedure to compress each round is achieved through an interactive variant of the
Slepian-Wolf theorem ([SW73, RW05, BKV08]). We could not apply the known theorems
directly, however, since they were made to work in different settings.

In a similar fashion to the proof of Theorem 4.1, we will make use of a special interactive
device, which we call a transmission µ-box, where µ is a probability distribution over input
pairs (X,Y ). Its behavior is as follows: one player takes a string x and puts it in the
transmission box, the other player takes a string y and puts it in the box, a button is
pressed, and then the second player knows x. The usage of a transmission µ-box is charged
in such a way that the average cost when the input pair (X,Y ) is drawn at random with
respect to µ is O(H(X|Y ) + 1) bits of communication and O(1) rounds.

Lemma 4.6. Let π be any deterministic q-round protocol, and let µ be the distribution
of the inputs (X,Y ). Then there exists a deterministic protocol ρ̃ that makes use of the
transmission box (each time for a different distribution) to achieve the following properties.

1. The average communication of ρ̃ is ACCµ(ρ̃) = O(ICµ(π) + q);

2. The average number of rounds of ρ̃ is ARCµ(ρ̃) = O(q);

3. ρ̃ uses a transmission box q times; and

4. After ρ̃ is run on the inputs x, y, both players know π(x, y).
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Proof. Let π<j(x, y) denote the sequence of messages sent by π in the first j − 1 rounds
for inputs x, y. The protocol ρ̃ simulates π on a round-per-round basis.

Assume that in the new protocol j − 1 rounds were played. Let m<j denote the
sequence of j − 1 messages sent earlier and let x, y stand for inputs. Assume further that
in jth round of π Alice has to communicate. Her message is a function M of the sequence
m<j and her input x. Let ν denote the probability distribution on pairs (m, y) where

ν(m, y) = Pr[M(X,m<j) = m, Y = y|π<j(X,Y ) = m<j ].

In round j of protocol ρ̃, Alice puts the string M(x,m<j) into the transmission ν-box and
Bob puts there his input y and they press the button. If it is Bob’s turn to communicate,
then they reverse their positions.

Items 2, 3 and 4 from the statement of the Lemma follow from construction of ρ̃ and
from the description of the transmission box. It remains to bound the average communi-
cation length of ρ̃. Again by assumption on transmission box, the average communication
in round j is at most O(Ij + 1) where

Ij = H(M(X,π<j(X,Y ))|Y, π<j(X,Y )),

if it is Alice’s turn to communicate and

Ij = H(M(Y, π<j(X,Y ))|X,π<j(X,Y )),

otherwise. From the chain rule (Fact 2.4) it follows that the sum of Ij over all j of the
first type is equal to I(Π : X|Y ), while that the sum of Ij over all j of the second type is
equal to I(Π : Y |X).

To proceed we need a protocol simulating the transmission box.

Lemma 4.7 (Constant-round average-case one-shot Slepian–Wolf). Let µ be the distri-
bution of the inputs (X,Y ). For every positive ε there is a public-coin communication
protocol with the following properties:

1. For all fixed x, y, after execution of the protocol Bob learns x with probability at least
1− ε.

2. When (X,Y ) are drawn according to µ, the protocol communicates

O(H(X|Y ) + 1) + log(1/ε)

bits in O(1) rounds on average.

Contrast this to the classical Slepian–Wolf theorem, where Alice and Bob are given
a stream of i.i.d. pairs (X1, Y1), . . . , (Xn, Yn), and Alice gets to transmit X1, . . . , Xn by
using only one-way communication, and with an amortized communication of H(X|Y ).

Proof. Let y be Bob’s given input. For a given x in the support of X, let p(x) = Pr[X =
x|Y = y], and for a given subset X of the same support, let p(X ) = Pr[X ∈ X |Y = y].
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Then Bob begins by arranging the x’s in the support of X by decreasing order of the
probability p(x). He then defines the two sets

X1 = {x1, . . . , xi(1)}, Z1 = X1,

where i(1) is the minimal index which makes p(X1) ≥ 1/2. Inductively, while Zk 6= X, he
then defines:

Xk+1 = {xi(k)+1, · · · , xi(k+1)}, Zk+1 = Zk ∪ Xk+1,

where i(k + 1) > i(k) is the minimal index which makes p(Xk+1) ≥ 1−p(Zk)
2 . I.e. Xk+1 is

the smallest set which takes the remaining highest-probability x’s so that they total at
least half of the remaining probability mass.

Because at least one new xi is added at every step, this inductive procedure gives
Bob a finite number of sets Z1, . . . ,ZK = X. Then the protocol consists of applying the
protocol of the following lemma, which will be proved later.

Lemma 4.8. For every natural m and every positive ε there is exists a randomized public-
coin protocol with the following behavior. Suppose that Bob is given a family of finite sets
Z1 ⊆ · · · ⊆ ZK ⊂ {0, 1}m and Alice is given a string z ∈ ZK . Then the protocol transmits
z to Bob, except with a failure probability of at most ε. For k the smallest index for which
z ∈ Zk, the run of this protocol uses at most 2k+ 1 rounds and 2 log |Zk|+ log 1

ε + 4k bits
of communication.

Now let us bound the average number of rounds and communication complexity. First
notice that p(Xk) ≤ 21−k, and hence, taking the average over Alice’s inputs, we find that

K∑
k=1

p(Xk)4k = O(1)

must upper bound the average number of rounds, as well as the contribution of the 4k
term to the average communication. To upper-bound the contribution of the 2 log |Zk|
term, we first settle that:

(i) p(Xk) ≤ 2p(Xk+1) + 2p(xi(k)), which can be seen by summing two inequalities that
follow from the minimality of i(k) in the definition of Xk:

p(Xk)− p(xi(k)) ≤
1− p(Zk−1)

2 ,
1− p(Zk)

2 ≤ p(Xk+1),

after which we get
p(Xk)

2 − p(xi(k)) ≤ p(Xk+1).

(ii) |Zk| ≤ 1
p(x) for any x ∈ Xk+1 ∪ {xi(k)}, which follows since every x′ ∈ Zk has a

higher-or-equal probability than the x’s in Xk+1 ∪ {xi(k)}, but the sum of all the
p(x′) still adds up to less than 1.

Now we are ready to bound the remaining term in the average communication:
K∑
k=1

p(Xk) log |Zk| ≤ 2
K−1∑
k=1

p(Xk+1) log |Zk|+ p(XK) log |ZK |+ 2
K∑
k=1

p(xi(k)) log |Zk|
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≤ 5
∑
x

p(x) log 1
p(x) = O(H(X|Y = y));

above, the first inequality follows from (i), and the second from (ii).

Proof of Lemma 4.8. The protocol is divided into stages and works as follows. On the
first stage, Bob begins by sending the number `1 = log |Z1| in unary to Alice, and Alice
responds by picking L1 = `1 + log 1

ε + 1 random linear functions f (1)
1 , . . . , f

(1)
L1

: Zn2 → Z2

using public randomness, and sending Bob the hash values f (1)
1 (z), . . . , f (1)

L1
(z). Bob then

looks for a string z′ ∈ Z1 that has the same hash values he just received; if there is such
a string, then Bob says so, and the protocol is finished with Bob assuming that z′ = z.

Otherwise, the protocol continues. At stage k, Bob computes the number `k = log |Zk|,
and sends the number `k − `k−1 in unary to Alice; Alice responds by picking Lk =
`k − `k−1 + 1 random linear functions f (k)

1 , . . . , f
(k)
Lk

, whose evaluation on z she sends over
to Bob. Bob then looks for a string z′ ∈ Zk that has the same hash values for all the hash
functions which were picked in this and previous stages; if there is such a string, then Bob
says so, and the protocol is finished with Bob assuming that z′ = z. If the protocol has
not halted in K rounds, Alice just sends her input to Bob.

An error will occur whenever a z′ 6= z is found that has the same fingerprint as
z. The probability that this happens at stage k for a specific z′ ∈ Zk is 2−L, where
L = `k + k + log 1

ε is the total number of hash functions picked up to this stage. By a
union bound, the probability that such a z′ exists is at most |Zk|2−`k ε

2k ≤
ε

2k . Again by
a union bound, summing over all stages k we get a total error probability of ε.

To bound the communication for z ∈ Zk, notice that sending all `1. . . . , `k costs Bob
at most log |Zk| + k bits of total communication5, that the total number of hash values
sent by Alice is at most log |Zk| + 2k + log 1

ε , and that Bob’s reply (saying whether the
protocol should continue) costs him k bits. �

From Lemma 4.7 we get an analogue of Lemma 4.4.

Lemma 4.9. For every positive δ any protocol ρ̃ to compute f : {0, 1}n × {0, 1}n → Z
that uses transmission boxes q times can be simulated with error δ by a protocol ρ that
does not use transmission boxes, and communicates q log( qnδ ) + 1 bits more.

Proof. The protocol ρ simulates ρ̃ by replacing each use of a transmission box with the
protocol given by Lemma 4.7 with some error parameter ε (to be specified later). The
simulation continues while the total communication is less than n. Once it becomes n, we
stop the simulation and Alice just sends her input to Bob.

The additional error probability introduced by the failure of the protocol of Lemma 4.7
is at most qε. Assuming that ε ≤ δ/q, the error probability introduced by a transmission
box failure is it most δ.

Each call of a transmission box costs log(1/ε) bits of communication more than we
have charged the protocol ρ̃. Thus the communication of ρ is at most

q log(1/ε) + (qε)(2n)
5We have added 1 bit per message because, sending `i ones to Alice, Bob should append them by a

zero—recall that the messages must form a prefix free set.
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longer than that of ρ̃. Let ε = δ/qn so that the communication of ρ be at most

q log(qn/δ) + δ/2 ≤ q log(qn/δ) + 1

more than that of ρ̃.

We are able now to finish the proof of the theorem. Applying Lemma 4.9 to the
protocol of Lemma 4.6 we get the desired protocol.

5 Applications

From the combination of Theorems 3.1 and 4.5, and Observation 1, we can obtain a new
compression result for general protocols.

Corollary 5.1. Suppose there exists a mixed-coin, q-round protocol π to compute f
over the input distribution µ with error probability ε, and let C = CC(π), I = ICµ(π),
n = log |X |+ log |Y|. Then there exists a public-coin, O(q)-average-round protocol ρ that
computes f over µ with error ε+ δ, and with

CC(ρ) ≤ O
(
I + q log

(
qnC

δ

))
. (3)

As we will see in the following sub-section, this will result in a new direct sum theorem
for bounded-round protocols. In general, given that we have already proven Theorem
4.1, and given that this approach shows promise in the bounded-round case, it becomes
worthwhile to investigate whether we can prove Conjecture 3.2 with similar techniques.

5.1 Direct-sum theorems for the bounded-round case

The following theorem was proven in [BBCR10]:

Theorem 5.2. ([BBCR10], Theorem 12.) Suppose that there is a q-round protocol
πk that computes k copies of f with communication complexity C and error ε, over the
k-fold distribution µk. Then there exists a q-round mixed-coin protocol π that computes a
single copy of f with communication complexity C and the same error probability ε, but
with information cost ICµ(π) ≤ 2C

k for any input distribution µ.

As a consequence of this theorem, and of Corollary 5.1, we will be able to prove a
direct sum theorem. The proof is a simple application of Theorem 5.2, and Corollary 5.1.

Theorem 5.3 (Direct sum theorem for the bounded-round case). There is some constant
d such that, for any input distribution µ and any 0 < ε < δ < 1, if f requires, on average,

C + q log
(
qnC

δ − ε

)
bits of communication, to be computed over µ with error δ in dq (average) rounds, then
f⊗k requires kC bits of communication, in the worst case, to be computed over µ⊗k with
error ε in q rounds.
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5.2 Comparison with previous results

We may compare Corollary 5.1 with the results of [BR11]. In that paper, the nC factor
is missing inside the log of equation (3), but the number of rounds of the compressed
protocol is O(q log I) instead of O(q). A similar difference appears in the resulting direct-
sum theorems.

We remark that the compression of Jain et al. [JPY12] is also achieved with a round-
by-round proof. Our direct-sum theorem is incomparable with their more ambitious
direct-product result. It is no surprise, then, that the communication complexity of their
compression scheme is O( qIδ ), i.e., it incurs a factor of q, whereas we pay only an additive
term of Õ(q). However, their direct-product result also preserves the number of rounds
in the protocol, whereas in our result the number of rounds is only preserved within a
constant factor.

6 Alternative constructions and matching lower bounds

6.1 A different upper bound on the degree of matching graphs

Lemma 6.1. For all integer ` ≤ m and positive δ there is an (m, `, d, δ)-matching graph
with d = (2 + (m− `) ln 2)/δ2 + ln(1/δ)/δ.

Proof. We show the existence of such a graph using a probabilistic argument. Let A and B
be any sets ofM = 2m left and L = 2` right nodes, respectively. Construct a random graph
G by choosing d random neighbors independently for each u ∈ A. Different neighbors of
the same node u are also chosen independently, thus they might coincide. For any A′ ⊆ A
of size L, let EA′ be the event that GA′∪B does not have a matching of size L(1− δ), and
let Bad :=

∨
A′ EA′ . Note that the lemma holds if Pr[Bad] < 1.

Next, we bound Pr[EA′ ]. Let A′ = {u1, . . . , uL} be any set of L left nodes. Let N (u)
denote the neighborhood of a vertex u. Consider the following procedure for generating
a matching for GA′∪B:

Find-Matching
1 Matching← ∅
2 V ← ∅
3 for i← 1 to L
4 if N (ui) 6⊆ V
5 pick arbitrary vi ∈ N (ui) \ V
6 Matching← Matching ∪ {(ui, vi)}
7 V ← V ∪ {vi}
8 return Matching

Define the indicator variables X1, . . . , XL as follows: Xi = 1 if the the condition in the
4th line of Find-Matching is true and 0 otherwise. From the definition of these variables
it follows that for all i and all b = (b1, . . . , bi) ∈ {0, 1}i the conditional probability of
Xi+1 = 0 given X1 = b1, . . . , Xi = bi is equal to

(|b|/L)d,
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where |b| stands for Hamming weight of vector b, i.e. the number of 1s in b = (b1, . . . , bi).
Consider also similar random variables Y1, . . . , YL where the distribution of Y1, . . . , YL is
defined by the formula

Pr[Yi+1 = 0|Y1 = b1, . . . , Yi = bi] =
{

(|b|/L)d, if |b| < (1− δ)L,
1, if |b| ≥ (1− δ)L.

In terms ofX1, . . . , XL the event EA′ happens iff theX1+· · ·+XL < (1−δ)L. For every
string b of Hamming weight less than (1− δ)L the probabilities Pr[X = b] and Pr[Y = b]
coincide. Thus it suffices to upper bound the probability Pr[Y1 + · · ·+YL < (1− δ)L]. To
this end consider independent random variable Z1, . . . , ZL ∈ {0, 1}, where the probability
of Zi = 1 is (1− δ)d.

Claim 1. Pr[|Y | < (1− δ)L] ≤ Pr[|Z| < (1− δ)L].

Proof. We prove this using the coupling method. We claim that there is a joint distribution
of Y and Z such that the marginal distributions are, as defined above, and with probability
1 it holds that Zi ≤ Yi for all i. This joint distribution is defined by the following process:
we pick L independent reals r1, . . . , rL ∈ [0; 1] and let

Zi =
{

0, if ri < (1− δ)d;
1, otherwise.

Yi =

0, if ri <
(
Y1+···+Yi−1

L

)d
and Y1+···+Yi−1

L < 1− δ;
1, otherwise.

We claim that the inequality Zi ≤ Yi (holding with probability 1) implies that for for
every downward closed set E ⊂ {0, 1} it holds Pr[Y ∈ E] ≤ Pr[Z ∈ E] (we call a set E
downward closed if b ∈ E and b′ ≤ b, component-wise, implies b′ ∈ E). Indeed,

Pr[Y ∈ E] ≤ Pr[Y ∈ E,Z ∈ E] ≤ Pr[Z ∈ E],

where the first inequality holds, since E is downward closed and thus Y ∈ E implies
Z ∈ E. The set of Boolean vectors b ∈ {0, 1}L of Hamming wight less than (1 − δ)L is
downward closed hence the statement.

By this lemma it suffices to upper bound the probability

Pr[Z1 + · · ·+ ZL < (1− δ)L],

which can be obtained by Chernoff bound.
Let S :=

∑
(1 − Zi), and let µ := E[S], p = (1 − δ)d. Note that µ = pL. Also, let
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ψ := δ/p− 1. Using the multiplicative version of the Chernoff bound, we have

Pr[S > δL] = Pr[S > pL · (δ/p)]
= Pr[S > µ(1 + ψ)]

<

(
eψ

(1 + ψ)(1+ψ)

)µ
= exp

(
µ

(
δ

p
− 1− δ

p
ln(δ

p
)
))

< exp
(
µ

(
δ

p
− δ

p
ln(δ

p
)
))

= exp
(
pL

δ

p
(1− ln δ + ln p)

)
= exp (δL+ δL ln(1/δ) + δL ln p)
= exp (δL (1 + ln(1/δ) + ln p)) .

Thus for every set A′ of L left nodes we have Pr[EA′ ] < eδL(1+ln(1/δ)+ln p). There are(M
L

)
subsets of A of size L. By Stirling’s Formula, we have(

M

L

)
≤ (M)L

L! ≤
(
Me

L

)L
= exp(L(1 + lnM/L)) .

By union bound we have

Pr[BAD] ≤ exp (M(1 + lnM/L)) · exp (δM(1 + ln(1/δ) + ln p))
= exp (M +M lnM/L+ δM + δM ln(1/δ) + δM ln p)
< exp

(
M +M lnM/L+ δM + δM ln(1/δ)− dδ2M

)
< 1 ,

where the final inequality uses d = (2 + lnM/L)/δ2 + ln(1/δ)/δ.

6.2 A lower bound on the degree of matching graphs

Lemma 6.2. An (m, `, d, δ)-matching graph must have

d = Ω
(

min
(
m− `
δ

, δ2`
))

.

Proof. We will prove that in such a bipartite graph there must exist a left-set A of size
2m(1 − 4δ)d whose neighbours are contained in a right-set B of size (1 − 2δ)2`. If the
graph is a matching graph with said parameters, it must then follow that |A| ≤ 2`, hence
d ≥ (m− `)/ log(1− 4δ) = Ω((m− `)/δ).

We show this through the probabilistic method. Let us pick a random right-set B of
size (1− 2δ)2`. For a given left-node a, the probability that all its neighbours fall into B
is at least (

2` − d
(1− 2δ)2` − d

)/( 2`

(1− 2δ)2`

)
≥ (1− 2δ)d

(
1− 2d

2`
)d
.
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Under the assumption that d ≤ δ2`, the left-hand side is at least (1− 4δ)d.
It must then hold that for such random B, the expected number of left-nodes that

map into B is 2m(1− 4δ). Hence, for some choice of B, there will exist a left-set A of the
same size whose neighbours are all in B.

6.3 A lower bound for equation (2) of the proof of Lemma 3.5

Lemma 6.3. There is an `-discrete private-coin one-way protocol π, and a message m
sent by π, such that for J defined as in Lemma 3.5, it holds that

I(J : X|Mπ = m) = Ω(log `).

Proof. Suppose Alice is given an input X uniformly distributed over {x1, . . . , xN}, and
private randomness uniformly distributed over {r1, . . . , rN}, so that ` = logN . Let π be
a one-way protocol given by

Mπ(xj , rk) =

0 if k ≤
⌊
N
j+1

⌋
,

1 otherwise.

Then conditioned on Mπ = 0, we will have J(xj , rk) = k. Let M =
∑N
i=1b Ni+1c be the size

of M−1
π (0). Finally, let m denote the event Mπ = 0. Then

I(X : J |m) = H(X|m)−H(X|m,J)

=
N∑
j=1

1
M
·
⌊
N

j + 1

⌋
log M⌊

N
j+1

⌋ − N∑
k=1

1
M
·
⌊

N

k + 1

⌋
log

⌊
N

k + 1

⌋

= logM − 2
M

N∑
i=1

⌊
N

i+ 1

⌋
log

⌊
N

i+ 1

⌋
,

which is ≥ U iff:

2
N∑
i=1

⌊
N

i+ 1

⌋
log

⌊
N

i+ 1

⌋
≤M(logM − U) (4)

Let us denote the left-hand side with A and the right-hand side with B. Because N
x is

monotonically decreasing for x ≥ 1, then:

A ≤ 2
ln 2

∫ N+1

1

N

x
ln N
x
dx.

The relevant primitive is
∫ N
x ln N

x dx = −1
2N(ln N

x )2 and hence

A ≤ 2
ln 2

(
−1

2N
(

ln N

N + 1

)2
+ 1

2N(lnN)2
)

= 2
ln 2

(
N lnN ln(N + 1)− 1

2N(ln(N + 1))2
)
.
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We denote this last quantity by A′. Good bounds for M are:6

N lnN − 3N ≤M =
N∑
i=1

⌊
N

i+ 1

⌋
≤ N lnN +N

Let B′ := N lnN − 3N , so that B ≥ B′(logB′ − U). Then we will show that for an
appropriate choice of U ,

A′ ≤ B′(logB′ − U)

and hence A ≤ B and also I(X : J |m) ≥ U . Equivalently,

A′ −B′ logB′ +B′U ≤ 0 (5)

For convenience, let α = ln(N+1)
lnN (which goes to 1 as N goes to ∞). Then A′ =

1
ln 2N(lnN)2(2α−α2) and B′ logB′ = 1

ln 2N(lnN)2 + 1
ln 2N lnN ln lnN+O(N lnN). Now

the proof follows from the following:

Claim 2. N(lnN)2(2α− α2 − 1)→ − 1
N as N →∞.

Because under this claim, the dominant negative term in (5) is 1
ln 2N lnN ln lnN , and

thus all we need to do is set U to be c ln lnN for some c < 1
ln 2 , that this ensures (5) is

negative. For such a choice of U , it will hold that

I(X : J |m) ≥ U = c ln lnN = Ω(log `).

Unfortunately, l’Hopital’s rule does not seem to help us, as the terms become too
complicated. Instead we estimate how fast (2α − α2 − 1) approaches 0 as N goes to
infinity. For this, let β = ln( 1

x
+1)

ln 1
x

and let us estimate β as x approaches 0. For x close to,
but different than, 0, we have:

β = 1− 1
ln x ln(x+ 1) = 1− x

ln x + x2

2 ln x ±O
(
x3

ln x

)

(the last equality is by the Taylor expansion of ln(x+ 1) around 0). We also have

β2 =
(

1− x

ln x + x2

2 ln x −O
(
x3

ln x

))2

= β − x

ln x + x2

(ln x)2 + x2

2 ln x ±O
(

x3

(ln x)2

)
.

Hence,

2β − β2 = 1− x2

(ln x)2 ±O
(

x3

(ln x)2

)
.

From this we can conclude that for x = 1/N , we have

2α− α2 − 1 = − 1
N2(lnN)2 ±O

( 1
N3(lnN)2

)
,

and our claim follows.
6This is because the harmonic numbers Hn =

∑n

i=1 1/i converge to logN+γ for the Euler–Mascheroni
constant γ ≈ 0.577.
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A Proof of Observation 1

Proof. Let π be given by its protocol tree; for each node v, let its corresponding function
be Mv : X ×R → C(v) (if it is Alice’s node) or Mv : Y ×Rv → C(v).

We let π′ be given by the same protocol tree but where the functions Mv are restricted
to a finite set R′v of size ≤ k = 210`, with ` = log |X ||Y|+ CC(π). Hence by construction
π′ has the same worst-case communication and number of rounds as π.

Let Rv be a random variable uniformly distributed over Rv and R′v be a random
variable uniformly distributed over R′v.

Claim 3. For any node v of Alice’s there is a choice of R′v of given size such that

|Pr[Mv(x,Rv) = m]− Pr[Mv(x,R′v) = m]| ≤ 2−4`

for every x and m. The obvious analogue holds for Bob’s nodes.

We prove that R′v exists by the probabilistic method. Let R̃ = {r1, . . . , rk} be a
random variable which is a multiset obtained by picking k elements uniformly from Rv,
and define R′v as the random variable which picks an element ri ∈ R̃ uniformly at random
(counting multiplicities). Let Pm denote the random variable that is

Pm = Pr[Mv(x,R′v) = m] =
∑k
i=1[Mv(x, ri) = m]

k
.

By linearity of expectation we find that:

E[Pm] =
∑k
i=1 E[Mv(x, ri) = m]

k
= Pr[Mv(x,Rv) = m].
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And hence by Hoeffding’s inequality we conclude that:

Pr[|Pm − Pr[Mv(x,Rv) = m]| > 2−4`] ≤ 2 exp
(
−2k2−8`

)
� 2−`.

Hence by a union bound there must exist a choice for R̃ such that

|Pm − Pr[Mv(x,Rv) = m]| ≤ 2−4`

holds for every x and m; this choice is R′v.
Now fix x, y; from the claim it follows that for any transcript t,

|Pr[π(x, y) = t]− Pr[π′(x, y) = t]| ≤ 2−3`,

which in turn implies that

∆
(
Π(x, y, rA, rB),Π′(x, y,R′(a),R′(b))

)
≤ 2−2`.

This results in a difference of ≤ 2−` in success probability, average communication com-
plexity, and average number of rounds, for any given input distribution.

To prove that there is a small difference in information cost, note that:

I(Π : X|Y ) = H(π(X,Y,R)|Y )−H(π(X,Y,R)|X,Y ),

and then use Fact 2.8 conclude that

1. |H(π(X,Y,R)|Y = y)−H(π′(X,Y,R′)|Y = y)| = O(1) for all y, and

2. |H(π(X,Y,R)|X = x, Y = y)−H(π′(X,Y,R′)|X = x, Y = y)| = O(1) for any x, y,
and hence

3. |I(Π : X|Y )− I(Π′ : X|Y )| = O(1),

Now, by a symmetric reasoning for Bob, we find that |ICµ(π)− ICµ(π)| = O(1).

29

 

ECCC                 ISSN 1433-8092 

http://eccc.hpi-web.de 


