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Abstract. In graph streaming a graph with n vertices and m edges is
presented as a read-once stream of edges. We obtain an Ω(n logn) lower
bound on the space required to decide graph connectivity. This improves
the known bounds of Ω(n) for undirected and Ω(m) for sparse directed
graphs. We develop a method of ramifying inessential differences into
significant differences. For graph connectivity, this yields a crisp lower
bound (with no undetermined constants) of n logn − n(log log n + 3/2)
bits, via lower bounds for the Bell numbers and a pigeonhole argument.
This lower bound is close to the ndlogne + 3dlogne + dlogdlognee + c
upper bound for an algorithm maintaining a disjoint-partition data struc-
ture, and which is therefore essentially optimal. We also apply difference
ramification to min-cut, for a crisp lower bound of n(n− 1)/2 bits.

1 Introduction

In graph streaming, the input is a graph with n vertices and m edges, presented
as a read-once stream of edges. The streaming model was proposed to capture
problems where the input is too large to fit into random-access memory, but
where a smaller data structure may be enough to decide whether the input
satisfies some property [7]. Logarithms are base 2.

Our contributions Lower-bound arguments in graph streaming usually rely on
reductions from problems for which communication complexity lower bounds
are known. Such bounds can only be as powerful as the bounds on the problem
being reduced from: the known lower bound of Ω(n) bits of space for deciding
if the input graph is connected is the bound for set disjointness [7,5]. With a
reduction from a graph connectivity game, we improve this to Ω(n log n) bits.

We then formalise a streaming machine model. Our key contribution is a
reduction-free technique to show space lower bounds by difference ramification.
We use difference ramification to obtain crisp space lower bounds, free of un-
determined constant factors that are implicit in the order notation of previous
bounds. We show that at least n log n − n(log log n + 3/2) bits of space must
be used to decide graph connectivity. This nearly matches the upper bound of
ndlog ne + 3dlog ne + dlogdlog nee + c bits that can be achieved by updating a
partition of vertices for the connected components, merging two components
when an edge arrives that connects them. This simple streaming algorithm is
therefore essentially optimal.
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We employ a generalized pigeonhole argument to compare the partitions of
streams that relate to states of a data structure with partitions of streams that
relate to states of a deterministic streaming machine. If the space restriction is so
severe that there are not enough possible states, then there is some state of the
streaming machine that can be obtained from two different input streams, while
also corresponding to two different configurations of the data structure. We start
with these two different input streams. We then ramify the differences between
the input streams, as reflected in differences in the associated data structures,
into a difference in output state. We do this by constructing a single suffix stream
which maintains this difference when processed by the stream machine, until one
of the states of the data structure has the desired property, while the other fails
to have it. Since the deterministic stream machine was in the same state for both
input streams, and then received the same suffix stream, it cannot distinguish
these two different inputs. Hence it must use at least as much space as avoids this
outcome; this establishes the desired space lower bound. We make the argument
without reference to the streaming machine, so the bound holds for all streaming
machines. This sideways argument, deriving bounds for streaming machines by
considering a data structure that is associated with the problem and not any
particular streaming machine, is the major novelty of our approach.

Difference ramification yields a lower bound of n(log n−log log n−1−log n/n)
bits of space to determine graph connectivity on a streaming machine, avoiding
undetermined constant factors. We also demonstrate the general applicability of
stream difference ramification, by applying this technique to derive crisp lower
bounds for other problems: deciding which of two numbers is larger, deciding
whether a directed graph has no sinks, and deciding whether a graph has a min-
cut of given magnitude. This latter application improves a recent Ω(n2) lower
bound to n(n− 1)/2 bits, so the entire graph must be kept in memory to decide
min-cut. Table 1 lists the crisp and asymptotic bounds for each problem.

Related work In a circuit model, JáJá showed that two parties must exchange
Ω(n log n) bits to compute graph connectivity [8, Theorem 3.3]. Hajnal, Maass,
and Turán showed an Ω(n log n) lower bound on the two-party communication
complexity of graph connectivity [6]. This result appears to have been overlooked
for streaming lower bounds. We remedy this oversight, obtaining an improved
lower bound in Proposition 2 on the streaming complexity of graph connectivity.

Feigenbaum et al. showed that directed graph s-t connectivity requires Ω(m)
bits of space, where m is the number of edges of the graph [4, Lemma 4]. The
proof exhibits a class of directed acyclic graphs which yield the lower bound. The
difference ramification technique we introduce complements their method, and
for sparse graphs withm = o(n log n) our bounds improve on theirs. For instance,
with k-regular graphs (for some fixed k), their method yields an Ω(kn/2) =
Ω(n) lower bound, while in Theorem 13 we show a concrete lower bound of
n log n − n(log log n + 1 + (log n)/n) + c bits for the easier problem of deciding
connectivity for undirected graphs.

Difference ramification is also a generalization of an argument by Zelke [11,
Lemma 12 and Theorem 13]. There, a sequence of (log n)-bit labels represents



Table 1. Summary of results

lower bound upper bound (+c) Θ(.) problem

n n n Example 1
n n+ dlogne+ dlogdlognee n Example 9
n logn− n(log logn+3/2) ndlogne+3dlogne+dlogdlognee n logn Theorem 13
n2/2− n/2 n(n− 1)/2 + 2dlogne n2 Example 15

the degrees of each of n vertices. This auxiliary data structure helps to show
that there must be two graphs leading to identical configurations of a machine
that finds a minimum cut if it uses o(n2) bits of space. These two different
graphs are then extended to graphs with different min-cut values. (Note that
the journal version omitted the direct argument in favour of a communication
complexity reduction [12].) In Section 3.5 we improve the lower bounds implicit
in [11, Theorem 13] by using our difference ramification machinery.

2 Preliminaries

Let [n] denote {1, 2, . . . , n}. Let M(x) denote the final state of Turing machine
M after processing input x (either accept or reject). A Turing machine M decides
L ⊆ S if M(x) is an accept state when x ∈ L and a reject state when x ∈ S \L.

A streaming machine is a restricted Turing machine. The input tape contains
a stream of items, which are read one at a time using a read-only head that travels
from the beginning of the tape to the end. The machine also has access to an
unbounded working tape (with a binary alphabet) supplied with a read-write
head. This is an abstraction of the streaming model introduced by Henzinger et
al. [7]. The streaming machines considered here are deterministic.

Write xy for the stream formed by concatenating streams x and y.
Let M be a deterministic streaming machine. Denote by sM (x) the overall

state of M (including the configuration of all storage used) when given as input
a stream xy, just prior to it checking for further input past the x prefix of the
stream. (The overall state is determined by x, so y can be arbitrary.) There may
be several intermediate states after x has been read but before the suffix y can
be read. Increasing the number of states would only serve to make our lower
bounds stronger, so we aggregate each such sequence of internal states into a
single overall state, ignoring the intermediate states. The size of overall state
sM (x), denoted |sM (x)|, is the number of bits of working space used in that
overall state. We adopt the convention that a streaming machine writes a binary
representation of its state to a special area of the working tape when its state
changes. The state of the machine is therefore included in its overall state.

The space used during computation by M for input stream z is |z|M =
sup{|sM (x)| | z = xy}, and for the class of inputs S is |S|M = sup{|x|M | x ∈ S}.
Cobham called this notion of space capacity [2]. In concrete terms, the space
used during a computation includes the total of sizes of all registers and internal
storage used by the machine, enough bits to represent all different internal states



in the transition table, and any random-access memory used. This also means
that the upper bounds we state include a constant c that depends on the number
of states in the transition table. Establishing optimal upper bounds then requires
finding the minimal size of transition table for machines deciding the problem.

A partition P of a set X is a set of disjoint non-empty subsets (known as
blocks) of X, such that the union of the blocks in P is the entire set X. A
partition X/ ≡ is said to be induced by an equivalence relation ≡ on set X if it
contains the blocks x≡ for each x ∈ X, where x≡ = {y ∈ X | x ≡ y}.

The following warm-up exercise illustrates our core pigeonhole argument,
which for this simple problem is similar to the crossing sequences technique for
general Turing machine space lower bounds [9].

Example 1. Let x and y be binary streams representing n-bit non-negative
integers. For an input stream xy, any streaming machine must use at least n
bits of space to correctly decide whether x < y, and n+ c bits is sufficient.

Proof. Suppose fewer than n bits of space are enough. Then there are two n-bit
numbers, say 0 ≤ a < b ≤ 2n − 1, such that sM (a) = sM (b). Now consider the
instances bb and ab. For each of these, M is in the same state sM (b) after the
n-bit prefix has been read. The suffix of both input streams is identical. As M is
deterministic, the state of M for both of these streams must remain identical, so
M(bb) = M(ab). Since a < b and b 6< b, the machine M must err when deciding
at least one of these instances. Hence at least n bits of space are required.

By simply storing x as it is being read, and then checking each bit against
the next bit of y, it is possible to decide the problem using n+c bits of space. ut

In Example 1, the trivial algorithm is essentially optimal. The only way it is
possible to save even one bit is to reduce the size of the transition table (i.e. the
size of an implementation of the algorithm). Section 3 deals with problems with
more structure; catering for the additional structure in the data structure leads
to overhead for the streaming machine.

3 Graph streaming bounds

A graph stream is presented as streams of pairs of vertices, representing edges
of the input graph. The pairs may be regarded as being directed or undirected,
depending on the problem setup. We note an improved streaming lower bound
for graph connectivity, based on a reduction from communication complexity,
before going on to develop a general technique. Our approach is based on con-
sidering partitions of the set of streams induced by various functions. The key
technical tools are a property of deterministic streaming machines, two general
properties that data structures used for deciding a problem should have, and the
Comparison Lemma, which is a convenient way to apply a general pigeonhole
principle to partitions (here, partitions of the set of streams). We also derive
and apply explicit bounds on the number of partitions of a set, to obtain lower
bounds for graph connectivity. In the final part we discuss an improvement to
the streaming lower bounds for deciding min-cut of a graph.



3.1 Graph connectivity via reduction

We first demonstrate an improved lower bound for graph streaming, via a reduc-
tion from communication complexity. This leads to an Ω(n log n) lower bound.

Proposition 2. A streaming machine that decides whether a graph is connected,
when the input graph is presented as a stream of edges with vertices from [n],
requires Ω(n log n) bits of space.

Proof. Instead of the traditional set disjointness reduction, we use a reduction
from the communication complexity bound for a graph connectivity game. In
this game, the edges of a graph are partitioned evenly between two parties, and
they must deterministically decide whether the graph formed by the union of
the two subgraphs is connected. Szemerédi’s Regularity Lemma then implies
that the parties must exchange Ω(n log n) bits to decide this problem [6].

Now suppose each party has access to a streaming machine that uses at most
b(n) bits of space to decide graph connectivity for an input graph with vertices
from [n]. The edges of the input graph are partitioned evenly between the parties,
and each party starts off by writing its edges on the input tape of its machine.

The first party allows its machine M to run until it has read the contents of
the input tape, but before it detects that there is no more input. It then sends
a description of the internal state of M to the second party. The second party
initializes the internal state of its machine M ′ to that received from the first
party, and runs M ′. The second party then reports the output of M ′ (with its half
of the stream as input) as the result of the computation. For this protocol, the
total amount of communication is then b(n) = Ω(n log n) bits. By the arbitrary
choice of machine M , this is then also a lower bound on the space used by any
streaming machine deciding this problem. ut

It appears that the reduction above was overlooked. Previous reductions
are from set disjointness, and therefore only show Ω(n) lower bounds. We now
discuss bounds that do not rely on communication complexity reductions.

3.2 A general lower bound technique

For a function f with domainX, letX/f denote {{y ∈ X | f(x) = f(y)} | x ∈ X},
the partition of X induced by (the equality relation with respect to) f .

Let S be a monoid with an associative binary operation that maps x and y to
xy. We usually let S be the set of all valid input streams for a class of streaming
machines under consideration, and the monoid operation xy then denotes the
stream formed by appending stream y (the suffix) to stream x (the prefix).

For the following definitions, let f be a function with domain S. We use
f−1(z) to denote the set {x | f(x) = z}, which may be empty.

Definition 3 (fixpoint maintenance). f maintains fixed points with respect
to the monoid operation on S if whenever f(x) = f(y), then f(xz) = f(yz) for
any z ∈ S.



Definition 4 (factor). h is a factor of f if there is a map g such that f = g◦h.

Definition 5 (difference ramification). f supports difference ramification
with respect to X ⊆ S if whenever x, y ∈ X and f(x) 6= f(y), then there is
some z ∈ S such that xz ∈ X iff yz 6∈ X. (We say that z certifies a significant
difference between x and y.)

Definition 6 (inessential differences). f suppresses inessential differences
with respect to X ⊆ S if whenever x, y ∈ S \X, then f(x) = f(y).

Note that if M decides L, then sM maintains fixed points with respect to
stream concatenation, and is also a factor of the function M .

Tying together the two requirements to support difference ramification and
to suppress inessential differences, we obtain a means for proving crisp streaming
lower bounds. A function satisfying both requirements maps streams satisfying
some property to a fixed value, but allows differences between the other streams
to be ramified. For good bounds, the function should keep the non-satisfying
streams apart as far as possible, while preserving some of the structure of the
problem. For instance, if the property in question is closed under isomorphism
of structures represented by the streams, then the function must also map all
streams without the property but with isomorphic structures to the same value.

Difference ramification relies on the following result.

Lemma 7 (Comparison Lemma). Suppose S is a monoid, h : S → {0, 1} is
a function, f : S → X is a function that supports difference ramification and
suppresses inessential differences with respect to h−1(0), and g is a factor of h
that maintains fixed points. Then |S/f | ≤ |S/g|.

Proof. Let L = h−1(1). Note that then S \ L = h−1(0).
Suppose there exist x, y ∈ S with g(x) = g(y) and f(x) 6= f(y). Then

h(x) = h(y) as g is a factor of h. As h can take only one of two values, either
both x ∈ L and y ∈ L, or both x ∈ S \ L and y ∈ S \ L. If the latter, then
as f supports difference ramification with respect to S \ L, there is z ∈ S such
that xz ∈ L iff yz ∈ S \ L. Hence h(xz) 6= h(yz). However, g(x) = g(y) so
g(xz) = g(yz), and g is a factor of h, so h(xz) = h(yz). This is a contradiction.
Therefore x, y ∈ L. Now f suppresses inessential differences with respect to S\L,
so f(x) = f(y). This is again a contradiction.

Hence for all x, y ∈ S, if g(x) = g(y) then f(x) = f(y). By the Axiom of
Choice if S/f is infinite, or unconditionally if S/f is finite, there is then an
injection from S/f to S/g. Hence |S/f | ≤ |S/g|. ut

For a problem decided by a deterministic streaming machine M , let g = sM ,
let h(x) = 1 if M(x) is an accepting state and let h(x) = 0 otherwise. The
following form of the Comparison Lemma is then usually more convenient.

Corollary 8. If there is a function f that supports difference ramification and
suppresses inessential differences with respect to S \ L, then any streaming ma-
chine deciding L must use at least dlog |S/f |e bits of space.



Note that Corollary 8 is a non-uniform lower bound; it does not require that
the streaming machines for one parameter n are the same as for another.

For a problem that can be decided by a deterministic streaming machine
M , there is always a function f satisfying the conditions of Corollary 8, as
f(x) = M(x) can be used to satisfy the conditions vacuously. However, collapsing
all streams into just two values gives a bound that is not useful. The challenge
in applying the Comparison Lemma is in finding a non-trivial function f that
keeps apart as many streams as possible, and proving it supports difference
ramification.

In the following example illustrating stream difference ramification with the
Comparison Lemma, we use a function which maps directed graph streams to
arrays with a fixed number of bits per vertex (in fact, just one bit).

Example 9. Consider the property “this directed graph has no sinks”. Fix some
positive integer n. Each stream in S consists of directed edges of a graph with
vertices [n]. This property can be decided by keeping an array of n bits, initially
all set to 0; whenever a directed edge (u, v) is seen, then the bit corresponding
to u is set to 1 indicating that u has at least one successor and is therefore
not a sink. After all edges have been read, the array will contain all 1 elements
precisely when the graph has no sinks. A streaming machine can decide this
property using at most n+dlog ne+dlogdlog nee+ c bits, for the indicator array,
one index variable, and a way to iterate over the bits of the index variable.

Let L ⊆ S be the set of streams that have the property that the directed
graph they represent has no sinks. Let f be the function mapping each stream
to such an array, indicating which of its vertices is known not to be a sink.
With respect to S \L, this function suppresses inessential differences since every
stream in L is mapped to the array with all 1 elements.

We claim that f also supports difference ramification with respect to S \ L.
Suppose x, y ∈ S \ L such that f(x) 6= f(y). Then (without loss of generality)
there is some bit set to 0 in f(x) and to 1 in f(y), corresponding to some vertex
u. Now create a stream z of edges containing each edge (v, u) where v 6= u. By
construction of stream z, the graph G(xz) contains sink u, while G(yz) contains
no sinks. Hence xz ∈ L while yz ∈ S \ L, proving our claim.

Now |S/f | ≤ 2n as f can take at most 2n different values, and |S/f | ≥ 2n as
each of the 2n possible states of the array can be obtained by a stream containing
as many edes as the number of 1 bits in the array. By the Comparison Lemma,
any streaming machine deciding this problem must then use at least n bits of
space. ut

We now apply the stream difference ramification method to two other prob-
lems. For graph connectivity, our next problem, it is crucial to count partitions
of a set of distinct objects. We therefore first examine bounds on this quantity.



3.3 Bounds on Bell numbers

The n-th Bell number Bn is the number of distinct partitions of [n] (these
are sometimes called set partitions). Counting partitions induced by different
functions yields the following bounds.

Proposition 10. For any integer n ≥ 2,

n log n− n(log log n+ 1 + (log n)/n) < logBn < n log n.

For n ≥ 2, rephrase Bn as log cn = (logBn)/n − (log n − log log n). Better
bounds follow from [1, Theorem 2.1] and [3, Section 6.2].

Corollary 11. For any integer n ≥ 2, −1.5 < log cn < 0.1924. Moreover, for
every ε > 0 there is n0 = n0(ε) such that −0.9139 · · · < log cn < −0.9139 · · ·+ ε
for all n ≥ n0. (The constant is −0.9139 · · · = log log e− log e.)

Since limn→∞(log n)/n = 0, the lower bound can be made arbitrarily close to
−1 by just using the bounds in Proposition 10 and choosing the threshold for n
large enough: for n ≥ 210, the bound already exceeds −1.01. No effective values
are known for the threshold n0 for the asymptotic value of cn. As the bounds
are of the form n log n+ o(n log n), we can also express them more simply.

Corollary 12. For any ε > 0, there is some positive integer n0 = n0(ε) such
that for any integer n ≥ n0, (1− ε)n log n < logBn < n log n.

3.4 Direct bounds for graph connectivity

We now consider bounds for graph connectivity.

Theorem 13. For an input stream x of edges of a graph with vertices from
[n], a deterministic streaming machine that correctly decides whether G(x) is
connected must use at least dlogBne bits of space. A deterministic streaming
machine can decide this problem using ndlog ne+3dlog ne+ dlogdlog nee+ c bits.

Proof. Let S be the set of all streams of edges with vertices from [n]. Denote by
G(x) the graph described by the stream of edges x ∈ S. Let L ⊆ S consist of
those streams x such that G(x) is connected. Let f(x) denote the partition of
the vertices of G(x) that represents the connected components of G(x).

If G(x) is connected, then f(x) contains just one block, so f suppresses
inessential differences with respect to S \ L. We claim that f also supports
difference ramification with respect to S \ L.

Suppose x, y ∈ S \ L with f(x) 6= f(y). Then there are two vertices u and v
in the same block W of (say) f(x) but in different blocks U 3 u and V 3 v of
f(y). We construct the suffix stream z explicitly as a concatenation z = z0z

′z′′

of three streams that all start empty. First colour vertices in U with ultramarine,
vertices in V with vermilion. The idea is now to add edges while keeping the
ultramarine and vermilion blocks apart. For each vertex w in [n] \ (U ∪ V ), add



an edge {v, w} to z0, and colour w vermilion. If f(xz0) has only one block, then
we are done. Otherwise it has at least two blocks. For each vermilion vertex w in
the blocks of f(xz0) not containing u and v, add an edge {v, w} to z′. Note that
both endpoints in such edges are vermilion, so f(yz0) = f(yz0z

′). If f(xz0z
′)

has only one block, we are done, so suppose it has at least two blocks. By the
construction of z′, all its blocks not containing u, v contain only ultramarine
vertices. Now add edges between these blocks, forming a stream z′′, collapsing
them into a single block. Again, these new edges do not affect the blocks of
f(yz0) = f(yz0z

′) = f(yz0z
′z′′). Now add an edge to z′′ connecting u and one of

these ultramarine vertices. Then f(xz0z
′z′′) has a single block, while f(yz0z

′z′′)
still has two. It follows that f supports difference ramification.

Every partition of [n] can be obtained from a stream of edges, so |S/f | = Bn.
The Comparison Lemma then implies that dlogBne bits of space are necessary
for any deterministic streaming machine that decides L.

For the upper bound, the following straightforward algorithm decides con-
nectivity. For any prefix x of the input stream of edges, maintain f(x), and
update it as new edges arrive. When there are no more edges to read, return
YES if every vertex is in the same block, or NO otherwise. We now sketch how
to implement this algorithm on a streaming machine. A simple upper bound on
the amount of space it uses will then serve as our bound.

The partition can be represented using n slots each of dlog ne bits, or ndlog ne
bits total. Each slot u indicates which block p(u) vertex u belongs to, and the
slots are initialized so that p(u) = u for each u. For each new edge {u, v} in the
input stream, if u and v currently belong to the same block then nothing is done,
otherwise merge the blocks p(u) and p(v). Specifically, when merging take the
larger of the partition number p(u) and p(v) (for argument’s sake, say p(v)) and
for every element w with p(w) = p(v), set p(w) to p(u). This requires at most
3dlog ne+dlogdlog nee bits in addition to the partition, to keep an index variable
which is used to iterate over the vertices, two registers for p(v) and p(u), and a
way of keeping track of the bits when comparing two values with dlog ne bits.
Hence the space usage is at most ndlog ne+ 3dlog ne+ dlogdlog nee+ c bits. ut

Theorem 13 and Proposition 10 together imply the following result.

Corollary 14. For any integer n ≥ 2, a streaming machine deciding if a graph
with n vertices is connected requires at least n log n−n(log log n+ 1 + (log n)/n)
bits of space. A streaming machine exists that decides this problem using at most
ndlog ne+ 3dlog ne+ dlogdlog nee+ c bits of space.

Corollary 12 and Theorem 13 together imply that (1 − ε)n log n bits are
necessary, with ε arbitrarily close to 0 for large enough n.

3.5 Direct bounds for graph cuts

Given a graph G, a cut is a partition {V1, V2} of the vertices V (G) with two
blocks. The value of the cut {V1, V2} is the total number of edges of E(G) with



one endpoint in V1 and the other in V2. The min-cut problem requires finding a
cut with minimum value. We work with the decision version, where a threshold
value is given as the first part of the input, and it must be determined whether
the min-cut is at least as small as the threshold.

Zelke uses the 2(n/8)(n/8−1)/2 graphs on n vertices to argue for an Ω(n2) lower
bound (see [11, Lemma 12 and Theorem 13]). If less than (n/8)(n/8− 1)/2 bits
are used by the streaming machine, then two distinct graphs from this set result
in the same state, and these are obtained from two different streams x and y.
Zelke then constructs a stream of edges z to ramify the difference between x and
y. From the proof a crisp lower bound of n2/512 − n/16 bits therefore follows.
The construction can be improved by a factor of roughly 256 to n(n−1)/2, using
difference ramification by a function that distinguishes between all graphs with
min-cut at most the threshold value.

Example 15. Min-cut requires at least n(n−1)/2 bits to decide on a streaming
machine with its input a stream of edges of a graph with vertices from [n]. Min-
cut can be decided with n(n− 1)/2 + 2dlog ne+ c bits.

Note that these bounds correspond to the threshold n−2; smaller thresholds
lead to smaller lower bounds and may also lead to smaller upper bounds.

4 Discussion and open questions

The Comparison Lemma yields lower bounds on the space required to decide a
problem. This relies on a function f that both supports difference ramification
and suppresses inessential differences. It should also be possible to bound from
below the cardinality of the set of values taken by the function, and for the
largest possible bounds, f should collapse as few elements as possible.

The main challenge lies in exhibiting a map f that supports difference ramifi-
cation. For two arbitrary streams x and y that do not have the desired property,
this requires constructing an appropriate suffix stream z that ramifies a differ-
ence in the data structures f(x) and f(y) associated with the two streams into an
essential difference between the two streams xz and yz. The construction of the
suffix stream does not rely on the generic machine M , but only on the data struc-
tures associated with the problem. If the data structure has some redundancy,
then there may be multiple distinct configurations that do not significantly differ
for ramification. Difference ramification can therefore be regarded as a method
that unifies proving lower bounds with finding appropriate data structures.

We have considered a small selection of problems, chosen to illustrate the
power of stream difference ramification. Other applications are possible.

Repeating edges in streams In the applications considered here, we have not
been concerned about repeated edges in a graph stream. It is straightforward to
remove unnecessary repeats from the streams certifying significant differences,
but in some cases (for instance for the min-cut result) some edges must occur
twice in one of the two streams during ramification. Can difference ramification
be applied if each input stream may only contain one copy of each edge?



Undirected s-t connectivity Directed s-t connectivity requiresΩ(m) bits to decide
with a one-pass streaming machine [5]. For dense graphs with m = Ω(n2) edges
this is Ω(n2) bits. In contrast, undirected s-t connectivity can be decided using
O(n log n) bits with a one-pass streaming machine, regardless of whether the
graphs are dense or sparse, by distinguishing partitions formed by connected
components. In a model without restrictions on how the input may be read,
logarithmic space is sufficient to decide undirected s-t connectivity [10]. This
prompts us to ask: how many passes are needed for a logspace-bounded streaming
machine to decide undirected s-t connectivity?

Optimal upper bounds To reduce the gap between the upper and lower bounds
for graph connectivity, the data structure could use dlogBne bits to represent
a unique name for each P (x). The difficulty is how to create such a naming
scheme. Whenever a new edge arrives, then it must be used to derive the new
partition name without using a significant amount of additional space.

Similarly, for the min-cut example an adjacency matrix achieves the bound
for threshold n− 2. For smaller values of the threshold, it may be more efficient
to assign a name to each graph with min-cut at most the threshold; again the
question is how to efficiently update this data structure when new edges arrive.

Knowing the number of vertices We assumed here, as is common in the streaming
literature, that n is known a priori. This is a benign assumption when seeking
lower bounds, since with less information the lower bounds may only become
larger. However, not knowing the range of values also may require larger up-
per bounds. It would be interesting to study the case when the set of vertices
appearing in the stream of edges is from the set [n] for some unknown n. For
instance, an algorithm may have to rearrange data structures if they have been
built with the assumption of a particular n, which then turns out to have been
too small. Allowing for such rearrangement may require unavoidable overhead.

Certificates In prior work on graph streaming, certificates are subgraphs that
can be used to quotient the set of streams [5]. We have extended this notion via
the map f , allowing data structures other than subgraphs as certificates. For the
connectivity lower bound, we used partitions of the vertices as certificates, and
for the sinkless digraph and number comparison lower bounds we used an n-bit
string. What other kinds of certificates are generally useful for graph streaming?

Multiple passes Difference ramification may help to shed light on streaming space
lower bounds when multiple passes over the input are allowed. With k passes a
lower bound of b(n) bits becomes at least b(n)/k bits, but it is not clear whether
this is actually achievable. As a concrete question, is it possible to solve 2-pass
streaming graph connectivity with n log n− n(log log n+ 0.9139 . . . )− 1 bits of
space? The problem is how to proceed with ramification, even if two streams
lead to the same state.

Dividing by the number of passes may not yield the best possible multi-pass
lower bound. As an example, for the problem in Example 1 three dlog ke bit



counters can track the number of passes and store every k-th bit of the first
number using dn/ke bits; these are then compared to the corresponding bits
of the second number. With k passes, dn/ke + 3dlog ke bits suffice, which is
1 + 3dlog ne bits for n = k. It does not seem likely that an algorithm exists that
can decide this problem with n passes and a constant amount of space.

Beyond streaming Difference ramification relies on partitioning the input into
two parts, one part that has been seen and a second part that an adversary can
manipulate to ramify differences. This is not possible if the streaming machine is
nondeterministic, or if the machine does not restrict the input to be read-once.
(An unrestricted Turing machine can simply be modified to scan the entire
input tape before it begins, foiling such an adversary.) Can a form of difference
ramification be applied to more general kinds of computation?
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Appendix

Proof (Proposition 10). For the first inequality, fix some subset S ⊆ [n] con-
taining k = dn/ log ne elements. Consider a partition of S containing k sin-
gleton blocks. Each of the remaining n − k elements of [n] can then be added
to any of these blocks. Each such assignment of the remaining elements leads
to a distinct partition of [n], and there are kn−k such assignments; however,
not all partitions of [n] can be obtained in this way. Hence Bn > kn−k and
therefore logBn > (n − k) log k. Note that n/ log n ≤ k < n/ log n + 1, so
log k ≥ log n− log log n ≥ 1 and −k > −n/ log n− 1. Since n ≥ 2, we also have
that (log n− 1)/ log n ≤ 1 and log log n ≥ 0. Hence

logBn > (n− k)(log n− log log n) > n log n− n− n log log n− log n.

For the upper bound, consider a partition of S = [2n] \ [n] consisting of n
singletons. Each of the elements of [n] can then be added to any of the blocks
of the partition in one of nn ways. Each such assignment forms a partition of
[2n], and by now removing the elements of S from the blocks, then removing any
empty blocks, what remains is a partition of [n]. Some partitions of [n] can be
formed in different ways, but each partition can be obtained in this way. Hence
Bn < nn and the required upper bound follows. ut

Proof (Corollary 11). For the lower bound, logBn > n log n− n(log log n+ 1 +
(log n)/n) by Proposition 10. Note then that (log n)/n decreases for n ≥ 2,
with its maximum at n = 2. For the upper bound, rewrite [1, Theorem 2.1] as
logBn < n(log n+ 0.1924− log log(n+ 1)) and simplify.

The asymptotic result is a restatement of an expression discussed by de
Bruijn [3, Section 6.2]. The asymptotic expression for Bn can be written as
log cn − 0.9139 . . . + o(cn) (see also [1, (2.4)]), with the constant −0.9139 . . .
being log log e− log e and the lower order terms positive. Hence for large enough
n it is always possible to bound the lower order terms in the interval (0, ε) for
any desired ε > 0. ut

Proof (Example 15). For convenience consider the complement of the problem,
which requires deciding whether the min-cut of the input exceeds the threshold.
By inverting the output of the streaming machine, we obtain a machine for
deciding min-cut that uses the same amount of space. (In fact, observe that the
class of languages accepted by a streaming machine using b bits of space is closed
under complementation.)

Let S be the set of streams of edges with vertices from [n], and let Lk be the
set of streams x such that G(x) does not have a min-cut with value at most as
large as the threshold value k. Let f map a stream of edges x to graph G(x) if
G(x) has a min-cut with value at most k, and to the complete graph on n vertices
otherwise. Map f suppresses inessential differences for min-cut with respect to
S \ Lk by definition. We now show that f supports difference ramification with
respect to S \ Lk.



Suppose x, y ∈ S \ Lk with f(x) 6= f(y). Then there is some edge {u, v}
which exists in one of these two graphs (say f(x)) but not the other. We have to
construct a stream of edges z that increases the min-cut of the graph containing
edge {u, v} to k + 1, while maintaining the min-cut of the graph not containing
{u, v} at k or less. First, create a stream z0 containing all edges in y that are
not in x. This maintains the min-cut of G(yz0) = G(y); if the min-cut of G(xz0)
exceeds k then we are done by setting z = z0, so assume not. Any further edges
we consider do not occur in either graph. Note that G(yz) is a subgraph of G(xz)
for z = z0, and that adding any further edges to z maintains this relationship.
Since the min-cut of G(xz0) does not exceed k, the degree d of u in G(xz0) is
at most k. If d < k − 1 then choose k − 1 − d non-neighbours of u in G(yz0),
other than v, and for each such vertex w, add an edge between u and w to a new
stream z′. Since k ≤ n − 1, this ensures that the degree of u is precisely k − 1
in G(yz0z

′), and at least k in G(xz0z
′). Now create a stream z′′ containing all

missing edges in G(xz0z
′), except those that involve u, and let z = z0z

′z′′.
At this point, G(yz) has a cut {{u}, [n] \ {u}} with value k − 1, and may

have a min-cut that is even smaller, while this cut in G(xz) has a value at least
k and every other cut has value at least n− 1 ≥ k. Hence z certifies a significant
difference between x and y. The Comparison Lemma then yields a crisp lower
bound of dlog(2n(n−1)/2 − 1 + 1)e = n(n− 1)/2 bits for k = n− 2.

For an upper bound for threshold n − 2, since there is only one graph (up
to isomorphism) that has a min-cut of n− 1, it is enough to recognize whether
the input contains all possible edges of a complete graph. This can be done by
keeping an adjacency matrix of the graph, using n(n − 1)/2 bits of space, and
using two index variables using 2dlog ne bits to access the relevant bit of the
adjacency matrix when an edge is read. When the end of the edge stream has
been reached, the machine simply checks whether any of the edges is missing.
This is a total of n(n− 1)/2 + 2dlog ne+ c bits.

Smaller thresholds only require keeping track of the number of distinct graphs
with min-cut at most k, so the lower bound is smaller for k < n − 2. We leave
open the question of how to implement an efficient data structure that only
distinguishes the graphs with min-cut at most k when k < n− 2; the adjacency
matrix representation will suffice for any threshold. ut
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