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Abstract. In graph streaming a graph with n vertices and m edges
is presented as a read-once stream of edges. We obtain an Ω(n log n)
streaming lower bound on the number of bits of space required to de-
cide graph connectivity. This improves the known bound of Ω(n) bits,
and matches the upper bound of O(n log n) bits. We go on to develop
a method of ramifying inessential differences between streams into sig-
nificant ones. For graph connectivity, this yields a crisp streaming lower
bound (with no undetermined constants) of n log n − n(log log n + 3/2)
bits, via lower bounds for the Bell numbers and a pigeonhole argument.
We apply difference ramification to min-cut, for a crisp lower bound of
n(n − 1)/2 bits. Difference ramification also shows that streaming n-
variable SAT requires at least 2n bits, compared to the O(n) bits that
are sufficient for an unrestricted deterministic Turing machine.

1 Introduction

The streaming model was proposed for problems where the input is presented
as a stream of elements, and is too large to fit into random-access memory,
but where a smaller data structure may be enough to decide whether the input
satisfies some property [8]. In graph streaming, the input is a graph with n
vertices and m edges, presented as a read-once stream of edges.

Our contributions Lower-bound arguments in streaming usually rely on reduc-
tions from problems for which communication complexity lower bounds are
known. Such bounds can only be as powerful as the bounds on the problem
being reduced from: the known lower bound of Ω(n) bits of space for deciding
if the input graph is connected is the bound for set disjointness [8,5]. With a
reduction from a graph connectivity game, we improve this to Ω(n log n) bits.1

We then formalise a streaming machine model. Our key contribution is
a technique to show space lower bounds by difference ramification. We use
difference ramification to obtain crisp streaming space lower bounds, free of
the undetermined constant factors implicit in the order notation of previous
bounds. We show that at least n log n − n(log log n + 3/2) bits of space must
be used to decide graph connectivity. This nearly matches the upper bound of
n⌈log n⌉ + 3⌈log n⌉ + ⌈log⌈log n⌉⌉ + c bits for updating a partition of vertices

1 Logarithms are base 2.
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representing the connected components, merging two components when an edge
arrives connecting them. This simple algorithm is therefore essentially optimal.

Graph algorithms based on computing or approximating eigenvectors often
rely on the input graph being connected. For a graph with 233 ≈ 8.59 bn vertices
presented as a stream of edges (perhaps representing the social network of people
alive during the years 2000–2012), our bound shows that at least 26.95GB of
random-access memory is needed to decide whether the graph is connected. On
the other hand, this can be done with 35.44GB of random-access memory.

We employ a generalized pigeonhole argument to compare the partitions of
streams that relate to states of a data structure with partitions of streams that
relate to states of a deterministic streaming machine. If the space restriction is so
severe that there are not enough possible states, then there is some state of the
streaming machine that can be obtained from two different input streams, while
also corresponding to two different configurations of the data structure. We start
with these two different input streams. We then ramify the differences between
the input streams, as reflected in differences in the associated data structures,
into a difference in output state. This is done by constructing a single suffix
stream that maintains this difference when processed by the stream machine,
until one of the states of the data structure has the desired property, while the
other fails to have it. Since the deterministic stream machine was in the same
state for both input streams, and then received the same suffix stream, it cannot
distinguish these two different inputs. Hence any streaming machine must use
at least as much space as avoids this outcome. This establishes the desired space
lower bound. This sideways argument, deriving bounds for streaming machines
by considering a data structure that is associated with the problem and not any
particular streaming machine, is the major novelty of our approach.

Using difference ramification, we derive crisp lower bounds for other decision
problems in the streaming model: which of two numbers is larger, whether a
directed graph has no sinks, whether a graph has a min-cut of given magnitude,
and whether a SAT instance has a solution. Table 1 lists bounds for each problem.

Related work In a circuit model, JáJá showed that two parties must exchange
Ω(n log n) bits to compute graph connectivity [9, Theorem 3.3]. Hajnal, Maass,
and Turán showed an Ω(n log n) lower bound on the two-party communication
complexity of graph connectivity [6]. This result appears to have been overlooked
for streaming lower bounds; we apply the result to show an improved lower bound
in Proposition 2 on the streaming complexity of graph connectivity.

Feigenbaum et al. showed that streaming directed graph s-t connectivity
requires Ω(m) bits of space [4, Lemma 4]. For sparse graphs with m = o(n log n)
our bounds are an improvement. For instance, for graphs with maximum degree
k (for some fixed k), their method yields at most an Ω(kn/2) = Ω(n) lower
bound, while we show a crisp lower bound of n log n−n(log log n+1+(log n)/n)
bits for the easier problem of deciding connectivity for undirected graphs.

Difference ramification is also related to an argument by Zelke [11, Lemma
12 and Theorem 13]. There, the sequence of vertex degrees is used to show
that two different graphs must lead to the same configuration of a machine that
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Table 1. Summary of results

lower bound upper bound (+c) Θ(.) problem

n n n Example 1
n n+ ⌈log n⌉+ ⌈log⌈log n⌉⌉ n Example 9
n log n− n(log log n+3/2) n⌈log n⌉+3⌈log n⌉+⌈log⌈log n⌉⌉ n log n Corollary 14
n(n− 1)/2 n(n− 1)/2 + 2⌈log n⌉ n2 Example 15
2n 2n + n+ 2⌈log n⌉ 2n Example 16

finds a minimum cut, if the machine is permitted too little space. These two
different graphs are then extended to graphs with different min-cut values. (The
published version omits this argument in favour of a communication complexity
reduction [12].) In Section 3.5 we improve the lower bounds implicit in [11,
Theorem 13] using our difference ramification machinery.

2 Preliminaries

Let [n] denote {0, 1, . . . , n − 1}. Let M be a Turing machine with a set S of
possible inputs. We say that M decides L ⊆ S if M accepts when x ∈ L and
rejects when x ∈ S\L. For a space-bounded Turing machine M , let M(x) denote
the final state of M after processing input x, either accept or reject.

A streaming machine is a restricted Turing machine. The input tape contains
a stream of items, which are read one at a time by a read-only head that travels
from the beginning of the tape to the end. The machine also has access to an
unbounded working tape (with a binary alphabet) supplied with a read-write
head. This is an abstraction of the streaming model introduced by Henzinger et
al. [8]. The streaming machines considered here are deterministic.

Write xy for the stream formed by concatenating streams x and y. Let M be
a deterministic space-bounded streaming machine. Denote by sM (x) the overall
state of M (including the configuration of all storage used) when given as input
a stream xy, just prior to it checking for further input past the x prefix of the
stream. (The overall state is determined by x, so y can be arbitrary.) There may
be several intermediate states after x has been read but before the suffix y can
be read. Increasing the number of states would only serve to make our lower
bounds stronger, so we aggregate each such sequence of internal states into a
single overall state, ignoring the intermediate states. The size |sM (x)| of overall
state sM (x) is the number of bits of working space used in that overall state. We
adopt the convention that a streaming machine writes a binary representation
of its state to a special area of the working tape when its state changes. The
state of the machine is therefore included in its overall state.

The space used by M for input z is |z|M = sup{|sM (x)| | z = xy}, and for
the set of inputs S is |S|M = sup{|x|M | x ∈ S}. Our upper bounds include a
constant c that depends on the details of the Turing machine and the number
of states in its transition table. For general Turing machines, Cobham called
this notion of space capacity [2]. In practical terms, the space used during a
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computation includes the sizes of registers and internal storage used by the
computer, enough bits to represent all internal states of its program, and any
random-access memory used.

A partition P of a set X is a set of disjoint non-empty subsets (known as
blocks) of X, such that the union of the blocks in P is the entire set X. A
partition X/ ≡ is said to be induced by an equivalence relation ≡ on set X if it
contains the blocks x≡ for each x ∈ X, where x≡ = {y ∈ X | x ≡ y}.

The following warm-up exercise illustrates our core pigeonhole argument,
which for this simple problem is similar to the crossing sequences technique for
general Turing machine space lower bounds [7].

Example 1 (comparing numbers). Let x and y be streams representing n-
bit non-negative integers. For an input stream xy, any streaming machine must
use at least n bits of space to decide whether x < y, and n+ c bits is sufficient.

Proof. Suppose a streaming machine M decides using fewer than n bits of space.
Then there are two n-bit numbers, say 0 ≤ a < b ≤ 2n − 1, such that sM (a) =
sM (b). Now consider the instances bb and ab. For each of these, M is in the same
state sM (b) after the n-bit prefix has been read. The suffix of both input streams
is identical. As M is deterministic, the state of M for both of these streams must
remain identical, so M(bb) = M(ab). Since a < b and b 6< b, the machine M
must err when deciding at least one of these instances. Hence at least n bits of
space are required.

By simply storing x as it is being read, and then checking each bit against
the next bit of y, it is possible to decide the problem using n+c bits of space. ⊓⊔

In Example 1, the trivial algorithm is essentially optimal and the lower and
upper bounds differ only by a constant. For problems with streams of structured
elements as input, some non-constant overhead may be required to summarise
the input in a data structure. Section 3 deals with problems where the input
elements are graph edges while also developing a technique for general streams.

3 Streaming bounds, with graph streaming applications

A graph stream consists of elements that represent pairs of vertices of the input
graph. The pairs may be directed or undirected, depending on the problem
setup. In Section 3.1 we note an improved streaming lower bound for graph
connectivity, based on a reduction from communication complexity. We then
develop the difference ramification technique for general streaming lower bounds
in Section 3.2, based on considering partitions of the set of streams induced by
various functions. The key technical tools are two properties that data structures
used for deciding a problem should have, together with the Comparison Lemma,
which is a convenient way to apply a general pigeonhole principle to partitions.
In Section 3.3 we derive and apply explicit bounds on the number of partitions of
a set, and use these to obtain lower bounds for graph connectivity in Section 3.4.
Finally, in Section 3.5 we discuss an improvement to the streaming lower bounds
for deciding min-cut of a graph.
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3.1 A streaming bound for graph connectivity via a reduction

We first demonstrate an improved lower bound for graph streaming, via a reduc-
tion from communication complexity. This leads to an Ω(n log n) lower bound.

Proposition 2 (graph connectivity bound). A streaming machine that de-
cides whether a graph is connected, when the input graph is presented as a stream
of edges with vertices from [n], requires Ω(n log n) bits of space.

Proof. We use a reduction from the communication complexity bound for a
graph connectivity game. In this game, the edges of a graph are partitioned
evenly between two parties Alice and Bob, who must deterministically decide
whether the graph formed by the union of the two subgraphs is connected.
Szemerédi’s Regularity Lemma then implies that Alice and Bob must exchange
at least Ω(n log n) bits to decide this problem [6, Theorem 10].

The parties will simulate identical streaming machines M and M ′ that use
at most b(n) bits of space to decide graph connectivity, for any input graph with
vertices from [n]. The edges of the input graph are partitioned evenly between
Alice and Bob. Each party first writes its edges on the input tape of its machine.
We show that this leads to a protocol for the graph connectivity game where at
most b(n) + 1 bits are exchanged; the state of the streaming machine represents
a compressed description of the input.

Alice simulates machineM until it has read the contents of its input tape, but
before it detects that there is no more input. Alice then sends a description of the
internal state of M to Bob, which requires at most b(n) bits. Bob initializes the
internal state of machine M ′ to that received from Alice, and simulates M ′ (with
the remaining edges as input). Bob then reports the output of M ′ as the result
of the computation. This protocol uses at most b(n) + 1 bits. Every protocol
must exchange Ω(n log n) bits, so b(n) ∈ Ω(n log n). ⊓⊔

The reduction in the proof of Proposition 2 seems to have been overlooked.
We now discuss a bounding technique that does not rely on communication
complexity reductions. This also avoids undetermined multiplicative constants,
such as those arising from the use of the Regularity Lemma in the proof above.

3.2 A general lower bound technique

For a function f with domainX, letX/f denote {{y ∈ X | f(x) = f(y)} | x ∈ X},
the partition of X induced by (the equality relation with respect to) f . Let S
be a semigroup with an associative binary operation that maps x and y to xy.
We usually let S be the set of all valid input streams for a class of streaming
machines under consideration. The semigroup operation xy then denotes the
stream formed by appending stream y (the suffix) to stream x (the prefix).

For the following definitions, let f be a function with domain S. We use
f−1(z) to denote the set {x | f(x) = z}, which may be empty.

Definition 3 (fixpoint maintenance). f maintains fixed points with respect
to the semigroup operation on S if whenever f(x) = f(y), then f(xz) = f(yz)
for any z ∈ S.
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Definition 4 (factor). h is a factor of f if there is a map g such that f = g◦h.

Definition 5 (difference ramification). f supports difference ramification
with respect to X ⊆ S if whenever x, y ∈ X and f(x) 6= f(y), then there is
some z ∈ S such that xz ∈ X iff yz 6∈ X. (We say that z certifies a significant
difference between x and y.)

Definition 6 (inessential differences). f suppresses inessential differences
with respect to X ⊆ S if whenever x, y ∈ S \X, then f(x) = f(y).

Note that if M decides L, then sM maintains fixed points with respect to
stream concatenation, and is also a factor of the function M .

Tying together the two requirements to support difference ramification and
to suppress inessential differences, we obtain a means for proving crisp streaming
lower bounds. A function satisfying both requirements maps streams satisfying
some property to a fixed value, but allows differences between the other streams
to be ramified. For good bounds, the function should keep the non-satisfying
streams apart as far as possible, while preserving some of the structure of the
problem. For instance, if the property in question is closed under isomorphism
of structures represented by the streams, then the function must also map all
streams without the property but with isomorphic structures to the same value.

Difference ramification relies on the following result.

Lemma 7 (Comparison Lemma). Suppose S is a semigroup, h : S → {0, 1}
is a function, f : S → X is a function that supports difference ramification and
suppresses inessential differences with respect to h−1(0), and g is a factor of h
that maintains fixed points. Then |S/f | ≤ |S/g|.

Proof. Let L = h−1(1). Note that then S \ L = h−1(0).
Suppose there exist x, y ∈ S with g(x) = g(y) and f(x) 6= f(y). Then

h(x) = h(y) as g is a factor of h. As h can take only one of two values, either
both x ∈ L and y ∈ L, or both x ∈ S \ L and y ∈ S \ L. If the latter, then
as f supports difference ramification with respect to S \ L, there is z ∈ S such
that xz ∈ L iff yz ∈ S \ L. Hence h(xz) 6= h(yz). However, g(x) = g(y) so
g(xz) = g(yz), and g is a factor of h, so h(xz) = h(yz). This is a contradiction.
Therefore x, y ∈ L. Now f suppresses inessential differences with respect to S\L,
so f(x) = f(y). This is again a contradiction.

Hence for all x, y ∈ S, if g(x) = g(y) then f(x) = f(y). By the Axiom of
Choice if S/f is infinite, or unconditionally if S/f is finite, there is then an
injection from S/f to S/g. Hence |S/f | ≤ |S/g|. ⊓⊔

For a problem decided by a deterministic streaming machine M , let g = sM ,
let h(x) = 1 if M(x) is an accepting state and let h(x) = 0 otherwise. The
following form of the Comparison Lemma is then usually more convenient.

Lemma 8 (Streaming Comparison Lemma). If a function f supports dif-
ference ramification and suppresses inessential differences with respect to S \L,
then any streaming machine deciding L must use at least ⌈log |S/f |⌉ bits of space.
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For a problem decided by a deterministic streaming machine M , there is
always a function f satisfying the conditions of Lemma 8, as f(x) = M(x) can
be used to satisfy the conditions vacuously. However, collapsing all streams into
just two values gives a bound that is not useful. The challenge in applying the
Comparison Lemma is in finding a non-trivial function f that keeps apart as
many streams as possible, and proving that f supports difference ramification.

In the following example illustrating stream difference ramification with the
Comparison Lemma, we use a function which maps directed graph streams to
arrays with a fixed number of bits per vertex (in fact, just one bit).

Example 9 (sink-free digraphs). Consider the property “this directed graph
has no sinks”. Fix some positive integer n. Each stream in S consists of directed
edges of a graph with vertices [n]. This property can be decided by keeping an
array of n bits, initially all set to 0; whenever a directed edge (u, v) is seen, then
the bit corresponding to u is set to 1 indicating that u has at least one successor
and is therefore not a sink. After all edges have been read, the array will contain
all 1 elements precisely when the graph has no sinks. A streaming machine can
decide this property using n + ⌈log n⌉ + ⌈log⌈log n⌉⌉ + c bits, for the indicator
array, one index variable, and a way to iterate over the bits of the index variable.

Let L ⊆ S be the set of those streams representing directed graphs with no
sinks. Let f map each stream to such an array, indicating which of its vertices is
known not to be a sink. With respect to S\L, this function suppresses inessential
differences since every stream in L is mapped to the all-1 array.

We claim that f also supports difference ramification with respect to S \ L.
Suppose x, y ∈ S \ L such that f(x) 6= f(y). Then (without loss of generality)
there is some bit set to 0 in f(x) and to 1 in f(y), corresponding to some vertex
u. Now create a stream z of edges containing each edge (v, u) where v 6= u. By
construction of stream z, the graph G(xz) contains sink u, while G(yz) contains
no sinks. Hence xz ∈ L while yz ∈ S \ L, proving our claim.

Now |S/f | ≤ 2n as f can take at most 2n different values, and |S/f | ≥ 2n as
each of the 2n possible states of the array can be obtained by a stream containing
as many edes as the number of 1 bits in the array. By the Comparison Lemma,
a streaming machine deciding this problem must use at least n bits of space. ⊓⊔

We now apply the stream difference ramification method to two other prob-
lems. For graph connectivity, our next problem, it is crucial to count partitions
of a set of distinct objects. We therefore first examine bounds on this quantity.

3.3 Bounds on Bell numbers

The n-th Bell number Bn is the number of distinct partitions of [n] (these
are sometimes called set partitions). Counting partitions induced by different
functions yields the following bounds.

Proposition 10 (Bell number bounds). For any integer n ≥ 2,

n log n− n(log log n+ 1 + (log n)/n) < logBn < n log n.
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For n ≥ 2, rephrase Bn as log cn = (logBn)/n − (log n − log log n). Better
bounds follow from [1, Theorem 2.1] and [3, Section 6.2].

Corollary 11. For any integer n ≥ 2, −1.5 < log cn < 0.1924. Moreover, for
every ε > 0 there is n0 = n0(ε) such that −0.9139 · · · < log cn < −0.9139 · · ·+ ε
for all n ≥ n0. (The constant is −0.9139 · · · = log log e− log e.)

Since limn→∞(log n)/n = 0, the lower bound can be made arbitrarily close
to −1 by just using the bounds in Proposition 10 and choosing the threshold
for n large enough: for n ≥ 210, the bound already exceeds −1.01. No effective
values are known for the threshold n0 for the asymptotic value −0.9139 . . . , but
the lower bound has the form n log n− o(n log n), so it can be expressed simply.

Corollary 12. For any ε > 0, there is some positive integer n0 = n0(ε) such
that for any integer n ≥ n0, (1− ε)n log n < logBn < n log n.

3.4 Bounds for graph connectivity

We now consider bounds for graph connectivity.

Theorem 13. For an input stream x of edges of a graph with vertices from
[n], a deterministic streaming machine that correctly decides whether G(x) is
connected must use at least ⌈logBn⌉ bits of space. A deterministic streaming
machine can decide this problem using n⌈log n⌉+3⌈log n⌉+ ⌈log⌈log n⌉⌉+ c bits.

Proof. Let S be the set of all streams of edges with vertices from [n]. Denote by
G(x) the graph described by the stream of edges x ∈ S. Let L ⊆ S consist of
those streams x such that G(x) is connected. Let f(x) denote the partition of
the vertices of G(x) that represents the connected components of G(x).

If G(x) is connected, then f(x) contains just one block, so f suppresses
inessential differences with respect to S \ L. We claim that f also supports
difference ramification with respect to S \ L.

Suppose x, y ∈ S \ L with f(x) 6= f(y). Then there are two vertices u and v
in the same block W of (say) f(x) but in different blocks U ∋ u and V ∋ v of
f(y). We construct the suffix stream z explicitly as a concatenation z = z0z

′z′′

of three streams that all start empty. First colour vertices in U with ultramarine,
vertices in V with vermilion. The idea is now to add edges while keeping the
ultramarine and vermilion blocks apart. For each vertex w in [n] \ (U ∪ V ), add
an edge {v, w} to z0, and colour w vermilion. If f(xz0) has only one block, then
we are done. Otherwise it has at least two blocks. For each vermilion vertex w in
the blocks of f(xz0) not containing u and v, add an edge {v, w} to z′. Note that
both endpoints in such edges are vermilion, so f(yz0) = f(yz0z

′). If f(xz0z
′)

has only one block, we are done, so suppose it has at least two blocks. By the
construction of z′, all its blocks not containing u, v contain only ultramarine
vertices. Now add edges between these blocks, forming a stream z′′, collapsing
them into a single block. Again, these new edges do not affect the blocks of
f(yz0) = f(yz0z

′) = f(yz0z
′z′′). Now add an edge to z′′ connecting u and one of
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these ultramarine vertices. Then f(xz0z
′z′′) has a single block, while f(yz0z

′z′′)
still has two. It follows that f supports difference ramification.

Every partition of [n] can be obtained from a stream of edges, so |S/f | = Bn.
The Comparison Lemma then implies that ⌈logBn⌉ bits of space are necessary
for any deterministic streaming machine that decides L.

For the upper bound, the following straightforward algorithm decides con-
nectivity. For any prefix x of the input stream of edges, maintain f(x), and
update it as new edges arrive. When there are no more edges to read, return
YES if every vertex is in the same block, or NO otherwise. We now sketch how
to implement this algorithm on a streaming machine. A simple upper bound on
the amount of space it uses will then serve as our bound.

The partition can be represented using n slots each of ⌈log n⌉ bits, or n⌈log n⌉
bits total. Each slot u indicates which block p(u) vertex u belongs to, and the
slots are initialized so that p(u) = u for each u. For each new edge {u, v} in the
input stream, if u and v currently belong to the same block then nothing is done,
otherwise merge the blocks p(u) and p(v). Specifically, when merging take the
larger of the partition number p(u) and p(v) (for argument’s sake, say p(v)) and
for every element w with p(w) = p(v), set p(w) to p(u). This requires at most
3⌈log n⌉+⌈log⌈log n⌉⌉ bits in addition to the partition, to keep an index variable
which is used to iterate over the vertices, two registers for p(v) and p(u), and a
way of keeping track of the bits when comparing two values with ⌈log n⌉ bits.
Hence the space usage is at most n⌈log n⌉+ 3⌈log n⌉+ ⌈log⌈log n⌉⌉+ c bits. ⊓⊔

Theorem 13 and Proposition 10 together imply the following result.

Corollary 14 (streaming connectivity bounds). For integer n ≥ 2, a stream-
ing machine deciding if an n-vertex graph is connected requires at least n log n−
n(log log n+1+(log n)/n) bits of space. A streaming machine exists that decides
this problem using at most n⌈log n⌉+ 3⌈log n⌉+ ⌈log⌈log n⌉⌉+ c bits of space.

Corollary 12 and Theorem 13 together imply that (1 − ε)n log n bits are
necessary, with ε arbitrarily close to 0 for large enough n.

3.5 Bounds for graph min-cut

Given a graph G, a cut is a partition {V1, V2} of the vertices V (G) with two
blocks. The value of the cut {V1, V2} is the total number of edges of E(G) with
one endpoint in V1 and the other in V2. The min-cut problem requires finding a
cut with minimum value. We work with the decision version, where a threshold
value is given as the first part of the input, and it must be determined whether
the min-cut is at least as small as the threshold.

Zelke uses the 2(n/8)(n/8−1)/2 graphs on n vertices to argue for an Ω(n2) lower
bound (see [11, Lemma 12 and Theorem 13]). If less than (n/8)(n/8− 1)/2 bits
are used by the streaming machine, then two distinct graphs from this set result
in the same state, and these are obtained from two different streams x and y.
Zelke then constructs a stream of edges z to ramify the difference between x and
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y. From the proof a crisp lower bound of n2/512 − n/16 bits therefore follows.
The construction can be improved by a factor of roughly 256 to n(n−1)/2, using
difference ramification by a function that distinguishes between all graphs with
min-cut at most the threshold value.

Example 15 (Min-cut). Min-cut requires at least n(n − 1)/2 bits to decide
on a streaming machine with its input a stream of edges of a graph with vertices
from [n]. Min-cut can be decided with n(n− 1)/2 + 2⌈log n⌉+ c bits.

Note that these bounds correspond to the threshold n−2; smaller thresholds
lead to smaller lower bounds and may also lead to smaller upper bounds.

4 Discussion and open questions

The Comparison Lemma yields lower bounds on the space required to decide a
problem. This relies on a function f that both supports difference ramification
and suppresses inessential differences. A lower bound should be available for
the cardinality of the set of values taken by f , and for the largest possible
bounds, f should collapse as few elements as possible. The main challenge lies
in ensuring that f supports difference ramification. For two arbitrary streams
x and y that do not have the desired property, this requires constructing an
appropriate suffix stream z that ramifies a difference in the data structures f(x)
and f(y) associated with the two streams into an essential difference between
the two streams xz and yz. The construction of the suffix stream does not rely
on the generic machine M , but only on the data structures associated with the
problem. If the data structure has some redundancy, then there may be multiple
distinct configurations that do not significantly differ for ramification. Difference
ramification can therefore be regarded as a method that unifies proving lower
bounds with finding appropriate data structures.

We have considered a selection of graph streaming problems chosen to il-
lustrate the power of stream difference ramification. An argument analogous to
Example 1 shows that deciding set disjointness on a streaming machine requires
at least (a crisp) n bits of space, compared with the previous Ω(n) bound[8].
We now outline a lower bound for streaming SAT. This shows that, as expected,
deterministic Turing machines are strictly more powerful than deterministic one-
pass streaming machines. However, being able to access the input in an unre-
stricted manner yields at least an exponential benefit in terms of space usage.

Example 16 (streaming SAT). The streaming Boolean satisfiability problem
requires deciding if a Boolean formula in conjunctive normal form with n vari-
ables is satisfiable, when it is presented as a stream of clauses. This requires at
least 2n bits of space to decide, and can be decided with 2n+n+2⌈log n⌉+c bits
of space. (In contrast, it can be decided by a deterministic Turing machine with
n+3⌈log n⌉+ c bits of space.) In outline, the lower bound follows because given
two input instances with different sets of solutions, a common suffix stream can
be constructed from clauses that each disallow precisely one solution, removing
every solution of one input instance while keeping the other satisfiable. ⊓⊔
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Some questions remain open; a selection follows.

Undirected s-t connectivity Directed s-t connectivity requiresΩ(m) bits to decide
with a one-pass streaming machine [5]. For dense graphs with m = Ω(n2) edges
this is Ω(n2) bits. In contrast, undirected s-t connectivity can be decided using
O(n log n) bits with a one-pass streaming machine, regardless of whether the
graphs are dense or sparse, by distinguishing partitions formed by connected
components. In a model without restrictions on how the input may be read,
logarithmic space is sufficient to decide undirected s-t connectivity [10]. This
prompts us to ask: how many passes are needed for a logspace-bounded streaming
machine to decide undirected s-t connectivity?

Optimal upper bounds To reduce the gap between the upper and lower bounds
for graph connectivity, the data structure could use ⌈logBn⌉ bits to represent
a canonical name for each P (x). The difficulty is how to create such a naming
scheme. Whenever a new edge arrives, then it must be used to derive the new
partition name without using a significant amount of additional space.

For the min-cut example an adjacency matrix achieves the bound for thresh-
old n− 2. For smaller values of the threshold, it may be more efficient to assign
a canonical name to each graph with min-cut at most the threshold; again the
question is how to efficiently update this data structure as new edges arrive.

Knowing the number of vertices We assumed here, as is common in the streaming
literature, that n is known a priori. This is a benign assumption when seeking
lower bounds, since with less information the lower bounds may only become
larger. However, not knowing the range of values also may require larger up-
per bounds. It would be interesting to study the case when the set of vertices
appearing in the stream of edges is from the set [n] for some unknown n. For
instance, an algorithm may have to rearrange data structures if they have been
built with the assumption of a particular n, which then turns out to have been
too small. Allowing for such rearrangement may require unavoidable overhead.

Certificates In prior work on graph streaming, certificates are subgraphs that can
be used to quotient the set of streams [5]. We have extended this notion via the
map f , allowing more general data structures as certificates. For the connectivity
lower bound, partitions of the vertices serve as certificates, and for the sinkless
digraph and number comparison lower bounds an n-bit string suffices. What
other kinds of certificates are generally useful for (graph) streaming?

Multiple passes When multiple passes over the input are allowed, a lower bound
of b(n) bits becomes at least b(n)/k bits with k passes, but it is not clear whether
this is actually achievable. Is it possible to solve 2-pass streaming graph connec-
tivity with n log n−n(log log n+0.9139 . . . )−1 bits of space? It is not clear how
to ramify, even if two streams lead to the same state.

Dividing by the number of passes may also not yield the best possible multi-
pass lower bound. As an example, for the problem in Example 1 three ⌈log k⌉

11



bit counters can track the number of passes and store every k-th bit of the first
number using ⌈n/k⌉ bits; these are then compared to the corresponding bits of
the second number. With k passes, ⌈n/k⌉ + 3⌈log k⌉ + c bits suffice, which is
1 + 3⌈log n⌉+ c bits for n = k. It does not seem likely that an algorithm exists
that can decide this problem with n passes and a constant amount of space.

More general models Difference ramification splits the input into a fixed prefix,
and a suffix that an adversary can manipulate to ramify differences. This is not
possible if the streaming machine is nondeterministic, or if the input may be
read multiple times. (An unrestricted Turing machine can simply be modified
to scan the entire input tape before it begins, foiling such an adversary.) Can a
form of difference ramification be applied to more general kinds of computation?
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Appendix

We have elided some proofs in the text. Where these proofs are not completely
straightforward, details are provided here.

Proof (Lemma 8). Suppose f supports difference ramification and suppresses
inessential differences with respect to S \ L.

Let M be a deterministic streaming machine that decides L, let g = sM , let
h(x) = 1 if M(x) is an accepting state and let h(x) = 0 otherwise. Then sM is
a factor of M that maintains fixed points, and S \ L = h−1(0).

By Lemma 7 we have |S/f | ≤ |S/sM |, and hence ⌈log |S/f |⌉ ≤ ⌈log |S/sM |⌉.
Further, ⌈log |S/sM |⌉ ≤ |S|M . Since M was arbitrary, the bound ⌈log |S/f |⌉
holds for any streaming machine deciding L. ⊓⊔

Proof (Proposition 10). For the first inequality, fix some subset S ⊆ [n] con-
taining k = ⌈n/ log n⌉ elements. Consider a partition of S containing k sin-
gleton blocks. Each of the remaining n − k elements of [n] can then be added
to any of these blocks. Each such assignment of the remaining elements leads
to a distinct partition of [n], and there are kn−k such assignments; however,
not all partitions of [n] can be obtained in this way. Hence Bn > kn−k and
therefore logBn > (n − k) log k. Note that n/ log n ≤ k < n/ log n + 1, so
−k > −n/ log n− 1. Since n ≥ 2, we also have that log k ≥ log n− log log n > 0,
and log log n ≥ 0. Hence −k(log n− log log n) > −n− log n, so

logBn > (n− k)(log n− log log n) > n log n− n log log n− n− log n.

For the upper bound, consider a partition of S = [2n] \ [n] consisting of n
singletons. Each of the elements of [n] can then be added to any of the blocks
of the partition in one of nn ways. Each such assignment forms a partition of
[2n], and by now removing the elements of S from the blocks, then removing any
empty blocks, what remains is a partition of [n]. Some partitions of [n] can be
formed in different ways, but each partition can be obtained in this way. Hence
Bn < nn and the required upper bound follows. ⊓⊔

Proof (Corollary 11). For the lower bound, logBn > n log n− n(log log n+ 1 +
(log n)/n) by Proposition 10. Note then that (log n)/n decreases for n ≥ 2,
with its maximum at n = 2. For the upper bound, rewrite [1, Theorem 2.1] as
logBn < n(log n+ 0.1924− log log(n+ 1)) and simplify.

The asymptotic result is a restatement of an expression discussed by de
Bruijn [3, Section 6.2]. The asymptotic expression for Bn can be written as
log cn − 0.9139 . . . + o(cn) (see also [1, (2.4)]), with the constant −0.9139 . . .
being log log e− log e and the lower order terms positive. Hence for large enough
n it is always possible to bound the lower order terms in the interval (0, ε) for
any desired ε > 0. ⊓⊔

Proof (Example 15). For convenience consider the complement of the problem,
which requires deciding whether the min-cut of the input exceeds the threshold.
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By inverting the output of the streaming machine, we obtain a machine for
deciding min-cut that uses the same amount of space. (In fact, observe that the
class of languages accepted by a streaming machine using b bits of space is closed
under complementation.)

Let S be the set of streams of edges with vertices from [n], and let Lk be the
set of streams x such that G(x) does not have a min-cut with value at most as
large as the threshold value k. Let f map a stream of edges x to graph G(x) if
G(x) has a min-cut with value at most k, and to the complete graph on n vertices
otherwise. Map f suppresses inessential differences for min-cut with respect to
S \ Lk by definition. We now show that f supports difference ramification with
respect to S \ Lk.

Suppose x, y ∈ S \ Lk with f(x) 6= f(y). Then there is some edge {u, v}
which exists in one of these two graphs (say f(x)) but not the other. We have to
construct a stream of edges z that increases the min-cut of the graph containing
edge {u, v} to k + 1, while maintaining the min-cut of the graph not containing
{u, v} at k or less. First, create a stream z0 containing all edges in y that are
not in x. This maintains the min-cut of G(yz0) = G(y); if the min-cut of G(xz0)
exceeds k then we are done by setting z = z0, so assume not. Any further edges
we consider do not occur in either graph. Note that G(yz) is a subgraph of G(xz)
for z = z0, and that adding any further edges to z maintains this relationship.
Since the min-cut of G(xz0) does not exceed k, the degree d of u in G(xz0) is
at most k. If d < k − 1 then choose k − 1 − d non-neighbours of u in G(yz0),
other than v, and for each such vertex w, add an edge between u and w to a new
stream z′. Since k ≤ n − 1, this ensures that the degree of u is precisely k − 1
in G(yz0z

′), and at least k in G(xz0z
′). Now create a stream z′′ containing all

missing edges in G(xz0z
′), except those that involve u, and let z = z0z

′z′′.

At this point, G(yz) has a cut {{u}, [n] \ {u}} with value k − 1, and may
have a min-cut that is even smaller, while this cut in G(xz) has a value at least
k and every other cut has value at least n− 1 ≥ k. Hence z certifies a significant
difference between x and y. The Comparison Lemma then yields a crisp lower
bound of ⌈log(2n(n−1)/2 − 1 + 1)⌉ = n(n− 1)/2 bits for k = n− 2.

For an upper bound for threshold n − 2, since there is only one graph (up
to isomorphism) that has a min-cut of n− 1, it is enough to recognize whether
the input contains all possible edges of a complete graph. This can be done by
keeping an adjacency matrix of the graph, using n(n − 1)/2 bits of space, and
using two index variables using 2⌈log n⌉ bits to access the relevant bit of the
adjacency matrix when an edge is read. When the end of the edge stream has
been reached, the machine simply checks whether any of the edges is missing.
This is a total of n(n− 1)/2 + 2⌈log n⌉+ c bits.

Smaller thresholds only require keeping track of the number of distinct graphs
with min-cut at most k, so the lower bound is smaller for k < n − 2. We leave
open the question of how to implement an efficient data structure that only
distinguishes the graphs with min-cut at most k when k < n− 2; the adjacency
matrix representation will suffice for any threshold. ⊓⊔
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Proof (Example 16). For streaming SAT, let S be the set of all streams of clauses
featuring variables from [n]. Note that the stream will in general contain a num-
ber of clauses that is exponential in n.

Let L ⊆ S be the set of streams representing instances that are satisfiable,
and let f be the map that maps a stream x of clauses to the array of 2n bits
representing all possible assignments of the n variables that satisfy the formula
represented by x. The entry with index i in this array (i = 0, 1, . . . , n − 1)
has value 1 when the n-bit binary representation of i, considered as a list of
assignments to the n variables, constitutes a solution to x. Every unsatisfiable
formula is mapped to the all-0 array, so f suppresses inessential differences with
respect to L. We also claim it supports difference ramification with respect to
L.

Suppose x, y ∈ L such that f(x) 6= f(y). Without loss of generality, suppose
that f(x) (when considered as a set of assignments) is a not a subset of f(y).
Stream z contains clauses (each containing up to n literals) that forbid each
of the satisfying assignments in f(y) but no others. Since f(x) is not a subset
of f(y), there is some assignment in f(xz) that is satisfying, so xz ∈ L, while
f(yz) has no satisfying assignments, so yz ∈ S \ L. Stream z therefore certifies
a significant difference between x and y.

Now each possible value of f can be obtained by some stream of clauses,
for instance with each clause containing n literals and forbidding precisely one
assignment. Hence log |S/f | = 2n.

For the upper bound, it is enough to implement the array described by f ,
using an n-bit index into the array, and a way to process each literal in the
current clause. The general deterministic Turing machine upper bound follows
from trying each assignment in turn. ⊓⊔
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