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Abstract

We prove tight size bounds on monotone switching networks for the NP-complete problem of
k-clique, and for an explicit monotone problem by analyzing a pyramid structure of height h for
the P-complete problem of generation. This gives alternative proofs of the separations of m-NC

from m-P and of m-NC
i from m-NC

i+1, different from Raz–McKenzie (Combinatorica ’99). The
enumerative-combinatorial and Fourier analytic techniques in this work are very different from
a large body of work on circuit depth lower bounds, and may be of independent interest.

1 Introduction

To study parallel time and memory usage complexity, lower bounds are sought in different models
of computation. For example, parallel time is captured by the depth of boolean circuits of bounded
fan-in, and memory usage (i. e., space complexity) is captured by the size of switching networks.
It is therefore of interest to prove lower bounds for the depth of boolean circuits of bounded fan-
in, and for the size of switching networks, for an explicit boolean function. Unfortunately, tight
lower bounds which give interesting separations in complexity classes have not been proven without
certain restrictions on computation.

To prove some lower bounds, researchers often restrict computation to be monotone (i. e., to
disallow logical negations in computation) when computing monotone boolean functions. Improving
on Razborov [Raz85b], the works of Alon and Boppana [AB87] and of Haken [Hak95] implied that
the clique problem requires polynomial (nΩ(1)) depth for monotone circuits.1 In terms of complexity
classes, it says m-NC ⊆ m-P ⊂ m-NP. This means the clique problem requires high parallel time
when computed in a monotone fashion. As for the parallel time of efficiently computable functions,
Karchmer and Wigderson [KW90] showed that the directed connectivity problem requires super-
logarithmic (Ω(log2 n)) depth for monotone circuits,1 implying m-NC

1 ⊂ m-NL ⊆ m-NC
2. For more

separations, Raz and McKenzie [RM99] extended the lower bound framework of Karchmer and
Wigderson [KW90], proving that a monotone circuit1 computing
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1In this paper, we consider only boolean circuits of bounded fan-in, even when we do not spell it out.

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 185 (2012)



(1) the complete problem for NL, directed connectivity, requires Ω(log2 n) depth, reproving the
tight bound of Karchmer and Wigderson [KW90];

(2) the ‘complete problem for NCi’, the Generation problem with a pyramid structure of height
h, requires Ω(h log n) depth when h ≤ nO(1), giving m-NC ⊂ m-P and m-NC

i ⊂ m-NC
i+1 for

all i by setting h = logi n; and

(3) the complete problem for NP, the k-clique problem, requires Ω(k logn) depth when k ≤ nO(1),
improving previous results on cliques for log n≪ k ≪ nO(1).

Much less work is done on switching networks, which is a combinatorial model capturing deter-
ministic space-bounded computation (see §2 for a discussion). Most results are derived using the
connection between circuits and switching networks. Namely, a circuit1 of depth d can be simulated
by a switching network of size 2d, while a switching network of size s can be simulated by a circuit
of depth O(log2 s) [Bor77]. As far as lower bounds go, a bound of Ω(s) for switching network size
translates to a bound of Ω(log s) for circuit depth, and a bound of Ω(d) for circuit depth translates

to a bound of 2Ω(
√
d) for switching network size. The simulations preserve monotonicity, therefore,

so do the translations of lower bounds.
In particular, from the best lower bounds for the depth of monotone circuits by Raz and

McKenzie [RM99], it follows that a monotone switching network computing

(1’) directed connectivity requires nΩ(1) size;

(2’) the Generation problem with a pyramid structure of height h requires nΩ
(√

h/ logn
)

size
when h ≤ nO(1); and

(3’) the k-clique problem requires nΩ
(√

k/ logn
)

size when k ≤ nO(1).

Since a size bound of sΩ(1) for switching networks is equivalent to a space bound of Ω(log s) for
Turing machines,2 item (1’) above is trivial and fails to separatem-L fromm-NL for space complexity
on the switching network model.3 Also, items (2’) and (3’) are not effective when, for example, h
and k are O(logn). To match our intuition, we expect that monotone switching networks computing

(1”) directed connectivity requires nΩ(logn) size,

(2”) the Generation problem with a pyramid structure of height h requires nΩ(h) size for h ≤
nO(1); and

(3”) k-clique requires nΩ(k) for k ≤ nO(1).

Note that such bounds for monotone switching networks would in particular imply the above bounds
for monotone circuits by the simulation argument (e. g., (1”) implies (1)).

Recently, Potechin [Pot10] indeed strengthened item (1) to item (1”), i. e., showed that any
monotone switching network solving directed connectivity has quasi-polynomial size, thereby giving

2Modulo uniformity, of course. The easy direction is folklore (e. g., see [Pot10, §2]), and the hard direction is
proved by Reingold [Rei08].

3It should be noted that there are at least two combinatorial models for (non-uniform) m-L in the literature:
as monotone (boolean) circuits (of bounded fan-in) of logarithmic width and polynomial size [GS95, Gri91], or as
monotone switching networks of polynomial size [Raz91,Pot10]. It appears that the two models are not comparable.
This work focuses on monotone switching networks of polynomial size as the combinatorial model for (non-uniform)
m-L, and does not imply results for monotone circuits of logarithmic width and polynomial size as (non-uniform)
m-L.
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m-L ⊂ m-NL ‘on monotone switching networks’.3 To avoid the loss in translation (e. g., from (1) to
(1’), as opposed to (1”)), it is necessary to depart from the circuit-depth lower bound framework of
the communication game by Karchmer and Wigderson [KW90],4 which is the basis of most previous
work on depth complexity of circuits [BS90, KW90, GH92, RW92, KRW95, GS95, RM99, EIRS01,
Joh01]. Instead, Potechin [Pot10] introduced a Fourier analytic framework for analyzing extremal
instances (minterms and maxterms) of the monotone boolean function of directed connectivity.

1.1 Our Results

This work extends the Fourier analytic framework [Pot10] to prove tight lower bounds, for (i) an
explicit monotone problem by analyzing a pyramid structure of height h for the P-complete Gener-
ation problem, and for (ii) the NP-complete k-clique problem,5 and as a result strengthens item (2)
to item (2”), and item (3) to item (3”). This strengthens the previous bounds in items (2’) and
(3’) for that were translated from items (2) and (3).

In particular, this gives alternative proofs of the separations of monotone complexity classes
like m-NC ⊂ m-P and m-NC

i ⊂ m-NC
i+1, using very different arguments compared to Raz–

McKenzie [RM99].6 These monotone separations are necessary for the corresponding non-monotone
separations, because a non-monotone separation (e. g., NC ⊂ P) implies the corresponding mono-
tone separation (e. g., m-NC ⊂ m-P).7 To prove the lower bounds of items (2) and (3), this work
simplifies the Fourier analytic framework of Potechin [Pot10] used for analyzing the directed con-
nectivity problem, by studying invariants in the Fourier domain (Lemma 3.42 for the generation
problem), and by making explicit the role of the invariants as an inclusion-exclusion principle (see
e. g., Remark 3.37, Lemmas 4.14, 4.16, and Claim 4.17). Therefore, this work provides a combi-
natorial understanding of the Fourier analytic framework [Pot10]. Perhaps, more previous results
may be strengthened and other problems may be studied by extending this Fourier/combinatorial
framework, as an alternative or a complement to the Karchmer–Wigderson framework, after three
separation results (1), (2) and (3) on monotone circuit-depth are strengthened to (1”), (2”) and
(3”).

1.2 Other Related Work

We did not discuss other work less relevant to the results presented here, but suggesting lower
bounds to space and parallel complexity [Nec̆66,ABH+86,Raz90,Kra91,BS95,Mul99,BJS01,RWY02,
BSSV03,Ajt05,GKM08,Weh10,Weh11,CMW+12], or implying lower bounds to monotone depth in
general [And85,Raz85a,Bop86,Tar88,Raz89,Yao89,Kar93,Yao94,NM95,Juk97,ST97,GH98,BU99,
HR00,AM04,Ros10] or applying monotone depth to study other complexity [KW93,IPU94,BPR97,
Kra97,BEGJ98]. For more discussion on the complexity of monotone boolean circuits, the reader
is referred to [RM99, §1], and [BS90,Gri91]. For more discussion on switching networks and other
models of space bounded computation, the reader is referred to [Raz91].

4Indeed, the Karchmer–Wigderson framework is unlikely to separate m-L from m-NL on monotone switching
networks,3 since it is able to prove the same bound of Ω(log2 n) for the depth of monotone circuits solving undirected

connectivity [KW90, RM99], which is in L [Rei08] and computable by monotone switching networks of size n2.
This shows that the quadratic relation between circuit-depth and (the logarithm of) switching-network-size in the
simulation argument of Borodin [Bor77] is tight.

5To see the matching upper bounds, there are (uniform) monotone switching networks for (i) “the problem
computed by the universal degree-h reversible pebbling switching network” of size nO(h) (see §3.3.5); and (ii) the
k-clique problem of size kO(1)nO(k).

6This paper further simplifies the proof for the generation problem (item (2”)) in the STOC ’12 version.
7And proving monotone lower bounds is in a sense sufficient, since non-monotone separations would follow from

the monotone lower bounds of some variants of the problems, see e. g., [GKM08, §4.1].
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1.3 Organization

§2 collects notions, notations and conventions used in the introduction and common to §3 and §4.
§3 treats the generation problem, whose lower bound (item (2”)) is proved as Theorem 3. §4 treats
the clique problem, whose lower bound (item (3”)) is proved as Theorem 5.

2 Preliminaries

Recall the Iverson bracket notation: JconditionK to mean 1 if condition is True, and 0 otherwise.
Also, [n] := {0, 1, . . . , n − 1} for n ∈ N. For a boolean function f : {0, 1}n → {0, 1}, an instance
y ∈ {0, 1}n is a Yes-instance if f(y) = 1, and a No-instance if f(y) = 0. A boolean function is
monotone if f(x) ≤ f(y) whenever x � y, i. e., whenever xi ≤ yi for all i ∈ [n]. For a monotone
boolean function f , a minterm y is a �-minimal Yes-instance, i. e., f(y) = 1 but f(x) = 0 for all
x ≺ y; a maxterm y is a �-maximal No-instance, i. e., f(y) = 0 but f(x) = 1 for all x ≻ y.

Definition 2.1 (Switching Networks). Consider a collection of boolean variables x1, x2, . . . , xn ∈
{0, 1}. A switching network G′ has data (V ′, E′, s′, t′, λ′), where V ′ is nodes and E′ is edges of
an undirected (multi) graph with two distinguished nodes s′, t′ ∈ V ′. Each edge e′ ∈ E′ of G′ is
labeled with a literal xi or x̄i with i ∈ [n], specified by λ′(e′). A switching network is monotone if
all edges are labeled with positive literals (for all e′, λ′(e′) = xi for some i).

An instance y ∈ {0, 1}n is accepted by G′, if there is a path P ′ connecting s′ and t′ using edges
labeled with literals in y; namely, P ′ =: 〈e′1, e′2, . . . , e′ℓ〉, where e′j ∈ E′ for 1 ≤ j ≤ ℓ connects v′j−1

and v′j , with v
′
0 = s′ and v′ℓ = t′, satisfying (1) if λ′(e′j) = xi then yi = 1; or (2) λ′(e′j) = x̄i then

yi = 0. Otherwise, y is rejected by G′. The boolean function fG′ computed by G′ is identified with
the collection of accepted instances, so fG′(y) = 1 iff G′ accepts y.

In general, say an instance y ∈ {0, 1}n reaches a node a′ ∈ V ′ if there is a path P ′ connecting
s′ and a′ using edges labeled with literals in y. The undirectedness of a switching network mirrors
the reversibility in deterministic space bounded computation [LMT00, Rei08].8 Hence switching
networks compute by reachability in a reversible way. The size of a switching network is the
number of edges [Raz91].9

Following Potechin [Pot10], denote objects of instances (e. g., variable xi, element u for Gen,
vertex v for Clique) using unprimed letters, and denote objects of switching networks (e. g., node
a′ ∈ V ′, edge e′ ∈ E′) with primed letters.

We need the following version of Nisan–Wigderson combinatorial design [NW94]. For a proof
and further references, see [Tre01, Lemma 8].

Lemma 2.2 (Combinatorial Design). For any positive integers q,m, k with k ≤ m, there exist q

sets Q1, Q2, . . . , Qq ⊆ [N ] where N := e
ln q
k

+1·m2

k , such that |Qi| = m for 1 ≤ i ≤ q and |Qi∩Qj | ≤ k
for 1 ≤ i < j ≤ q.

3 Lower Bound for Generation

This section proves the lower bound for (the promise problem of) generation as Theorem 3, and
uses it in establishing a tight bound for a monotone decision problem as Theorem 4. After defining

8For non-deterministic space bounded computation, the corresponding model is called a switching-and-rectifier
network (see e. g., [Raz91]), whose underlying graph can be directed.

9All lower bounds in this work concern the number of nodes, which is polynomially-related to the number of edges
here. Also, constants are not optimized.
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the problem and the model below (Definitions 3.1, 3.2), §3.1 introduces a semantic restriction based
on reversible pebbling, and §3.2 proves an optimal lower bound for monotone switching networks
with this restriction. §3.3 proves a lower bound without this restriction, by reducing the general
case to the reversible pebbling case.

Definition 3.1 (Generation Problem). For a size parameter n, the generation problem (Gen)
receives as input a function e : [n]× [n]× [n] → {0, 1}. Let s := 0 and t := n− 1. We think of s as
the source and t as the target. Say s generates v ∈ [n] if (1) v is s; or (2) s generates both w and
u, and e(w, u, v) = 1. Gen problem accepts input e if s generates t. The value of e is represented
as n3 boolean variables, and the positive literal corresponding to e(w, u, v) is suggestively denoted
as w ∧ u→ v.

Gen problem is a monotone variant of the first P-complete problem calledPath Systems [Coo74].
Subproblems of Gen with additional restrictions on e are complete for smaller complexity classes
like non-deterministic logspace (NL) and Nick’s class (NC) [JL74,BM91]. To specialize monotone
switching networks (Definition 2.1) to Gen, we just need to specialize the labeling function λ′.

Definition 3.2 (Monotone Switching Networks for Gen). Say a switching network is a monotone
switching network for Gen (mGen network), if each edge e′ ∈ E′ is labeled with λ′(e′) = w ∧ u→ v
for some w, u, v ∈ [n]. For an instance for Gen with input e, the literal λ′(e′) = w ∧ u→ v is in
the instance if e(w, u, v) = 1.

3.1 Reversible Pebbling Switching Networks for Generation

As in [Pot10], we begin by considering a simpler class of mGen networks which are semanti-
cally restricted. In particular, we consider mGen networks corresponding to the reversible pebble
game [Ben89,Krá01], which we call reversible pebbling mGen networks (Definition 3.6). In this
subsection (and henceforth in this paper), focus on triples w ∧ u→ v where v 6= w and v 6= u, so
that a move allowed by w ∧ u→ v (Remark 3.3) corresponds to a reversible pebble move.

Remark 3.3 (Reversible Pebbling for Gen). In the reversible pebble game for Gen, we start with
a pebble on s and try to put a pebble on t. There is only one allowed move:

1. If e(w, u, v) = 1 and both w and u are pebbled, then we may pebble or unpebble v (i. e., add
or remove a pebble on v).10

A configuration K ⊆ [n] of the reversible pebble game specifies the elements that are pebbled.

The idea is that each node a′ ∈ V (G′) in a reversible pebblingmGen network G′ will correspond
to a configuration Ka′ in the reversible pebble game, and each edge e′ ∈ E(G′) in G′ with label
λ′(e′) = w ∧ u→ v will correspond to a move in the reversible pebble game which can be done
when e(w, u, v) = 1. However, to make this precise we must first deal with two issues.

The first issue is that the reversible pebble game has many winning configurations (i. e., con-
figurations in which t is pebbled), but a switching network G′ has only one accepting state t′. To
fix this, we modify the reversible pebble game so that all winning configurations are effectively the
same.

Remark 3.4 (Modified Reversible Pebbling for Gen). In the modified reversible pebble game for
Gen, we start with a pebble on s and try to put a pebble on t. There are two allowed moves:

10By contrast, any vertex can be unpebbled at any time in standard black pebbling, even when not all of its
immediate predecessors (playing the role of w and u here) are pebbled.

5



1. If e(w, u, v) = 1 and both w and u are pebbled, then we may pebble or unpebble v; and

2. If t is pebbled then we may pebble or unpebble any other element x 6= t ∈ [n].

The second issue is that if a sequence of moves can be done when e(w, u, v) = 1, and that
sequence of moves can bring a configuration Ka′ to another configuration Kb′ , then we may as well
add an edge between a′ and b′ with label w ∧ u→ v. That is, it makes more sense for an edge e′ in
a reversible pebbling mGen network G′ with label λ′(e′) = w ∧ u→ v to correspond to a sequence
of moves (rather than a single move) that can be done if e(u,w, v) = 1. This leads to the following
definition.

Definition 3.5 (Reversible Pebbling Equivalence). Say two configurations K1,K2 ⊆ [n] are l-
equivalent for l := w ∧ u→ v if it is possible to bring configuration K1 to configuration K2 using a
sequence of the following moves:

1. If w and u are pebbled, then we may pebble or unpebble v; and

2. If t is pebbled, then we may pebble or unpebble any other element x 6= t ∈ [n].

We may now define reversible pebbling mGen networks.

Definition 3.6 (Reversible Pebbling Networks). Say an mGen network G′ is a reversible pebbling
mGen network if each node a′ ∈ V ′ can be associated with a reversible pebbling configuration
Ka′ ⊆ [n] satisfying the following conditions:

1. Ks′ = {s} and Kt′ = [n]; and

2. If there is an edge with label l := w ∧ u→ v between nodes a′ and b′, then Ka′ and Kb′ are
l-equivalent.

Since it is only possible to win the reversible pebble game when t can be generated from s,
every reversible pebbling mGen network G′ is sound, i. e., if G′ accepts an input e, then e is a
Yes-instance for Gen. However, it need not compute Gen, since it need not be complete, i. e.,
accepting all Yes-instances of Gen.

Before moving on, we give a more convenient characterization of l-equivalence (Proposition 3.9).
We can do this because the partial order (under set inclusion ⊆) on configurations of the reversible
pebble game for Gen respects l-equivalence, i. e., there is a unique maximal configuration in each
l-equivalence class (Proposition 3.8).

Definition 3.7 (Maximal Configuration). For a configuration K ⊆ [n] and a triple l := w ∧ u→ v,
define K + w ∧ u→ v to be the ⊆-maximal configuration in the l-equivalence class containing K.

Proposition 3.8 (Maximal Configuration). K + w ∧ u→ v is well-defined and

K + w ∧ u→ v =











K if t /∈ K, and also w /∈ K or u /∈ K,

K ∪ {v} if t /∈ K, v 6= t, w ∈ K and u ∈ K,

[n] if t ∈ K, or v = t and w ∈ K and u ∈ K.

Proposition 3.9 (Reversible Pebbling Equivalence). K1 and K2 are l-equivalent for l := w ∧ u→ v
if and only if K1 + l = K2 + l.
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3.2 Pyramid Yes-Instances and Reversible Pebbling Lower Bound

Following Raz and McKenzie [RM99], consider those Yes-instances of Gen having a structure of a
pyramid graph.11 Pyramid Yes-instances of Gen are analogous to path Yes-instances of directed
connectivity in [Pot10]. In particular, they are minterms of the respective monotone boolean
functions, hence ‘hardest to accept’.

Definition 3.10 (Pyramid Graph and Yes-Instance). For a parameter h, the pyramid graph of
height h has

(

h+1
2

)

vertices Vh := {vr,c}1≤c≤r≤h. The vertex vr,c is on the rth row, and Vh is laid out
row by row with the first row on top and the hth row at the bottom. For 1 ≤ r ≤ h− 1, the vertex
vr,c has left child vr+1,c and right child vr+1,c+1. The pyramid graph is also viewed as a directed
graph with arcs pointing from children to their parents (from vr+1,c to vr,c and from vr+1,c+1 to
vr,c).

11

An instance of Gen forms a pyramid Yes-instance if there exists Q ⊆ [n]\{s, t} and a bijective
identification P : Q ։֒ Vh to vertices Vh of a pyramid graph, and e(w, u, v) = 1 iff (w, u, v) is a
triple in [n]× [n]× [n] consistent with P , meaning that

1. w = u = s and v ∈ Q and P (v) is on the bottom row of Vh; or

2. w = u ∈ Q and P (w) is on the top row of Vh, and v = t, or

3. w, u, v ∈ Q and P (w) and P (u) are different children of P (v).

In this case, the Yes-instance is simply called a pyramid, and is denoted G(P ).

Note that the identification P specifies a structure of a pyramid graph over V (P ) := Q =
P−1(Vh) ⊆ [n] \ {s, t} in G(P ). Since a reversible pebbling switching network must ‘pebble vertices
one at a time’ (before pebbling t), on any computation path P ′ accepting a pyramid G(P ), there
must be a node b′ ∈ V (P ′) mentioning lots of vertices of V (P ) exclusively, i. e.,Kb′\{s} ⊆ V (P ) and
|Kb′ \ {s}| = h (Lemma 3.11).12 Formally, every path from s′ to t′ on a reversible pebbling mGen

network gives a reversible pebbling strategy to pebble t, starting from the initial configuration Ks′

(Remark 3.3). Since a reversible pebbling strategy is also a black pebbling strategy, the lower
bound for black pebbling applies also to reversible pebbling.13

Lemma 3.11 (Barrier Size Bound). Fix a pyramid P of height h. Consider a path P ′ =:
〈e′1, e′2, . . . , e′ℓ〉 on a reversible pebbling mGen network, where e′j connects v

′
j−1 and v′j and is labeled

a positive literal λ′(e′j) ∈ G(P ), from s′ := v′0 to t′ := v′ℓ. (Hence Kv′j−1
and Kv′j

are lj-equivalent

when lj := λ′(e′j) for 1 ≤ j ≤ ℓ.)
If Ks′ = {s} and Kt′ ∋ t, then P ′ has a node b′ ∈ V (P ′) with Kb′ \ {s} ⊆ Q and |Kb′ \ {s}| = h.

Proof. By the proof of the black pebbling lower bound for a pyramid graph [Coo74].

Such b′ is a barrier node for P . Note that if two pyramids share less than h vertices, then they
must have different barrier nodes. With this idea, we are ready to prove size lower bounds for
reversible pebbling mGen networks (Theorems 1 and 2).

11The pyramid graph is routinely used for studying space complexity, especially using pebbling games [Coo74,
Kla85]. We follow their convention that arcs point from the (r + 1)st row to the rth row.

12To prove Theorems 1 and 2, it suffices for b′ to have |Kb′ \ {s}| ≥ h, instead of an exact equality.
13The converse (that reversible pebbling number lower bounds black pebbling number) is not true in general.

For example, the line graph (i. e., a single path) having ℓ edges requires two pebbles in black pebbling, but it takes
Θ(log ℓ) pebbles in reversible pebbling [Pot10].
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Theorem 1 (Reversible Pebbling Lower Bound for Gen). Any reversible pebbling mGen network

G′ having n′ nodes and computing Gen of size n satisfies n′ ≥ nΘ(n1/10).

Proof. Note that G′ accepts all pyramid Yes-instances. Apply Theorem 2.

Theorem 2 (Reversible Pebbling Lower Bound for Pyramids). For any 4 ≤ h ≤ n1/10, any
reversible pebbling mGen network G′ having n′ nodes for Gen of size n, and accepting all pyramid
Yes-instances of height h, satisfies n′ ≥ nh/10 = nΘ(h).

Proof. Fix h, let m :=
(

h+1
2

)

, q := nh/10, k := h−1. Then Lemma 2.2 gives q sets Q1, Q2, . . . , Qq ⊆
[N ] with |Qi| = m and |Qi∩Qj | ≤ k for 1 ≤ i 6= j ≤ q, where N ≤ exp

(

h lnn
10(h−1)+1

)

h4 ≤ n1/3h4 ≪ n.
For each Qi, construct a pyramid Pi by identifying Qi arbitrarily with a pyramid graph of height
h. Now G(Pi) is accepted by G′, via some path P ′

i labeled with positive literals in G(Pi). Hence
Lemma 3.11 gives a node b′i whose reversible pebbling configuration satisfies Kb′i

\ {s} ⊆ Qi and

|Kb′i
\{s}| = h. Since |Qi∩Qj | ≤ h−1, we have b′i 6= b′j for 1 ≤ i 6= j ≤ q. Hence n′ ≥ q = nh/10.

3.3 Lower Bound beyond Reversible Pebbling

For the general lower bound for mGen networks, we extend the Fourier analysis framework
of [Pot10] (summarized below as Lemma 3.27). Fourier analysis will be done over extremal No-
instances (Definition 3.12) which can be identified with the Fourier basis (Definition 3.15).

It turns out that any mGen network computing the generation problem must do non-trivial
work per individual pyramid, and the work will be visible in the Fourier spectrum. The work
done for a pyramid P1 will be orthogonal to the work done for a different pyramid P2 if they are
well-separated, i. e., P1 and P2 share less than h vertices. Since there are nΘ(h) different pyramids
that are pairwise well-separated, an mGen network must do an amount of work scaling with nΘ(h),
giving the size lower bound.

3.3.1 Fourier Analysis of Extremal No-Instances

Let K := {K ⊆ [n] : K ∋ s} be the collection of reversible pebbling configurations containing
s. A reversible pebbling configuration Ka′ is proper if Ka′ 6∋ t. Define Ṽ := [n] \ {s, t} and
C := PowerSet(Ṽ ) := {C : C ⊆ Ṽ } be the (bi-)colorings of Ṽ . Any C ∈ C can be associated with
a subset of [n] containing s but excluding t by C 7→ C ∪ {s}. This association gives a bijection
between C and the sub-collection of the reversible pebbling configurations in K not containing t.
While the objects in C and K are very different, it will be convenient to compare them via this
bijection, i. e., when writing Ka′ = C or Ka′ ⊆ C, we mean to test for the associated reversible
pebbling configuration, e. g., Ka′ = C ∪ {s} or Ka′ ⊆ C ∪ {s}.

Consider extremal No-instances for Gen that can be identified with some C ∈ C. Extremal
No-instances of Gen are analogous to cut No-instances of directed connectivity in [Pot10].14 In
particular, they are maxterms of respective monotone boolean functions, hence ‘hardest to reject’.

Definition 3.12 (Extremal No-Instances). Any C ∈ C is associated with the extremal No-instance
G(C) where e(w, u, v) = 0 iff w ∈ C ∪ {s} and u ∈ C ∪ {s} and v /∈ C ∪ {s} (recall the association
mentioned above). Then the No-instance G(C) generates v ∈ [n] iff v ∈ C ∪ {s}.15

14Similar considerations of extremal No-instances appeared also in Raz–McKenzie [RM99], although the extremal
No-instances they considered are not maxterms in their setting.

15This implies that G(C) are all maxterms of Gen. To see this, given any No-instance G of Gen, consider C :=
set of elements (except s) generated by G, then G ⊆ G(C) (when comparing the set of positive literals).
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Proposition 3.13 (Extremal No-Instances). If Ka′ + l = Kb′ + l and l ∈ G(C), then Ka′ ⊆ C iff
Kb′ ⊆ C.16

Proof. If l ∈ G(C), then Ka′ ⊆ C iff Ka′ + l ⊆ C.

The analysis will focus on the collection of extremal No-instances G(C) =
{

G(C) : C ∈ C
}

.

Definition 3.14 (Inner Product Space of Extremal No-Instances). A C-vector is a real vector
indexed by C, equivalently a function from C to R. For two C-vectors f and g, define an inner
product 〈f, g〉 := 1

|C|
∑

C∈C f(C)g(C), inducing a norm ‖f‖ := 〈f, f〉1/2.

Definition 3.15 (Fourier Analysis). Given an extremal No-instance U ∈ C, define the C-vector
χU (C) := (−1)

∑
v∈Ṽ Jv∈UKJv∈CK. Then the collection {χU}U∈C forms an orthonormal basis for all C-

vectors, called the Fourier Basis. For a C-vector g, its Fourier coefficient at U ∈ C is ĝ(U) := 〈g, χU 〉.

Denote 1 as the all one C-vector: 1(C) = 1 for all C ∈ C; and similarly 0 as the all zero C-vector.
Note that χ{} = 1.

3.3.2 Invariant Cover for Generation

This subsection shows how to use Fourier analysis to obtain size lower bounds on sound mGen

networks (Lemma 3.27). We begin by assigning C-vectors to the nodes of mGen networks.

Definition 3.16 (Annotated mGen Networks). A function description of an mGen network G′

is a function F : V ′ → R
C (i. e., an assignment of a C-vector Fa′ to each a′ ∈ V ′). A function

description F is valid for G′ if:

1. Fs′ = 1 and Ft′ = 0; and

2. If a′ and b′ are connected by an edge labeled l, where l ∈ G(C), then Fa′(C) = Fb′(C).

An annotated mGen network is an mGen network G′ together with a valid function description
F for G′.

A standard valid function description for a sound mGen network is reachability, defined below.

Definition 3.17 (Reachability). Fix an mGen network G′. For a′ ∈ V ′, let Ra′(C) := True if the
extremal No-instance G(C) can reach a′.17 The boolean vector Ra′ is identified with the C-vector
Ra′(C) := JC can reach a′K.

Note that Rs′ = 1; and if G′ is sound, then Rt′ = 0.

Proposition 3.18 (Adjacent Reachability). If a′ and b′ are connected by an edge labeled l, where
l ∈ G(C), then Ra′(C) = Rb′(C).

Lemma 3.19 (Valid Function Description). An mGen network G′ has a valid function description
if and only if G′ is sound.

16Recall that we write Ka′ = C and Ka′ ⊆ C to mean Ka′ = C ∪ {s} and Ka′ ⊆ C ∪ {s} when comparing a
reversible pebbling configuration Ka′ ∈ K with a bi-coloring C ∈ C.

17Hence Ra′ is the truth table at node a′ restricted to the extremal No-instances G(C).
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Proof. If G′ is sound, then the reachability vector assignment R is a valid function description for
it. If G′ is not sound, then G′ accepts some No-instance G(C) for some C ∈ C (because G(C) are
all maxterms of Gen)15, via some path P ′ connecting s′ and t′ labeled with literals in G(C). If F is
a function description for G′ satisfying the adjacency condition (item (2)) in Definition 3.16, then
for any two adjacent a′ and b′ on V (P ′), Fa′(C) = Fb′(C). Thus Fs′(C) = Ft′(C) and F cannot be
valid for G′.

We now introduce our key tool, invariant covers (Definition 3.21).

Definition 3.20 (l-Invariant). For a literal l and an annotated mGen network G′ (with a valid
function description F ), a C-vector g is l-invariant on G′ if for any a′ and b′ in V (G′) connected by
an edge labeled l, 〈Fa′ , g〉 = 〈Fb′ , g〉. Say g is l-invariant if g is l-invariant on G′ for any annotated
mGen network G′.

Definition 3.21 (Invariant Cover). Consider a Yes instance P . A collection of C-vectors {gP,ι}ι∈I
over some index set I forms an invariant cover (for P ) if (1) for any positive literal l ∈ G(P ), there
is an ι ∈ I so that gP,ι is l-invariant; and (2) for any ι ∈ I, we have 〈1, gP,ι〉 = 1.

The idea behind invariant covers is as follows. For each ι ∈ I, item (2) of Definition 3.21 implies
〈Fs′ , gP,ι〉 = 1 and 〈Ft′ , gP,ι〉 = 0. Consider a path P ′ connecting s′ and t′, all of whose edges are
labeled with literals from P . As we move from s′ to t′ along P ′, imagine that for each ι ∈ I there
is a player trying to get 〈Fv′ , gP,ι〉 from 1 to 0, where v′ is the current node on P ′. Whenever we
move across an edge e′ on P ′ with label λ′(e′) = l, the players may all make progress towards this
goal, except for the players ι ∈ I such that gP,ι is l-invariant, who can make no progress. Since
l ∈ G(P ), item (1) of Definition 3.21 ensures that at least one player cannot make progress. This
implies that at some node b′ on P ′, there will be a large discrepancy in progress among the players
(Lemma 3.23), i. e., 〈Fb′ , gP,ι1 − gP,ι2〉 will be large for some ι1, ι2 ∈ I. Such a node b′ is called
a barrier node. If the C-vectors gP,ι are chosen carefully, this implies a large size lower bound
(Lemma 3.27). This is made precise below (and the argument is phrased in terms of reachability
R, the standard valid function description).

Lemma 3.22 (Barrier). Fix a Yes instance P with an invariant cover {gP,ι}ι∈I for P . Consider
a path P ′ =: 〈e′1, e′2, . . . , e′ℓ〉 labeled with literals from P (that is, e′j connects v′j−1 and v′j and is
labeled λ′(e′j) ∈ G(P )) from s′ := v′0 to t′ := v′ℓ. If Rs′ = 1 and Rt′ = 0, then there is a node b′ on

P ′, and distinct ι1, ι2 ∈ I, such that |〈Rb′ , gP,ι1 − gP,ι2〉| ≥ 1
ℓ−1 .

Proof. Apply Lemma 3.23 with dj,ι := 〈Rv′j , gP,ι〉.

Lemma 3.23 (Discrepancy in Progress). Consider real numbers dj,ι ∈ R for integer 0 ≤ j ≤ ℓ and
for index ι ∈ I. If (1) for all ι ∈ I, d0,ι = 1 and dℓ,ι = 0, and (2) for any 0 < j ≤ ℓ, there is ιj ∈ I
such that dj−1,ιj = dj,ιj , then there exist j and distinct η, ι ∈ I, such that |dj,η − dj,ι| ≥ 1

ℓ−1 .

Proof. For 0 ≤ j ≤ ℓ, letmj := minι dj,ι andMj := maxι dj,ι and sj :=Mj−mj (s stands for stretch
or span). Assumption (2) implies that mj−1 ≤Mj = mj + sj . Assumption (1) gives mℓ = sℓ = 0,

1 = m0 ≤ mℓ +
∑

0<j≤ℓ
sj =

∑

0<j<ℓ

sj ,

and sj ≥ 1
ℓ−1 for some 0 < j < ℓ.
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We need a simple fact concerning the support of Fourier coefficients (Proposition 3.26), based
on Definitions 3.24 and 3.25. The orthogonality in Fourier support gives the orthogonality in work
done to different pyramids.

Definition 3.24 (Fourier Support). For a pyramid P , say a C-vector g is P -supported if

1. g depends only on coloring in P , i. e., g(C1) = g(C2) if v ∈ C1 ⇔ v ∈ C2 for all v ∈ V (P ); or
equivalently

2. ĝ(U) 6= 0 only when U ⊆ V (P ).

Definition 3.25 (High Frequency Support). We introduce cut-off degree and agreement degree for
describing the Fourier support.

1. A C-vector g has cut-off degree k if ĝ(U) 6= 0 only when |U | ≥ k.

2. A collection of C-vectors {gι}ι∈I agrees up to degree k if for all U ∈ C where |U | ≤ k, we have
ĝι1(U) = ĝι2(U) for ι1, ι2 ∈ I.

Proposition 3.26 (Cut-Off and Agreement). For a collection of C-vectors {gι}ι∈I , the following
are equivalent:

1. for any ι1, ι2 ∈ I, the difference gι1 − gι2 has cut-off degree k + 1; and

2. {gι}ι∈I agrees up to degree k.

Later, we will construct an invariant cover agreeing up to degree k = Ω(h) and of ‘length’
σ ≤ O(k log n) (with a small enough constant in O(·)), giving a size lower bound of 2Ω(h logn) = nΩ(h)

via Lemma 3.27.

Lemma 3.27 (Size Lower Bound from Invariant Cover). For h ≤ n1/8, if there is an invariant cover
{gP,ι}ι∈I for a pyramid Yes-instance P of height h such that (1) gP,ι is P -supported, (2) {gP,ι}ι∈I
agrees up to degree k ≤

(

h+1
2

)

, and (3) ‖gP,ι‖ ≤ 2σ for ι ∈ I; then any sound mGen network
G′ having n′ nodes for Gen of size n and accepting all pyramid Yes-instances, satisfies n′ ≥
2

k
40

logn− 1
2
σ− 1

2 .

Proof. Fix a pyramid P of height h. Its Yes instance G(P ) is accepted by G′ via some path P ′

labeled with literals from G(P ). Lemma 3.22 gives a node b′P and a C-vector gP := gP,ι1 − gP,ι2
such that |〈Rb′P , gP 〉| ≥

1
n′ . Note that ‖gP ‖ ≤ ‖gP,ι1‖+ ‖gP,ι2‖ ≤ 2σ+1. Also, gP has cut-off degree

k + 1 by Proposition 3.26, and is P -supported.
Let q := nk/10, m :=

(

h+1
2

)

, then Lemma 2.2 gives q sets Q1, Q2, . . . , Qq ⊆ [N ] satisfying

|Qi| = m and |Qi ∩Qj | ≤ k for 1 ≤ i 6= j ≤ q, where N = exp
(

k lnn
10k + 1

)

m2

k ≤ en1/10m2 ≪ n. For
each Qi, construct a pyramid Pi by identifying Qi arbitrarily with a pyramid graph of height h.
Now the previous paragraph gives b′i := b′Pi

and gi := gPi . Normalize g̃i := gi/‖gi‖, then {g̃i}1≤i≤q
is orthonormal (having disjoint Fourier support). Note that 1 ≥ ‖Rb′‖2 ≥ ∑

i|〈Rb′ , g̃i〉|2 for any
b′ ∈ V ′. Now

n′ =
∑

a′∈V ′

1 ≥
∑

i

∑

a′∈V ′

|〈Ra′ , g̃i〉|2 ≥
∑

i

|〈Rb′i , g̃i〉|
2 ≥ q

( 1

n′2σ+1

)2
,

since |〈Rb′i , g̃i〉| ≥
1
n′

1
‖gi‖ ≥ 1

n′2σ+1 . It follows that (n
′)3 ≥ q/22σ+2 = nk/10/22σ+2.
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3.3.3 Reduction to Reversible Pebbling

This subsection reuses the lower bound for reversible pebbling mGen networks (Lemma 3.11) for
constructing invariant covers. Recall that each C-vector gP,ι in an invariant cover is l-invariant for
some literal (triple) l. Note that being l-invariant is a strong condition: gP,ι must satisfy a linear
algebraic relation with respect to any mGen network. However, it turns out that l-invariant vectors
can be constructed using a single mGen network (Definition 3.29 and Corollary 3.34), which is
even a reversible pebbling mGen network. Indeed, G′

P (Definition 3.29) is suitable for this task,
because ‘any reversible pebbling strategy to pebble P can be lifted to, or seen as a subgraph (i. e.,
edge subset) of, G′

P with a matching function description K’. Hence the name universal.

Definition 3.28 (ζ-Function18). Identify a reversible pebbling configuration Ka′ ∈ K with the
C-vector Ka′(C) := JKa′ ⊆ CK for C ∈ C.16

Definition 3.29 (Universal Reversible Pebbling Switching Network). Given a pyramid P , consider
G′
P := (V ′

P , E
′
P , s

′
P , t

′
P , λ

′
P ) where V ′

P := PowerSet
(

V (P )
)

∪ {Kt′} ⊆ K is the collection of all
proper reversible pebbling configurations over elements of P , plus the improper reversible pebbling
configurationKt′ := [n]. Hence each a′ ∈ V ′

P is identified and naturally associated with its reversible
pebbling configuration (i. e.,Ka′ := a′∪{s} ∈ K as in Definition 3.6), with the obvious distinguished
nodes s′P and t′P so that Ks′P

= Ks′ and Kt′P
= Kt′ . Now a′ and b′ in V ′

P are connected by an
edge e′ in E′

P with label a triple λ′P (e
′) = l ∈ G(P ) iff Ka′ + l = Kb′ + l. Then G′

P is a reversible
pebbling mGen network annotated with a valid function description K : V ′

P → R
C (Definition 3.16

and Proposition 3.13).

To construct invariants (Definition 3.20) using the universal network (Definition 3.29), we need
an alternative, equivalent characterization of invariants (Lemma 3.31) concerning the spatial19

support of C-vectors (Definition 3.30).

Definition 3.30 (l-Definite). For a literal l, say that a C-vector g is l-definite if g(C) 6= 0 implies
l ∈ G(C) (Definition 3.12).

Lemma 3.31 (Invariant ⇔ Definite). g is l-invariant iff g is l-definite.

Proof. For the ⇐ direction, on any annotated mGen network G′ with a valid function description
F , when a′ and b′ are connected by an edge labeled l, Fa′(C)g(C) = Fb′(C)g(C) for any C, because
either (i) g(C) = 0, or (ii) l ∈ G(C), hence Fa′(C) = Fb′(C) (Item 2 of Definition 3.16). The ⇒
direction follows from Lemma 3.32.

The following proof of Lemma 3.32, i. e., backward induction and Lemma 3.33, was communi-
cated to us by Yuval Filmus and Robert Robere, substantially simplifying proofs and presentations
in earlier versions.

Lemma 3.32 (Reversible Pebbling Invariant). If g is l-invariant on G′
P , then g is l-definite.

Proof. If l /∈ G(C) and g is l-invariant on G′
P , then g(C) = 0 by a backward induction on C

as follows. Note that v /∈ C if l =: w ∧ u→ v /∈ G(C), and g(C) =
∑

C⊆D⊆Ṽ \{v} g(D) −
∑

C⊂D⊆Ṽ \{v} g(D). The first term is zero by Lemma 3.33, and the second term is also zero if

(1) C = Ṽ \ {v} vacuously, or (2) g(D) = 0 for all C ⊂ D ⊆ Ṽ \ {v} by induction hypothesis.

18The C-vector Ka′(·) can be identified with ζ(a′, ·) of the incidence algebra over the partially ordered set C

of proper reversible pebbling configurations. For a fixed pyramid P , the corresponding inverse ga
′

(·) (see Proposi-
tion 3.38) can basically be identified with µ(·, a′), interpreting the inner product 〈·, ·〉 (Definition 3.14) as a convolution
(Proposition 3.38).

19Spatial as in spatial domain, as the dual to frequency domain.
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Lemma 3.33 (Inclusion-Exclusion Principle). If g is l-invariant on G′
P , and l =: w ∧ u→ v /∈

G(C), then
∑

C⊆D⊆Ṽ \{v} g(D) = 0.

Proof. Let a′ := C and b′ := C ∪ {v}, then a′ and b′ are connected by an edge labeled l on G′
P , for

C + l = C ∪ {v}. Since g is l-invariant on G′
P , 〈Ka′ , g〉 = 〈Kb′ , g〉. Hence 0 = |C|〈g,Ka′ −Kb′〉 =

∑

D g(D)
(

Ja′ ⊆ DK − Jb′ ⊆ DK
)

=
∑

C⊆D⊆Ṽ \{v} g(D).

Corollary 3.34 (Reversible Pebbling Invariant). g is l-invariant iff g is l-invariant on G′
P .

Proof. The ⇐ direction follows from Lemma 3.32 and the ⇐ direction of Lemma 3.31.

3.3.4 Invariant Cover from the Universal Network

For the many properties required in the lower bound framework (Lemma 3.27) concerning Fourier
support, Corollary 3.34 intuitively handles the condition of l-invariance (implicit in an invariant
cover). Other properties are easier to satisfy than l-invariance, except perhaps the property of
agreement, which is handled by the notion of l-accessible reversible pebbling configurations (Defi-
nition 3.36) relative to a barrier (Definition 3.35). Roughly, different l-accessible reversible pebbling
configurations A′

l (for different literals l) agree with each other over the common accessible reversible
pebbling configurations A′, which translates to the agreement condition (see Lemma 3.39).

Definition 3.35 (Barrier). Consider a set of nodes B′ ⊆ V ′
P . A path P ′ on G′

P intersects B′ if
V (P ′) ∩B′ 6= {}. A collection of reversible pebbling configurations B′ ⊂ V ′

P is a barrier if s′P /∈ B′

and t′P /∈ B′ and every path P ′ from s′P to t′P on G′
P intersects B′.

Definition 3.36 (l-Accessible Reversible Pebbling Configurations). Relative to a barrier B′ ⊂ V ′
P ,

define the collection of accessible reversible pebbling configurations A′ :=
{

a′ ∈ V ′
P : ∃ a path P ′

connecting s′P and a′ and P ′ does not intersect B′}. We want an extended notion of l-accessible
reversible pebbling configurations A′

l ⊇ A′ where we allow intersection caused by edges labeled l,
defined by A′

l :=
{

a′ ∈ V ′
P : a′ ∈ A′ or a′ is adjacent to b′ ∈ A′ by an edge labeled l

}

. That is, all
edges crossing A′

l are not labeled with l. Indeed, if a′ is adjacent to b′ ∈ A′ by an edge labeled
l =: w ∧ u→ v, then a′ and b′ differ by a reversible pebble move (Remark 3.3) to pebble or unpebble
v, since t is not involved if b′ ∈ A′. It follows that if a′ and b′ are connected by an edge labeled
l =: w ∧ u→ v, and a′ ∈ A′

l, then b
′ ∈ A′

l as well (they differ at most by a reversible pebble move
(Remark 3.3) to pebble or unpebble v).

Remark 3.37 (Möbius Inversion). To construct an invariant cover {gP,l}l∈G(P ) (Lemma 3.39)
where each gP,l is P -supported (for use in Lemma 3.27), it suffices to restrict attention to P -
supported vectors, which form a subspace of C-vectors. Note that the C-vector Ka′ is P -supported
iff a′ ⊆ V (P ) = Q (Definition 3.28), i. e., if Ka′ is over elements of P . Since Ka′(·) = ζ(a′, ·),
the collection {Ka′}a′⊆V (P ) can be identified with the ζ-function of (the incidence algebra over)
the partially ordered set PowerSet

(

V (P )
)

of proper reversible pebbling configurations over ele-
ments of P . Hence {Ka′}a′⊆V (P ) forms a basis for the subspace of P -supported C-vectors, ad-

mitting a dual basis {gb′}b′∈V (P ) satisfying 〈Ka′ , g
b′〉 = Ja′ = b′K (Proposition 3.38),16 given by an

inclusion-exclusion over PowerSet
(

V (P )
)

(i. e., a Möbius inversion). Hence if gP,l :=
∑

a′∈A′
l
ga

′
,

then 〈Kb′ , gP,l〉 = Jb′ ∈ A′
lK, indicating whether b′ ∈ A′

l. Thus for any a
′ and b′ on G′

P connected by
an edge labeled l, it follows that 〈Ka′ , gP,l〉 = Ja′ ∈ A′

lK = Jb′ ∈ A′
lK = 〈Kb′ , gP,l〉 by the construction

of A′
l (Definition 3.36). So gP,l is l-invariant on G

′
P , hence l-invariant (Corollary 3.34).
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Proposition 3.38 (Dual Vector to Ka′). Fix a subset Q = V (P ) ⊆ Ṽ ⊂ [n] of size |Q|. Denote
C̄ := C ∩Q for C ∈ C. For any subset a′ ⊆ Q, define a P -supported C-vector ga′ by

ga
′

(C) := 2|Q|JC̄ ⊆ a′K(−1)|a
′|−|C̄| .

Then (1) 〈Kb′ , g
a′〉 = Ja′ = b′K for a′, b′ ⊆ Q;16 and (2) ĝa

′
(U) = (−2)|a

′|Ja′ ⊆ UK. In particular,
ĝa

′
is supported on U ⊇ a′, i. e., ĝa

′
(U) 6= 0 only when U ⊇ a′.

Proof. Note that ga
′
is P -supported by definition, hence

〈Kb′ , g
a′〉 = 1

|C|
∑

C∈C
Kb′(C)g

a′(C) =
1

2|Q|

∑

C̄⊆Q
Kb′(C̄)g

a′(C̄) =
∑

b′⊆C̄⊆a′
(−1)|a

′|−|C̄| = Ja′ = b′K ,

on observing that (−1)|a
′|−|C̄| = µ(C̄, a′) is the µ-function of (the incidence algebra over) the

partially ordered set PowerSet
(

V (P )
)

. Thus (1) holds. For (2), since ga
′
is P -supported, focus on

U ⊆ Q, then ĝa
′
(U) = 〈χU , ga

′〉 =
∑

C̄⊆a′(−1)|C̄∩U |+|a′|−|C̄|, which is zero (due to cancellation)

unless a′ ⊆ U , in which case it gives
∑

C̄⊆a′(−1)|a
′| = (−2)|a

′|.

Lemma 3.39 (Constructing Invariants). For any pyramid P of height h ≥ 2, let m :=
(

h+1
2

)

, for
any positive literal l ∈ G(P ), there is a C-vector gP,l such that (1) gP,l is P -supported, (2) gP,l
is l-invariant, (3) 〈1, gP,l〉 = 1, (4) for all U ⊆ Ṽ where |U | ≤ k := h − 1, we have ĝP,l(U) is
independent of l,20 (5) for all U ⊆ Ṽ , |ĝP,l(U)| ≤ 2τ where τ := 2h log(em/h), and (6) ‖gP,l‖ ≤ 2σ

where σ := m
2 + τ .

Proof. Let B′ :=
{

a′ ∈ V ′
P \ {t′P } : |Ka′ \ {s}| = h

}

be the collection of reversible pebbling config-
urations (on the universal reversible pebbling switching network G′

P ) having exactly h vertices on
V (P ), which is a barrier by Lemma 3.11. Let A′

l be the l-accessible reversible pebbling configura-

tions relative to B′. Note that t′P /∈ A′
l since h ≪

(

h+1
2

)

. Now let gP,l :=
∑

a′∈A′
l
ga

′
, where ga

′
is

the dual vector to Ka′ (Proposition 3.38). Each ga
′
is P -supported, hence (1) holds. The end of

Remark 3.37 establishes (2). For (3), note that 1 = χ{} and ĝa
′
({}) 6= 0 only when a′ = s′P , and

ĝs
′
P ({}) = 1 (Proposition 3.38). For (4), note that if a′ is such that |Ka′ \ {s}| < h, then a′ ∈ A′

l iff
a′ ∈ A′, hence Ja′ ∈ A′

lK = Ja′ ∈ A′K is independent of l for such a′. Also note that ĝa
′
(U) 6= 0 only

when a′ ⊆ U by Proposition 3.38. For (5), note that if a′ ∈ A′
l, then |Ka′ \ {s}| ≤ h. Also recall

(

m
≤h

)

:=
∑h

i=0

(

m
i

)

≤ ( emh )h. Since ĝP,l(U) =
∑

a′∈A′
l
ĝa

′
(U),

∣

∣ĝP,l(U)
∣

∣ ≤
∑

a′∈A′
l

∣

∣ĝa
′

(U)
∣

∣ ≤
∑

a′∈A′
l

2|a
′| ≤

(

m

≤ h

)

2h ≤
(em

h

)h
2h = 2h log(em/h)+h .

using Proposition 3.38. For (6), 〈gP,l, gP,l〉 =
∑

U⊆Q ĝP,l(U)2 ≤ 2m22τ .

3.3.5 Tight Size Bound

Note that the lower bound (Lemma 3.27) gets stronger as the invariant cover gets shorter (having a
smaller σ). And for tight size bounds (Theorems 3 and 4), the first term Θ(k log n) has to dominate
the second term Θ(σ). To this end, we need yet another alternative, equivalent characterization of
invariants (Definition 3.20) concerning Fourier support (Lemma 3.42). This characterization allows
us to chop off high frequency Fourier coefficients from gP,l to shorten the vectors (Lemma 3.43).

20A collection
{

gP,l(U)
}

l
is independent of l if gP,l1(U) = gP,l2(U) for any l1, l2.
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Recall that we focus on literals l = w ∧ u→ v where w 6= v and u 6= v. Further, assume w 6= t and
u 6= t and v 6= s, which is the case for our analysis (Lemma 3.27) and would simplify the treatment
in Lemma 3.42.

Propositions 3.40 and 3.41 are simple facts about representing boolean logic in Fourier analysis.

Proposition 3.40 (Arithmetization). Fix v ∈ [n]. Define the C-vectors αv and βv by

αv(C) :=











1
2

(

χ{}(C)− χ{v}(C)
)

if v ∈ Ṽ ,

χ{}(C) if v = s,

0 if v = t.

and βv(C) :=











1
2

(

χ{}(C) + χ{v}(C)
)

if v ∈ Ṽ ,

0 if v = s,

χ{}(C) if v = t.

Then for any C ∈ C, we have Jv ∈ C ∪ {s}K = αv(C) and Jv /∈ C ∪ {s}K = βv(C).

Proposition 3.41 (Orbital Average). For Z ⊆ Ṽ and v ∈ Ṽ \ Z, denote Zv := Z ∪ {v}, then
(χ{}−χ{v})

(

ĝ(Z)χZ+ĝ(Zv)χZv

)

=
(

ĝ(Z)−ĝ(Zv)
)

(χZ−χZv) and (χ{}+χ{v})
(

ĝ(Z)χZ+ĝ(Zv)χZv

)

=
(

ĝ(Z) + ĝ(Zv)
)

(χZ + χZv).

Proof. When v /∈ Z, we have χZv(C) = χZ(C)χ{v}(C), so (under co-ordinate-wise multiplication)

(

χ{} − χ{v}
)

χZ = χZ − χZv =
(

χ{v} − χ{}
)

χZv ,

giving the first equality. The second equality is proved similarly.

Lemma 3.42 (Fourier Invariant). Fix a triple l := w ∧ u→ v. Let ψ(l) := {w, u, v}∩Ṽ . A C-vector
g is l-invariant iff for any Z ⊆ Ṽ \ ψ(l), we have 0 = ξg,l(Z) :=

∑

X⊆ψ(l) χṼ ∩{w,u}(X)ĝ(Z ∪X).

Proof. g is l-invariant iff g is l-definite (Lemma 3.31) iff g(C) = Jl ∈ G(C)Kg(C) for all C ∈ C (Def-
inition 3.30). If l = w ∧ u→ v for w, u, v ∈ [n], then Jl ∈ G(C)K = 1 − Jw ∈ CsKJu ∈ CsKJv /∈ CsK
where Cs := C ∪ {s} (Definition 3.12). Therefore, for any C ∈ C, we have g(C) = Jl ∈ G(C)Kg(C)
iff Jw ∈ CsKJu ∈ CsKJv /∈ CsKg(C) = 0. Succinctly, g is l-invariant iff (under co-ordinate-wise
multiplication) Jw ∈ · ∪ {s}KJu ∈ · ∪ {s}KJv /∈ · ∪ {s}Kg = 0 as C-vectors, iff (by Proposition 3.40)
αwαuβvg = 0 as C-vectors. Fourier expand g as

g =
∑

U⊆Ṽ

ĝ(U)χU =
∑

Z⊆Ṽ \ψ(l)

∑

Y⊆ψ(l)
ĝ(Z ∪ Y )χZ∪Y . (1)

Now g is l-invariant iff (under co-ordinate-wise multiplication as C-vectors)

0 = αwαuβv
∑

Z⊆Ṽ \ψ(l)

∑

Y⊆ψ(l)
ĝ(Z ∪ Y )χZ∪Y ,

which (by Proposition 3.41, recall w 6= t, u 6= t, v 6= s) is equivalent to

0 =
∑

Z⊆Ṽ \ψ(l)

(

∑

X⊆ψ(l)
χṼ ∩{w,u}(X)ĝ(Z ∪X)

∑

Y⊆ψ(l)
χṼ ∩{w,u}(Y )χZ∪Y

)

=
∑

Z⊆Ṽ \ψ(l)

ξg,l(Z)η(Z) ,

where η(Z) :=
∑

Y⊆ψ(l) χṼ ∩{w,u}(Y )χZ∪Y . Note that
{

η(Z)
}

Z
are orthogonal and non-zero, hence

linearly independent.
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Lemma 3.43 (Low-Pass Invariant). Fix natural numbers k and τ . If for a pyramid P , for any
positive literal l ∈ G(P ), there is a C-vector gP,l such that (1) gP,l is P -supported, (2) gP,l is l-
invariant, (3) 〈1, gP,l〉 = 1, (4) for all U ⊆ Ṽ where |U | ≤ k, we have ĝP,l(U) is independent of l,20

and (5) for all U ⊆ Ṽ , |ĝP,l(U)| ≤ 2τ ; then for any positive literal l ∈ G(P ), there is a C-vector
g̃P,l satisfying (1), (2), (3), (4), and (5), plus (6) ‖g̃P,l‖ ≤ 2σ where σ :=

(

(k + 4) logm
)

+ τ .

Proof. For l ∈ G(P ), expand gP,l =
∑

C∈C ĝP,l(C)χC as a C-vector. If l =: w ∧ u→ v, define Cl,k :=
{

C ∈ C : |C \ ψ(l)| ≤ k
}

⊆ C for ψ(l) := Ṽ ∩ {w, u, v}, and g̃P,l :=
∑

C∈Cl,k ĝP,l(C)χC as a C-vector
by chopping off the high frequency Fourier coefficients from gP,l. Note that 〈g̃P,l, χU 〉 6= 0 implies
〈gP,l, χU 〉 6= 0 for any U ∈ C. Now g̃P,l is P -supported due to the second item of Definition 3.24,
hence (1) holds. Since gP,l is l-invariant, by Lemma 3.42, ξg,l(Z) = 0 for any Z ⊆ Ṽ \ψ(l). It follows
that ξg̃,l(Z) = 0 for any such Z, as either (i) for some X ⊆ ψ(l), Z∪X ∈ Cl,k, hence Z∪X ∈ Cl,k for
all such X, thus ξg̃,l(Z) = ξg,l(Z); or (ii) for all X ⊆ ψ(l), Z∪X /∈ Cl,k, thus ξg̃,l(Z) = 0. So g̃P,l is l-
invariant by Lemma 3.42 and (2) holds. For (3), 1 = χ{} and 〈g̃P,l, χ{}〉 = 〈gP,l, χ{}〉. For (4), when
U ⊆ Ṽ has |U | ≤ k, 〈g̃P,l, χU 〉 = 〈gP,l, χU 〉. (5) follows since |〈g̃P,l, χU 〉| ≤ |〈gP,l, χU 〉| for all U ⊆ Ṽ .
Note that |C| ≤ k+3 for C ∈ Cl,k, hence 〈g̃P,l, g̃P,l〉 =

∑

C∈Cl,k ĝ
2
P,l(C) ≤

(

m
≤k+3

)

22τ ≤ m2k+622τ .

Theorem 3 (Size Lower Bound). For any 4 ≤ h ≤ n1/600, any sound mGen network G′ having
n′ nodes for Gen of size n, and accepting all pyramid Yes-instances of height h, satisfies n′ ≥
2

h
400

logn− 1
2 = nΘ(h).

Proof. By Lemma 3.39, boosted by Lemma 3.43, there is an invariant cover {gP,l}l∈G(P ) for P such
that (1) gP,l is P -supported and (2) {gP,l}l∈G(P ) agrees up to degree k := h−1, and (3) ‖gP,l‖ ≤ 2σ

with σ ≤ (k + 4) logm+ 4h logm ≤ 6h logm. Now Lemma 3.27 gives log n′ ≥ k
40 logn− 1

2σ − 1
2 ≥

h
80 logn− 3h logm− 1

2 ≥ h
400 logn− 1

2 .

Theorem 3 gives a size lower bound for mGen networks solving the generation problem, by
analyzing pyramid Yes-instances. However, the general generation problem may be harder and
require larger mGen networks. To get a tight bound (and thus defending the title of this pa-
per), we construct below a monotone (decision) problem computed by a (uniform) mGen network
(Definition 3.44), allowing us to reuse Theorem 3 for a tight size bound in Theorem 4.

Definition 3.44 (Universal Degree-h Reversible Pebbling Switching Network). For a size pa-

rameter n and h ≤ n, consider G′
n,h := (V ′

h, E
′
h, s

′
h, t

′
h, λ

′
h) where V ′

h :=
(

Ṽ
≤h

)

∪ Kt′ :=
{

V ⊆
[n] \ {s, t} : |V | ≤ h

}

∪ {Kt′} is the collection of proper reversible pebbling configurations of size at
most h (excluding s), plus the improper reversible pebbling configuration. Hence each a′ ∈ V ′

h is
identified and naturally associated with its reversible pebbling configuration (Ka′ := a′ ∪ {s} ∈ K
as in Definition 3.6), with the obvious distinguished nodes s′h and t′h so that Ks′h

= Ks′ and
Kt′h

= Kt′ . Now a′ and b′ in V ′
h are connected by an edge e′ in E′

h labeled with a triple λ′h(e
′) = l

iff Ka′ + l = Kb′ + l. Then G′
n,h is a reversible pebbling mGen network annotated with a valid

function description K : V ′
P → R

C (Definition 3.16 and Proposition 3.13).

Recall that fG′
n,h

denotes the function computed by G′
n,h, which is monotone. Note that G′

n,h

has
(

n−2
≤h

)

+ 1 = nO(h) nodes (and hence nO(h) edges).

Theorem 4 (Tight Size Bound). For any 12 ≤ h ≤ 3n
1

600 , any mGen network G′ having n′ nodes
and computing fG′

n,h
satisfies n′ ≥ 1

2n
h/1200 = nΘ(h).

Proof. Note that G′
n,h is sound and accepts all pyramid Yes-instances of height h/3 (by simulating

a reversible pebbling strategy), and so is any G′ computing fG′
n,h

. Now apply Theorem 3.
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4 Lower Bound for Cliques

This section proves the lower bound for cliques as Theorem 5. After defining the problem and the
model below (Definitions 4.1, 4.2), §4.1 introduces the Fourier analytic framework over extremal
No-instances, §4.2 describes the lower bound framework assuming the existence of an invariant
cover, and §4.3 constructs the invariant cover. These subsections clearly share many similarities
with the lower bound proof in §3.

Definition 4.1 (Clique Problem). For a size parameter n, let V := [n] be n vertices. For 2 ≤ k ≤ n,
the k-clique problem (k-Clique) receives as input a subset E ⊆

(

V
2

)

of edges. k-Clique accepts
input E if the graph (V,E) has a k-clique, i. e., if there is U ⊆ V , |U | = k, and {u, v} ∈ E for all
u 6= v ∈ U . The value of E is represented as

(

n
2

)

boolean variables.

Definition 4.2 (Monotone Switching Networks for Clique). Say a switching network is a mono-
tone switching network for Clique (mClique network), if each edge e′ ∈ E′ is labeled with
λ′(e′) = {u, v} for some u 6= v ∈ V . Given an instance for k-Clique with data E, the literal
λ′(e′) = {u, v} is in the instance if {u, v} ∈ E.

4.1 Fourier Analysis on Extremal Instances

The analysis focuses on the Yes-instances of Clique having a structure of a k-clique, and the No-
instances that are (k − 1)-colorable.21 In particular, those Yes-instances are minterms and those
No-instances are ‘similar’ to maxterms of Clique as a monotone boolean function, and they are
respectively ‘hardest to accept’ and ‘hardest to reject’. Fourier analysis will be done on the truth
tables restricted to the (k − 1)-colorable instances (Definition 4.7). These definitions for Clique

are analogous to the ones for Gen in §3.3.1.

Definition 4.3 (k-clique Yes-Instances). An instance G(P ) ∈ {0, 1}(
n
2) of Clique forms a k-clique

Yes-instance if there exists Q ⊆ V , |Q| = k such that {u, v} ∈ E iff u 6= v and u, v ∈ Q. In this
case, the Yes-instance is simply called a k-clique (also denoted P ), and V (P ) := Q ⊆ V .

Definition 4.4 (Extremal No-Instances). Let C :=
{

C : V → [k − 1]
} ∼= [k − 1]V be the collection

of k− 1 colorings of V . A coloring C ∈ C is associated with the extremal No-instance G(C) where
an edge {u, v} /∈ G(C) iff C(u) = C(v) for u, v ∈ V .

Definition 4.5 (Inner Product Space of Colorings). A C-vector is a complex vector with index set C,
equivalently a function from C to C. For two C-vectors f and g, define 〈f, g〉 := 1

|C|
∑

C∈C f(C)g(C)

as their inner product, inducing the norm ‖f‖ := 〈f, f〉1/2. Then C
C is an inner product space.

Definition 4.6 (Fourier Analysis). For a coloring U ∈ C, define the C-vector χU (C) := ω
∑

v∈V U(v)C(v),
where ω := ωk−1 := e2πi/(k−1) is the primitive (k−1)st root of unity. The collection {χU}U∈C forms
an orthonormal basis for C

C , called the Fourier Basis. Denote ĝ(U) := 〈g, χU 〉 as the Fourier
coefficient of g at ‘frequency’ U . Say the support of U is supp(U) := {v ∈ V : U(v) 6= 0} for U ∈ C.

Definition 4.7 (Reachability). Fix an mClique network G′. For a′ ∈ V ′, let Ra′(C) := True

if the extremal No-instance G(C) can reach a′.22 The boolean vector Ra′ is identified with the
C-vector Ra′(C) := JC can reach a′K.

21This consideration is standard for studying the monotone complexity of k-Clique (e. g., [RM99,Ros10]), and
similar ideas date back at least to Razborov [Raz85b].

22Hence Ra′ is the truth table at node a′ restricted to the extremal No-instances G(C).
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Proposition 4.8 (Adjacent Reachability). If a′ and b′ are connected by an edge labeled {u, v},
where {u, v} ∈ G(C), then Ra′(C) = Rb′(C).

Denote 1 as the all one C-vector: 1(C) = 1 for all C ∈ C; and similarly 0 as the all zero C-vector.
Note that Rs′ = 1; and if G′ is sound (i. e., does not accept No-instances), then Rt′ = 0.

4.2 Invariant Cover for Cliques

This subsection adapts the framework of invariant cover from Gen to Clique as Lemma 4.13, by
suitably changing the definitions of an invariant cover (Definitions 4.9, 4.10) and Fourier support
(Definitions 4.11, 4.12).

Definition 4.9 (l-Invariant). For a literal l and anmClique network G′, a C-vector g is l-invariant
on G′ if for any a′ and b′ in V (G′) connected by an edge labeled l, 〈Ra′ , g〉 = 〈Rb′ , g〉. Say g is
l-invariant if g is l-invariant on G′ for any mClique network G′.

Definition 4.10 (Invariant Cover). Consider a Yes instance P . A collection of C-vectors {gP,ι}ι∈I
over some index set I forms an invariant cover (for P ) if (1) for any positive literal l ∈ G(P ), there
is an ι ∈ I so that gP,ι is l-invariant; and (2) for any ι ∈ I, we have 〈1, gP,ι〉 = 1.

Definition 4.11 (Fourier Support). For a k-clique P , say a C-vector g is P -supported if

1. g depends only on coloring in P , i. e., g(C1) = g(C2) if C1(v) = C2(v) for all v ∈ V (P ); or
equivalently

2. ĝ(U) 6= 0 only when supp(U) ⊆ V (P ).

Definition 4.12 (High Frequency Support). We introduce cut-off degree and agreement degree for
describing the Fourier support.

1. A C-vector g has cut-off degree k if ĝ(U) 6= 0 only when |supp(U)| ≥ k.

2. A collection of C-vectors {gι}ι∈I agrees up to degree k if for all U ∈ C where |supp(U)| ≤ k,
we have ĝι1(U) = ĝι2(U) for ι1, ι2 ∈ I.

Lemma 4.13 (Size Lower Bound from Invariants). For 3 ≤ k ≤ n1/100, if there is an invariant
cover {gP,ι}ι∈I such that (1) gP,ι is P -supported, (2) {gP,ι}ι∈I agrees up to degree k − 2, and
(3) ‖gP,ι‖ ≤ kk; then any sound mClique network G′ having n′ nodes for Clique of size n and
accepting all k-cliques, satisfies n′ ≥ 1

2n
k/100 = nΘ(k).

Proof. Fix a k-clique P . Its Yes-instance G(P ) is accepted by G′ via some path P ′ labeled with
edges from G(P ). Lemma 3.22 gives a node b′P and a C-vector gP := gP,ι1 − gP,ι2 such that
|〈Rb′P , gP 〉| ≥

1
n′ .23 Note that ‖gP ‖ ≤ ‖gP,u‖ + ‖gP,v‖ ≤ 2kk. Also, gP has cut-off degree k − 1 by

Proposition 3.26, and is P -supported.
Let q := nk/10, then Lemma 2.2 gives q sets Q1, Q2, . . . , Qq ⊆ [N ] satisfying |Qi| = k and

|Qi ∩ Qj | ≤ k − 2 for 1 ≤ i 6= j ≤ q, where N = exp
(

k lnn
10(k−2) + 1

)

k2

k−2 ≤ n1/3k2 ≪ n. For each

Qi, construct the k-clique Pi with V (Pi) = Qi, then the previous paragraph gives b′i := b′Pi
and

23Strictly speaking, C-vectors in §4.1 are complex vectors while C-vectors in §3.3.1 are real vectors. We may
redefine C-vectors in §3.3.1 as complex vectors. In doing so, the only necessary change is the proof of Lemma 3.22:
we may apply Lemma 3.23 instead with dj,ι := real part of 〈Rv′

j
, gP,ι〉.
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gi := gPi . Normalize g̃i := gi/‖gi‖, then {g̃i}1≤i≤q is orthonormal (having disjoint Fourier support).
Note that 1 ≥ ‖Rb′‖2 ≥

∑

i|〈Rb′ , g̃i〉|2 for any b′ ∈ V ′. Now

n′ =
∑

a′∈V ′

1 ≥
∑

i

∑

a′∈V ′

|〈Ra′ , g̃i〉|2 ≥
∑

i

|〈Rb′i , g̃i〉|
2 ≥ q

( 1

n′2kk

)2
,

since |〈Rb′i , g̃i〉| ≥
1
n′

1
‖gi‖ ≥ 1

n′2kk
. It follows that (n′)3 ≥ q/4k2k = nk/10/4k2k ≥ 1

4n
k/20.

4.3 Constructing Invariant Cover

This subsection constructs an invariant cover for Clique (Lemma 4.14) by exploiting the symmetry
in the problem. The lower bound for Clique is proved as Theorem 5.

Fix a collection of vertices D (e. g., V (P ) ∼= [k]) and a color set R (e. g., [k − 1]). A col-
oring C : D → R has a monopoly if exactly one color class has more than one vertex, i. e.,
∣

∣

{

c ∈ R : |C−1(c)| > 1
}∣

∣ = 1, in which case the monopoly refers to vertices in D with the dominat-
ing color. Later, for counting purposes, we will restrict attention to a subset of vertices in a clique,
e. g., D = [k − 2] and R = [k − 1]. In such cases, say C is proper if C(u) = C(v) implies u = v for
u, v ∈ D.

Lemma 4.14 (Invariant Cover). Define the scaling factor φ(k) := (k − 1)k−1/(k − 2)!(k − 2). For
any vertex v in a k-clique P , define a C-vector gP,v by

gP,v(C) :=











φ(k)(−1)τ (τ − 2)!
if C (restricted to P ) has a monopoly with τ ver-
tices and the monopoly does not contain v,

0 otherwise.

Then (1) gP,v is P -supported, (2) gP,v is l-invariant when l = {u, v} for any u ∈ V (P ) \ {v},
(3) 〈1, gP,v〉 = 1, (4) {gP,v}v∈P agrees up to degree k − 2, and (5) ‖gP,v‖ ≤ kk/2.

Proof. Item (1) is clear. For (2), note that if gP,v(C) 6= 0 then C gives a unique color to v in P ,
i. e., C(u) 6= C(v) for all u ∈ V (P ) \ {v}. Hence if a′ and b′ are connected by an edge labeled
l = {u, v} where u ∈ V (P ) \ {v}, then Ra′(C)gP,v(C) = Rb′(C)gP,v(C) for any C, because either
(i) gP,v(C) = 0, or (ii) C(u) 6= C(v), then {u, v} ∈ G(C) and Ra′(C) = Rb′(C) (Proposition 4.8).

For (3), note that when C gives v a unique color (denoted cv below) in P , ignoring v and its color
reduces to a coloring C̃ : V (P )\{v} → [k − 1]\

{

C(v)
}

, which is identified with C̃ : [k − 1] → [k − 2].

For τ ≥ 2, the number of such C̃ having a monopoly of size τ is
(

k−1
τ

) (k−2)!
(τ−2)! , hence

〈1, gP,v〉 = |C|−1
∑

C∈C
gP,v(C) =

1

(k − 1)k

∑

cv∈[k−1]

∑

2≤τ≤k−1

(

k − 1

τ

)

(k − 2)!

(τ − 2)!
· φ(k)(−1)τ (τ − 2)!

=
1

k − 2

∑

2≤τ≤k−1

(

k − 1

τ

)

(−1)τ = 1,

using the combinatorial identity
∑

0≤τ≤t
(

t
τ

)

(−1)τ = 0 for t ≥ 1.24

For (4), note that C-vectors g1 and g2 agree up to degree k − 2 if they ‘depend the same
way on colorings whose domain has size at most k − 2’ (Claim 4.15). More precisely, introduce
the following. For nesting vertex sets D1 ⊇ D2, a coloring C1 : D1 → R extends a coloring

24Elchanan Mossel noticed that this implicit use of the principle of inclusion-exclusion for controlling Fourier
coefficients is similar to the Efron-Stein decomposition [ES81].
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C2 : D2 → R if C1 agrees with C2 when restricted to D2, i. e., C1(v) = C2(v) for v ∈ D2. Denote
Ext(C2,D1) := {C1 : D1 → R extending C2} as all extensions of C2 to D1. The C2-slice of a
C-vector g is slice(g, C2) := |E|−1

∑

C1∈E g(C1), where E := Ext(C2,D1) with an appropriate D1

(which will be clear from the context, e. g., V or V (P )).

Claim 4.15 (Agreement). C-vectors g1 and g2 agree up to degree k−2 if slice(g1, C2) = slice(g2, C2)
for all coloring C2 : D2 → [k − 1] such that |D2| ≤ k − 2.

Proof. Given any coloring U ∈ C as frequency, partition C by colors over supp(U), and rewrite

ĝ(U) = |C|−1
∑

C∈C
g(C)χU (C) = |S|−1

∑

S∈S
slice

(

g, S
)

χU (S) ,

where S :=
{

S : supp(U) → [k − 1]
}

is the collection of colorings over the support of U (note that
χU depends only on colors over supp(U)). Hence if |supp(U)| ≤ k − 2, then

ĝ1(U) = |S|−1
∑

S∈S
slice

(

g1, S
)

χU (S) = |S|−1
∑

S∈S
slice

(

g2, S
)

χU (S) = ĝ2(U) .

Hence (4) follows, if for any u, v ∈ V (P ), we have slice(gP,u, C2) = slice(gP,v, C2) for any coloring
C2 : D2 → [k − 1] with |D2| ≤ k − 2. Further, we can assume D2 ⊆ V (P ), since gP,u and gP,v are
P -supported. Therefore, after computing the slice function (Claim 4.16) to show the independence
of v (Claim 4.17), item (4) follows from Claim 4.18 (due to Claim 4.15).

Claim 4.16 (Indicator of Proper Coloring). If D2 ⊆ V (P ) has size |D2| = k−1, and D2 ∋ v, then
for any coloring C2 : D2 → [k − 1], we have slice(gP,v, C2) =

k−2
k−1φ(k)JC2 is properK.

Proof. Let E := Ext
(

C2, V (P )
)

, then any extension C1 ∈ E colors one more vertex w ∈ V (P ) \D2

than C2, and slice(gP,v, C2) =
1

k−1

∑

C1∈E slice(gP,v, C1).
If C2 is proper, then by considering the coloring of w,

1. one extension C1 ∈ E has a monopoly of size 2 containing v, where slice(gP,v, C1) = 0; and

2. k−2 extensions C1 ∈ E has a monopoly of size 2 not containing v, where slice(gP,v, C1) = φ(k)
as (−1)2(2− 2)! = 1.

Thus slice(gP,v, C2) =
k−2
k−1φ(k) if C2 is proper.

Otherwise, C2 is not proper, and has a color class with more than one vertex. If C2 does not
have a monopoly or the monopoly contains v, then any extension C ∈ Ext(C2, V ) has gP,v(C) = 0,
hence slice(gP,v, C2) = 0.

For the remaining case, C2 has a monopoly of size τ ≥ 2 not containing v. By considering the
coloring of w,

• one extension C1 ∈ E has a monopoly of size τ + 1 not containing v, where slice(gP,v, C1) =
φ(k)(−1)τ+1(τ − 1)!; and

• τ − 1 extensions C1 ∈ E have a monopoly of size τ not containing v, where slice(gP,v, C1) =
φ(k)(−1)τ (τ − 2)!.

Hence slice(gP,v, C2) =
φ(k)
k−1

(

(−1)τ+1(τ − 1)! + (τ − 1)(−1)τ (τ − 2)!
)

= 0.

Claim 4.17 (Independence of v). If D2 ⊆ V (P ) has size |D2| = k − 2, then for any coloring
C2 : D2 → [k − 1], we have slice(gP,v, C2) =

k−2
(k−1)2

φ(k)JC2 is properK, which is independent of v.
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Proof. LetD1 be an arbitrary subset such thatD1 ⊆ V (P ) and |D1| = k−1 andD1 ⊇ D2∪{v}. Now
slice(gP,v, C2) = |E|−1

∑

C1∈E slice(gP,v, C1) where E := Ext(C2,D1). If C2 is not proper, neither
is any C1 ∈ E, hence slice(gP,v, C1) = 0 by Claim 4.16, and slice(gP,v, C2) = 0. Otherwise C2 is
proper, then exactly one extension C1 ∈ E is proper, and the result follows from Claim 4.16.

Claim 4.18 (Equality of Slices). For any C2 : D2 → [k − 1] with D2 ⊆ V (P ) and |D2| ≤ k− 2, we
have slice(gP,u, C2) = slice(gP,v, C2) for any u, v ∈ V (P ).

Proof. Let D1 be an arbitrary subset of size |D1| = k − 2 such that D2 ⊆ D1 ⊆ V (P ). Let
E := Ext(C2,D1), then Claim 4.17 gives slice(gP,u, C1) = slice(gP,v, C1) for C1 ∈ E, so

slice(gP,u, C2) = |E|−1
∑

C1∈E
slice(gP,u, C1) = |E|−1

∑

C1∈E
slice(gP,v, C1) = slice(gP,v, C2) .

To compute ‖gP,v‖ for (5), partition C by coloring to v (denoted cv below),

〈gP,v, gP,v〉 = |C|−1
∑

C∈C
gP,v(C)

2 =
1

(k − 1)k

∑

cv∈[k−1]

∑

2≤τ≤k−1

(

k − 1

τ

)

(k − 2)!

(τ − 2)!
·
(

φ(k)(−1)τ (τ − 2)!
)2

=
(k − 1)k−1

(k − 2)2

∑

2≤τ≤k−1

(

k − 1

τ

)

(τ − 2)!

(k − 2)!
≤ (k − 1)k,

since
(

k−1
τ

) (τ−2)!
(k−2)! ≤ k − 1. So ‖gP,v‖ ≤ kk/2.

Theorem 5 (Size Lower Bound). For 3 ≤ k ≤ n1/100, any mClique network G′ having n′ nodes
and computing k-Clique of size n, satisfies n′ ≥ 1

2n
k/100 = nΘ(k).

Proof. Use Lemmas 4.13 and 4.14.
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