
DLOGTIME-Proof Systems

Andreas Krebs1 and Nutan Limaye2

1 University of Tübingen, Germany. mail@krebs-net.de
2 Indian Institute of Technology, Bombay, India. nutan@cse.iitb.ac.in

Abstract. We define DLOGTIME proof systems, DLTPS, which gen-
eralize NC0 proof systems. It is known that functions such as Exactk
and Majority do not have NC0 proof systems. Here, we give a DLTPS
for Exactk (and therefore for Majority) and also for other natural func-
tions such as Reachand Cliquek. Though many interesting functions have
DLTPS, we show that there are languages in NP which do not have
DLTPS. We consider the closure properties of DLTPS and prove that
they are closed under union and concatenation but are not closed un-
der intersection and complement. Finally, we consider a hierarchy of
polylogarithmic time proof systems and show that the hierarchy is strict.

1 Introduction

A proof system for a language L is a surjective function f : Γ ∗ → L. Cook and
Reckhow first defined proof systems in their seminal paper [6]. They considered
functions f computable in polynomial time to define their proof system. For a
word w ∈ L, if w = f(x) then x is called the proof for w ∈ L. And the function
f is called a verifier of the proof. From the definition of NP, it is easy to see that
any language in NP has a proof system f where f is computable in polynomial
time. There is a rich body of work that studies proof systems with polynomial
time verifiers. See for example [9] for a survey on proof systems.

During the last few years, proof systems with verifiers more powerful than
polynomial time have been considered. (See for example [8, 5, 4, 3].) Many inter-
esting properties regarding such proof systems have been studied in these papers.
Recently, proof systems with very weak verifiers were studied in [2]. It is known
that if the power of the verifier is restricted to uniform AC0, we get all languages
in NP. In [2], a restriction of AC0 proof systems, namely NC0PS were considered,
where the verifier is a (a possibly non-uniform) NC0 circuit. Many interesting
natural languages were proved to have NC0PS. They also proved that there
are natural languages such as Majority which provably have no (non-uniform)
NC0PS. It is natural to ask whether one can define a proof system that generalises
NC0PS, but is not as general as a proof system for NP.

In this work we investigate proof systems which generalize uniform NC0PS
(i.e. the verifier is a uniform NC0 circuit) but are more restrictive than AC0PS. It
is known (folklore) that DLOGTIME-uniform AC0 proof systems (i.e. the verifier
is a DLOGTIME-uniform AC0 circuit) capture NP. It is possible to consider the
uniform version of NC0 proof systems. One can observe that many languages

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 186 (2012)

which are shown to have NC0 proof systems in [2], in fact have uniform proof
systems. Here, we consider proof systems in which the verifier is a deterministic
log-time Turing machine. Deterministic log-time Turing machines can compute
an AND of ω(1) bits and therefore are more powerful than uniform NC0 circuits.
However, they cannot compute an AND of Θ(n) bits, and therefore are less
powerful than uniform AC0 circuits. Also NC0 verifiers can make only O(1)
queries to the proof bits as opposed to a DLOGTIME verifiers which can make
O(log n) queries. We see that this makes DLTPS much more powerful as compared
to NC0PS.
In the same spirit as in [2], we prove that many interesting natural functions
have DLTPS.

– In [2], functions such as ExactOR, Majority, Exactk were considered. They
proved that none of them have NC0PS. We prove that for any DLOGTIME
computable function k : N → N , Exactk has DLTPS, and hence ExactOR
and Majority also have DLTPS.

– We consider other interesting problems on graphs. We prove that Reach
on directed graphs have DLTPS. We also prove that for any DLOGTIME
computable function k : N → N , Cliquek has a DLTPS.

We then study closure properties of DLTPS. We prove that it is closed under
union and concatenation. That is, if L1 and L2 are two languages which have
DLTPS then L1 ∪ L2 and L1L2 also have DLTPS. On the other hand, we prove
that DLTPS are not closed under intersection and complement.

Next, we prove that there is a language in NP for which there is no DLTPS. To
the best of our knowledge, this is the largest class of uniform proof systems which
can be shown to be different from NP. Finally, we consider a whole hierarchy
of polylogarithmic time proof systems. We show that this hierarchy is strict.
Our proof of the hierarchy theorem uses lazy diagonalization as in the proof of
non-deterministic time hierarchy theorem [10]. We believe that our proof may be
of independent interest for proving lower bounds in the setting other than that
of proof systems.

The rest of the paper is organised as follows: in Section 2 we give a formal
definition of DLTPS and list a few simple functions computable in DLOGTIME.
In Section 3 we give DLTPS for Exactk and hence for Majority, and ExactOR. In
Section 4 we give DLTPS for Reach, and Cliquek. In Section 5 we prove closure
properties of DLTPS and also prove that there is a language in NP for which there
is no DLTPS. In Section 6 we prove the hierarchy theorem for polylogarithmic
time proof systems. Finally, in Section 7 we discuss some key aspects of the proof
of our hierarchy theorem.

2 Proof Systems

DLOGTIME Turing machines have been studied in the past. (See for example
[1, 7].) We use the definition from [1]. A DLOGTIME Turing machine is a
deterministic Turing machine which has an input tape, a constant number of

read-write tapes, and an index tape. We assume that none of the tapes have an
end marker. The machine runs in time O(log n) time, where n is the length of
the input. In one step, the machine can read a bit from the input indexed by the
index tape.

Definition 1. A function f : Γ ∗ → Σ∗ is computable in DLT if there exists a
DLOGTIME Turing machine M such that M(σ, i, x) halts and accepts iff wi = σ,
where w0 . . . w|x|−1 = f(x).

Remark 2. Not every DLT describes a function. Consider a machine M that
accepts no letter at the first position but a letter at the second position.

We assume that the index i is given in binary notation. In general, whether
i is encoded in binary or unary is not important to the power of the functions
considered here, since we can always assume that i ≤ |x|.

A language is said to be accepted by a Turing machine if it accepts all the
words in the language and nothing else. For proof systems, this notion is reversed.
A language is said to have a Turing machine as its proof system if the output of
the machine is exactly all the words of the language, while the input ranges over
all possible strings. Formally,

Definition 3 (Proof System). Let Σ,Γ be alphabets. A proof system for L ⊆
Σ∗ is a map f : Γ ∗ → L, that is onto. A proof system f is polynomial bounded if
there is a polynomial p such that for every y ∈ L there exists an x with f(x) = y
and |x| < p(|y|).

Remark 4. Our proof systems cannot accept the empty language, i.e. no word at
all. The “smallest” language we can accept is the language which contains only
the empty word, by an oracle that always rejects. The input alphabet can be
assumed to be {0, 1} without loss of generality (by binary encoding of Γ).

In the definition there are two properties required for f to be a proof system of
L. First, for all inputs x the output f(x) must be in L. We refer to this property
as correctness. Second, for every y ∈ L there is an input x such that f(x) = y,
i.e. f is surjective.

Here we will study proof systems where the function f is computable in DLT.
Given that a machine that runs in logarithmic time cannot output a long string,
we say that a function f is computable in DLT if every bit (or letter) of the
output is computable in DLT.

Combining the last two definitions we say the language L has a DLT proof
system (DLTPS) if there is a polynomial bounded proof system f for L such that
f is computable in DLT. Note that, as input and output lengths in DLTPS are
polynomially related, and as the computational power of DLTPS is bounded by
logtime in terms of the input length, it is also bounded by logtime in terms of
the output length.

In [1], simple functions were shown to be computable in DLOGTIME. They
showed that given an input x, a DLOGTIME machine can compute |x| by a

double binary search. Addition and subtraction of two O(log n) bit numbers can
be done in DLOGTIME. Logarithm of a O(log n) bit number can be computed
in DLOGTIME.

3 Word Problems

In this section we give DLTPS for various languages which are subsets of {0, 1}∗.
ExactOR is a set of all string from {0, 1}∗ with exactly one bit set to 1. For
k : N → N , Exactk ⊂ {0, 1}∗, is a set of all strings with exactly k bits set to 1.
And Majority ⊂ {0, 1}∗ is a set of all strings with at least as many 1s as 0s.

In [2], the above functions were considered. They proved that ExactOR,
Majority and ExMaj do not have NC0PS. Here, we prove that all these languages
have DLTPS. In fact we prove slightly more: we show that for every function k
computable in DLT, the language Exactk has a DLTPS.

Before we start to give a general proof for arbitrary functions k, we will look
at the specific case when k(n) = 1. So we need a proof system which outputs all
strings with exactly one occurrence of 1, i.e. the language ExactOR.

By definition a proof system is a function f : Γ ∗ → Σ∗, but in order to
explain how a proof system works it is helpful to give some interpretation to the
proof x, when outputting f(x). In the case of ExactOR the proof should encode
the position of the unique one in the string and the length of the output.

On (σ, i, x), the machine interprets the first log |x| bits of x as the prescribed
position α for the unique 1 in the output string, and the length of x will be the
length of the output. Let α denote the value of the first log |x| bits of x. The
function computed by the machine is: f(x) = 0α10|x|−α−1.

The machine can be described formally as follows:

M(σ, i, x)

x =

logn︷︸︸︷
α︸ ︷︷ ︸

n

Let n = |x|.
if i < n then

if i = α then
If σ = 1 Accept.

else
If σ = 0 Accept.

end if
end if
Reject.

Note that α need not be computed explicitly: to check whether i = α, we only
need to compare i with the first log |x| bits of x. Also note that n = |x| can be
computed in DLOGTIME. It is easy to see that the machine outputs strings with
exactly one 1. As we cycle through all x, α gets all values in the range [0, n− 1].
This ensures that the range of the function defined by the machine is ExactOR
and it is onto.

Lemma 5. ExactOR has a DLTPS.

Our next goal to prove the generalization for every function k computable in
DLT. As a first step we give another simple proof system. Given a function k :
N → N computable by a DLOGTIME Turing machine such that ∀n : k(n) < n,
there is a DLTPS for the language {1k(n)0n−k(n) | n ∈ N}, i.e. the language has
exactly one word of length n that consists of k(n) ones followed by zeros. This
language clearly has a DLTPS, nevertheless we will give the exact DLTPS which
we will then extend to a proof system for Exactk:

M(σ, i, x)

x =︸ ︷︷ ︸
n

Let n = |x|.
if i > n then

Reject.
else

if σ = 1 and i < k(n) then Accept.
if σ = 0 and i ≥ k(n) then Accept.
Reject.

end if

Note that in the algorithm above we ignore all bits of x and only use the length
of x to determine the output. The machine maps every input word of length n
to the word 1k(n)0n−k(n). And therefore is the proof system for this language.

Every word in the output is already in Exactk. However, Exactk contains
every permutation of these words too. To give a proof system for Exactk, we
will modify the above ensuring surjectivity. We interpret the input x as a list of
numbers α0, . . . , αn−1 between 0 and n− 1, where n is the length of the word we
want to output. To access the i-th number in this list in this notation will require
multiplication of s and i, where s = dlog ne. However, we do not know how to
do this in DLOGTIME. Therefore, we store each number in DLOGTIME, as an
s bit number where s is the smallest power of 2 greater of equal to log n. Then
we compute s · i by a simple bit shift in DLOGTIME. Also since we will allow
arbitrary proofs, the number in the list might have a value larger than n − 1,
in this case we will interpret this number as the largest suitable number. Since
these are only technical details we will simply write log n bit numbers in the rest
of the paper.

Let x = (α0 . . . αn−1 . . .). We use the first n elements, i.e. α0, α1, . . . , αn−1,
to come up with the output of length n and ignore the rest of the bits of x.

We interpret this list as a bijective map mα. We say mα(i) = j if αi = j and
αj = i, if there is no such j we say mα(i) = i. For every list α the map mα will
be a bijection. Assume that m(i) = j = m(i′) then i = αj = i′ and hence m
is injective. Since the map is between finite sets it is also surjective. Also note
that every involution, i.e. a map m′ such that m′(m′(x)) = x for all x, can be
represented in this way.

In order to have enough space in the proof for the whole list we will check
that the proof has at least quadratic length l compared to the length n of string
we want to output. Since we cannot exactly compute the square root we will

approximate it. To approximate b
√
lc, let j = blog lc and let k = bj/2c. As

logarithm can be computed in DLOGTIME and division by 2 simply involves a
shift by one bit to the right, j, k can be computed in DLOGTIME. Now, let n be
the first j bits of the binary representation of l. Then n has the property n2 ≤ l,
and for all n ∈ N there exists an l ∈ N such that n is the result of this operation.
We define the function ŝqrt(l) = n, where n is obtained by the procedure above.

Theorem 6. For every function k : N → N computable in DLT, Exactk has
DLTPS.

Proof. Consider the following proof system.

M(σ, i, x)

x =

logn︷︸︸︷
α0 . . .

logn︷ ︸︸ ︷
αn−1︸ ︷︷ ︸
≈n2

Let n = ŝqrt(|x|).
if i < n then

Let j = αi
if αj = i then

Let t = j.
else

Let t = i.
end if
if σ = 1 and t < k(n) then Accept.
if σ = 0 and t ≥ k(n) then Accept.

end if
Reject.

We now prove the correctness and surjectivity of M . In order to see that for a
fixed x the output contains exactly k(n) ones, note that we output a 1 if t < k(n)
and t is the image of i under a bijection. Given a word w = w0 . . . wn−1, we need
to show that there is an x that produces the output w. Let I be the set of 1s
in w. We will assign to each index in I a unique value βi in the following way:
Let I0 = {i ∈ I | i < k(n)}. We define βi = i for i ∈ I0 and for the remaining
values of I are assigned the remaining numbers less than k(n) in an arbitrary
and one-to-one manner. The x which produces this w can now be described
by specifying α0, α1, . . . , αn−1: αi = βi if i ∈ I, αi = j if βj = i, and αi = i
otherwise. It is easy to see that this input produces the output w. ut

Since we can add additional 1s to the output as in [2], we get:

Corollary 7. Majority admits a DLTPS.

Proof. As in [2] we can take a proof system of a language and add additional 1’s
to the output. Consider the proof system of Exactk where k = bn/2c + 1. We
extend the proof system by n additional bits γ1, . . . , γn. Whenever would output
a 0 at position i in the proof system of Exactk we will check if γi = 1, in which
case we output a 1 instead. ut

4 Problems on Graphs

In this section, we consider three problems on graphs. For every n ∈ N , a directed
graph on n vertices is in Reach if there exists a path from a vertex labelled 0 to
a vertex labelled n− 1 in the graph. For a fixed k, and for every n ∈ N , a graph
on n vertices is in Cliquek if it has a clique of size at least k. For graph problems
like Reach, Cliquek, the output of the proof system will be all graphs of these
languages encoded as the adjacency matrix. The nodes of the graph are labeled
by 1, . . . , n and hence the adjacency matrix has size n× n. We assume that the
positions of the words are indexed by (i, j) and w(i,j) = 1 iff there is an edge
from i to j.

If we were to index the positions by a single number k, we could use any
DLOGTIME computable encoding. Though the usual encoding k = i · n + j
is not immediately in DLOGTIME, a slight modification k = i · 2dlogne + j is
computable in DLOGTIME. For such an encoding we would pad all positions
not in the image of the tuple-function by a special character. In the following we
use (i, j) to index the positions of the word.

Theorem 8. Reach has a DLTPS

Proof. For an output of size n×n we require an input of length at most n log n+
2n2 ≤ 4n2. So we let n = ŝqrt(|x|/4). We think of the beginning of x as a list of
log n-bit numbers α0, α1, . . . , αn−1. Also we pick any tuple function computable
in DLOGTIME and think of the end of x as an n× n matrix of single bits βij .
All other bits of x are ignored.

We interpret α = (α0, α1, . . . , αn−1) as a path of length at most n, and
(βij)i,j∈{0,1,...,n−1} as a graph G. For an arbitrary input, we have no guarantee
that the path α actually exists in the graph G. If the graph indeed has this path,
we wish to preserve it in the output. On the other hand, if α is not a path in G,
we wish to output a graph with a path. However, in the computation of a single
output bit corresponding to the edge from i to j we cannot check whether α is a
path in G, since the computation time is log-time bounded. So we spread this
test among many output bits.

The smallest proof for existence of a path between 0 and n− 1 is of constant
size: for any i, adding edges (0, i) and (i, n−1) creates a positive instance. In DLT
we can check for one i if αi and αi+1 are the same nodes or they are connected
in G. If they are not connected we will ensure that one of the short paths exists
in the graph. If α indeed encodes a valid path, then we will simply copy G on
the output tape. This way, we will generate all graphs that have paths from 0 to
n− 1.

It is easy to see that the following deterministic machine runs in O(log n)
time. Observe that we output only positive instances of Reach. Suppose G is a
graph with a path from 0 to n− 1, then by repeating some of the vertices we get
a sequence of nodes (α0, . . . , αn−1), which encodes this path. For this input, we
will output exactly G. That is, for every positive instance of Reach, there is an
input to the algorithm which outputs that instance.

M(σ, (i, j), x)

x =

logn︷︸︸︷
α0 . . .

logn︷ ︸︸ ︷
αn−1 . . .

≤2n2︷ ︸︸ ︷
β00 . . . βn−1,n−1︸ ︷︷ ︸

≈4n2

Let n = ŝqrt(|x|/4)
if i < n and j < n then

if i = 0 or (i < n− 1 and j = n− 1) then
if j = n− 1 then let k = i else let k = j
if βαk,αk+1

6= 1 then
{Check if αk and αk+1 are connected}
If σ = 1 Accept. {add the short path}
If σ = 0 Reject.

end if
end if
{No check needed or check succeeded, so output the graph G.}
If σ = βij Accept.

end if
Reject.

ut

Theorem 9. For any function k : N → N computable in DLT, Cliquek is in
DLTPS

Proof. We begin with an easy case, where a graph with n nodes has a k(n)
clique among the nodes 0, . . . , k(n)− 1. The input consists of an arbitrary graph
G = (βij). We output any graph in which if two vertices have labels less than
k(n) then they share an edge. All these graphs belong to Cliquek.

As in the previous proof we will use a bijection to permute the nodes (all the
nodes including 0 and n− 1 this time), which will give a correct and surjective
proof system. The algorithm for clique:

M(σ, (i, j), x)

x =

logn︷︸︸︷
α0 . . .

logn︷ ︸︸ ︷
αn−1 . . .

≤2n2︷ ︸︸ ︷
β00 . . . βn−1,n−1︸ ︷︷ ︸

≈4n2

Let n = ŝqrt(|x|/4).
if i < n then

Let k = αi. {Find the image i′ of i}
if αk = i then

Let i′ = k.
else

Let i′ = i.
end if
Let l = αj . {Find the image j′ of j}
if αl = j then

Let j′ = l.

else
Let j′ = j.

end if
if i′ < s(n) and j′ < s(n) then

If σ = 1 accept
Otherwise reject.

else
If σ = βi′,j′ accept,
otherwise reject.

end if
end if
Reject.

ut

5 Closure Properties and Complexity

The closure under union seems to be naturally hold for all proof systems.

Lemma 10. If L1, L2 have DLTPS, then L1 ∪ L2 has DLTPS.

Proof. Let f1, f2 be the DLTPScorresponding to L1, L2. Then we define the
function f(x) = f1(x1 . . . xn−1) if x0 = 0, and f(x) = f2(x1 . . . xn−1) otherwise.
Since f1, f2 are computable in DLT, so is f , and f is a proof system for L1 ∪ L2.

The algorithm for union:

M(σ, i, x)

x =

1︷︸︸︷
b x′︸ ︷︷ ︸

n

if b = 0 then
Run M1(σ, i, x′).

else
Run M2(σ, i, x′).

end if

ut

The closure under concatenation of proof systems is not so obvious.

Lemma 11. If L1, L2 have DLTPS, then L1L2 has DLTPS.

Proof. By definition neither L1 nor L2 can be empty. Let w1 ∈ L1 and w2 ∈ L2.
Let f1, f2 be the proof systems corresponding to L1 and L2, and M1,M2 the
corresponding DLOGTIME machines.

We will construct a proof system for L1L2. The idea is that the proof consists
of s, l,m, u, v, where s, l,m are of length log |x| and u, v are of length |x|/4.

To concatenate f1(u0 . . . ul−1) and f2(v0 . . . vm−1), we will use s to “guess” the
length of f1(u0 . . . ul−1).

Suppose we output the bit at position i. First we check if |f1(u0 . . . ul−1)| = s,
if this is not the case we output the i-th letter of the fixed default word w1w2.
Otherwise if i < s we output the i-th letter of f1(u0 . . . ul−1) and if i ≥ s we
output the s− i-th letter of f2(v0 . . . vm−1).

Clearly the proof system will be correct since we only output words in L1L2.
For surjectivity note that the input u0 . . . ul−1 and v0 . . . vm−1 are independent.
Also since f1, f2 are polynomial bounded so is the constructed proof system. The
algorithm for concatenation:

M(σ, i, x)

x =

log |x|︷︸︸︷
s

log |x|︷︸︸︷
l

log |x|︷︸︸︷
m

b|x|/4c︷ ︸︸ ︷
u

b|x|/4c︷ ︸︸ ︷
v︸ ︷︷ ︸

|x|

if |f1(u0 . . . ul−1)| = s then
if i < s then

Run M1(σ, i, u0 . . . ul−1).
{Accept or Reject depending on M1}

else
Run M2(σ, i− s, v0 . . . vm−1).
{Accept or Reject depending on M2}

end if
end if
{Output default word otherwise}
if (w1w2)i = σ then

Accept.
else

Reject.
end if

In the algorithm we can test |f1(u0 . . . ul−1)| = s by testing if there is a σ such
that M1(σ, s−1, u0 . . . ul−1) accepts and for all σ we have that M1(σ, s, u0 . . . ul−1)
rejects. This requires to simulate M1 on 2|Σ| different inputs which is possible in
logarithmic time.

ut

In [2], it was proved that every language L that has NC0PS is recognised in
NTIME(n). In the case of NC0PS it is enough to guess a proof and then evaluate
the circuit on this guessed proof. This suffices because the NC0 circuit queries
the proof bits in a non-adaptive manner. However, in the case of DLTPS the
deterministic log-time machine may read bits on the proof in an adaptive manner,
i.e. it may read a location, say i, of the proof and depending on the value of that
proof bit, may decide to read the next bit. Therefore, the simulation of such a
DLTPS needs to remain consistent with respect to such adaptive queries.

Theorem 12. If a language L has DLTPS then it can be recognised in
NTIME(n2 log3 n).

Proof. As L has a DLTPS there exists a f : Γ ∗ → Σ∗ computable in DLT by a
Turing machine M . Also since a DLTPS is polynomial bounded there exists a
polynomial p : N → N , such that w ∈ L iff w ∈ f(Σ<p(|w|)).

Assume we guess the word x such that w = f(x), then we could check that
M(σ, i, x) accepts iff wi = σ. Since we want to show an upper bound of n2 log2 n
we cannot simply guess x which might have size larger than n2 log2 n.

But M is a DLT machine, so it cannot access all of the bits of x, but only
O(log n) of these bits. Since we simulate M on O(n) different inputs we require
only O(n log n) of these bits. We guess and store only the bits of x accessed by
M together with their indices on the tape which requires O(n log2 n) length.

Then we can check that f(x) = w by simulating M for all i = 0, . . . , |w|. For
the simulation of a single step we might need to search on the tape of the bit
accessed which requires O(n log2 n) time. Since we simulate the machine O(n)
times with a runtime of O(log n) steps each, so we require time O((n log2 n) · n ·
log n). ut

Using the non-deterministic time hierarchy theorem and Theorem 12 we get:

Corollary 13. There exists a language L in NP for which there is no DLTPS.

We can use the previous theorem to show that DLTPS are not closed under
intersection.

Theorem 14. The languages which have DLTPS are not closed under intersec-
tion.

Proof. We show that if DLTPS are closed under intersection then all languages in
NP have DLTPS. For this let L ⊂ Σ∗ be any problem in NP, i.e. in NTIME(nc).
We will construct two language La, Lb over the alphabet Σ′ = Σ ∪ {x, a, b}, such
that both La, Lb have DLTPS and their intersection is L.

Let L=n = L∩Σn, andBa = {x, a}∗a{x, a}∗, andBna = Ba∩Σn. SimilarBb =

{x, b}∗b{x, b}∗, and Bnb = Bb ∩Σn. Consider the languages La =
⋃
n L

=nxn
2c ∪

ΣnBn
2c

a , Lb =
⋃
n L

=nxn
2c ∪ΣnBn

2c

b .
Each of the languages consists of each words of L padded by a certain number

of xs, union some “bad” part which has at least one a for the first language or at
least one b for the second language. If we take the intersection of La ∩ Lb we get
the language L padded by some xs.

We will show that we have a proof system for La. So the proof will consist
of the computation of the TM for L. This computation has at most length n2c.
While the DLOGTIME for La outputs the input to the proof in the first n
positions, we output at the remaining positions a x if the computation at this
position is consistent, otherwise an a. Additionally we can output all words in
ΣnBn

2c

a and hence have a proof system for La.
Similarly we can construct a proof system for Lb. Assuming that DLTPS

are closed under intersection we have a proof system for La ∩ Lb. Assuming
x /∈ Σ, we can modify the DLOGTIME machine such that it always rejects when
σ = x. This is only possible since no letter other than x can appear at a position

behind x. (Otherwise the output would not be a word, but contains holes inside
the word). The modified proof system is a proof system for L. Since L was any
language in NP this is a contradiction. ut

Corollary 15. DLTPS are not closed under complement.

6 Hierarchy Theorems

Definition 16. A function f : Γ ∗ → Σ∗ is computable in DLTk if there exists
a deterministic Turing machine M such that M(σ, i, x) halts and accepts in
time O((log |x|)k) if wi = σ, where w0 . . . wn−1 = f(x). We let DLkTPS be the
polynomial bounded proof systems that are computable in DLTk.

Theorem 17 (Time Hierarchy for Proof Systems). DLtTPS (
DL2t+1TPS

Proof. The basic idea is to apply diagonalization as in the nondeterministic time
hierarchy theorem. The machines that we consider are deterministic but we need
to “guess” the proof.

We will only show the proof for DLTPS(DL3TPS, the proof for any k is
similar. The idea is to define a language L ⊆ 1∗ and show that L has a DL3TPS
but no DLTPS. Since we will be working over the unary alphabet we will ignore
the parameter σ in our proof systems. Also it suffices in general to consider proofs
in {0, 1}∗. Let M0,M1,M2, . . . be an enumeration of all DLOGTIME machines
(which also includes DLOGTIME machines which are not DLTPS). The idea is
to divide the natural numbers in intervals such that the left border of the interval
is much smaller than the right border. For this we define a function f : N → N
by:

f(0) = 2, f(l + 1) = 22
2f(l)

We will define the language L: Let k be any number and t = log1.1 k.

1. L contains the empty word.
2. If f(l) < k < f(l+1) for some l, then 1k ∈ L iff there exists a word w ∈ {0, 1}∗

of length less than or equal to 2t such that Ml(k,w) halts and accepts within
t steps and Ml(k + 1, w) halts and rejects within t steps.

3. If k = f(l + 1) for some l, then 1k ∈ L iff there exists a word w ∈ {0, 1}∗ of

length less than or equal to 2log
1.1 f(l) such that Ml(f(l), w) halts and rejects

within t steps or Ml(f(l) + 1, w) halts and accepts within t steps.

For a DLOGTIME machine Ml, the definition basically says that:

1. If f(l) < k < f(l+ 1) for some l, then 1k ∈ L iff the proof system Ml outputs
1k+1.

2. If k = f(l + 1) for some l, then 1k ∈ L iff the proof system Ml does not
output 1f(l)+1.

But keep in mind that this is not our definition, just the the intention for the
definition.

We will show that if Ml is a DLTPS then the language corresponding to Ml

is different from the language L. Since Ml is a DLOGTIME proof system we
can assume that there is some c such that Ml halts after at most c log n steps.
And since Ml is polynomial bounded, if there is a w such that Ml on input w
will output 1n there is a word w of length at most nc

′
. We assume that for all

n ≥ f(l): c log n ≤ log1.1 n and nc
′ ≤ 2log

1.1 n (since there are infinite many l that
represent the same DLOGTIME machine we can ensure this).

Assume by contradiction that the language of Ml equals L. By equality, we
have that Ml outputs 1f(l)+1 iff L contains 1f(l)+1. By definition of L, for any k
in f(l) < k < f(l+ 1), 1k is in L iff there exists a word w ∈ {0, 1}∗ of length less

or equal than 2log1.1 k such that Ml(k,w) halts and accepts within t steps and
Ml(k+ 1, w) halts and rejects within t steps. Assuming that Ml is a proof system
with the bounds on computation time and proof length as above, this happens
iff Ml outputs 1k+1 (for some input). Hence by induction L contain 1f(l)+1 iff
Ml outputs 1f(l+1).

But by definition, L contains 1f(l+1) iff Ml does not output 1f(l)+1 on any
input (again by the assumption on the bounds of computation time and proof
length). This is a contradiction.

Ml(1
f(l)+1) acc

��

Ml(1
f(l)+2) acc

��

. Ml(1
f(l+1)) acc

��
1f(l)+1 ∈ L

19lllllllllllll

lllllllllllll
1f(l)+2 ∈ L

4<qqqqqqqqqqqq

qqqqqqqqqqqq
. 1f(l+1) ∈ L

mmZ Z

So L clearly has no DLTPS, it remains to show that there is a proof system D
in DL3TPS for L. We will construct a proof system D in DL3TPS for L. The
proof system will use a proof of length k to either output 1k or an empty string.

For an input x we let k0 = |x| be the length of the input. We compute
ki+1 = blog log log kic, and repeat this process till we reach l such that kl = 0.
Then f(l) < k ≤ f(l + 1), where equality occurs exactly if we never needed to
round down somewhere in the process. We need at most log∗ |x| repetitions, and
except for the first repetition (which requires O(log n) steps) we only require
O(log log log |x|) steps for the computation of one repetition, so clearly we can
compute this in O(log n) steps.

Given an input x of length k such that there is an l with f(l) < k < f(l + 1).
We want to output the word 1k iff there exists a word w such that Ml(k,w) halts
and accepts within t steps and Ml(k + 1, w) halts and rejects within t = log1.1 k
steps. First note that only two instance Ml are run each for t steps on w. Hence
Ml will access only 2t positions of w. This implies that we can modify all bits
other than these 2t positions without changing the acceptance behaviour of
Ml(k,w) and Ml(k + 1, w). In particular, we can set all positions other than
these 2t positions to 0. Hence there is a word w such that Ml(k,w) halts and
accepts within t steps and Ml(k + 1, w) halts and rejects within t steps iff there

is a word w with at most 2t bits set to 1 such that Ml(k,w) halts and accepts
within t steps and Ml(k + 1, w) halts and rejects within t steps.

This will greatly limit the amount of words w that we need to simulate. We
interpret the proof x as a list of log1.1 |x| bit numbers: s, α0, . . . , α2t (we ignore
all other bits). We will let w = φ(x) where φ(x) is a word of length s that has a
bit set to 1 at the positions α0, . . . , α2t. Then there is a word x of length k such
that Ml(k, φ(x)) halts and accepts within t steps and Ml(k + 1, φ(x)) halts and
rejects within t steps iff there exists a word w ∈ {0, 1}∗ of length less or equal
than 2t such that Ml(k,w) halts and accepts within t steps and Ml(k + 1, w)
halts and rejects within t steps. Hence for our proof system it suffices to simulate
Ml(k, φ(x)) and Ml(k + 1, φ(x)) for t steps, and output 1k accordingly to the
definition of L.

Now assume that k = f(l + 1), then the proof system on an input x of
length k should output 1k iff there exists a word w ∈ {0, 1}∗ of length less or

equal than 2log
1.1(f(l)+1) such that Ml(f(l), w) halts and rejects within t steps or

Ml(f(l) + 1, w) halts and accepts within t steps. So here we need to check if Ml

outputs a word of length f(l) + 1, where f(l) is much smaller than f(l+ 1). That
is, the simulating machine runs for log1.1(f(l) + 1) steps and for each word of

length at most 2log
1.1(f(l)+1). Therefore, the total running time of the simulating

machine is upper bounded by 22
f(l)

. As the input length (as well as the output

length) in this case is 22
2f(l)

, our machine has enough time to actually simulate
all possible words and check the output of Ml (in this case Ml ignores the bits of
x, we only require a long x to have sufficient time for the simulation).

This completes the proof showing that L has a DL3TPS (in fact DL2+εTPS).
ut

7 Discussion

The proof of Theorem 12 may raise a natural question: are there DLTPS which
require proofs larger than O(n log n) to produce an output of length n? For NC0

proof system (and all proof systems based on circuit classes) the maximum proof
length needed can be bounded. As DLTPS access the bits of the proof in an
adaptive manner, it is possible that a proof of length nc is required although
each output of length n only depends on O(n log n) bits.

In the proof of Theorem 17 there were two crucial parameters – the proof
length and the running time of the machine. A naive implementation of non-
deterministic time hierarchy theorem would have given us a hierarchy on these
two parameters simultaneously. However, we observe that DLT cannot access
too many proof bits and that diagonalization does not need to compute the full
output of the proof system, but only one property, which is in our case the length
of the output. Therefore, we manage to prove a complete hierarchy theorem.

Acknowledgements We thank Klaus-Jörn Lange for helpful comments on this
draft.

References

1. David A. Mix Barrington, Neil Immerman, and Howard Straubing. On Uniformity
within NC1. J. Comput. Syst. Sci., 41(3):274–306, 1990.

2. Olaf Beyersdorff, Samir Datta, Andreas Krebs, Meena Mahajan, Gido
Scharfenberger-Fabian, Karteek Sreenivasaiah, Michael Thomas, and Heribert
Vollmer. Verifying proofs in constant depth. In Filip Murlak and Piotr Sankowski,
editors, Full version on ECCC TR12-079, a preliminary version in MFCS, volume
6907 of Lecture Notes in Computer Science, pages 84–95. Springer, 2011.

3. Olaf Beyersdorff, Johannes Köbler, and Sebastian Müller. Proof systems that take
advice. Inf. Comput., 209(3):320–332, 2011.

4. Olaf Beyersdorff and Sebastian Mller. A tight Karp-Lipton collapse result in
bounded arithmetic. In Michael Kaminski and Simone Martini, editors, Computer
Science Logic, volume 5213 of Lecture Notes in Computer Science, pages 199–214.
Springer Berlin Heidelberg, 2008.

5. Stephen A. Cook and Jan Kraj́ıcek. Consequences of the provability of NP subset
of or equal to P/poly. J. Symb. Log., 72(4):1353–1371, 2007.

6. Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional
proof systems. The Journal of Symbolic Logic, 44(1):pp. 36–50, 1979.

7. Birgit Jenner, Pierre McKenzie, and Jacobo Torán. A note on the hardness of tree
isomorphism. In IEEE Conference on Computational Complexity, pages 101–105,
1998.

8. Pavel Pudlk. Quantum deduction rules. Annals of Pure and Applied Logic, 157(1):16
– 29, 2009.

9. Nathan Segerlind. The complexity of propositional proofs. Bulletin of Symbolic
Logic, 13, 2007.

10. Stanislav Zak. A Turing machine time hierarchy. Theoretical Computer Science,
26(3):327 – 333, 1983.

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

