
Interactive Channel Capacity

Gillat Kol∗ Ran Raz†

Abstract

We study the interactive channel capacity of an ε-noisy channel. The interactive

channel capacity C(ε) is defined as the minimal ratio between the communication

complexity of a problem (over a non-noisy channel), and the communication complexity

of the same problem over the binary symmetric channel with noise rate ε, where the

communication complexity tends to infinity.

Our main result is the upper bound C(ε) ≤ 1 − Ω
(√

H(ε)
)
. This compares with

Shannon’s non-interactive channel capacity of 1 − H(ε). In particular, for a small

enough ε, our result gives the first separation between interactive and non-interactive

channel capacity, answering an open problem by Schulman [5].

We complement this result by the lower bound C(ε) ≥ 1−O
(√

H(ε)
)
, proved for

the case where the players take alternating turns.

1 Introduction

Few papers in the history of science have affected the way that people think in so many

branches of science, as profoundly as Shannon’s 1948 paper “A Mathematical Theory of

Communication” [8]. One of the gems in that paper is an exact formula for the channel

capacity of any communication channel. For example, for the binary symmetric channel

with noise rate ε, the channel capacity is 1 − H(ε), where H denotes the binary entropy

function. This means that one can reliably communicate n bits, with a negligible probability

of error, by sending
(

1
1−H(ε)

)
· n+ o(n) bits over the channel.

∗Weizmann Institute of Science. Part of this work was done when the author was a visiting student
at Princeton University and the Institute for Advanced Study. Research supported by an Israel Science
Foundation grant, and by NSF grant number CCF-0832797.
†Weizmann Institute of Science. Part of this work was done when the author was a member at the

Institute for Advanced Study, Princeton. Research supported by an Israel Science Foundation grant, by the
I-CORE Program of the Planning and Budgeting Committee and the Israel Science Foundation, and by NSF
grants number CCF-0832797, DMS-0835373.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 1 (2013)

In this paper we study the interactive channel capacity of the binary symmetric channel.

For a communication complexity problem f with communication complexity CC(f) = n, we

denote by CCε(f) the expected number of communication bits needed to solve f probabilis-

tically, with negligible error, where the communication is over the binary symmetric channel

with noise rate ε. We define the channel capacity C(ε) by

lim
n→∞

min
{f :CC(f)=n}

{
n

CCε(f)

}
.

In 1992, Schulman showed how to translate any interactive communication protocol to

an equivalent noise-resilient protocol that runs over the binary symmetric channel, with only

a constant overhead in the communication complexity [5]. This shows that for any ε < 0.5,

the channel capacity C(ε) > 0. Schulman’s work was followed by a flow of other works [6, 7,

3, 4, 2], culminating by the recent elegant result by Brakerski and Kalai [1] that shows how

to efficiently simulate any interactive protocol in the presence of constant-rate adversarial

noise, with only a constant overhead in the communication complexity.

However, none of these works gives any bound on the value of C(ε). Potentially, each

of the above mentioned protocols gives a lower bound for C(ε), but since the protocols

were typically proved with large constants and without paying attention to constants, these

bounds are not explicit, and seem to be relatively weak. As for upper bounds, the only

previously known upper bound on the value of C(ε) is the non-interactive capacity, 1−H(ε),

proved by Shannon.

As in many previous works, we limit the discussion to protocols with “predetermined

order of communication”. That is, when considering deterministic protocols (or probabilistic

protocols with fixed random strings), we will assume that it is known in advance which player

sends a bit in each round. This is justified as follows. Since the noisy channel can change

any transcript to any other transcript, if the order of communication is not predetermined,

one can prove that with some non-zero probability both players will try to transmit a bit

at the same time, contradicting the synchronous channel requirement that at each time-step

exactly one player sends a bit.

1.1 Our Results

Our main result is the first upper bound on the value of C(ε):

C(ε) ≤ 1− Ω
(√

H(ε)
)
.

2

In particular, for small enough ε, this gives the first separation between interactive and

non-interactive channel capacity, answering an open problem by Schulman [5].

We complement this result by a tight lower bound of

C(ε) ≥ 1−O
(√

H(ε)
)
,

for the alternating-turns case, where the first player sends bits in odd time-steps and the

second player sends bits in even time-steps. More generally, the lower bound is obtained

for the case where the pattern of turns taken by the two players is periodic with a small

period. Moreover, the lower bound is valid for any pattern of turns in the asynchronous case,

where one doesn’t require that at each time-step exactly one player sends a bit, but rather

the less restricting requirement that if both players try to send bits at the same time these

bits are lost. As for the upper bound, while the main ideas of the proof may be valid for

the asynchronous case as well, since the details of the proof are complicated in any case, we

focus in this work on the synchronous case.

To summarize, while there are still gaps between the validity models for the upper bound

and the lower bound, they give a strong evidence that (at least in some models) the asymp-

totical behavior of C(ε), when ε tends to 0, is 1 − Θ
(√

H(ε)
)

. This compares to the

non-interactive capacity of 1−H(ε).

1.2 Techniques

1.2.1 Upper Bound

Our upper bound is proved by considering the pointer jumping game on 2k-ary trees of

depth d, with edges directed from the root to the leaves. The pointer jumping game is a

communication game with two parties. We think of the vertices in even layers of the tree

as “owned” by the first player, and the vertices in odd layers of the tree as “owned” by the

second player. Each player gets as an input exactly one edge going out of every vertex that

she owns. We denote by X the input for the first player, and by Y the input for the second

player. For a pair of inputs, X, Y , there exists a unique leaf of the tree, reachable from the

root using the edges of both X, Y . The players’ mutual goal is to find that leaf.

We fix the noise rate of the channel to be ε = Θ
(

log(k)
k2

)
. We think of ε as a fixed

small constant, and the depth of the tree d tends to infinity. We consider probabilistic

communication complexity protocols that run over the binary symmetric channel with noise

rate ε and solve the pointer jumping game with probability of error δ. We prove a lower

bound on the expected number of bits communicated by the players during the execution of

3

any such protocol. Our lower bound shows that the expected number of bits communicated

is at least

d · (k + Ω(log(k))) · (1− 2δ)−O(k).

Fixing δ = o(1), and since the communication complexity of the problem on a non-noisy

channel is ≈ kd, the obtained upper bound on the channel capacity is

1− Ω
(

log(k)
k

)
= 1− Ω

(√
ε log(ε−1)

)
= 1− Ω

(√
H(ε)

)
.

The very high level idea that we use for the proof of the lower bound on the communi-

cation complexity of the pointer jumping game is very simple. Suppose that the two players

want to solve the pointer jumping game, over the noisy channel, with as low communication

as possible. The most reasonable thing to do is to start by having the first player sending

the first edge in the path to the correct leaf, that is, the edge leaving the root. Note that

this edge is part of the input X. Sending this edge requires a communication of k bits, and

note that the probability that one of these bits is received incorrectly is Θ
(

log(k)
k

)
. At this

point the players are faced with a dilemma. If they proceed by having the second player

sending the k bits of the second edge, then with probability of Θ
(

log(k)
k

)
these bits are lost

because the second player didn’t have the correct value of the first edge. Thus, in expectation

Θ (log(k)) bits are lost. On the other hand, if they proceed by having the first player sending

additional bits in order to correct a possible error in the first k bits, then with probability

close to 1 these additional bits are wasted, because the second player already had the correct

value of the first edge.

While this seems like a simple and natural approach, attempts to formulate it must deal

with several difficulties. First note that in order to obtain a meaningful lower bound, we need

to show that the protocol “wastes” Ω(log(k)) bits not only once, but rather ≈ d times. The

first time is easy because we can assume that the inputs X, Y are uniformly distributed on

the set of all possible inputs. However, after conditioning the input distributions on a partial

transcript of the protocol, the conditional distributions may be arbitrary. This means that

some information is known about both inputs and in particular some information is known

about the next edge that we consider. An important question is how to measure the amount

of “information” known about the next edge, and more generally how to measure the amount

of “progress” made by the two players towards the solution.

A first attempt may be to measure the information known on the next edge by Shannon

entropy or by a variant such as relative entropy. The main problem with this approach is

that even if the entropy of the edge is still large, say k0.1 bits, it is still possible that a certain

value is obtained with probability close to 1. Thus, the other player can guess that edge with

4

high probability even though the entropy is still relatively large. A second attempt may be to

measure the information known on the next edge by min-entropy or by the logarithm of the

l2 norm. The main problem with this approach is that these measures are not sub-additive.

Therefore, the other player doesn’t necessarily need to know the current edge in order to

give information about the next edge, as she can give information about several branches of

the tree simultaneously.

In addition to these difficulties, recall that we are proving a probabilistic lower bound so

the probability of error must be taken into account, and that probability may be different on

different branches of the communication protocol. Moreover, we are trying to prove a very

tight lower bound, up to second order terms, and not up to a multiplicative constant as is

usually done in probabilistic communication complexity.

To deal with all these issues we measure the progress made by the protocol, by several

different measures. Given input distributions PX , PY for the inputs of the two players, we

denote by I1 the relative entropy of PX with respect to the uniform distribution and by I2

the relative entropy of PY with respect to the uniform distribution. We denote I = I1 + I2.

We denote by κ the min-entropy of the first edge. We say that a distribution PX (or PY)

is flat if it is roughly uniform on a subset of inputs. More precisely, a distribution is flat if

it gives any two elements the same probability, up to a multiplicative factor of 20.01k. We

say that the game is nice if I1 ≤ 10k; I2 ≤ 20k; κ ≥ 0.5k; and PX , PY are both flat. We

inductively bound the communication complexity of any nice game by

d · (k + 0.1 log(k)) · (1− 2δ)− (k − κ)− 100k,

and the communication complexity of any game (not necessarily nice) by

d · (k + 0.1 log(k)) · (1− 2δ)− 100I − 1000k.

These two lemmas are proven simultaneously, by a mutual recursion, where each lemma

assumes that the other lemma is correct for depth d′ < d. Hence, both lemmas are correct

for every d.

The proofs of the two lemmas are quite involved. To prove the first lemma (which is the

main lemma and the more challenging one), we use an adversarial argument, where at each

step we consider a block of the next t = κ + 0.25k bits transmitted by the protocol. We

separate to cases according to the number of bits transmitted by each player. Denote by t1

the number of bits in that block that were sent by the first player. If t1 < κ+0.5 log(k), then

since the channel is noisy, the second player can still not guess with high enough probability

the exact value of the first edge and then the t− t1 bits that she sent are wasted with non-

5

negligible probability. On the other hand if t1 ≥ κ+ 0.5 log(k), then the first player wasted

0.5 log(k) bits, since in our measure for the progress made by the protocol we measure the

amount of information that is known about the first edge by k − κ.

In order to make this argument work, we need to “voluntarily” reveal to the two players

some information about their inputs, even though that information is not given by the

transcript of the communication protocol. This is done in order to make sure that the

remaining game, that is, the game after conditioning on the partial transcript of the protocol

and the additional information that we reveal, is nice with high probability. If the game that

we get is nice, we recursively apply the first lemma and if it is not nice we recursively apply

the second lemma.

As explained above, a major difficulty is that no measure of information is completely

satisfying for our purpose. Shannon entropy has the disadvantage that even if the entropy

is large it is possible that the variable can be guessed with high probability. Min-entropy

and other similar measures have the disadvantage that they are not sub-additive. An idea

that we extensively use in the proof of both lemmas is to “flatten” a distribution, that is, to

make it flat. This is done by revealing to the two players the “flattening” values of certain

variables. The flattening value is just a rounded estimate of the probability for a random

variable to get the value that it actually gets. By revealing the flattening value, we partition

the support of a distribution so that the distribution is presented as a convex combination of

flat distributions. Working with flat distributions is significantly easier since the entropy and

min-entropy of a flat distribution are almost equal, so one can use min-entropy and switch

to entropy whenever subadditivity is needed.

1.2.2 Lower Bound

We show that for any communication protocol Π of length n (where the players send

bits in an alternating order), there exists a simulating protocol A that simulates Π over

the binary symmetric channel with noise rate ε. The simulating protocol communicates

n
(

1 +O
(√

H(ε)
))

bits, and allows the players to retrieve the transcript of Π, except with

probability negligible in n.

By fixing the random string for Π we can assume without loss of generality that Π is

deterministic. Denote by T the tree underlying the protocol Π (that is, the binary tree

with vertices that correspond to the transcripts of Π). We will consider partial simulating

protocols for Π, as follows. Before running a partial simulating protocol A, each of the players

is assumed to have a vertex of the tree T . We call these vertices the start vertices. When A

ends, each of the players holds another vertex of T . We call these vertices the end vertices.

The end vertex of each of the players will be a predecessor of her start vertex. In addition, if

6

the players have the same start vertex, they reach the same end vertex with high probability.

Moreover, if the two players have the same start vertex and the same end vertex then every

edge on the path connecting the start vertex and the end vertex agrees with the execution

of the protocol Π on the inputs X, Y of the two players. We denote the start vertices of the

players by V1 and V2, and the end vertices by V ′′1 and V ′′2 .

Fix ε = log(k)
k2 , for a sufficiently large constant k. We recursively construct a sequence of

partial simulating protocols.

The protocol A1 is defined as follows: In the first phase, the players run the protocol Π

for k rounds, where each player runs Π starting from her start vertex. Denote by V ′1 and V ′2

the vertices in T reached by the players after the first phase.

The second phase is an error-detecting phase, where the players check if an error has

occurred (that is, if at least one of the sent bits was received incorrectly). To do so, the

players decide on a set F of r = C log(k) random hash functions f : {0, 1}k → {0, 1}, using

the shared random string, where C is a large odd constant.

The players exchange the evaluation of the hash functions in F on the transcript of Π

that they observed in the first phase, where each bit is sent C times. For every f ∈ F ,

the first player computes the majority of the C (possibly noisy) copies of the bit that she

got from the second player, and compares the majority bit against her own evaluation. If

the first player finds that all the r majority bits match her bits, she sets her end vertex to

V ′′1 = V ′1 . Otherwise, she rolls-back and sets her end vertex to V ′′1 = V1. The second player

operates the same.

The protocol Ai+1 is defined as follows: In the first phase, the players run the protocol Ai,

k consecutive times. The second phase is again an error-detecting phase, and it is similar to

the second phase of A1, except that the size of the set F of random hash functions is now

Ci+1 log(k) (instead of C log(k)), and that each of the bits is sent Ci+1 times (instead of just

C times).

We show that for large enough s, the protocol As has a very small probability of error

while the number of bits that it transmits is close to the expected number of bits of the

protocol Π that are retrieved.

1.3 Organization of the Paper

The paper is organized as follows. In Section 2, we prove our lower bound on the interactive

channel capacity of the binary symmetric channel with noise rate ε. As discussed above,

this is done by presenting, for any communication protocol Π (where the players send bits in

an alternating order), a simulating protocol A that simulates Π over the binary symmetric

7

channel with noise rate ε. The result is stated in Theorem 1.

The rest of the paper is devoted for the upper bound on the interactive channel capacity

of the binary symmetric channel with noise rate ε. As discussed above, this is done by proving

a lower bound for the communication complexity of probabilistic protocols that solve the

pointer jumping game over the binary symmetric channel with noise rate ε.

In Section 3, we present the pointer jumping game and the models of communication

complexity that we consider. We state our main result (a lower bound for the probabilistic

communication complexity of the pointer jumping game over the binary symmetric channel)

in Theorem 2.

In Section 4, we give notation and preliminaries.

In Section 5, we give many lemmas that may be of independent interest and are used in our

main proof. We present the notion of flat distribution, as well as the “flattening value” that

is used in order to present a distribution as a convex combination of flat distributions. We

prove several lemmas about the flattening value. We also prove several lemmas that bound

the entropy loss that occurs when one presents a distribution as a convex combination of

other distributions.

In Section 6, we present several operations on pointer jumping games that are used in

our main proof. This includes conditioning a game on a feasible transcript, and reducing a

game.

In Section 7, we give the proof of Theorem 2, given two central lemmas, Lemma 7.2 and

Lemma 7.3. As discussed above, these lemmas prove lower bounds on the communication

complexity of nice pointer jumping games, and general pointer jumping games, respectively.

Lemma 7.2 is proved in Section 8, and Lemma 7.3 is proved in Section 9. We note that the

only place where we use the fact that the channel is noisy is in the proof of Claim 8.21. All

other claims are true even if the channel is not noisy.

2 The Simulating Protocol

(Lower Bound on the Channel Capacity)

In this section we are given a probabilistic communication protocol Π between two players,

where the communication is over a non-noisy binary channel. Our goal is to construct a

simulating protocol A that simulates Π over the binary symmetric channel with noise rate ε.

We assume that ε = log(k)
k2 , for a sufficiently large constant k. The protocol A simulates Π in

the sense that it allows the players to retrieve the transcript of Π.

We assume that the players in a communication protocol share a random string. We

8

assume without loss of generality that the given protocol Π is deterministic, as the players

of the simulating protocol can fix the random string used by Π to their own shared random

string. For simplicity, we assume that Π stops after the same number of rounds in every

execution. Denote this number by n. The simulating protocol A will also stop after the same

number of rounds in every execution.

In this section, we restrict the discussion to the case where the two players in Π send

bits in an alternating order. We will construct a simulating protocol A that also has the

alternating order property. We note that the result could be extended to the case where

the pattern of turns taken by the two players is periodic with a small period. Moreover, the

result could be extended to include any pattern of turns, in the asynchronous channel case,

where one doesn’t require that at each time-step exactly one player sends a bit, but rather

the less restricting requirement that if both players try to send bits at the same time then

these bits are lost.

Theorem 1. For any communication protocol Π of length n, as above, there exists a simu-

lating protocol A that simulates Π over the binary symmetric channel with noise rate ε. The

simulating protocol A communicates n ·
(

1 +O
(√

H(ε)
))

bits, and allows the players to

retrieve the transcript of Π, except with probability negligible in n.

Proof. Fix ε = log(k)
k2 , where k is a sufficiently large constant. Since the protocol Π is assumed

without loss of generality to be deterministic, we can think of it as a binary tree T of depth n,

with edges labeled by either 0 or 1 (where the two edges going out of the same inner vertex

are labeled differently). We think of the vertices in even layers of the tree as “owned” by

the first player, and the vertices in odd layers of the tree as “owned” by the second player.

Each player gets as an input exactly one edge going out of every vertex that she owns. In

each round of Π, the player that owns the current vertex sends to the other player the bit

label of the unique edge in his input going out of the current vertex.

We start by describing partial simulating protocols for Π. Before running a partial simu-

lating protocol A, each of the players is assumed to have a vertex of T . We call these vertices

the start vertices. When A ends, each of the players holds another (possibly different) vertex

of T . We call these vertices the end vertices. We require that the end vertex of each of the

players is a predecessor of her start vertex. In addition, if the players have the same start

vertex, they reach the same end vertex with high probability. Moreover, if the two players

have the same start vertex and the same end vertex then every edge on the path connecting

the start vertex and the end vertex is contained in the input of one of the players, that is,

the path agrees with the protocol Π.

We denote the start vertices of the players by V1 and V2, and the end vertices by V ′′1 and

V ′′2 . For a vertex V of T , we denote by d(V) the depth of V in T , where the root has depth 0.

9

We measure the partial simulating protocol A using several parameters:

1. m is the number of bits communicated by the protocol in every execution.

2. α is the maximal probability that the players disagree on the end vertex, assuming

that they agreed on the start vertex. Formally,

α = max
Π,v

Pr [V ′′1 6= V ′′2 | V1 = V2 = v] .

3. t is the minimal expected depth gain, assuming that the players agreed on the start

vertex. Formally,

t = min
Π,v

E [d(V ′′1)− d(V1) | V1 = V2 = v] ,

(where the minimum is taken over protocols Π of infinite length, so that a leaf is never

reached).

For example, we can consider the protocol A that runs Π for a single round. This protocol

has parameters m = 1, α = ε, and t = 1.

We next recursively construct a sequence of partial simulating protocols A1, . . . , As for Π,

where s = dlog log(n)e. The parameters of the protocol Ai are denoted mi, αi, ti. We will

show that the parameters of the protocols in the sequence keep improving. Specifically, as i

gets larger, mi and ti increase, while αi decreases. We then construct the simulating protocol

A using the protocol As.

Assume for simplicity and without loss of generality that k is even. We will assume that

d(V1), d(V2) are both odd or both even.

The protocol A1. The protocol A1 is defined as follows. In the first phase, the players run

the protocol Π for k rounds, where each player runs Π starting from her start vertex. That

is, the first player starts from the vertex V1, and the second player starts from V2. Denote

by V ′1 and V ′2 the vertices in T reached by the players after the first phase.

The second phase is an error-detecting phase, where the players check if an error has

occurred (that is, if at least one of the sent bits was received incorrectly). To do so, the

players decide on a set F of r = 101 log(k) random hash functions f : {0, 1}k → {0, 1},
using the shared random string. For concreteness, assume that each of the functions f ∈ F
is obtained by randomly selecting a ∈ {0, 1}k, and setting f(x) =

⊕
i∈[k] ai · xi.

The players exchange the evaluation of the hash functions in F on the transcript of Π

that they observed in the first phase. Formally, for a pair of vertices V, V ′ of T , such that V ′

is a predecessor of V , we denote by P (V, V ′) the labels of the edges on the path connecting

10

V and V ′. For every f ∈ F , the first player sends the bit bf,1 = f(P (V1, V
′

1)) to the second

player 101 times. For every f ∈ F , the second player sends the bit bf,2 = f(P (V2, V
′

2)) to the

first player 101 times. (If P (V1, V
′

1) or P (V2, V
′

2) are shorter than k bits, the players pad).

For every f ∈ F , the first player computes the majority of the 101 (possibly noisy) copies

of the bit bf,2 that she got from the second player, and compares the majority bit against

her own bf,1 bit. If the first player finds that all the r majority bits match her r bits, she sets

her end vertex to V ′′1 = V ′1 . Otherwise, she rolls-back and sets her end vertex to V ′′1 = V1.

The second player operates the same.

We calculate the parameters of the protocol A1:

1. m1 = k + 2 · 1012 log(k): The protocol Π is run for k rounds, and the error-detecting

phase adds 2 · 101 · r = 2 · 1012 · log(k) rounds.

2. α1 ≤ k−20: Assume that the players agreed on the start vertex. They may disagree on

the end vertex in one of two cases:

The first case is when bf,1 = bf,2 for every f ∈ F , although an error has occurred

in the k bits of the protocol Π that were sent in the first phase. This happens with

probability at most 2−r = k−101.

The second case is when one of the majorities got flipped. That is, there exists f ∈ F ,

such that out of the 101 received copies of bf,1 or of bf,2, at least 51 were noisy. This

happens with probability at most 2 · r · 2101 · ε51 ≤ ε20.

3. t1 ≥ k
(

1− 2 log(k)
k

)
: Assuming the players had the same start vertex, a roll-back can

only occur if one of the m1 bits exchanged by A1 is noisy. This happens with probability

of at most m1 · ε ≤ 2 log(k)
k

. Therefore, with probability 1− 2 log(k)
k

, the depth gain is k.

The protocol Ai+1. The protocol Ai+1 is defined as follows. In the first phase, the players

run the protocol Ai, k consecutive times. The start vertices for the first execution of Ai are

V1 and V2. The start vertices for the (j + 1)th execution of Ai are the end vertices of the jth

execution. Denote by V ′1 and V ′2 the vertices in T reached by the players after the first phase.

The second phase is again an error-detecting phase, and it is similar to the second phase

of A1, except that the size of the set F of random hash functions is now ri+1 = 101i+1 log(k)

(instead of r = 101 log(k)), and that each of the bits bf,1 and bf,2 is sent 101i+1 times (instead

of just 101 times).

We calculate the parameters of the protocol Ai+1:

1. mi+1 = k ·mi+2·1012i+2 log(k): The protocol Ai is run k times, and the error-detecting

phase adds 2 · 101i+1 · ri+1 = 2 · 1012i+2 · log(k) rounds.

11

2. αi+1 ≤ k−20i+1
: Assume that the players agreed on the start vertex. They may disagree

on the end vertex in one of two cases:

The first case is when bf,1 = bf,2 for every f ∈ F , although the strings P (V1, V
′

1) and

P (V2, V
′

2) do not match. This happens with probability at most 2−ri+1 = k−101i+1
.

The second case is when one of the majorities got flipped. That is, there exists f ∈ F ,

such that out of the 101i+1 received copies of bf,1 or of bf,2, more than half were noisy

(and in particular, more than 0.5 · 101i+1). This happens with probability at most

2 · ri+1 · 2101i+1 · ε0.5·101i+1 ≤ ε20i+1
.

3. ti+1 ≥ k·ti
(

1− k−10i
)

: Assume that the players agreed on the start vertex. A roll-back

can only occur in one of two cases:

The first case is when one of the majorities got flipped. As computed above, this

happens with probability at most k−20i+1
.

The second case is when in one of the k executions of Ai, the players agree on the start

vertex, but disagree on the end vertex. This happens with probability at most k · αi.

Thus, a roll-back occurs with probability at most k−15i .

Note also that if the players agree on the start vertex of the jth execution of Ai (an

event that occurs when the second case doesn’t occur, and in particular, it occurs with

probability of at least 1− k−15i), the expected depth gain from the jth execution of Ai

is at least ti.

Therefore, the total gain from the k executions of Ai is at least (1−k−15i) ·k · ti. A roll

back occurs with probability of at most k−15i , and costs us at most mi+1 < (2k)i+1 (and

note that k−15i ·(2k)i+1 ≤ k−11i). Thus, the total gain is at least (1−k−15i)·k·ti−k−11i ≥
(1− k−10i) · k · ti.

We explicitly bound the parameters of As. There exists a constant c ∈ R+ such that

mi+1 ≤ k ·mi + ci+1 log(k). By induction on i it holds that

mi ≤ ki + ki−1c1 log(k) + ki−2c2 log(k) + . . .+ k0ci log(k) ≤ ki + 2c · ki−1 log(k).

Thus,

ms ≤ ks
(

1 +O
(

log(k)
k

))
.

12

In addition,

ts ≥ ks
(

1− 2 log(k)
k

) ∏
i∈{1,...,s}

(
1− k−10i

)

≥ ks

1− 2 log(k)
k
−

∑
i∈{1,...,s}

k−10i

 ≥ ks
(

1−O
(

log(k)
k

))
.

Moreover,

αs ≤ k−20log log(n) ≤ 2− log4(n),

which is negligible in n.

The protocol A. The simulating protocol A for Π runs the protocol As sequentially

a = n
ts
·
(

1 + log(k)
k

)
times.

We calculate the parameters of the protocol A:

1. m = a ·ms = n · ms
ts
·
(

1 + log(k)
k

)
= n ·

(
1 +O

(
log(k)
k

))
.

2. α ≤ n · αs ≤ 2− log3(n).

3. t ≥ a · ts · (1− n · αs) > n ·
(

1 + log(k)
2k

)
.

Since the bound that we have on ts applies to every protocol Π and every start vertex v,

we get by Azuma’s inequality, that the depth of the end vertex reached by A is with high

probability close to its expectation, and in particular is at least n. That is, except with

negligible probability in n, the protocol A retrieves the transcript of Π completely. Note

that
m
n

= 1 +O
(

log(k)
k

)
= 1 +O

(√
ε log(ε−1)

)
= 1 +O

(√
H(ε)

)
.

Remark 2.1. By setting s to a higher value, we can further decrease the error probability

of A.

Remark 2.2. If the noise rate of the channel is large, one can first reduce it by repetition

and then, when it is small enough, apply our protocol.

13

3 Pointer Jumping Games

3.1 Games

Let k, d ∈ N, and let T be the 2k-ary tree of depth d, with edges directed from the root

to the leaves. Denote the vertex set of T by V , and the edge set of T by E. Denote by

Even(T) ⊆ V the set of non-leaf vertices at an even depth of T , and by Odd(T) ⊆ V the set

of non-leaf vertices at an odd depth of T (where the depth of the root is 0).

The pointer jumping game is a communication game with two parties, called the first

player and the second player. We think of the vertices in Even(T) as “owned” by the first

player, and the vertices in Odd(T) as “owned” by the second player. Each player gets as an

input exactly one edge going out of every node that she owns. We denote by x the input

for the first player, and by y the input for the second player. That is, the input x is a set

of edges that contains exactly one edge leaving each vertex in an even layer, and the input

y is a set of edges that contains exactly one edge leaving each vertex in an odd layer. We

denote by X (T) the set of all possible inputs x for the first player, and by Y(T) the set of

all possible inputs y for the second player.

For a pair of inputs x ∈ X (T) and y ∈ Y(T), we denote by L(x, y) the unique leaf of T

reachable from the root using the edges of x∪ y. The players’ mutual goal is to find the leaf

L(x, y).

For a random variable Z, we denote by PZ the distribution of Z.

Definition 3.1 (Pointer Jumping Game). Let k, d ∈ N, and let T be the 2k-ary tree of

depth d. Let PX : X (T)→ [0, 1] and PY : Y(T)→ [0, 1] be a pair of distributions.

The pointer jumping game G with parameters (k, d, PX , PY) is the following two players

communication game: A set X ∈ X (T) is drawn according to PX , and is given as input to

the first player. A set Y ∈ Y(T) is (independently) drawn according to PY , and is given as

input to the second player. It is assumed that both players know k, d, PX , PY . The players’

mutual goal is to both output the leaf L(X, Y).

We will sometimes write the parameters of the game G as (k, d,X, Y) instead of (k, d, PX , PY).

3.2 Protocols

We will consider the communication complexity of pointer jumping games (or simply “games”),

in the case where the players communicate through an ε-noisy channel, and where they are

allowed to err with probability δ, for some ε, δ ∈ [0, 1]. An ε-noisy channel is a channel that

flips each communicated bit (independently) with probability ε.

14

Definition 3.2 (Protocol). Let G be a game with parameters (k, d, PX , PY), and let ε, δ ∈
[0, 1]. A protocol Π for G with noise rate ε and error δ is a pair of probabilistic strate-

gies, one for each player (if the strategies are deterministic, we will say that the protocol is

deterministic).

The protocol proceeds in rounds. In each round (exactly) one of the players sends a bit to

the other player through an ε-noisy channel. At the end of the protocol both players output

the correct vertex L(X, Y) with probability at least 1− δ. The probability here is taken over

the selection of inputs, the randomness of the players’ strategies, and the channel’s noise.

Predetermined Turns. When considering deterministic protocols (or probabilistic pro-

tocols with fixed random strings), we will assume that it is known in advance which player

sends a bit in each round. That is, for a given protocol, the order of communication is pre-

determined, and does not depend on the inputs and on the transcript of the communication

(that is, the bits sent so far).

This is justified as follows: Note that in each round both players must know who speaks

next, because we require that in each round (with probability 1) exactly one of the players

sends a bit. Moreover, since the channel is noisy, every transcript can be changed by the

channel to any other transcript. Therefore, for fixed inputs x and y, the identity of the player

who speaks next cannot depend on the transcript. Since we consider a product distribution

over the inputs, the order of communication must be the same for every pair x, y.

Balanced Protocols. In our main lower bound proof, it will be convenient to assume that

every deterministic protocol satisfies the following property: At every stage of the protocol,

if the protocol ends within the next 2k rounds with probability greater than 0, then it ends

within the next 2k rounds with probability 1, where the probability is over the selection of

inputs and the channel’s noise. Protocols that satisfy the above property are called balanced.

We remark that every protocol can be converted into a balanced protocol by adding 2k

dummy rounds at the end of the protocol. Therefore, any lower bound proven for balanced

protocols holds for general protocols, up-to an additive 2k term. Hence, it suffices to only

consider balanced protocols when proving our lower bound.

In all that comes below, when considering deterministic protocols, we will refer to a

protocol that is not necessarily balanced as a general protocol, and refer to a balanced

protocol simply as a protocol.

Bounded Number of Rounds. For simplicity, we will only consider protocols with some

finite bound on the number of rounds. The bound can be arbitrarily large (say, double

15

exponential in kd) so its affect on the probability of error is negligible. The reason that this

simplifies the presentation is that this way the number of deterministic protocols is finite, so

the deterministic communication complexity of a game can be defined as the minimum over

these protocols, rather than the infimum.

3.3 Communication Complexity

Definition 3.3 (Communication Complexity). Let G be a game with parameters

(k, d, PX , PY). Let ε, δ ∈ [0, 1]. Denote by P∗ε,δ the set of all probabilistic protocols for G with

noise rate ε and error δ, and by Pε,δ the set of all (balanced) deterministic protocols for G

with noise rate ε and error δ.

Let Π ∈ P∗ε,δ be a protocol. The (expected) communication complexity of the proto-

col Π, denoted CC(Π), is the expected number of bits communicated by the players during

the execution of the protocol. The expectation here is taken over the selection of inputs, the

randomness of the players’ strategies, and the channel’s noise.

The (expected) probabilistic communication complexity of the gameG, denoted CC∗ε,δ(G),

is given by

CC∗ε,δ(G) = inf
Π∈P∗ε,δ

{CC(Π)} .

The (expected) deterministic communication complexity of the game G, denoted CCε,δ(G),

is given by

CCε,δ(G) = min
Π∈Pε,δ

{CC(Π)} .

3.4 Our Lower Bound Result

Theorem 2 (Main, Lower Bound). Let G be a pointer jumping game with parameters

(k, d, UX , UY), where UX and UY are the uniform distributions over the sets of possible inputs

for the first and second players (respectively). Let ε = 2000 log(k)
k2 and δ ∈ [0, 1]. Then,

CC∗ε,δ(G) ≥ d · (k + 0.1 log(k)) · (1− 2δ)− 102k.

16

4 Definitions and Preliminaries for the Communica-

tion Complexity Lower Bound

4.1 General Notation

Throughout the paper, unless stated otherwise, sets denoted by Ω will always be finite. All

logarithms are taken with base 2, and we define 0 log(0) = 0. We use the fact that the

function −x log(x) is monotone increasing for 0 ≤ x ≤ 1
e
.

4.2 Random Variables and their Distributions

We will use capital letters to denote random variables, and we will use lower case letters to

denote values. For example, X, Y will denote random variables, and x, y will denote values

that these random variables can take.

For a random variable X, we denote by PX the distribution of X. For an event U we

use the notation PX|U to denote the distribution of X|U , that is, the distribution of X

conditioned on the event U . If Z is an additional random variable that is fixed (e.g., inside

an expression where an expectation over Z is taken), we denote by PX|Z the distribution of

X conditioned on Z. In the same way, for two (or more) random variables X, Y , we denote

their joint distribution by PXY , and we use the same notation as above to denote conditional

distributions. For example, for an event U , we write PXY |U to denote the distribution of

X, Y conditioned on the event U , i.e., PXY |U(x, y) = Pr(X = x, Y = y|U).

If A and B are events, and B occurs with probability 0, we set Pr[A|B] = 0. In general, we

will many times condition on an event U that may occur with probability 0. This may cause

conditional probabilities and distributions, such as PX|U , to be undefined. Nevertheless, the

undefined values will usually be multiplied by 0 to give 0. A statement that uses distributions

or values that may be undefined should be interpreted as correct in the case that all the

involved values and distributions are well defined (or are multiplied by 0). For example, we

may argue about a distribution PX|Z=z, without necessarily mentioning that we assume that

z ∈ supp(Z).

17

4.3 Information Theory

4.3.1 Information

Definition 4.1 (Information). Let µ : Ω→ [0, 1] be a distribution. The information of µ,

denoted I(µ), is defined by

I(µ) =
∑

x∈supp(µ)

µ(x) log

(
µ(x)

1
|Ω|

)
=

∑
x∈supp(µ)

µ(x) log (|Ω|µ(x)) .

Equivalently,

I(µ) = log(|Ω|)−H(µ),

where H(µ) denotes the Shannon entropy of µ.

For a random variable X taking values in Ω, with distribution PX : Ω→ [0, 1], we define

I(X) = I(PX).

Proposition 4.2 (Supper-Additivity of Information). Let X1, . . . , Xm be m random

variables, taking values in Ω1, . . . ,Ωm, respectively. Consider the random variable (X1, . . . , Xm),

taking values in Ω1 × . . .× Ωm. Then,

I ((X1, . . . , Xm)) ≥
∑
i∈[m]

I(Xi).

Proof. Using the sub-additivity of the Shannon entropy function, we have

I ((X1, . . . , Xm)) = log(|Ω1 × . . .× Ωm|)−H(X1, . . . , Xm) ≥
∑
i∈[m]

log(|Ωi|)−
∑
i∈[m]

H(Xi)

=
∑
i∈[m]

(log(|Ωi|)−H(Xi)) =
∑
i∈[m]

I(Xi).

4.3.2 Min-Entropy

Definition 4.3 (Min-Entropy). Let µ : Ω → [0, 1] be a distribution. The min-entropy

of µ, denoted H∞(µ), is defined by

H∞(µ) = min
x∈supp(µ)

{− log(µ(x))} .

For a random variable X with distribution PX , we define H∞(X) = H∞(PX).

18

4.3.3 Relative Entropy

Definition 4.4 (Relative Entropy). Let µ1, µ2 : Ω → [0, 1] be two distributions, where

Ω is discrete (but not necessarily finite). The relative entropy between µ1 and µ2, denoted

D(µ1‖µ2), is defined as

D(µ1‖µ2) =
∑
x∈Ω

µ1(x) log
(
µ1(x)
µ2(x)

)
.

Proposition 4.5. Let µ1, µ2 : Ω→ [0, 1] be two distributions. Then,

D(µ1‖µ2) ≥ 0.

The following relation is called Pinsker’s Inequality, and it relates the relative entropy to

the L1 distance.

Proposition 4.6 (Pinsker’s Inequality). Let µ1, µ2 : Ω → [0, 1] be two distributions.

Then,

2 ln(2) ·D(µ1‖µ2) ≥ ‖µ1 − µ2‖2,

where

‖µ1 − µ2‖ =
∑
x∈Ω

|µ1(x)− µ2(x)| = 2 max
E⊆Ω
{µ1(E)− µ2(E)} .

5 Operations on Distributions

5.1 Flattening a Distribution

Definition 5.1 (Flat Distribution). Let µ : Ω → [0, 1] be a distribution. Let a ≥ 0. We

say that µ is a-flat if

∀x1, x2 ∈ supp(µ) : µ(x1)
µ(x2)

≤ 2a.

Proposition 5.2. Let µ : Ω→ [0, 1] be an a-flat distribution. Then,

H(µ)− a ≤ H∞(µ) ≤ H(µ).

Given a (possibly not flat) distribution µ : Ω→ [0, 1], we would like to turn it into a con-

vex combination of flat distributions, plus a residue distribution (which, in our applications,

will have a small coefficient in the convex combination). We will do that by conditioning

the distribution on the following “flattening value” fµ,a,r(x), where x ∈ supp(µ), and a > 0,

r ∈ N. First consider the function f ′µ,a : supp(µ)→ Z given by

f ′µ,a(x) =
⌈

log(|Ω|·µ(x))
a

⌉
.

19

Note that f ′µ,a(x) gives the rounded value of the logarithm of the ratio between µ(x) and the

uniform distribution over Ω. The function fµ,a,r : supp(µ)→ {−r, . . . , r + 1} is given by

fµ,a,r(x) =


−r if f ′µ,a(x) ≤ −r
f ′µ,a(x) if −r < f ′µ,a(x) ≤ r

r + 1 if f ′µ,a(x) > r

For every i ∈ {−r, . . . , r+1}, we define the set Si ⊆ Ω to be the set of all elements x ∈ Ω

such that fµ,a,r(x) = i. That is, for i = −r, the set Si is the set of elements x such that

µ(x) ≤ 2−ar · 1
|Ω| .

For i ∈ {−r + 1, . . . , r}, the set Si is the set of elements x such that

2a(i−1) · 1
|Ω| < µ(x) ≤ 2ai · 1

|Ω| .

For i = r + 1, the set Si is the set of elements x such that

2ar · 1
|Ω| < µ(x).

For every i ∈ {−r, . . . , r + 1}, define µi = µ|Si : Ω → [0, 1] to be the conditional

distribution µ conditioned on Si, and define αi = µ(Si). (If αi = 0 we define µi to be the

uniform distribution over Ω). Then we have

µ =
∑

i∈{−r,...,r+1}

αiµi.

Lemma 5.3. For every i ∈ {−r + 1, . . . , r}, the distribution µi defined above is a-flat.

Proof. Assume αi > 0. Let x1, x2 ∈ supp(µi) = Si. It holds that

µi(x1)

µi(x2)
=

(
µ(x1)
αi

)
(
µ(x2)
αi

) =
µ(x1)

µ(x2)
≤

2ai · 1
|Ω|

2a(i−1) · 1
|Ω|

= 2a.

Lemma 5.4. For i = r + 1, if αr+1 > 0, the distribution µr+1 defined above satisfies

I(µr+1) > ar.

20

Proof.

I(µr+1) =
∑

x∈supp(µr+1)

µr+1(x) log (|Ω|µr+1(x)) >
∑

x∈supp(µr+1)

(µr+1(x) · ar) = ar.

Lemma 5.5. For i = −r, the coefficient α−r defined above satisfies α−r ≤ 2−ar.

Proof. Assume α−r > 0.

α−r =
∑

{x∈Ω : µ(x)≤2−ar/|Ω|}

µ(x) ≤ 2−ar.

Lemma 5.6. Let µ : Ω → [0, 1] be a distribution. Consider the random variable fµ,a,r(X),

where X is randomly selected according to µ, and a, r ≥ 1. Let I = max{I(µ), 2}. Then,

1. H(fµ,a,r(X)) ≤ log(I) + 11.

2. ∀m ≥ 1 : PrX [fµ,a,r(X) > mI] < 10
a·m .

Proof. We first show Part (2). Observe that if mI ≥ r + 1 then Part (2) is trivial, as it is

always the case that fµ,a,r(X) ≤ r + 1. Thus, we assume that mI < r + 1. Assume for a

contradiction that

δ := Pr
X

[fµ,a,r(X) > mI] ≥ 10
a·m .

Let p = 2a(mI−1). Let S ⊆ Ω be the set of elements x with µ(x) > p
|Ω| . Observe that

δ = Pr
X

[fµ,a,r(X) > mI] ≤ Pr
X

[
µ(X) > p

|Ω|

]
= µ(S).

Let δ′ := µ(S). Consider the distribution µ′ that assigns each of the elements in S a

probability of δ′

|S| ≥
p
|Ω| , and each of the other elements a probability of 1−δ′

|Ω|−|S| ≥
1−δ′
|Ω| . That

is, µ′ is obtained by re-distributing the weight of µ, so it will be uniform on S and on Ω \ S.

Observe that H(µ′) ≥ H(µ), and hence I(µ′) ≤ I(µ). In addition, ∀x ∈ (0, 1] : x log(x) > −1.

This leads to a contradiction as follows

I ≥ I(µ) ≥ I(µ′) ≥ δ′ log (p) + (1− δ′) log(1− δ′) ≥ 10
a·m · a(mI − 1)− 1

= 10I − 10
m
− 1 ≥ 10I − 11 ≥ 2I.

21

We turn to prove Part (1). Consider the random variable Z = Z(X) that gets the value

m ∈ Z if

100mI < fµ,a,r(X) ≤ 100(m+ 1)I.

Observe that

H(fµ,a,r(X)) = H(Z) + H(fµ,a,r(X) | Z) ≤ H(Z) + log(100I),

where the last inequality holds since for a fixed Z = m, the random variable fµ,a,r(X) takes

at most 100I possible values. The rest of the proof is devoted to bounding H(Z) ≤ 4.

Let P : Z → [0, 1] be the distribution of the random variable Z. By Part (2) we know

that

∀m ≥ 1 : Pr
X

[fµ,a,r(X) > 100mI] < 10
a·100m

= 1
10a·m .

Thus,

∀m ≥ 1 :
∑
i≥m

P (i) ≤ 1
10a·m .

Let F : N → [0, 1] be a function (not necessarily a distribution). Define the entropy of

the function F by

H∗(F) = −
∑
i∈N

F (i) log(F (i)).

Let F be the set of functions F : N→ [0, 1] satisfying the condition

∀m ∈ N :
∑
i≥m

F (i) ≤ 1
10a·m . (1)

Consider the function Q : N→ [0, 1] defined by

Q(i) = 1
10ai
− 1

10a(i+1)
.

Observe that Q ∈ F . The following claim shows that among the functions in F , the function

Q maximizes the entropy H∗.

Claim 5.7. H∗(Q) = maxF∈F{H∗(F)}.

Proof. Let F ∈ F be a function. We will show that H∗(F) ≤ H∗(Q). Observe that

S :=
∑

i∈NQ(i) = 1
10a
≤ 1

10
. We assume without loss of generality that

∑
i∈N F (i) = S,

as otherwise we can enlarge F (1) and get a function that still satisfies the condition in

Equation 1, and has a larger entropy. Next, we observe that 1
S
F and 1

S
Q are distributions,

22

and hence using Proposition 4.5,

0 ≤ D
(

1
S
F‖ 1

S
Q
)

=
∑
i∈N

1
S
F (i) log

(
1
S
F (i)

1
S
Q(i)

)
= 1

S

∑
i∈N

F (i) log
(
F (i)
Q(i)

)
.

This implies

H∗(F) = −
∑
i∈N

F (i) log(F (i)) ≤ −
∑
i∈N

F (i) log(Q(i)).

Observe that in order to get the desired result H∗(F) ≤ H∗(Q), it suffices to prove the

following inequity:

−
∑
i∈N

F (i) log(Q(i)) ≤ −
∑
i∈N

Q(i) log(Q(i)) = H∗(Q).

The rest of the proof is devoted to showing the last inequality.

We first note that the set F , equipped with the L1 metric, is a compact metric space.

We assume without loss of generality that the function F maximizes the expression

−
∑

i∈N F (i) log(Q(i)) among the functions in F . We will show that F satisfies all the

constraints of Equation 1 with equality, that is, ∀m ∈ N :
∑

i≥m F (i) = 1
10a·m . Thus, F = Q.

The reason that F satisfies all the constraints of Equation 1 with equality is the following.

First note that
∑

i≥1 F (i) = 1
10a

, as otherwise we can enlarge F (1) and get a function that still

satisfies the condition in Equation 1, while increasing the expression −
∑

i∈N F (i) log(Q(i)),

in contradiction to the maximality of F . Assume for a contradiction that there exists m ∈ N
such that

∑
i≥m+1 F (i) < 1

10a·(m+1)
. Then, since Q is a monotone decreasing function, we are

better off “moving” some of the weight of F from m to m+1. Formally, consider the function

F ′ : N→ [0, 1], defined by ∀i ∈ N \ {m,m + 1} : F ′(i) = F (i), and F ′(m) = F (m)− ε, and

F ′(m+ 1) = F (m+ 1) + ε, where ε > 0 is sufficiently small so that
∑

i≥m+1 F
′(i) ≤ 1

10a·(m+1)
.

Note that F ′ still satisfies the condition in Equation 1. We then derive a contradiction to

the maximality of F as

−
∑
i∈N

F (i) log(Q(i)) < −
∑
i∈N

F ′(i) log(Q(i)).

We can now bound H(P). First observe that Q(i) = 1
10ai
− 1

10a(i+1)
= 1

10a·i(i+1)
< 1

10i2
.

Therefore,

H∗(Q) <
∑
i∈N

1
10i2
· log

(
10i2

)
≤ 1.

23

In addition, for i ∈ {2, 3, . . .} it holds that

P (−i) ≤ Pr
X

[fµ,a,r(X) ≤ −100(i− 1)I] ≤ Pr
X

[
µ(X) ≤ 2−100(i−1)aI · 1

|Ω|

]
≤ 2−100(i−1)I .

Thus,

H(P) ≤ H∗(Q)− P (0) log(P (0))− P (−1) log(P (−1))−
∑

i∈{2,3,...}

P (−i) log(P (−i))

≤ 1 + 2 +
∑

i∈{2,3,...}

2−100(i−1)I(100(i− 1)I) ≤ 4.

5.2 Partitioning a Distribution

Lemma 5.8. Let µ : Ω → [0, 1] be a distribution satisfying H∞(µ) ≥ log(|Ω|) − a, where

a ∈ R+. Let c ∈ N. Let µ1, . . . , µ2c : Ω → [0, 1] be 2c distributions. Let α1, . . . , α2c ∈ [0, 1].

Assume that

µ =
∑
i∈[2c]

αiµi.

For i ∈ [2c], let Ii = I(µi). Let h ∈ R+. Let B ⊆ [2c] be the set of indices i such that

Ii > a+ c+ h. Then, ∑
i∈B

αi < 2−h.

Proof. Recall that we assume

H∞(µ) = min
x∈supp(µ)

{− log(µ(x))} ≥ log(|Ω|)− a.

Therefore, for every x ∈ supp(µ), it holds that

a ≥ log(|Ω|) + log(µ(x)) = log(|Ω|µ(x)). (2)

Let i ∈ [2c] be such that αi ≥ 2−(h+c). Let x ∈ Ω. It holds that

µ(x) ≥ αiµi(x) ≥ 2−(h+c)µi(x). (3)

24

Using Equations 3 and 2, we have

Ii =
∑

x∈supp(µi)

µi(x) log (|Ω|µi(x))

≤
∑

x∈supp(µi)

µi(x) log
(
|Ω| · 2h+cµ(x)

)

≤

 ∑
x∈supp(µi)

µi(x) log(|Ω|µ(x))

+ h+ c

≤ a+ h+ c.

Therefore, i ∈ B implies αi < 2−(h+c). As there are 2c possible indices i, it holds that

|B| ≤ 2c. Thus, ∑
i∈B

αi < |B| · 2−(h+c) ≤ 2−h.

Lemma 5.9. Let µ : Ω→ [0, 1] be a distribution. Let c ∈ N. Let µ1, . . . , µ2c : Ω→ [0, 1] be

2c distributions. Let α1, . . . , α2c ∈ [0, 1]. Assume that

µ =
∑
i∈[2c]

αiµi.

Let h ∈ R+. Let B ⊆ [2c] be the set of indices i such that H∞(µi) < H∞(µ) − h − c.

Then, ∑
i∈B

αi < 2−h.

Therefore, also ∑
i∈[2c]

αiH∞(µi) ≥ H∞(µ)− c− 4.

Proof. Let i ∈ [2c] be such that αi ≥ 2−(h+c). Let x ∈ Ω. It holds that

µ(x) ≥ αiµi(x) ≥ 2−(h+c)µi(x).

Hence,

H∞(µi) = min
x∈supp(µi)

{− log(µi(x))} ≥ min
x∈supp(µ)

{
− log

(
2h+cµ(x)

)}
= H∞(µ)− h− c.

Therefore, i ∈ B implies αi < 2−(h+c). As there are 2c possible indices i, it holds that

25

|B| ≤ 2c. Thus, ∑
i∈B

αi < |B| · 2−(h+c) ≤ 2−h.

The last bound also implies that∑
i∈[2c]

αiH∞(µi)

−H∞(µ) + c =
∑
i∈[2c]

αi (H∞(µi)−H∞(µ) + c) ≥
∑
h∈N

2−(h−1)(−h) = −4

(where the last inequality follows by partitioning the sum according to −h = bH∞(µi) −
H∞(µ) + cc and using the previous bound).

Lemma 5.10. Let µ : Ω → [0, 1] be an a-flat distribution, where a ≥ 1. Let c ∈ N. Let

µ1, . . . , µ2c : Ω→ [0, 1] be 2c distributions. Let α1, . . . , α2c ∈ [0, 1]. Assume that

µ =
∑
i∈[2c]

αiµi.

For i ∈ [2c], let Ii = I(µi), and let I = I(µ). Let h ∈ R+. Let B ⊆ [2c] be the set of

indices i such that Ii > I + c+ h+ a. Then,∑
i∈B

αi < 2−h.

Proof. Let S = supp(µ) ⊆ Ω. Consider the distribution µS : S → [0, 1] obtained by

restricting the domain of µ to S. That is, µS is given by ∀x ∈ S : µS(x) = µ(x).

We first claim that µS satisfies H∞(µS) ≥ log(|S|) − a. Let pmax = maxx∈S{µS(x)} be

the maximal probability of an element according to µS. Let x ∈ S. Using the flatness of µ,

µS(x) = µ(x) ≥ 2−apmax.

Therefore µS(S) = 1 ≥ 2−a|S|pmax, which means pmax ≤ 2a

|S| . We can now bound the

min-entropy of µS:

H∞(µS) = − log(pmax) ≥ − log
(

2a

|S|

)
= log(|S|)− a. (4)

For every i ∈ [2c], let µS,i : S → [0, 1] be the distribution obtained by restricting the

domain of µi to S. That is, µS,i is given by ∀x ∈ S : µS,i(x) = µi(x). Observe that

supp(µi) ⊆ S, and hence µS,i is in fact a distribution (unless αi = 0). The distribution µS

26

can be decomposed as follows:

µS =
∑
i∈[2c]

αiµS,i.

We bound Ii using I(µS,i) as follows (for i such that αi > 0)

Ii = log(|Ω|)−H(µi) = (log(|Ω|)− log(|S|)) + (log(|S|)−H(µS,i))

≤ (log(|Ω|)−H(µ)) + I(µS,i) = I + I(µS,i).

Recall that B is the set of indices i such that Ii > I+c+h+a, which implies I(µS,i) > c+h+a.

By applying Lemma 5.8 to µS we get the desired∑
i∈B

αi < 2−h.

Lemma 5.11. Let µ : Ω→ [0, 1] be a distribution satisfying I = I(µ) ≤ 0.01. Let A ⊆ Ω be

the set of elements with µ(x) < 1
|Ω| . Denote

Ineg(µ) = −
∑
x∈A

µ(x) log(|Ω|µ(x)).

Then, Ineg(µ) < 4I0.25 log
(

1
I0.25

)
< 4I0.1.

Proof. Let β ∈ [0, 1] be such that |A| = β|Ω|, that is, β is the density of A. Let α = µ(A),

that is, α is the weight of A. Consider the distribution µ′ : Ω → [0, 1] that gives each

element in A the probability α
|Ω|β , and each of the other elements, the probability 1−α

|Ω|(1−β)
.

In particular, µ′ is uniform over A, and is uniform over Ω \ A. Observe that the set of

elements with µ′(x) < 1
|Ω| is exactly A. By the concavity of the logarithm function, it holds

that Ineg(µ′) ≥ Ineg(µ), and note also that I(µ′) ≤ I(µ) = I. Therefore, it suffices to show

Ineg(µ′) < 4I0.25 log
(

1
I0.25

)
.

Observe that

H(µ′) = −α log
(

α
|Ω|β

)
− (1− α) log

(
(1−α)
|Ω|(1−β)

)
= −D ((α, 1− α)‖(β, 1− β)) + log(|Ω|).

Therefore,

I(µ′) = log(|Ω|)−H(µ′) = D((α, 1− α)‖(β, 1− β)).

Using Pinsker’s Inequality (Proposition 4.6) it holds that

|α− β| <
√

I(µ′) ≤
√
I. (5)

27

We turn to bound Ineg(µ′). Observe that

Ineg(µ′) = −α log
(
α
β

)
.

Recall that for x ∈ A it holds that µ(x) < 1
|Ω| . Therefore α = µ(A) < |A| · 1

|Ω| = β. We

consider the following two cases:

Case 1: β > I0.25. By Equation 5 it holds that α > β −
√
I. Therefore, α

β
> β−

√
I

β
=

1−
√
I
β
> 1− I0.25. Since α ≤ 1, it holds that

Ineg(µ′) ≤ − log
(
1− I0.25

)
≤ 2I0.25.

Case 2: β ≤ I0.25. Since α < β, it is also the case that α < I0.25. Since β ≤ 1, it holds

that

Ineg(µ′) ≤ −α log (α) < −I0.25 log
(
I0.25

)
.

Lemma 5.12. Let µ : Ω→ [0, 1] be a distribution satisfying I = I(µ) ≤ 0.01. Let A ⊆ Ω be

the set of elements with µ(x) ≥ 2
|Ω| . Then, µ(A) < 4I0.25 log

(
1

I0.25

)
+ I < 5I0.1.

Proof. Denote

A =
∑
x∈A

µ(x) log(|Ω|µ(x)).

Observe that for every x ∈ A it holds that log(|Ω|µ(x)) ≥ log(2) = 1, thus, A ≥ µ(A). Let

B ⊆ Ω be the set of elements with 1
|Ω| ≤ µ(x) < 2

|Ω| . Denote

B =
∑
x∈B

µ(x) log(|Ω|µ(x)).

Observe that for every x ∈ B it holds that log(|Ω|µ(x)) ≥ log(1) = 0, thus, B ≥ 0. The

claim now follows using Lemma 5.11, as

I = A+B − Ineg(µ) > µ(A)− 4I0.25 log
(

1
I0.25

)
,

where Ineg(µ) is defined as in Lemma 5.11.

Lemma 5.13. Let µ : Ω → [0, 1] be a distribution satisfying I = I(µ) ≤ 0.01. Let c ∈ N.

28

Let µ1, . . . , µ2c : Ω→ [0, 1] be 2c distributions. Let α1, . . . , α2c ∈ [0, 1]. Assume that

µ =
∑
i∈[2c]

αiµi.

For i ∈ [2c], let Ii = I(µi). Let h ∈ R+. Let B ⊆ [2c] be the set of indices i such that

Ii > c+ h+ 1. Then, ∑
i∈B

αi < 2−h + 5I0.1.

Proof. For i ∈ [2c] define

Mi =
∑

x∈supp(µ)

µi(x) log(|Ω|µ(x)).

Let i ∈ [2c] be such that αi ≥ 2−(h+c). Let x ∈ Ω. It holds that

µ(x) ≥ αiµi(x) ≥ 2−(h+c)µi(x). (6)

Using Equation 6, we have

Ii =
∑

x∈supp(µi)

µi(x) log (|Ω|µi(x))

≤
∑

x∈supp(µ)

µi(x) log
(
|Ω| · 2h+cµ(x)

)
≤ Mi + h+ c.

Therefore, i ∈ B implies αi < 2−(h+c) or Mi > 1.

Let M ⊆ [2c] be the set of indices i such that Mi > 1. As was done in Lemma 5.11,

define A ⊆ Ω to be the set of elements x ∈ Ω with µ(x) < 1
|Ω| . Note that for such elements

it holds that log(|Ω|µ(x)) < 0. Also, recall the definition of Ineg formulated in Lemma 5.11:

Ineg(µ) = −
∑
x∈A

µ(x) log(|Ω|µ(x)).

29

Using the bound on Ineg(µ) offered by Lemma 5.11, we get

∑
i∈M

αi ≤
∑
i∈M

αiMi =
∑
i∈M

αi

 ∑
x∈supp(µ)

µi(x) log(|Ω|µ(x))


≤

∑
x∈(supp(µ)\A)

(∑
i∈M

αiµi(x)

)
log(|Ω|µ(x))

≤
∑

x∈(supp(µ)\A)

µ(x) log(|Ω|µ(x))

≤ I + Ineg(µ) ≤ I + 4I0.1 ≤ 5I0.1.

As mentioned above, i ∈ B implies αi < 2−(h+c) or Mi > 1. Therefore,∑
i∈B

αi < 2−(h+c) · 2c +
∑
i∈M

αi < 2−h + 5I0.1.

6 Operations Over Games

6.1 General Notation

Decomposing the inputs. Let G be a game with parameters (k, d, PX , PY), with under-

lying tree T . Let v be a vertex of T . We label each of the 2k edges leaving v by a unique

label from the set [2k]. The input X can be written as X = {Xv}v∈Even(T), where Xv ∈ [2k]

is the label of the unique edge leaving v that is contained in X. Similarly, we can write Y as

Y = {Yv}v∈Odd(T), where Yv ∈ [2k] is the label of the unique edge leaving v that is contained

in Y .

Let v be a vertex of T . We denote by Tv the subtree of T rooted at v. Slightly abusing

notation, we denote the root of the tree by the number 0, and the 2k children of the root

by the numbers 1, . . . , 2k (such that the name of a vertex is consistent with the label of the

edge that reaches that vertex). In particular, for j ∈ [2k], we denote by Tj the subtree of T

rooted at the jth child of the root. We will often write X as

X =
(
X0, XT1 , . . . , XT

2k

)
,

where XTv = {Xv′}v′∈Tv∩Even(T) is the restriction of the information in X to vertices of Tv,

30

and X0 is Xroot(T). Similarly, we will often write Y as

Y =
(
YT1 , . . . , YT2k

)
,

where YTv = {Yv′}v′∈Tv∩Odd(T) is the restriction of the information in Y to vertices of Tv. For

a vertex v of T , we denote by (X, Y)Tv the pair (XTv , YTv).

The “correct” path. Given a game G and inputs X and Y , let V0, . . . , Vd be the d vertices

on the path from the root to the leaf of the underlying tree, defined by the inputs X and Y ,

where V0 is the root and Vd = L(X, Y) is the leaf. Note that V0, . . . , Vd are random variables

that depend on the inputs X and Y , and note that V1 = X0. Let E1, . . . , Ed be the edges

E1 = (V0, V1), E2 = (V1, V2), . . . , Ed = (Vd−1, Vd).

Constructing a game given inputs. Given a game G with parameters (k, d, PX , PY),

we sometimes want to consider variants of G played with different input distributions (for

example, when the distributions are conditioned on an event). For that reason we introduce

the following notation. Let k, d′ ∈ N, and let T be the 2k-ary tree of depth d′. Recall that

we denote by X (T) the set of possible inputs for the first player, and by Y(T) the set of

possible inputs for the second player. For a pair of independent random variables X ′, Y ′,

over the sets X (T) and Y(T) respectively, we denote by GX′Y ′ the game with parameters

(k, d′, PX′ , PY ′).

Distribution over games. In the proof we often apply an operation to a given game G,

and obtain a “distribution G over games”. By that we mean that we reach a distribution G
whose domain is a set of new games G1, . . . , Gm (not necessarily different), where m ∈ N.

For every i ∈ [m], the game Gi is obtained with probability αi ∈ [0, 1], where
∑

i∈[m] αi = 1.

6.2 Conditioning a Game

Conditioning a game on a random variable. Let G be a game with parameters

(k, d, PX , PY). Let W be a random variable that is conditionally independent of the in-

put X given the input Y . We think of W as a probabilistic function of Y (independent of

X), that is, without loss of generality we think of W as determined by Y and an indepen-

dent random string R (that is independent of X, Y). The operation of conditioning G on W

results in a distribution G over games, obtained as follows: For every w ∈ supp(W) we will

have a game GXY |W=w with parameters (k, d, PX , PY |W=w). The distribution G will have the

31

domain
{
GXY |W=w

}
w∈supp(W)

. For every w ∈ supp(W), the game GXY |W=w is obtained with

probability Pr[W = w].

In the same way, if W be a random variable that is conditionally independent of the input

Y given the input X, the operation of conditioning G on W results in a distribution G over

games, obtained as follows: For every w ∈ supp(W) we will have a game GXY |W=w with pa-

rameters (k, d, PX|W=w, PY). The distribution G will have the domain
{
GXY |W=w

}
w∈supp(W)

.

For every w ∈ supp(W), the game GXY |W=w is obtained with probability Pr[W = w].

In both cases, we denote by GXY |W the random game chosen according to the distri-

bution G, such that the game GXY |W=w is chosen when W = w. In particular, for every

w ∈ supp(W), the game GXY |W is GXY |W=w with probability Pr[W = w]. The notation

GXY |W=w will sometimes be abbreviated as GXY |w.

Conditioning a game on a sequence of random variables. Let G be a game with

parameters (k, d, PX , PY). Let W = W1, . . . ,Wm be a sequence of random variables, where

m ∈ N. We say that W is a feasible transcript if for every i ∈ [m], either the variables Wi

and X are conditionally independent given W1, . . . ,Wi−1, Y , or the variables Wi and Y are

conditionally independent given W1, . . . ,Wi−1, X. The operation of conditioning G on W

results in a distribution G over games, obtained by conditioning on W1, . . . ,Wm one by one.

Intuitively, a feasible transcript is a possible transcript of a communication protocol

between two players that hold X, Y respectively.

Lemma 6.1. Let G be a game with inputs X and Y . Let W be a feasible transcript. Then,

PX =
∑

w∈supp(W)

Pr
W

[W = w] · PX|W=w,

PY =
∑

w∈supp(W)

Pr
W

[W = w] · PY |W=w,

PX,Y =
∑

w∈supp(W)

Pr
W

[W = w] · PXY |W=w.

Proof. Follows immediately from the complete probability formula.

Lemma 6.2. Let G be a game with inputs X and Y . Let W = W1, . . . ,Wm be a feasible

transcript, where m ∈ N. Assume without loss of generality that W1, . . . ,Wm are bits.

Let m1 ∈ N be the number of indices i ∈ [m], such that the variables Wi and X are not

conditionally independent given W1, . . . ,Wi−1, Y .

Let h ∈ R+. Let B ⊆ supp(W) be the set of strings w such that H∞(PX0|W=w) <

32

H∞(PX0)−m1 − h. Then, ∑
w∈B

Pr
W

[W = w] < 2−h.

Moreover,

E
W

[
H∞(PX0|W)

]
≥ H∞(PX0)−m1 − 4.

Proof. Denote by A the set of indices i ∈ [m], such that the variables Wi and X are not

conditionally independent given W1, . . . ,Wi−1, Y . Note that |A| = m1. Denote WA =

{Wi}i∈A and WĀ = {Wi}i∈Ā. Thus, each bit of WĀ is conditionally independent of X, given

all previous bits of W and Y .

Without loss of generality we can assume that each bit i ∈ WĀ is determined by

W1, . . . ,Wi−1, Y and an independent random string Ri (that is independent of X, Y and all

other random strings), and in the same way, each bit i ∈ WA is determined byW1, . . . ,Wi−1, X

and an independent random string Ri (that is independent of X, Y and all other random

strings). Denote RA = {Ri}i∈A and RĀ = {Ri}i∈Ā. Denote Y ′ = (Y,RĀ).

For every y′ ∈ supp(Y ′), the distribution PX0|Y ′=y′ is just the distribution PX0 , since Y ′ is

independent of X. Moreover, since W is a feasible transcript, the random variables (X,RA)

and (Y,RĀ) are conditionally independent given W (this is a standard fact in communication

complexity and is easily proved by induction on m). Hence, for every (w, y′) ∈ supp((W,Y ′))

we have PX0|W=w,Y ′=y′ = PX0|W=w.

Fix y′ ∈ supp(Y ′). The distribution PX0 can be written as a sum

PX0 = PX0|Y ′=y′ =
∑

w∈supp(W |Y ′=y′)

Pr[W = w | Y ′ = y′] · PX0|W=w,Y ′=y′ .

=
∑

w∈supp(W |Y ′=y′)

Pr[W = w | Y ′ = y′] · PX0|W=w.

Note that in the last sum at most 2m1 summands are non-zero, because every bit of WĀ is

determined by Y ′ and all previous bits of W (so by induction on m we have that Pr[W =

w | Y ′ = y′] is non-zero for at most 2m1 possibilities of w).

Recall that B ⊆ supp(W) is the set of w ∈ supp(W) such that

H∞(PX0|W=w) < H∞(PX0)−m1 − h.

Using Lemma 5.9, it holds that∑
w∈B

Pr[W = w | Y ′ = y′] < 2−h.

33

The first part of the lemma follows as∑
w∈B

Pr
W

[W = w] =
∑

y′∈supp(Y ′)

Pr[Y ′ = y′]
∑
w∈B

Pr[W = w | Y ′ = y′]

<
∑

y′∈supp(Y ′)

Pr[Y ′ = y′] · 2−h = 2−h.

Lemma 5.9 also implies that∑
w∈supp(W |Y ′=y′)

Pr[W = w | Y ′ = y′] ·H∞(PX0|W=w) ≥ H∞(PX0)−m1 − 4.

The second part of the lemma follows as

E
W

[
H∞(PX0|W)

]
=∑

y′∈supp(Y ′)

Pr[Y ′ = y′]
∑

w∈supp(W |Y ′=y′)

Pr[W = w | Y ′ = y′] ·H∞(PX0|W=w) ≥

∑
y′∈supp(Y ′)

Pr[Y ′ = y′] (H∞(PX0)−m1 − 4) =

H∞(PX0)−m1 − 4.

Lemma 6.3. Let G be a game with inputs X and Y . Let ε, δ ∈ [0, 1]. Let W be a feasible

transcript. Then, there exists {δw}w∈supp(W), δw ∈ [0, 1], such that EW [δW] = δ, and

CCε,δ(G) ≥ E
W

[
CCε,δW (GXY |W)

]
.

Proof. Let Π ∈ Pε,δ be a deterministic protocol such that CC(Π) = CCε,δ(G). Let w ∈
supp(W). We can view Π as a protocol for the game GXY |W=w. Denote this protocol by Πw.

Define δw to be the probability that Πw errs on the game GXY |W=w, where the probability

is over the inputs and the channel’s noise. Recall that

PX,Y =
∑

w∈supp(W)

Pr
W

[W = w] · PXY |W=w.

Hence,

CCε,δ(G) = CC(Π) = E
W

[CC(ΠW)] ≥ E
W

[
CCε,δW (GXY |W)

]
,

and EW [δW] = δ.

34

Let G be a game with inputs X and Y , and let Π be a deterministic protocol for G. We

will often consider the first t communication bits received by the players during an execution

of the protocol Π on inputs X and Y . Denote these bits by W = W1, . . . ,Wt. We refer to

W as the received transcript of the first t rounds of Π. Note that the bits received by the

players may differ from the bits sent by the players due to the channel’s error. Observe that

W is a feasible transcript, and that W is a random variable that depends on X and Y .

Lemma 6.4. Let G be a game with inputs X and Y . Let ε, δ ∈ [0, 1]. Let Π ∈ Pε,δ be a

deterministic protocol for G. Let t ∈ N. Assume that, with probability 1, the protocol Π has

at least t rounds, and let W be the received transcript of the first t rounds of Π. Then, there

exists {δw}w∈supp(W), δw ∈ [0, 1], such that EW [δW] = δ, and

CC(Π) ≥ t+ E
W

[
CCε,δW (GXY |W)

]
.

Proof. Let w ∈ supp(W). We denote by Πw the protocol consisting of rounds t+ 1, t+ 2, . . .

of Π, when the received transcript of the first t rounds of Π is w. We view Πw as a protocol

for the game GXY |W=w. Define δw to be the probability that Πw errs on the game GXY |W=w,

where the probability is over the inputs and the channel’s noise. Recall that

PX,Y =
∑

w∈supp(W)

Pr
W

[W = w] · PXY |W=w.

Hence,

CC(Π) = t+ E
W

[CC(ΠW)] ≥ t+ E
W

[
CCε,δW (GXY |W)

]
,

and EW [δW] = δ.

6.3 Reducing a Game

Let k, d′ ∈ N, and let T ′ be the 2k-ary tree of depth d′. Recall that we denote by X (T ′)

the set of possible inputs for the first player, and by Y(T ′) the set of possible inputs for the

second player. Recall that, for a pair of independent random variables X ′, Y ′, over the sets

X (T ′) and Y(T ′) respectively, we denote by GX′Y ′ the game with parameters (k, d′, PX′ , PY ′).

Let G be a game with parameters (k, d, PX , PY), with underlying tree T . Let v be a

vertex of T . We often consider the reduced game, obtained by restricting G to the subtree

Tv, and played with inputs XTv and YTv . Formally, if v ∈ Even(T), then the reduced game

is G(X,Y)Tv
. That is, the game with parameters (k, d′, PXTv , PYTv), where d′ is the depth

of Tv. If v ∈ Odd(T), then the reduced game is G(Y,X)Tv
. That is, the game with parameters

(k, d′, PYTv , PXTv), where d′ is the depth of Tv. Note that in both cases the depth of the

35

game G is reduced by the depth of v, and that in the case where v ∈ Odd(T), the roles of

the two inputs X and Y are switched, as odd layers of T are even layers of Tv, and vice

versa.

The vertex v will sometimes be a random variable V , in which case, the reduced game

G(X,Y)TV
or G(Y,X)TV

can be viewed as a random variable, or as a distribution over games.

Recall that we denote by V1 the first non-root vertex on the correct path. We will often

reduce the game G to the subtree TV1 after conditioning G on the value of V1, and obtain the

game G(Y,X|V1)TV1
. Note that conditioning G on the value of V1 can be viewed as “revealing”

the value of V1 to the second player (the first player already knows this value). Since the

first edge is now known, the players can turn to play the game G reduced to TV1 .

Formally, we can view G(Y,X|V1)TV1
as a distribution G over games, obtained as fol-

lows: For every v1 ∈ supp(V1) we will have a game G(Y,X|V1=v1)Tv1
with parameters (k, d −

1, P(Y |V1=v1)Tv1
, P(X|V1=v1)Tv1

). The distribution G will have the domain
{
G(Y,X|V1=v1)Tv1

}
v1∈supp(V1)

.

For every v1 ∈ supp(V1), the game G(Y,X|V1=v1)Tv1
is obtained with probability Pr[V1 = v1].

We also view G(Y,X|V1)TV1
as the random game chosen according to the distribution G,

such that the game G(Y,X|V1=v1)Tv1
is chosen when V1 = v1. In particular, for every v1 ∈

supp(V1), the game G(Y,X|V1)TV1
is G(Y,X|V1=v1)Tv1

with probability Pr[V1 = v1]. The notation

G(Y,X|V1=v1)Tv1
will sometimes be abbreviated as G(Y,X|v1)Tv1

.

Remark 6.5. We remark that since the random variables Y and V1 are independent, the

distribution P(Y |V1=v1)Tv1
is the same as PYTv1 . Nevertheless, we will usually prefer not to

omit the conditioning on V1 = v1 as it may become significant when farther conditioning on

an additional random variable (specifically, if the additional variable is a function of both Y

and V1).

Lemma 6.6. Let Z1, . . . , Zm be m random variables, and let J be a random variable taking

values in [m]. Assume that J is independent of Z1, . . . , Zm. Then,

E
J

[I(ZJ)] ≤ 2−H∞(J)I(Z1, . . . , Zm).

Proof. Using the supper-additivity of information (Proposition 4.2)

E
J

[I(ZJ)] =
∑
j∈[m]

Pr[J = j] · I(Zj) ≤ max
j∈[m]
{Pr[J = j]}

∑
j∈[m]

I(Zj) ≤ 2−H∞(J)I(Z1, . . . , Zm).

Lemma 6.7. Let G be a game with parameters (k, d, PX , PY), with underlying tree T . Con-

sider the game G(Y,X|V1)TV1
, with parameters (k, d − 1, P(Y |V1)TV1

, P(X|V1)TV1
). Recall that

36

V1 = X0. Then,

1. EV1

[
I((Y |V1)TV1

)
]
≤ 2−H∞(X0)I(Y).

2. EV1

[
I((X|V1)TV1

)
]
≤ I(X)− I(X0).

Proof. The first part of the lemma follows directly from Lemma 6.7, since V1 = X0 is

independent of Y (see also Remark 6.5).

We turn to prove the second part:

E
V1

[
I((X|V1)TV1

)
]

=∑
v1∈[2k]

Pr[V1 = v1] · I
(
(X|V1 = v1)Tv1

)
=

∑
v1∈[2k]

Pr[V1 = v1] · I
(
XTv1
|V1 = v1

)
≤

∑
v1,j∈[2k]

Pr[V1 = v1] · I
(
XTj |V1 = v1

)
=

∑
v1,j∈[2k]

Pr[V1 = v1] ·
(
log(|Y(Tj)|)−H

(
XTj |V1 = v1

))
=

2k log(|Y(T1)|)−
∑
j∈[2k]

∑
v1∈[2k]

Pr[V1 = v1] ·H
(
XTj |V1 = v1

)
=

(log(|X (T)|)− k)−
∑
j∈[2k]

H
(
XTj |V1

)
=

log(|X (T)|)− I(X0)−H(X0)−
∑
j∈[2k]

H
(
XTj |X0

)
≤

log(|X (T)|)− I(X0)−H(X0)−H
(
XT1 , . . . , XT

2k
|X0

)
=

log(|X (T)|)− I(X0)−H
(
X0, XT1 , . . . , XT

2k

)
=

I(X)− I(X0).

7 Main Lemmas and Proof of Theorem 2

For a game G with inputs X and Y , we define: I1(G) = I(X), I2(G) = I(Y), I(G) =

I1(G)+I2(G), and κ(G) = H∞(X0). In all that comes below, we assume that k is sufficiently

large (say, k > 10100).

Definition 7.1 (Nice Game). Let G be a game with parameters (k, d, PX , PY). The game G

is called nice if it satisfies all the following conditions:

37

1. κ(G) ≥ 0.5k.

2. I1(G) ≤ 10k.

3. I2(G) ≤ 20k.

4. The distributions PX , PY are (0.01k)-flat.

Lemma 7.2 (Communication Lower-Bound for Nice Games). Let G be a nice game

with parameters (k, d, PX , PY). Let ε = 2000 log(k)
k2 and δ ∈ [0, 1]. Then,

CCε,δ(G) ≥ d · (k + 0.1 log(k)) · (1− 2δ)− (k − κ(G))− 100k.

Lemma 7.3 (Communication Lower-Bound for Non-Nice Games). Let G be a game

with parameters (k, d, PX , PY) (G may not be nice). Let ε = 2000 log(k)
k2 and δ ∈ [0, 1]. Then,

CCε,δ(G) ≥ d · (k + 0.1 log(k)) · (1− 2δ)− 100I(G)− 1000k.

Lemmas 7.2 and 7.3 are proven simultaneously, by a mutual recursion, where the two

lemmas use each other recursively. The proof is by induction on d, the depth of the game G.

To prove Lemma 7.2 for a given d, we assume the validity of Lemma 7.3 for d′ < d. To

prove Lemma 7.3 for a given d, we assume the validity of Lemma 7.2 for d′ < d. Hence, both

lemmas are correct for every d.

Observe that the base case d < 90 is trivial for both Lemma 7.2 and Lemma 7.3, since

the bounds obtained are negative. Moreover, in both lemmas we can assume that δ ≤ 0.5

since otherwise the bounds obtained are negative.

Equipped with Lemma 7.2 we can now prove Theorem 2.

Proof of Theorem 2. Recall that any lower bound proven for balanced deterministic proto-

cols for G holds for general deterministic protocols, up-to an additive 2k term. Therefore,

by Lemma 7.2, since G is a nice game with κ(G) = k, for any general deterministic protocol

for G with noise rate ε and error δ (not necessarily balanced), it holds that

CC(Π) ≥ d · (k + 0.1 log(k)) · (1− 2δ)− 102k.

Let Π ∈ P∗ε,δ be a probabilistic protocol for G. Let R be the (finite) random string used

by Π. For every possible value r of R, we denote by Πr the deterministic protocol obtained

from Π when given the random string R = r. Denote by δr the error of the deterministic

38

protocol Πr. Observe that ER[δR] = δ. It holds that

CC(Π) = E
R

[CC(ΠR)] ≥ d · (k + 0.1 log(k)) · (1− 2 E
R

[δR])− 102k

≥ d · (k + 0.1 log(k)) · (1− 2δ)− 102k,

and the assertion follows.

8 Communication Lower-Bound for Nice Games

(Proof of Lemma 7.2)

8.1 Proof of Lemma 7.2

Let G be a nice game with parameters (k, d, PX , PY), and underlying tree T . Let Π be a

protocol for G with noise rate ε and error δ, where ε and δ are as specified by Lemma 7.2.

We assume that d ≥ 90 and δ ≤ 0.5, otherwise, as explained before, the claim of the lemma

holds trivially. Our goal is to bound CC(Π) in the other cases.

8.1.1 Ensuring 2k Rounds

We first claim that Π always communicates at least 2k bits. Recall from Subsection 3.2,

that we only deal with balanced protocols. Thus, if Π communicates at most 2k bits with

positive probability, then it must communicate at most 2k bits with probability 1, and hence

CC(Π) ≤ 2k. The following lemma shows that if CC(Π) ≤ 2k then δ > 0.5 or d < 90, which

contradicts our assumption.

Lemma 8.1. If d ≥ 90 and δ ≤ 0.5 then CC(Π) > 2k.

Proof. Assume that d ≥ 90 and CC(Π) ≤ 2k, we will prove that δ > 0.5. Consider the

input X of the first player. Since G is a nice game, it holds that I(X) ≤ 10k, and that PX

is (0.01k)-flat. Using Lemma 5.2,

H∞(X) ≥ H(X)− 0.01k = log(|X (T)|)− I(X)− 0.01k ≥ log(|X (T)|)− 10.01k.

Recall from Subsection 3.2, that we only deal with balanced protocols. Since Π is a

balanced protocol and CC(Π) ≤ 2k, it must be the case that Π always ends after at most 2k

rounds. We assume without loss of generality that Π always ends after exactly 2k rounds.

Denote by W = W1, . . . ,W2k the received transcript of the 2k rounds of Π (the received

transcript is defined in Subsection 6.2).

39

We assume for the rest of the proof of Lemma 8.1 that no noise occurred in the chan-

nel, and hence all the bits that were sent were received correctly. This event occurs with

probability of at least 1− 2εk > 0.99. The argument below assumes that this event occurs.

Let B be the set of strings w ∈ {0, 1}2k, such that when the received transcript of the 2k

rounds of Π is w, the protocol Π errs with probability at most 0.75. For every w ∈ B the

protocol Π declares an answer (since no noise occurred in the channel, both players declare

the same answer), and this answer must be correct with probability at least 0.25. The answer

of the protocol is a leaf of the tree T .

Fix w ∈ B and let e = {e1, e2, e3, . . .} be the edges on the path to the leaf declared by the

protocol. Let e′ = {e1, e3, e5, . . .}. Since the answer of the protocol is correct with probability

of at least 0.25, we have that, conditioned on the event W = w, the edges in e are contained

in X ∪ Y with probability of at least 0.25. That is, Pr[e ⊂ X ∪ Y |W = w] ≥ 0.25. Hence,

Pr[e′ ⊂ X|W = w] ≥ 0.25.

Denote by X ′ a random variable over X (T) chosen according to the distribution PX|W=w

and denote by U a random variable over X (T) chosen according to the uniform distribution.

Thus, Pr[e′ ⊂ X ′] ≥ 0.25, while Pr[e′ ⊂ U] = 2−d0.5dek ≤ 2−45k. The last two inequalities

imply that for every w ∈ B, we have H∞(X|W = w) ≤ log(|X (T)|)− (45k − 2).

Recall that

PX =
∑

w∈{0,1}2k
Pr
W

[W = w] · PX|W=w.

Using Lemma 5.9, with c = 2k and h = 30k, it holds that∑
w∈B

Pr
W

[W = w] < 2−30k.

Thus, the error of the protocol Π satisfies δ > 0.75 · (1− 2−30k) · 0.99 > 0.5.

8.1.2 Steps in the Analysis

Consider the first t = bκ(G) + 0.25kc bits communicated by the protocol. Recall that we as-

sume that it is known in advance which player sends a bit in each round (see Subsection 3.2).

Let t1 and t2 be the number of bits sent by each player in this block of t bits, t1 + t2 = t.

Denote by W = W1, . . . ,Wt the received transcript of the first t rounds of Π (the received

transcript is defined in Subsection 6.2).

Revealing the first correct vertex V1. Recall that we denote by V1 the first non-root

vertex on the correct path. We first “reveal” the value of V1 to the second player (the first

player already knows this value). That is, we condition the game G on the value of V1. We

40

then reduce the game to the subtree TV1 . That is, we consider the game G(Y,X|V1)TV1
, with

parameters (k, d− 1, P(Y |V1)TV1
, P(X|V1)TV1

) (see Subsection 6.3).

Denote by B1 ⊆ [2k] the set of all vertices v1 such that I
(
(Y |V1 = v1)Tv1

)
≥ 2−0.25k.

Denote B̄1 = [2k] \ B1.

Revealing B. Fix v1 ∈ B̄1. For every v2 ∈ supp(PV2|V1=v1), we define the value B(v2|v1) ∈
{0, 1} as follows: B(v2|v1) = 1 if and only if PrV2 [V2 = v2|V1 = v1] > 2 · 2−k. (For v1 ∈ B1,

it will be convenient to define B(v2|v1) = 0 for every v2, although this value will never be

used). Define B = B(V2|V1). Roughly speaking, the bit B indicates whether the probability

of the correct second vertex is significantly larger than the the probability of a random child

of the correct first vertex.

We “reveal” the value of B to the first player (the second player already knows this

value). That is, we condition the game G(Y,X|V1)TV1
on the value of B, and consider the

game G(Y,X|V1)TV1
|B = G(Y,X|V1,B)TV1

, with parameters (k, d− 1, P(Y |V1,B)TV1
, P(X|V1,B)TV1

) (see

Subsection 6.2).

Denote B2 = {1}. Denote B̄2 = {0, 1} \ B2 = {0}.

Revealing the received transcript W . Next, we “reveal” the value of W to both players.

That is, we condition the game G(Y,X|V1,B)TV1
on the value of W , and consider the game

G(Y,X|V1,B)TV1
|W = G(Y,X|V1,B,W)TV1

, with parameters (k, d − 1, P(Y |V1,B,W)TV1
, P(X|V1,B,W)TV1

)

(see Subsection 6.2).

Revealing the noise indicator E. Recall that t1 is the number of bits sent by the first

player in the block of t bits that we consider. We define the random variable E ∈ {0, 1} as

follows: E = 1 if and only if exactly one of the t1 bits sent by the first player, was received

incorrectly by the second player, due to the noise of the channel.

Since the bits sent by the first player are a deterministic function of the input X and

the received transcript W , one can compare these bits to the received transcript W and

compute E deterministically, given X and W . Therefore, E = E(X,W). Thus, the first

player already knows the value of E.

We “reveal” the value of E to the second player (the first player already knows this value).

That is, we condition the game G(Y,X|V1,B,W)TV1
on the value of E, and consider the game

G(Y,X|V1,B,W)TV1
|E = G(Y,X|V1,B,W,E)TV1

, with parameters (k, d−1, P(Y |V1,B,W,E)TV1
, P(X|V1,B,W,E)TV1

).

Revealing B′. Fix v1 ∈ [2k], and w ∈ supp(W). For every v2 ∈ supp(PV2|V1=v1), we define

the value B′(v2|v1, w) ∈ {0, 1} as follows: B′(v2|v1, w) = 1 if and only if PrV2 [V2 = v2|V1 =

41

v1,W = w] > 20.01k · 2−k. Define B′ = B′(V2|V1,W).

We “reveal” the value of B′ to the first player (the second player already knows this

value). That is, we condition the game G(Y,X|V1,B,W,E)TV1
on the value of B′, and consider

the game G(Y,X|V1,B,W,E)TV1
|B′ = G(Y,X|V1,B,W,E,B′)TV1

, with parameters

(k, d− 1, P(Y |V1,B,W,E,B′)TV1
, P(X|V1,B,W,E,B′)TV1

).

Revealing the flattening values F1, F2. Let a = 0.01k, and r = 20k
a

= 2000. Denote

µ1 = P(Y |V1,B,W,E,B′)TV1
, and µ2 = P(X|V1,B,W,E,B′)TV1

. If V1 ∈ B̄1 and B ∈ B̄2, we denote

F1 = fµ1,a,r(YTV1
) and F2 = fµ2,a,r(XTV1

) (see Subsection 5.1). (If V1 ∈ B1 or B ∈ B2, it will

be convenient to define F1 = F2 = 0).

We “reveal” the value of F1 to the first player (the second player already knows this

value), and the value of F2 to the second player (the first player already knows this value).

That is, we condition the game G(Y,X|V1,B,W,E,B′)TV1
on the values of F1, F2, and consider the

game G(Y,X|V1,B,W,E,B′)TV1
|F1,F2 = G(Y,X|V1,B,W,E,B′,F1,F2)TV1

, with parameters

(k, d− 1, P(Y |V1,B,W,E,B′,F1,F2)TV1
, P(X|V1,B,W,E,B′,F1,F2)TV1

).

V1, B,W,E,B
′, F1, F2 is a feasible transcript. Note that V1, B,W,E,B

′, F1, F2 is a fea-

sible transcript (see Subsection 6.2). Moreover, these variables form a feasible transcript

even when they appear in several different orders. In general, the variables form a feasible

transcript if all the following conditions are satisfied: F1, F2 appear at he end; B appears

after V1; and B′ appears after both V1,W .

8.1.3 Bounding CC(Π)

We next bound CC(Π), and thus complete the proof of Lemma 7.2. To do so, we will

use the following three main lemmas. For simplicity of the notation we denote by Z the

tuple of random variables (V1, B,W,E,B
′, F1, F2), and we denote by z a tuple of values

(v1, b, w, e, b
′, f1, f2) ∈ supp(Z) that these random variables can take.

Lemma 8.2. The game G(Y,X|Z)TV1
is nice with probability of at least 1− 2−0.005k (where the

probability is over the selection of Z).

Lemma 8.3.

E
Z

[
κ
(
G(Y,X|Z)TV1

)]
> 0.75k + 0.25 log(k).

Lemma 8.4. Let h ∈ R+. Then,

Pr
Z

[
I
(
G(Y,X|Z)TV1

)
> 40k + 2h

]
< 2 · 2−h.

42

Lemma 8.2 is proved in Subsection 8.2, Lemma 8.3 is proved in Subsection 8.3, and

Lemma 8.4 is proved in Subsection 8.4.

Equipped with the above lemmas, the proof of Lemma 7.2 is as follows. Using Lemmas 6.3

and 6.4 (where we first apply Lemma 6.4 on the transcript W of the first t rounds of the

protocol Π for the game G, and then apply Lemma 6.3 for every w ∈ supp(W) on the game

GXY |W=w and feasible transcript V1, B,E,B
′, F1, F2), there exists {δz}z∈supp(Z), δz ∈ [0, 1],

such that EZ [δZ] = δ, and

CC(Π) ≥ t+ E
Z

[
CCε,δZ

(
GXY |Z

)]
.

Consider the game GXY |Z . Since the first non-root vertex on the correct path, V1, is already

known (as we conditioned on its value), it holds that

CCε,δZ
(
GX,Y |Z

)
= CCε,δZ

(
G(Y,X|Z)TV1

)
.

In particular,

CC(Π) ≥ t+ E
Z

[
CCε,δZ

(
G(Y,X|Z)TV1

)]
.

Denote by A the event that the game G(Y,X|Z)TV1
is nice. If A occurs, we can apply

Lemma 7.2 recursively, as the depth of the new game is d − 1. If Ā occurs, we can apply

Lemma 7.3, as the depth of the new game is d − 1. Informally, Lemma 8.2 shows that

the probability that Lemma 7.3 is applied is small, and Lemma 8.4 bounds the losses in

the bound that occur because of applying Lemma 7.3 rather than Lemma 7.2. Lemma 8.3

ensures that the recursive bound obtained by applying Lemma 7.2 is sufficient. Informally,

the term 0.25 log(k) in Lemma 8.3 represents the “losses” of the players after communicating

the first t bits.

Formally, we get

CC(Π) ≥ t+ (d− 1) · (k + 0.1 log(k)) · (1− 2 E
Z

[δZ])

−Pr
Z

[A] · 100k − Pr
Z

[Ā] · 1000k

−Pr
Z

[A]

(
k − E

Z|A

[
κ(G(Y,X|Z)TV1

)
])

−Pr
Z

[
Ā
]
· 100 E

Z|Ā

[
I(G(Y,X|Z)TV1

)
]
.

By Lemma 8.2, PrZ [A] ≥ 1− 2−0.005k. By Lemma 8.3 it holds that

E
Z|A

[
κ(G(Y,X|Z)TV1

)
]
≥ (0.75k + 0.25 log(k))− 2−0.005kk ≥ 0.75k + 0.24 log(k).

43

By Lemma 8.4 it holds that

Pr
Z

[
Ā
]
· E
Z|Ā

[
I(G(Y,X|Z)TV1

)
]
≤

Pr
Z

[
Ā
](

80k +
∑

h∈N,h≥80k

(h+ 1) · Pr
Z

[
I(G(Y,X|Z)TV1

) > h
∣∣Ā]) ≤

2−0.005k · 80k +
∑

h∈N,h≥80k

(h+ 1) · Pr
Z

[
I(G(Y,X|Z)TV1

) > h
]
≤

1 +
∑

h∈N,h≥80k

(h+ 1) · 2 · 2−0.5(h−40k) < 2.

Therefore, we have

CC(Π) ≥ (κ(G) + 0.25k − 1) + (d− 1) · (k + 0.1 log(k)) · (1− 2δ)

−100k − 2−0.005k1000k

−(0.25k − 0.24 log(k))− 100 · 2

≥ κ(G) + d · (k + 0.1 log(k)) · (1− 2δ)− (k + 0.1 log(k))− 100k

+0.24 log(k)− 202

≥ d · (k + 0.1 log(k)) · (1− 2δ)− (k − κ(G))− 100k + 0.14 log(k)− 202

≥ d · (k + 0.1 log(k)) · (1− 2δ)− (k − κ(G))− 100k.

This concludes the proof of Lemma 7.2.

8.2 Bounding “Bad” Events (Proof of Lemma 8.2)

In this subsection we prove Lemma 8.2. Denote

S =
{

(v1, b, w, e, b
′, f1, f2) ∈ supp(V1, B,W,E,B

′, F1, F2)|v1 ∈ B̄1, b ∈ B̄2

}
= supp

(
PV1,B,W,E,B′,F1,F2|V1∈B̄1,B∈B̄2

)
.

Recall that we already defined the two “bad” sets B1 and B2. We define the additional “bad”

sets B3, . . . ,B9, each is a subset of tuples (v1, b, w, e, b
′, f1, f2) ∈ S.

• Denote by B3 ⊆ S the set of all tuples z = (v1, b, w, e, b
′, f1, f2) such that

I1

(
G(Y,X|Z=z)Tv1

)
= I

(
(Y |Z = z)Tv1

)
> 10k.

44

• Denote by B4 ⊆ S the set of all tuples z = (v1, b, w, e, b
′, f1, f2) such that

I2

(
G(Y,X|Z=z)Tv1

)
= I

(
(X|Z = z)Tv1

)
> 20k.

• Denote by B5 ⊆ S the set of all tuples z = (v1, b, w, e, b
′, f1, f2) such that

κ
(
G(Y,X|Z=z)Tv1

)
= H∞

((
(Y |Z = z)Tv1

)
v1

)
< 0.5k.

• Denote by B6 ⊆ S the set of all tuples z = (v1, b, w, e, b
′, f1, f2) such that f1 = r + 1.

• Denote by B7 ⊆ S the set of all tuples z = (v1, b, w, e, b
′, f1, f2) such that f2 = r + 1.

• Denote by B8 ⊆ S the set of all tuples z = (v1, b, w, e, b
′, f1, f2) such that f1 = −r.

• Denote by B9 ⊆ S the set of all tuples z = (v1, b, w, e, b
′, f1, f2) such that f2 = −r.

Proof of Lemma 8.2. Using Lemma 5.3 and the definition of a nice game, it holds that the

game G(Y,X|Z)TV1
is nice unless one of the following “bad” events occurs: V1 ∈ B1, or B ∈ B2,

or Z ∈ Bi for some i ∈ {3, . . . , 9}. (The flatness conditions hold by Lemma 5.3 because

P(Y |V1,B,W,E,B′,F1,F2)TV1
= P(Y |V1,B,W,E,B′,F1)TV1

and P(X|V1,B,W,E,B′,F1,F2)TV1
= P(X|V1,B,W,E,B′,F2)TV1

).

The assertion follows from the following claims (stated and proved below), as each claim

bounds one of these “bad” events. The needed claims are 8.5, 8.6, 8.7, 8.8, 8.9 (part 1), 8.10,

8.13, 8.14, 8.15, and 8.16.

The rest of this subsection is devoted to proving the claims used by the proof of Lemma 8.2.

Each of the claims bounds the probability of obtaining a different set Bi.

Claim 8.5. PrV1 [V1 ∈ B1] < 2−0.2k.

Proof. Using Lemma 6.7, and the fact that G is nice, it holds that

E
V1

[
I
(
(Y |V1)TV1

)]
≤ 2−H∞(X0)I(Y) ≤ 2−0.5k · 20k.

The lemma follows by Markov’s inequality.

Claim 8.6. PrB [B ∈ B2] < 2−0.02k.

Proof. For v1 ∈ B1 the bit B(v2|v1) is never 1. Thus, for v1 ∈ B1,

Pr
B

[B ∈ B2|V1 = v1] = 0.

45

For v1 ∈ B̄1, we have I
(
YTv1

)
= I

(
(Y |V1 = v1)Tv1

)
< 2−0.25k (see Remark 6.5). Since,

conditioned on V1 = v1, the value of V2 contains the exact same information as
(
YTv1

)
v1

,

for every v1 ∈ B̄1 we have by the super-additivity of information that I (V2|V1 = v1) ≤
I
(
YTv1 |V1 = v1

)
= I

(
YTv1

)
< 2−0.25k. Hence by Lemma 5.12, applied for the distribution

µ = PV2|V1=v1 , for any v1 ∈ B̄1 we have

Pr
B

[B ∈ B2|V1 = v1] < 2−0.02k.

Claim 8.7. PrZ [Z ∈ B3] < 2−0.02k.

Proof. Fix v1 ∈ B̄1. Thus, I
(
(Y |V1 = v1)Tv1

)
< 2−0.25k. Using Lemma 6.1 we can write

P(Y |V1=v1)Tv1
=

∑
b,w,e,b′,f1,f2

Pr [Z = (v1, b, w, e, b
′, f1, f2)|V1 = v1] · P(Y |Z=(v1,b,w,e,b′,f1,f2))Tv1

.

Using Lemma 5.13 with µ = P(Y |V1=v1)Tv1
, µz = P(Y |Z=z)Tv1

, h = k, and c < 8k, it holds that

Pr
Z

[Z ∈ B3|V1 = v1] =
∑

z=(v1,b,w,e,b′,f1,f2)∈B3

Pr [Z = z|V1 = v1] < 2−k + 5
(
2−0.25k

)0.1
< 2−0.02k.

Since this is true for every v1 ∈ B̄1, and since

Pr
Z

[Z ∈ B3|V1 ∈ B1] = 0,

the claim follows.

Claim 8.8. PrZ [Z ∈ B4] < 2−k.

Proof. Using the supper-additivity of information (Proposition 4.2), for every

z = (v1, b, w, e, b
′, f1, f2) ∈ supp(Z), it holds that

I
(
(X|Z = z)Tv1

)
≤ I(X|Z = z).

Hence, for every z ∈ B4, it holds that I(X|Z = z) > 20k.

Using Lemma 6.1 we can write

PX =
∑

z∈supp(Z)

Pr
Z

[Z = z] · PX|Z=z.

46

Since G is nice, PX is (0.01k)-flat and I(X) ≤ 10k. Thus, we can use Lemma 5.10 with

µ = PX , µz = PX|Z=z, h = k, and c < 8k, and get

Pr
Z

[Z ∈ B4] =
∑
z∈B4

Pr
Z

[Z = z] < 2−k.

Claim 8.9. If t2 ≤ 0.4k then

1. PrZ [Z ∈ B5] < 2−0.05k.

2. EZ

[
κ
(
G(Y,X|Z)TV1

)]
> k − t2 − 30.

Proof. Fix v1 ∈ B̄1 and b ∈ B̄2. Consider the random variable (V2|V1 = v1, B = b). Let

v2 ∈ supp(PV2|V1=v1,B=b). Thus, B(v2|v1) = b. Hence,

Pr
V2

[V2 = v2|V1 = v1] ≤ 2 · 2−k.

In addition, in the proof of Claim 8.6, we proved that for every v1 ∈ B̄1 it holds that

Pr[B 6= b|V1 = v1] = Pr[B ∈ B2|V1 = v1] < 2−0.02k.

For every three events A1, A2, A3, it holds that

Pr[A1|A2, A3] =
Pr[A1|A2] · Pr[A3|A1, A2]

Pr[A3|A2]
.

Therefore,

Pr[V2 = v2|V1 = v1, B = b] =
Pr[V2 = v2|V1 = v1] · Pr[B = b|V2 = v2, V1 = v1]

Pr[B = b|V1 = v1]

<
(2 · 2−k) · 1

(1− 2−0.02k)
< 4 · 2−k.

Hence, H∞ (V2|V1 = v1, B = b) > k − 2.

Given V1 = v1, the random variables V2 and Yv1 contain the same information. Therefore,

H∞

((
(Y |V1 = v1, B = b)Tv1

)
v1

)
= H∞ ((Y |V1 = v1, B = b)v1)

= H∞ (V2|V1 = v1, B = b) > k − 2.

Using Lemma 6.2 with the game G(Y X|V1=v1,B=b)Tv1
, feasible transcript (W,E,B′, F1, F2), and

47

parameters h = 0.05k and m1 = t2 + 1 + dlog(2r + 2)e < 0.4k + 20, it holds that

Pr
Z

[Z ∈ B5|V1 = v1, B = b] =
∑

z=(v1,b,w,e,b′,f1,f2)∈B5

Pr [Z = z|V1 = v1, B = b] < 2−0.05k.

Since this is true for every v1 ∈ B̄1 and b ∈ B̄2, and since

Pr
Z

[Z ∈ B5|(V1 ∈ B1) ∨ (B ∈ B2)] = 0,

the first part of the claim follows.

Using Lemma 6.2 with the same game, feasible transcript, and parameters as before, we

also get that for every v1 ∈ B̄1 and b ∈ B̄2

E
Z|V1=v1,B=b

[
H∞

((
(Y |Z)Tv1

)
v1

)]
=

E
W,E,B′,F1,F2|V1=v1,B=b

[
H∞

((
(Y |V1 = v1, B = b,W,E,B′, F1, F2)Tv1

)
v1

)]
>

(k − 2)− (t2 + 20)− 4 = k − t2 − 26.

Since Pr
[
V1 ∈ B̄1, B ∈ B̄2

]
> 1− 2−0.2k − 2−0.02k, it holds that

E
Z

[
κ
(
G(Y,X|Z)TV1

)]
= E

Z

[
H∞

((
(Y |Z)TV1

)
V1

)]
> k − t2 − 27.

Claim 8.10. If t2 > 0.4k then PrZ [Z ∈ B5] < 2−0.01k.

Proof. Since t2 > 0.4k, it holds that t1 = t−t2 < κ(G)−0.15k. Denote by B′1 ⊆ supp(V1,W)

the set of all pairs (v1, w) such that I
(
(Y |V1 = v1,W = w)Tv1

)
≥ 2−0.05k.

Claim 8.11. PrV1,W [(V1,W) ∈ B′1] < 2−0.03k.

Proof. Let B ⊆ {0, 1}t be the set of strings w such that H∞(X0|W = w) < 0.1k. Using

Lemma 6.2, it holds that PrW [W ∈ B] < 2−0.05k.

Let B′ ⊆ {0, 1}t be the set of strings w such that I(Y |W = w) > 25k. Since G is nice

it holds that I(Y) ≤ 20k and that PY is (0.01k)-flat. Using Lemma 5.10, it holds that

PrW [W ∈ B′] < 2−k.

Fix w ∈ B̄ ∩ B̄′. Using Lemma 6.7, it holds that

E
V1|W=w

[
I
(
(Y |V1,W = w)TV1

)]
≤ 2−H∞(X0|W=w)I(Y |W = w) ≤ 2−0.1k · 25k.

48

By Markov’s inequality, for every w ∈ B̄ ∩ B̄′, it holds that PrV1 [(V1,W) ∈ B′1|W = w] <

2−0.04k. Hence PrV1,W [(V1,W) ∈ B′1] < 2−0.04k + 2−0.05k + 2−k < 2−0.03k.

Denote B′2 = {1}. Denote B̄′2 = {0, 1} \ B′2 = {0}.

Claim 8.12. PrB′ [B
′ ∈ B′2] < 2−0.011k.

Proof. For (v1, w) ∈ B̄′1, we have I
(
(Y |V1 = v1,W = w)Tv1

)
< 2−0.05k. Since, conditioned

on V1 = v1, the value of V2 contains the exact same information as
(
YTv1

)
v1

, for every

(v1, w) ∈ B̄′1 we have by the super-additivity of information that I (V2|V1 = v1,W = w) ≤
I
(
YTv1 |V1 = v1,W = w

)
< 2−0.05k. Hence by Lemma 5.12, applied for the distribution µ =

PV2|V1=v1,W=w, for any (v1, w) ∈ B̄′1 we have

Pr
B′

[B′ ∈ B′2|V1 = v1,W = w] < 2−0.012k.

Using Claim 8.11 it holds that PrB′ [B
′ ∈ B′2] < 2−0.012k + 2−0.03k < 2−0.011k.

We continue with the proof of Claim 8.10. Fix (v1, w) ∈ B̄′1 and b′ ∈ B̄′2. Consider the

random variable (V2|V1 = v1,W = w,B′ = b′). Let v2 ∈ supp(PV2|V1=v1,W=w,B′=b′). Thus,

B′(v2|v1, w) = b′. Hence,

Pr
V2

[V2 = v2|V1 = v1,W = w] ≤ 20.01k · 2−k.

In addition, in the proof of Claim 8.12, we proved that for every (v1, w) ∈ B̄′1 it holds that

Pr[B′ 6= b′|V1 = v1,W = w] = Pr[B′ ∈ B′2|V1 = v1,W = w] < 2−0.012k.

For every three events A1, A2, A3, it holds that

Pr[A1|A2, A3] =
Pr[A1|A2] · Pr[A3|A1, A2]

Pr[A3|A2]
.

Therefore,

Pr[V2 = v2|V1 = v1,W = w,B′ = b′] =

Pr[V2 = v2|V1 = v1,W = w] · Pr[B′ = b′|V2 = v2, V1 = v1,W = w]

Pr[B′ = b′|V1 = v1,W = w]
<

(20.01k · 2−k) · 1
(1− 2−0.012k)

< 20.02k · 2−k.

Hence, H∞ (V2|V1 = v1,W = w,B′ = b′) > 0.98k.

49

Given V1 = v1, the random variables V2 and Yv1 contain the same information. Therefore,

H∞

((
(Y |V1 = v1,W = w,B′ = b′)Tv1

)
v1

)
= H∞ ((Y |V1 = v1,W = w,B′ = b′)v1)

= H∞ (V2|V1 = v1,W = w,B′ = b′) > 0.98k.

Using Lemma 6.2 with the game G(Y X|V1=v1,W=w,B′=b′)Tv1
, feasible transcript (B,E, F1, F2),

and parameters h = 0.4k and m1 = 1 + dlog(2r + 2)e < 20, it holds that

Pr
Z

[Z ∈ B5|V1 = v1,W = w,B′ = b′] =
∑

z=(v1,b,w,e,b′,f1,f2)∈B5

Pr [Z = z|V1 = v1,W = w,B′ = b′] < 2−0.4k.

Since this is true for every (v1, w) ∈ B̄′1 and b′ ∈ B̄′2, using Claims 8.11 and 8.12 it holds that

PrZ [Z ∈ B5] < 2−0.4k + 2−0.03k + 2−0.011k < 2−0.01k.

Claim 8.13. B6 ⊆ B3.

Proof. Let z = (v1, b, w, e, b
′, f1, f2) ∈ B6. We will show z ∈ B3. Consider the distribution

µ = P(Y |V1=v1,B=b,W=w,E=e,B′=b′)Tv1
. Recall that we denote a = 0.01k, and r = 20k

a
= 2000,

and that since f1 = r + 1 6= 0 it holds that f1 = fµ,a,r(YTv1).

Using Lemma 5.4, and since F2 is independent of Y given (V1, B,W,E,B
′, F1), it holds

that

I
(
P(Y |Z=z)Tv1

)
= I

(
P(Y |V1=v1,B=b,W=w,E=e,B′=b′,F1=f1)Tv1

)
= I (µ|F1=r+1) > ar = 20k.

Therefore, z ∈ B3, and the assertion follows.

Claim 8.14. B7 ⊆ B4.

Proof. Similar to the proof of Claim 8.13.

Claim 8.15. PrZ [Z ∈ B8] < 2−k.

Proof. Let z = (v1, b, w, e, b
′, f1, f2) ∈ B8. Consider the distribution

µ = P(Y |V1=v1,B=b,W=w,E=e,B′=b′)Tv1
. Recall that we denote a = 0.01k, and r = 20k

a
= 2000,

and that since f1 = −r 6= 0 it holds that f1 = fµ,a,r(YTv1). Using Lemma 5.5 applied with µ,

it holds that

Pr
Z

[Z = z] ≤ Pr
Z

[F1 = −r|V1 = v1, B = b,W = w,E = e, B′ = b′] < 2−ar = 2−20k.

Thus, the assertion follows using the union bound as |B8| ≤ |supp(Z)| ≤ 23k.

Claim 8.16. PrZ [Z ∈ B9] < 2−k.

Proof. Similar to the proof of Claim 8.15.

50

8.3 Bounding the Expected κ of the Obtained Game

(Proof of Lemma 8.3)

In this subsection we prove Lemma 8.3.

Proof of Lemma 8.3. We consider different ranges of the parameter t1. If t1 ≥ κ(G) +

0.5 log(k) (and hence t2 ≤ 0.25k − 0.5 log(k)), then the assertion follows from Claim 8.9. If

t1 ≤ κ(G)− 100 log(k), then the assertion follows from Claim 8.17 (below).

We consider the case where κ(G) − 100 log(k) < t1 < κ(G) + 0.5 log(k) (and hence

t2 < 0.25k + 100 log(k)). By Claim 8.20 (below), it holds that

E
Z|E=0

[
κ
(
G(Y,X|Z,E=0)TV1

)]
> k− t2−30 > k−(0.25k+100 log(k))−30 > 0.75k−101 log(k).

By Claim 8.21 (below), it holds that

E
Z|E=1

[
κ
(
G(Y,X|Z,E=1)TV1

)]
> 0.9k.

The event E = 1 occurs with probability

t1 · ε · (1− ε)t1−1 > 0.95t1ε ≥ 0.95 · 0.45k · 2000 log(k)
k2 > 700 log(k)

k
.

Therefore,

E
Z

[
κ
(
G(Y,X|Z)TV1

)]
>(

1− 700 log(k)
k

)
(0.75k − 101 log(k)) + 700 log(k)

k
· 0.9k >

0.75k − 101 log(k)− 525 log(k) + 630 log(k) = 0.75k + 4 log(k).

The rest of this subsection is devoted to proving the claims used by the proof of Lemma 8.3.

Claim 8.17. If t1 ≤ κ(G)− 100 log(k) then EZ

[
κ
(
G(Y,X|Z)TV1

)]
> 0.95k.

Proof. Denote by B′1 ⊆ supp(V1,W) the set of all pairs (v1, w) such that

I
(
(Y |V1 = v1,W = w)Tv1

)
≥ k−50.

Claim 8.18. PrV1,W [(V1,W) ∈ B′1] < k−22.

Proof. Let B ⊆ {0, 1}t be the set of strings w such that H∞(X0|W = w) < 75 log k. Using

Lemma 6.2, it holds that PrW [W ∈ B] < k−25.

51

Let B′ ⊆ {0, 1}t be the set of strings w such that I(Y |W = w) > 25k. Since G is nice

it holds that I(Y) ≤ 20k and that PY is (0.01k)-flat. Using Lemma 5.10, it holds that

PrW [W ∈ B′] < 2−k.

Fix w ∈ B̄ ∩ B̄′. Using Lemma 6.7, it holds that

E
V1|W=w

[
I
(
(Y |V1,W = w)TV1

)]
≤ 2−H∞(X0|W=w)I(Y |W = w) ≤ k−75 · 25k.

By Markov’s inequality, for every w ∈ B̄∩B̄′, it holds that PrV1 [(V1,W) ∈ B′1|W = w] < k−23.

Hence PrV1,W [(V1,W) ∈ B′1] < k−23 + k−25 + 2−k < k−22.

Denote B′2 = {1}. Denote B̄′2 = {0, 1} \ B′2 = {0}.

Claim 8.19. PrB′ [B
′ ∈ B′2] < k−11.

Proof. For (v1, w) ∈ B̄′1, we have I
(
(Y |V1 = v1,W = w)Tv1

)
< k−50. Since, conditioned

on V1 = v1, the value of V2 contains the exact same information as
(
YTv1

)
v1

, for every

(v1, w) ∈ B̄′1 we have by the super-additivity of information that I (V2|V1 = v1,W = w) ≤
I
(
YTv1 |V1 = v1,W = w

)
< k−50. Hence by Lemma 5.12, applied for the distribution µ =

PV2|V1=v1,W=w, for any (v1, w) ∈ B̄′1 we have

Pr
B′

[B′ ∈ B′2|V1 = v1,W = w] < k−12.

Using Claim 8.18 it holds that PrB′ [B
′ ∈ B′2] < k−12 + k−22 < k−11.

We continue with the proof of Claim 8.17. Fix (v1, w) ∈ B̄′1 and b′ ∈ B̄′2. Consider the

random variable (V2|V1 = v1,W = w,B′ = b′). Let v2 ∈ supp(PV2|V1=v1,W=w,B′=b′). Thus,

B′(v2|v1, w) = b′. Hence,

Pr
V2

[V2 = v2|V1 = v1,W = w] ≤ 20.01k · 2−k.

In addition, in the proof of Claim 8.19, we proved that for every (v1, w) ∈ B̄′1 it holds that

Pr[B′ 6= b′|V1 = v1,W = w] = Pr[B′ ∈ B′2|V1 = v1,W = w] < k−12.

For every three events A1, A2, A3, it holds that

Pr[A1|A2, A3] =
Pr[A1|A2] · Pr[A3|A1, A2]

Pr[A3|A2]
.

52

Therefore,

Pr[V2 = v2|V1 = v1,W = w,B′ = b′] =

Pr[V2 = v2|V1 = v1,W = w] · Pr[B′ = b′|V2 = v2, V1 = v1,W = w]

Pr[B′ = b′|V1 = v1,W = w]
<

(20.01k · 2−k) · 1
(1− k−12)

< 20.02k · 2−k.

Hence, H∞ (V2|V1 = v1,W = w,B′ = b′) > 0.98k.

Given V1 = v1, the random variables V2 and Yv1 contain the same information. Therefore,

H∞

((
(Y |V1 = v1,W = w,B′ = b′)Tv1

)
v1

)
= H∞ ((Y |V1 = v1,W = w,B′ = b′)v1)

= H∞ (V2|V1 = v1,W = w,B′ = b′) > 0.98k.

Using Lemma 6.2 with the gameG(Y X|V1=v1,W=w,B′=b′)Tv1
, feasible transcript (B,E, F1, F2),

and parameter m1 = 1 + dlog(2r + 2)e < 20, it holds that for every (v1, w) ∈ B̄′1 and b′ ∈ B̄′2

E
Z|V1=v1,W=w,B′=b′

[
H∞

((
(Y |Z)Tv1

)
v1

)]
=

E
B,E,F1,F2|V1=v1,W=w,B′=b′

[
H∞

((
(Y |V1 = v1,W = w,B′ = b′, B,E, F1, F2)Tv1

)
v1

)]
>

0.98k − 20− 4 > 0.97k.

Since (using Claims 8.18 and 8.19) Pr
[
(V1,W) ∈ B̄′1, B′ ∈ B̄′2

]
> 1 − k−11 − k−22, it holds

that

E
Z

[
κ
(
G(Y,X|Z)TV1

)]
= E

Z

[
H∞

((
(Y |Z)TV1

)
V1

)]
> 0.95k.

Claim 8.20.

E
Z|E=0

[
κ
(
G(Y,X|Z,E=0)TV1

)]
= E

V1,B,W,B′,F1,F2|E=0

[
κ
(
G(Y,X|V1,B,W,E=0,B′,F1,F2)TV1

)]
> k−t2−30.

Proof. Fix v1 ∈ B̄1 and b ∈ B̄2. In the proof of Claim 8.9, we proved

H∞

((
(Y |V1 = v1, B = b)Tv1

)
v1

)
> k − 2.

Since E is independent of (Y, V1, B), we can condition on the event E = 0 and get

H∞

((
(Y |V1 = v1, B = b, E = 0)Tv1

)
v1

)
> k − 2.

53

Using Lemma 6.2 with the game G(Y X|V1=v1,B=b,E=0)Tv1
, feasible transcript (W,B′, F1, F2),

and parameter m1 = t2 + 1 + dlog(2r + 2)e < t2 + 20, it holds that for every v1 ∈ B̄1 and

b ∈ B̄2

E
Z|V1=v1,B=b,E=0

[
H∞

((
(Y |Z)Tv1

)
v1

)]
=

E
W,B′,F1,F2|V1=v1,B=b,E=0

[
H∞

((
(Y |V1 = v1, B = b, E = 0,W,B′, F1, F2)Tv1

)
v1

)]
>

(k − 2)− (t2 + 20)− 4 = k − t2 − 26.

Since (using Claims 8.5 and 8.6)

Pr
[
V1 ∈ B̄1, B ∈ B̄2|E = 0

]
= Pr

[
V1 ∈ B̄1, B ∈ B̄2

]
> 1− 2−0.2k − 2−0.02k,

it holds that

E
Z|E=0

[
κ
(
G(Y,X|Z,E=0)TV1

)]
= E

Z|E=0

[
H∞

((
(Y |Z,E = 0)TV1

)
V1

)]
> k − t2 − 27.

Claim 8.21. If κ(G)− 100 log(k) < t1 < κ(G) + 0.5 log(k) then

E
Z|E=1

[
κ
(
G(Y,X|Z,E=1)TV1

)]
= E

V1,B,W,B′,F1,F2|E=1

[
κ
(
G(Y,X|V1,B,W,E=1,B′,F1,F2)TV1

)]
> 0.9k.

Proof. Let B ⊆ {0, 1}t be the set of strings w such that H∞(X0|W = w,E = 1) < 0.49 log(k).

Claim 8.22. PrW [W ∈ B|E = 1] < 2−8.

Proof. We need to prove

Pr
W

[H∞(X0|W,E = 1) < 0.49 log(k) | E = 1] < 2−8.

Let w ∈ {0, 1}t. Since (W,E) is a feasible transcript, it holds that conditioned on the event

W = w,E = 1, the distribution of the inputsX, Y remains a product distribution, and in par-

ticular, the variables X0 and Y are independent. Therefore, for every y ∈ supp(PY |W=w,E=1)

H∞(X0|W = w,E = 1) = H∞(X0|W = w,E = 1, Y = y).

Thus, it suffices to prove

Pr
W,Y

[H∞(X0|W,E = 1, Y) < 0.49 log(k) | E = 1] < 2−8.

54

Denote by A the set of indices i ∈ [t], such that the ith bit in the protocol was sent by the

first player. Note that |A| = t1. Denote WA = {Wi}i∈A and WĀ = {Wi}i∈Ā. Denote by NĀ

the noise vector of the channel in locations Ā. That is, NĀ = {Ni}i∈Ā, where Ni ∈ {0, 1}
is 1 if and only if the ith bit sent by the players was received incorrectly (due to the noise in

the channel).

Note that WĀ ⊕ NĀ are the bits sent by the second player. Therefore, WĀ ⊕ NĀ is a

deterministic function of Y and WA. Hence, conditioned on Y and WA, we have that WĀ

uniquely determines NĀ and vice versa. Hence, we can replace the conditioning on WĀ by

conditioning on NĀ, as follows:

Pr
W,Y

[H∞(X0|W,E = 1, Y) < 0.49 log(k) | E = 1] =

Pr
WA,WĀ,Y

[H∞(X0|WA,WĀ, E = 1, Y) < 0.49 log(k) | E = 1] =

Pr
WA,NĀ,Y

[H∞(X0|WA, NĀ, E = 1, Y) < 0.49 log(k) | E = 1] .

We will prove that for every y ∈ supp(Y) and nĀ ∈ supp(NĀ),

Pr
WA

[H∞(X0|WA, NĀ = nĀ, E = 1, Y = y) < 0.49 log(k) | NĀ = nĀ, E = 1, Y = y]

< 2−8. (7)

Hence the claim follows. In the rest of the proof we prove Equation 7.

Fix y ∈ supp(Y) and nĀ ∈ supp(NĀ). Since X0, Y, E,NĀ are independent random

variables,

H∞(X0|NĀ = nĀ, E = 1, Y = y) = H∞(X0) = κ(G). (8)

Assume that E = 1. Denote by L ∈ A the location of the single noise applied to the

bits sent by the first player. We will now argue that conditioned on the event E = 1, for

every fixed values of NĀ = nĀ, Y = y,X = x there are exactly t1 possibilities for WA, each

obtained with equal probability. The t1 possibilities for WA correspond to the t1 possibilities

for L. This is true because (assuming that E = 1) W is determined by X, Y,NĀ, L, and

since two different possibilities ` < `′ for L result in two different values of W (and hence of

WA) that differ in coordinate ` ∈ A. Therefore, for every x0 ∈ supp(X0),

H∞(WA|X0 = x0, NĀ = nĀ, E = 1, Y = y) ≥

min
x∈supp(X|X0=x0)

{H∞(WA|X0 = x0, NĀ = nĀ, E = 1, Y = y,X = x)} ≥

min
x∈supp(X)

{H∞(WA|NĀ = nĀ, E = 1, Y = y,X = x)} = log(t1).

55

By the last equation and Equation 8 and since t1 > κ(G)− 100 log(k) > 0.25k, for every

y ∈ supp(Y) and nĀ ∈ supp(NĀ),

H∞((X0,WA)|NĀ = nĀ, E = 1, Y = y) ≥

κ(G) + log(t1) ≥ κ(G) + log(0.25k) = κ(G) + log(k)− 2. (9)

Fix y ∈ supp(Y) and nĀ ∈ supp(NĀ). Let B′ = B′(nĀ, y) ⊆ {0, 1}A be the set of strings

wA such that

H∞(X0|WA = wA, NĀ = nĀ, E = 1, Y = y) < 0.5 log(k)− 10.

Denote

β = Pr
WA

[WA ∈ B′|NĀ = nĀ, E = 1, Y = y].

Thus, to prove Equation 7 (and hence to prove the claim), it suffices to show that

β < 2−8.

Since |B′| ≤ 2t1 , assuming that B′ is not empty, there exists wA ∈ B′ such that

Pr
WA

[WA = wA|NĀ = nĀ, E = 1, Y = y] ≥ β · 2−t1 ≥ β · 2−κ(G)−0.5 log(k).

Since wA ∈ B′, there exists x0, such that,

Pr
X0

(X0 = x0|WA = wA, NĀ = nĀ, E = 1, Y = y) > 2−0.5 log(k)+10.

Thus,

Pr
X0,WA

((X0 = x0,WA = wA)|NĀ = nĀ, E = 1, Y = y) > β · 2−κ(G)−log(k)+10.

Hence, by Equation 9,

β · 2−κ(G)−log(k)+10 < 2−κ(G)−log(k)+2.

That is, β < 2−8, and the assertion follows.

Denote by B′1 ⊆ supp(PV1,W |E=1) the set of all pairs (v1, w) such that

I
(
(Y |V1 = v1,W = w,E = 1)Tv1

)
≥ k0.75.

56

Claim 8.23. PrV1,W [(V1,W) ∈ B′1|E = 1] < 2−7.

Proof. Recall that we denote by B ⊆ {0, 1}t the set of strings w such that H∞(X0|W =

w,E = 1) < 0.49 log(k). By Claim 8.22, PrW [W ∈ B|E = 1] < 2−8.

Let B′ ⊆ {0, 1}t be the set of strings w such that I(Y |W = w,E = 1) > 25k. Since G

is nice and since Y,E are independent, it holds that I(Y |E = 1) = I(Y) ≤ 20k and that

PY |E=1 = PY is (0.01k)-flat. Using Lemma 5.10, it holds that PrW [W ∈ B′|E = 1] < 2−k.

Fix w ∈ B̄ ∩ B̄′. Using Lemma 6.7, it holds that

E
V1|W=w,E=1

[
I
(
(Y |V1,W = w,E = 1)TV1

)]
≤ 2−H∞(X0|W=w,E=1)I(Y |W = w,E = 1)

≤ k−0.49 · 25k < k0.52.

By Markov’s inequality, for every w ∈ B̄ ∩ B̄′, it holds that

Pr
V1

[(V1,W) ∈ B′1|W = w,E = 1] < k−0.23.

Hence PrV1,W [(V1,W) ∈ B′1|E = 1] < k−0.23 + 2−8 + 2−k < 2−7.

Denote B′2 = {1}. Denote B̄′2 = {0, 1} \ B′2 = {0}.

Claim 8.24. PrB′ [B
′ ∈ B′2|E = 1] < 2−6.

Proof. For (v1, w) ∈ B̄′1, we have I
(
(Y |V1 = v1,W = w,E = 1)Tv1

)
< k0.75. Since, condi-

tioned on V1 = v1, the value of V2 contains the exact same information as
(
YTv1

)
v1

, for every

(v1, w) ∈ B̄′1 we have by the super-additivity of information that

I (V2|V1 = v1,W = w,E = 1) ≤ I
(
YTv1 |V1 = v1,W = w,E = 1

)
< k0.75.

Recall that E is a deterministic function of W and X. Therefore (V1,W,E) is a fea-

sible transcript, where, conditioned on V1,W , the variable E depends only on X and is

independent of Y . Therefore PV2|V1=v1,W=w,E=1 = PV2|V1=v1,W=w. In particular,

I (V2|V1 = v1,W = w) < k0.75.

Hence by Lemma 5.6, part 2, applied for the distribution µ = PV2|V1=v1,W=w, with param-

eters a = 1, r = k, and m = 10k0.24, for any (v1, w) ∈ B̄′1 we have

Pr
B′

[B′ ∈ B′2|V1 = v1,W = w,E = 1] = Pr
B′

[B′ ∈ B′2|V1 = v1,W = w] < k−0.24.

57

Using Claim 8.23 it holds that PrB′ [B
′ ∈ B′2|E = 1] < k−0.24 + 2−7 < 2−6.

We continue with the proof of Claim 8.21. Fix (v1, w) ∈ B̄′1 and b′ ∈ B̄′2. Consider the

random variable (V2|V1 = v1,W = w,E = 1, B′ = b′). Let v2 ∈ supp(PV2|V1=v1,W=w,E=1,B′=b′).

Thus, B′(v2|v1, w) = b′. Hence,

Pr
V2

[V2 = v2|V1 = v1,W = w,E = 1] = Pr
V2

[V2 = v2|V1 = v1,W = w] ≤ 20.01k · 2−k.

In addition, in the proof of Claim 8.24, we proved that for every (v1, w) ∈ B̄′1 it holds that

Pr[B′ 6= b′|V1 = v1,W = w,E = 1] = Pr[B′ ∈ B′2|V1 = v1,W = w,E = 1] < k−0.24.

For every three events A1, A2, A3, it holds that

Pr[A1|A2, A3] =
Pr[A1|A2] · Pr[A3|A1, A2]

Pr[A3|A2]
.

Therefore,

Pr[V2 = v2|V1 = v1,W = w,E = 1, B′ = b′] =

Pr[V2 = v2|V1 = v1,W = w,E = 1] · Pr[B′ = b′|V2 = v2, V1 = v1,W = w,E = 1]

Pr[B′ = b′|V1 = v1,W = w,E = 1]
<

(20.01k · 2−k) · 1
(1− k−0.24)

< 20.02k · 2−k.

Hence, H∞ (V2|V1 = v1,W = w,E = 1, B′ = b′) > 0.98k.

Given V1 = v1, the random variables V2 and Yv1 contain the same information. Therefore,

H∞

((
(Y |V1 = v1,W = w,E = 1, B′ = b′)Tv1

)
v1

)
=

H∞ ((Y |V1 = v1,W = w,E = 1, B′ = b′)v1) =

H∞ (V2|V1 = v1,W = w,E = 1, B′ = b′) > 0.98k.

Using Lemma 6.2 with the gameG(Y X|V1=v1,W=w,E=1,B′=b′)Tv1
, feasible transcript (B,F1, F2),

and parameter m1 = 1 + dlog(2r + 2)e < 20, it holds that for every (v1, w) ∈ B̄′1 and b′ ∈ B̄′2

E
Z|V1=v1,W=w,E=1,B′=b′

[
H∞

((
(Y |Z)Tv1

)
v1

)]
=

E
B,F1,F2|V1=v1,W=w,E=1,B′=b′

[
H∞

((
(Y |V1 = v1,W = w,E = 1, B′ = b′, B, F1, F2)Tv1

)
v1

)]
>

0.98k − 20− 4 > 0.97k.

58

Since (using Claims 8.23 and 8.24) Pr
[
(V1,W) ∈ B̄′1, B′ ∈ B̄′2|E = 1

]
> 1 − 2−7 − 2−6, it

holds that

E
Z|E=1

[
κ
(
G(Y,X|Z,E=1)TV1

)]
= E

Z|E=1

[
H∞

((
(Y |Z,E = 1)TV1

)
V1

)]
> 0.9k.

8.4 Bounding the Information of the Obtained Game

(Proof of Lemma 8.4)

In this subsection we prove Lemma 8.4.

Proof of Lemma 8.4. We first show that

Pr
Z

[
I2

(
G(Y,X|Z)TV1

)
> 15k + h

]
< 2−h.

Using the supper-additivity of information (Proposition 4.2), for every z ∈ supp(Z) and

v1 ∈ supp(V1), it holds that

I
(
(X|Z = z)Tv1

)
≤ I(X|Z = z).

Using Lemma 6.1 we can write

PX =
∑

z∈supp(Z)

Pr
Z

[Z = z] · PX|Z=z.

Since G is nice, PX is (0.01k)-flat and I(X) ≤ 10k. Thus, we can use Lemma 5.10 with

µ = PX , µz = PX|Z=z, and c < 3k, and get

Pr
Z

[
I2

(
G(Y,X|Z)TV1

)
> 15k + h

]
= Pr

Z

[
I
(
(X|Z)TV1

)
> 15k + h

]
≤

Pr
Z

[I(X|Z) > 10k + 3k + 0.01k + h] < 2−h.

Using the same argument, it also holds that

Pr
Z

[
I1

(
G(Y,X|Z)TV1

)
> 25k + h

]
< 2−h,

and the assertion follows.

59

9 Communication Lower-Bound for Non-Nice Games

(Proof of Lemma 7.3)

LetG∗ be a (possibly not nice) game with parameters (k, d, PX∗ , PY ∗), and underlying tree T ∗.

Let ε and δ be as specified by Lemma 7.3. We assume that d ≥ 100 and δ ≤ 0.5, as otherwise

the lemma holds trivially. Our goal is to bound CCε,δ(G
∗) in the other cases.

We first “reveal” the value of V ∗1 , the first non-root vertex on the correct path defined by

the inputs X∗, Y ∗, to the second player (the first player already knows this value). That is,

we condition the game G∗ on the value of V ∗1 . We then reduce the game to the subtree T ∗V ∗1 .

That is, we consider the game G(Y ∗,X∗|V ∗1)T∗
V ∗1

= G∗(Y ∗,X∗|V ∗1)T∗
V ∗1

.

Let v∗1 ∈ supp(V ∗1). Denote by Gv∗1
the game G(Y ∗,X∗|V ∗1 =v∗1)T∗

v∗1

. Using Lemma 6.3, there

exists
{
δv∗1
}
v∗1∈supp(V ∗1)

, δv∗1 ∈ [0, 1], such that EV ∗1
[δV ∗1] = δ, and

CCε,δ(G
∗) ≥ E

V ∗1

[
CCε,δV ∗1

(
GX∗Y ∗|V ∗1

)]
.

Consider the game GX∗Y ∗|V ∗1 . Since the first non-root vertex on the correct path, V ∗1 , is

already known (as we conditioned on its value), it holds that

CCε,δV ∗1

(
GX∗Y ∗|V ∗1

)
= CCε,δV ∗1

(
G(Y ∗,X∗|V ∗1)T∗

V ∗1

)
= CCε,δV ∗1

(
GV ∗1

)
.

Hence,

CCε,δ(G
∗) ≥ E

V ∗1

[
CCε,δV ∗1

(
GV ∗1

)]
.

Using Lemma 6.7, it holds that

E
V ∗1

[
I
(
GV ∗1

)]
≤ I(G∗).

Therefore, to prove the lemma, it suffices to show that for a fixed v∗1 ∈ supp(V ∗1), the game

G = Gv∗1
satisfies

CCε,δ(G) ≥ d · (k + 0.1 log(k)) · (1− 2δ)− 100I(G)− 1000k, (10)

for any δ := δv∗1 ∈ [0, 1].

Fix v∗1 ∈ supp(V ∗1), and let G = Gv∗1
and δ = δv∗1 . Denote the input variables of G by X

and Y , and denote the underlying tree by T . Observe that G is of depth d−1. In the rest of

the proof we prove Equation 10. We use our standard notation for the game G, and forget

60

about the game G∗ altogether (the reason that we switched from G∗ to G is that the depth

of G is smaller, so we can use induction in Case 4 below). We consider the following cases.

Case 1: I(X0) > 0.1k. We “reveal” the value of V1 to the second player, and consider the

game G(Y,X|V1)TV1
. Using Lemma 6.7, it holds that

E
V1

[
I((X|V1)TV1

)
]
≤ I(X)− I(X0) < I(X)− 0.1k.

In addition, since V1 gives no information about Y and by the super-additivity of information

(Proposition 4.2),

E
V1

[
I((Y |V1)TV1

)
]
≤ I(Y).

Therefore,

E
V1

[
I
(
G(Y,X|V1)TV1

)]
≤ I(G)− 0.1k.

As above, using Lemma 6.3, there exists {δv1}v1∈supp(V1), δv1 ∈ [0, 1], such that EV1 [δV1] =

δ, and

CCε,δ(G) ≥ E
V1

[
CCε,δV1

(
G(Y,X|V1)TV1

)]
.

Since the game G(Y,X|V1)TV1
is of depth d− 2, we can recursively apply Lemma 7.3 and get

CCε,δ(G) ≥ (d− 2) · (k + 0.1 log(k)) · (1− 2 E
V1

[δV1])− 100 E
V1

[
I
(
G(Y,X|V1)TV1

)]
− 1000k

≥ (d− 2) · (k + 0.1 log(k)) · (1− 2δ)− 100(I(G)− 0.1k)− 1000k

≥ d · (k + 0.1 log(k)) · (1− 2δ)− 100I(G)− 1000k.

Case 2: I2(G) = I(Y) > 0.2k. It suffices to consider the case where I(X0) ≤ 0.1k. Since

I(X0) ≤ 0.1k, it holds that H∞(X0) ≥ 1. As in Case 1, in this case we also “reveal” the

value of V1 to the second player, and consider the game G(Y,X|V1)TV1
. Using Lemma 6.7, it

holds that

E
V1

[
I((Y |V1)TV1

)
]
≤ 0.5 · I(Y) ≤ I(Y)− 0.1k.

By Lemma 6.7, it also holds that

E
V1

[
I((X|V1)TV1

)
]
≤ I(X).

Therefore,

E
V1

[
I
(
G(Y,X|V1)TV1

)]
≤ I(G)− 0.1k.

The assertion follows as in Case 1.

61

Case 3: I1(G) = I(X) > 0.2k. It suffices to consider the case where I2(G) ≤ 0.2k. Since

I2(G) ≤ 0.2k, for every v1 ∈ supp(V1) it holds that H∞(V2|V1 = v1) ≥ 1. In this case we

“reveal” the value of V1 to the second player, and “reveal” the value of V2 to the first player.

That is, we consider the game G(
(X,Y |V1)TV1

|V2

)
TV2

= G(X,Y |V1,V2)TV2
.

Using Lemma 6.7, it holds that

E
V1

[
I((Y |V1)TV1

)
]
≤ I(Y).

E
V1

[
I((X|V1)TV1

)
]
≤ I(X).

By applying Lemma 6.7 again on the game G(Y,X|V1)TV1
, it holds that

E
V1

E
V2

[
I
((

(X|V1)TV1
|V2

)
TV2

)]
≤ 2−minv1∈supp(V1){H∞(V2|V1=v1)} · E

V1

[
I((X|V1)TV1

)
]

≤ 0.5 · I(X) ≤ I(X)− 0.1k.

and

E
V1

E
V2

[
I
((

(Y |V1)TV1
|V2

)
TV2

)]
≤ E

V1

[
I((Y |V1)TV1

)
]
≤ I(Y).

Therefore,

E
V1,V2

[
I

(
G(

(X,Y |V1)TV1
|V2

)
TV2

)]
≤ I(G)− 0.1k.

The assertion follows as in Case 1.

Case 4: The above cases are not satisfied. We consider the case where I(X0) ≤ 0.1k,

and I(X), I(Y) ≤ 0.2k. Let a = 0.01k, r = 2000, and r0 = 45. Define the flattening values

F1 = fPX ,a,r(X), F2 = fPY ,a,r(Y), and F0 = fP(X0|F1,F2),a,r0(X0). We “reveal” the value of F1

to the second player (the first player already knows this value), and the value of F2 to the

first player (the second player already knows this value). We then “reveal” the value of F0

to the second player (the first player already knows this value). That is, we condition the

game G on the value of F , where F = (F1, F2, F0), and consider the game GX,Y |F . Observe

that H(F) < 100, as F can be represented using 3 log(2r + 2) < 100 bits.

To complete the proof of lemma 7.3, we will use the following lemma that is proved in

Subsection 9.1.

Lemma 9.1. The game GX,Y |F is nice with probability at least 0.5 (over the selection of F).

Equipped with Lemma 9.1, we can complete the proof of Lemma 7.3 as follows. As

62

before, by Lemma 6.3, there exists {δf}f∈supp(F), δf ∈ [0, 1], such that EF [δF] = δ, and

CCε,δ(G) ≥ E
F

[
CCε,δF

(
GX,Y |F

)]
.

Consider the game GX,Y |F . Denote by A the event that the game GX,Y |F is nice. If A
occurs, we can apply Lemma 7.2 recursively, as the depth of the game is d− 1. If Ā occurs,

we can apply Lemma 7.3, as the depth of the game is d− 1. We get

CCε,δ(G) ≥ (d− 1) · (k + 0.1 log(k)) · (1− 2 E
F

[δF])− Pr
F

[A] · 100k − Pr
F

[Ā] · 1000k

−Pr
F

[A]

(
k − E

F |A

[
κ(GX,Y |F)

])
− Pr

F

[
Ā
]
· 100 E

F |Ā

[
I(GX,Y |F)

]
.

By Lemma 9.1, PrF [A] ≥ 0.5. By the chain rule for the entropy function, it holds that

Pr
F

[
Ā
]

E
F |Ā

[
I(GX,Y |F)

]
≤ E

F

[
I(GX,Y |F)

]
= E

F
[I(X|F)] + E

F
[I(Y |F)]

≤ (I(X) + H(F)) + (I(Y) + H(F)) ≤ I(G) + 200.

Therefore, we have

CCε,δ(G) ≥ (d− 1) · (k + 0.1 log(k)) · (1− 2δ)− 550k − k − 100(I(G) + 200)

≥ d · (k + 0.1 log(k)) · (1− 2δ)− 100I(G)− 1000k.

This concludes the proof of Lemma 7.3.

9.1 Bounding “Bad” Events (Proof of Lemma 9.1)

In this subsection we prove Lemma 9.1. We define the following “bad” sets B1, . . . ,B7, each

is a subsets of supp(F).

• Denote by B1 ⊆ supp(F) the set of all elements f such that

I1

(
GX,Y |F=f

)
= I(X|F = f) > 10k.

• Denote by B2 ⊆ supp(F) the set of all elements f such that

I2

(
GX,Y |F=f

)
= I(Y |F = f) > 20k.

63

• Denote by B3 ⊆ supp(F) the set of all elements f such that

κ
(
GX,Y |F=f

)
= H∞(X0|F = f) < 0.5k.

• Denote by B4 ⊆ supp(F) the set of all elements f = (f1, f2, f0) such that f1 = r + 1.

• Denote by B5 ⊆ supp(F) the set of all elements f = (f1, f2, f0) such that f2 = r + 1.

• Denote by B6 ⊆ supp(F) the set of all elements f = (f1, f2, f0) such that f1 = −r.

• Denote by B7 ⊆ supp(F) the set of all elements f = (f1, f2, f0) such that f2 = −r.

Proof of Lemma 9.1. We first claim that if f = (f1, f2, f0) ∈ B̄4 ∩ B̄6, then the distribution

PX|F=f is (0.01k)-flat. The reason is the following. Using Lemma 5.3, the distribution

PX|F1=f1 is (0.01k)-flat. That is, for x, x′ ∈ supp(PX|F1=f1) it holds that

PX|F1=f1(x)

PX|F1=f1(x′)
≤ 20.01k.

Denote S = supp
(
PX|F=f

)
, and assume S 6= φ. Observe that PX|F=f = PX|F1=f1|S , that is,

PX|F=f is the distribution PX|F1=f1 restricted to the set S. Therefore, for x, x′ ∈ S it holds

that

PX|F=f (x)

PX|F=f (x′)
=

(
PX|F1=f1

(x)

PX|F1=f1
(S)

)
(
PX|F1=f1

(x′)

PX|F1=f1
(S)

) =
PX|F1=f1(x)

PX|F1=f1(x′)
≤ 20.01k.

Hence, PX|F=f is (0.01k)-flat.

Similarly, by Lemma 5.3, if f ∈ B̄5 ∩ B̄7 then PY |F=f is (0.01k)-flat.

The game GX,Y |F is nice unless one of the “bad” events F ∈ Bi, for some i ∈ {1, . . . , 7},
occurs. The assertion follows from the following claims (stated and proved below), as each

claim bounds one of these “bad” events. The needed claims are 9.2, 9.3, 9.4, 9.5, 9.6, 9.7,

and 9.8.

The rest of this subsection is devoted to proving the claims used by the proof of Lemma 9.1.

Each of the claims bounds the probability of obtaining a different set Bi.

Claim 9.2. PrF [F ∈ B1] < 0.025.

Proof. By the chain rule for the entropy function, it holds that

E
F

[I(X|F)] ≤ I(X) + H(F) ≤ 0.2k + 100 < 0.25k.

64

Using Markov’s inequity, it holds that

Pr
F

[I(X|F) > 10k] < 0.025.

Claim 9.3. PrF [F ∈ B2] < 0.025.

Proof. Similar to the proof of Claim 9.2.

Claim 9.4. PrF [F ∈ B3] < 0.25.

Proof. By the chain rule for the entropy function, it holds that

E
F

[I(X0|F)] ≤ I(X0) + H(F) ≤ 0.1k + 100 < 0.101k.

Using Markov’s inequity, it holds that

Pr
F

[I(X0|F) > 0.45k] < 0.23.

Let f = (f1, f2,−r0) ∈ supp(F). By Lemma 5.5 applied with µ = PX0|F1=f1,F2=f2 , it holds

that

Pr
F

[F = f] ≤ Pr[F0 = −r0|F1 = f1, F2 = f2] ≤ 2−a·r0 = 2−0.45k.

Using the union bound, and since |supp(F)| ≤ (2r+2)3 = 40023, it holds that PrF [F0 = −r0] ≤
2−0.4k.

Denote by B ⊆ supp(F) the set of all elements f = (f1, f2, f0) such that f0 = −r0 or

H(X0|F = f) < 0.55k (that is, I(X0|F = f) > 0.45k). Thus,

Pr
F

[F ∈ B] < 0.23 + 2−0.4k < 0.25.

Let f = (f1, f2, f0) ∈ B̄. By Lemma 5.4 applied with µ = PX0|F1=f1,F2=f2 , if f0 = r0 + 1,

then I(X0|F = f) > a·r0 = 0.45k. But, this is impossible as f ∈ B̄. Thus, −r0+1 ≤ f0 ≤ r0.

By Lemma 5.3, the distribution PX0|F=f is (0.01k)-flat. Using Proposition 5.2, for very f ∈ B̄
it holds that

H∞(PX0|F=f) ≥ H(PX0|F=f)− 0.01k ≥ 0.55k − 0.01k = 0.54k,

and the assertion follows.

Claim 9.5. PrF [F ∈ B4] < 0.025.

65

Proof. By the chain rule for the entropy function, it holds that

E
F1

[I(X|F1)] ≤ I(X) + H(F1) ≤ 0.2k + 100 < 0.25k.

Using Markov’s inequity, it holds that

Pr
F1

[I(X|F1) > 10k] < 0.025.

By Lemma 5.4 applied with the distribution PX , it holds that I
(
PX|F1=r+1

)
> ar = 20k.

Therefore, PrF [F ∈ B4] = PrF1 [F1 = r + 1] < 0.025.

Claim 9.6. PrF [F ∈ B5] < 0.025.

Proof. Similar to the proof of Claim 9.5.

Claim 9.7. PrF [F ∈ B6] < 2−k.

Proof. By Lemma 5.5 applied with the distribution PX , it holds that

Pr
F

[F ∈ B6] = Pr
F1

[F1 = −r] ≤ 2−ar = 2−20k.

Claim 9.8. PrF [F ∈ B7] < 2−k.

Proof. Similar to the proof of Claim 9.7.

References

[1] Zvika Brakerski and Yael Tauman Kalai. Efficient interactive coding against adversarial

noise. In FOCS, 2012.

[2] Mark Braverman. Towards deterministic tree code constructions. In ITCS, pages 161–

167, 2012.

[3] Mark Braverman and Anup Rao. Towards coding for maximum errors in interactive

communication. In STOC, pages 159–166, 2011.

[4] Ran Gelles, Ankur Moitra, and Amit Sahai. Efficient and explicit coding for interactive

communication. In FOCS, pages 768–777, 2011.

66

[5] Leonard J. Schulman. Communication on noisy channels: A coding theorem for compu-

tation. In FOCS, pages 724–733, 1992.

[6] Leonard J. Schulman. Deterministic coding for interactive communication. In STOC,

pages 747–756, 1993.

[7] Leonard J. Schulman. Coding for interactive communication. IEEE Transactions on

Information Theory, 42(6):1745–1756, 1996.

[8] C. E. Shannon. A mathematical theory of communication. The Bell Systems Technical

Journal, 27:July 379–423, October 623–656, 1948.

67

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

