
Superlinear lower bounds for multipass graph processing

Venkatesan Guruswami∗
Carnegie Mellon University

Krzysztof Onak†
IBM Research

November 2012

Abstract

We prove n1+Ω(1/p)/pO(1) lower bounds for the space complexity of p-pass streaming algorithms
solving the following problems on n-vertex graphs:

• testing if an undirected graph has a perfect matching (this implies lower bounds for computing a
maximum matching or even just the maximum matching size),

• testing if two specific vertices are at distance at most 2(p+ 1) in an undirected graph,

• testing if there is a directed path from s to t for two specific vertices s and t in a directed graph.

Before our result, it was known that these problems require Ω(n2) space in one pass, but no n1+Ω(1)

lower bound was known for any p ≥ 2.

These streaming results follow from a communication complexity lower bound for a communication
game in which the players hold two graphs on the same set of vertices. The task of the players is to find
out whether the sets of vertices reachable from a specific vertex in exactly p + 1 steps intersect. The
game requires a significant amount of communication only if the players are forced to speak in a specific
difficult order. This is reminiscent of lower bounds for communication problems such as indexing and
pointer chasing. Among other things, our line of attack requires proving an information cost lower
bound for a decision version of the classic pointer chasing problem and a direct sum type theorem for
the disjunction of several instances of this problem.

∗Supported in part by NSF CCF-0963975. guruswami@cmu.edu
†Supported by the Simons Postdoctoral Fellowship. Research done while at CMU. krzysztof@onak.pl

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 2 (2013)

1 Introduction

Processing graph problems in the streaming model has attracted a fair amount of attention over the last 15
years. Formally, a streaming algorithm is presented with a sequence of graph edges and it can read them
one by one in the order in which they appear in the sequence. The main computational resource studied for
this kind of algorithm is the amount of space it can use, i.e., the amount of information about the graph the
algorithm remembers during its execution.

Furthermore, depending on the situation a small number of passes over the stream, instead of just one,
may be allowed. This scenario may not be possible in the case of a router observing and analyzing high
frequency network traffic, where the data is generated once and cannot be stored if it is extremely large.
However, multiple passes over the stream may make sense in the case of processing a huge data set residing
in a slow external storage device. For these kinds of devices, sequential access often maximizes readout
efficiency and making a few passes over the data stream may be reasonable.

At a more theoretical level, relations between nodes (i.e., how they are connected in the graph and what
the distances between them are) are the essential property of graphs that is worth studying. When it comes
to exploring the structure of graphs, allowing for multiple passes seems to greatly improve the capabilities of
streaming algorithms. For instance, the algorithm of Sarma, Gollapudi, and Panigrahy [26], which received
the PODS best paper award, uses multiple passes to construct long random walks in the graph in order to
approximate PageRank for vertices. Also many strong lower bounds of Ω(n2) space for one pass easily
break if more than one pass is allowed. This is for instance the case for the early lower bounds of Henzinger,
Raghavan, Rajogopalan [15] and also the lower bounds of Feigenbaum et al. [11].

On the other hand, constructing lower bounds for graph problems is usually based on constructing
obstacles for local exploration, and our paper is not different in this respect. We show that finding out if two
vertices are at a specific small distance p essentially requires p/2 passes to be accomplished in space O(n).
The main idea is similar to what is done for pointer chasing. Namely, we place edges in the order opposite
to the sequence which enables easy exploration.

Our results. Let n be the number of vertices in the graph and let p be the allowed number of passes. We
show strongly superlinear lower bounds of Tn,p = Ω

(
n1+1/(2p+2)

p20 log3/2 n

)
bits of space for three problems:

• testing if the graph has a perfect matching,

• testing if two prespecified vertices u and v are at distance at most 2(p + 1) for an undirected input
graph,

• testing if there is a directed path from u and v, where u and v are prespecified vertices and the input
graph is directed.

In general, lower bounds stronger than Ω(n) require embedding a difficult instance of a problem into the
“space of edges” as opposed to the “space of vertices,” which turns out to be difficult in many cases. For
instance, the Ω(n2) lower bounds of [15] and [11] do not hold for algorithms that are allowed more than
one pass. We describe our hard communication problem from which we reduce to the streaming problems
in Section 2. We now overview related work.

Matchings. In the maximum matching problem, the goal is to produce a maximum-cardinality set of non-
adjacent edges. Streaming algorithms for this problem and its weighted version have received a lot of
attention in recent years [11, 22, 9, 1, 21, 13, 19, 10, 27].

Our result compares most directly to the lower bound of Feigenbaum et al. [11], who show that even
checking if a given matching is of maximum size requires Ω(n2) space in one pass. Our result can be seen
as an extension of their lower bound to the case when multiple passes are allowed. Even when p ≥ 2 passes

1

are allowed, we show that still a superlinear amount of space, roughly ∼n1+Ω(1/p), is required to find out
if there is a perfect matching in the graph. This of course implies that tasks such as computing a maximum
matching or even simply the size of the maximum matching also require this amount of space.

For the approximate version of the maximum matching problem, McGregor [22] showed that a (1− ε)-
approximation can be computed in Õ(n) space with the number of passes that is a function of only ε. The
only known superlinear lower bound for the approximate matching size works applies only to one-pass
algorithms and shows that the required amount of space is n1+Ω(1/ log logn) if a constant approximation
factor better than 1− e−1 is desired [13, 19].

Shortest paths. We now move to the problem of computing distances between vertices in an undirected
graph. Feigenbaum et al. [12] show that Õ(n) space and one pass suffice to compute anO(log n/ log log n)-
spanner and therefore approximate all distances up to a factor of O(log n/ log log n). They also show a
closely matching lower bound of Ω(n1+1/t) for computing a factor t approximation to distances between all
pairs of vertices.

In the most closely related result to ours, they show that computing the set of vertices at distance p from
a prespecified vertex in less than p/2 passes requires n1+Ω(1/p) space. In this paper, we show a similar
lower bound for the problem of just checking if two specific vertices are at distance exactly p. Our problem
is algorithmically easier, as can be shown by first improving their lower bound to show that their lower
bound holds even when the number of allowed passes is p − 1. (This follows by replacing one of their
proof components with a stronger pointer chasing result from [14].) As a result, to compute the distance p
neighborhood, essentially the best thing one can do is to simulate the BFS exploration with one step per pass
over the input. For our problem of checking if two vertices are at distance p, p/2 passes and O(n) space
suffice, because one can simulate the BFS algorithm up to the radius of p/2 from both vertices of interest.
This is one of the reasons why our result cannot be shown directly by applying their lower bound.

A space lower bound of Ω(n2) for one pass algorithms to find whether a pair of nodes is at distance 3
can be found in [11].

Directed connectivity. Feigenbaum et al. [11] show that the directed u-v connectivity problem requires
Ω(n2) bits of space to solve in one pass. However, their lower bound does not extend to more than one
pass. Once again our lower bound extends their result to show that a superlinear lower bound holds for
multiple passes. (Note that the problem of connectivity can easily be solved with one pass and Õ(n) space
for undirected graphs, using for instance the well known union-find algorithm.)

Paper organization. We begin in Section 2 with a description of the communication problems we study
and a high-level overview of our lower bound approach. We set up some useful information-theoretic pre-
liminaries in Section 3. We state our main communication complexity lower bound (Theorem 4) and use it
to show our streaming lower bounds in Section 4. Our communication lower bound is proved in three steps,
and we go into the details of these steps in the next three sections. Finally, in Section 8 we put the steps
together to give a proof of Theorem 4.

2 Proof overview and techniques

Via simple reductions, our multiple-pass streaming lower bounds for matching and connectivity reduce to
proving communication complexity lower bounds for a certain decision version of “set pointer chasing.”
The reductions to streaming are described in Section 4, and in this section we give an overview of our
communication complexity results. We start with a description of the communication problems that will be
useful for us.

2

2.1 Communication Problems

We assume private randomness in all communication problems, unless otherwise stated, and all messages
are public. Consider a communication problem with p players P1, . . . , Pp. Players speak in r rounds and in
each round they speak in order P1 through Pp. At the end of the last round, the player Pp has to output the
solution. We call any such problem a (p, r)-communication problem.

We define [n] as {1, . . . , n}. For any function f : A→ P(B), we define a mapping ~f : P(A)→ P(B)
such that ~f(S) =

⋃
s∈S f(s).

Pointer and Set Chasing. The pointer chasing communication problem PCn,p, where n and p are positive
integers, is a (k, k − 1)-communication problem in which the i-th player Pi has a function fi : [n] → [n]
and the goal is to compute f1(f2(. . . fk(1) . . .)).

The set chasing communication problem SCn,p, for given positive integers n and p, is a (p, p − 1)-
communication problem in which the i-th player Pi has a function fi : [n] → P([n]) and the goal is to
compute ~f1(~f2(. . . ~fp({1}) . . .)).

Operators on Problems. For a (p, r)-communication problemX , we write EQUAL(X) to denote a (2p, r)-
communication problem in which the first p players P1, . . . , Pp hold one instance of X , the next p players
Pp+1, . . . , P2p hold another instance of X , and the goal is to output one bit that equals 1 if and only if the
outputs for the instances of X are equal. See Figure 1 for an example.

P4 P3 P2 P1 P5 P6 P7 P8

g4g3g2g1f1f2f3f4

1:

2:

3:

4:

5:

6:

7:

Figure 1: A sample instance of EQUAL(PC7,4) with a negative solution. It consists of two instances of
PC7,4 held by two different sets of players.

Analogously, for a (p, r)-communication problemX such that the output is a set, we write INTERSECT(X)
to denote the (2p, r)-communication problem in which the first p players P1, . . . , Pp hold one instance of
X , the next p players Pp+1, . . . , P2p hold another instance of X , and the goal is to output one bit that equals
1 if and only if the sets that are solutions to the instances of X intersect. See Figure 2 for an example.

For a (p, r)-communication problem X with a Boolean output, we write ORt(X), where t is a positive
integer, to denote the (p, r)-communication problem in which players have t instances of X and want to
output the disjunction of their results.

Limited Pointer Chasing Equality. We say that a function f : A → B is r-non-injective, where r is a
positive integer, if there is A′ ⊆ A of size r and b ∈ B such that for all a ∈ A′, f(a) = b.

We write LPCEn,k,t to denote a modified version of EQUAL(PCn,k). In LPCEn,k,t the last player has to
output the same value as in EQUAL(PCn,k), unless one of functions in one of the pointer chasing instances
is t-non-injective, in which case the last player has to output 1. This is a technical extension to ensure that

3

P4 P3 P2 P1 P5 P6 P7 P8

g4g3g2g1f1f2f3f4

1:

2:

3:

4:

5:

6:

7:

Figure 2: A sample instance of INTERSECT(SC7,4), where two final sets intersect. The edges outgoing
from vertices that are not visited were omitted.

no element has too many pre-images and is needed for our reduction between INTERSECT(SCn,p) and
ORr(EQUAL(PCn,p)).

2.2 Lower bound for INTERSECT(SCn,p)

Our multiple-pass streaming lower bounds for matching and connectivity reduce to proving communication
complexity lower bounds for the set chasing intersection problem INTERSECT(SCn,p). Note that if the
players spoke in the order P2p, P2p−1, . . . , P1, then they would be able to solve both instances of SCn,p,
using at most O(n) communication per player, which is enough to solve the intersection problem. If the
players spoke in the desired order P1, P2, . . . , P2p but were allowed a total of p rounds then they would be
able to solve the instances of SCn,p with O(n) communication per message by simulating one step in the
pointer chasing instance per round. Our main result is however that if the number of allowed rounds is p−1,
then approximately n1+Ω(1/p) bits of communication are needed to solve the problem, even for randomized
protocols with constant error.

Our result is reminiscent of the classic Ω(n) communication complexity lower bounds for problems
such as indexing and pointer chasing PCn,p [24, 14] when the players speak in the “wrong” order. Guha and
McGregor [14] adapt the proof of Nisan and Wigderson [24] to show that solving PCn,p (in p − 1 passes)
requires Ω(n)/pO(1) total communication even if the protocol can be randomized and can err with small
constant probability. Increasing the number of rounds to p or letting the players speak in the opposite order
(even in just one round) would result in a problem easily solvable with at most O(log n) information per
message.

Even more directly related is the construction of Feigenbaum et al. [12], who show that solving SCn,p

requires n1+Ω(1/p) communication in less then p passes1. Their proof follows by using a direct sum theorem
of Jain, Radhakrishnan and Sen [18] to show that solving t ≈ nΘ(1/p) instances of PCn,p requires roughly
t times more communication than solving a single instance. Then they show that an efficient protocol for
solving SCn,p would result in an efficient protocol for solving t instances of PCn,p in parallel.

Compared to SCn,p, INTERSECT(SCn,p) is a decision problem. In particular, there seems to be no
reduction allowing to reconstruct the sets reached in INTERSECT(SCn,p). The only thing that we learn
after an execution of the protocol is whether these two sets intersect. Therefore, reducing our question to
that of [12] seems unlikely.

1In fact, they show this for roughly less then p/2 passes, but replacing the lower bound of [24] with the lower bound of [14] and
extending some other complexity results to the setting with multiple players yields the improved bound claimed here.

4

Our proof of the above communication complexity lower bound proceeds in three steps:

STEP A: Reduction to proving a communication lower bound for ORt(EQUAL(PCn,p)).

STEP B: A direct sum style step lower bounding the communication complexity of ORt(EQUAL(PCn,p))
as roughly t times the communication complexity of EQUAL(PCn,p).

STEP C: An information complexity lower bound for EQUAL(PCn,p).

The technical body of the paper actually proves these steps in the opposite order (Steps A,B,C are discussed
in Sections 7, 6, 5 respectively). But here we will expand on the steps in the above order. The actual proof
works with a variant of EQUAL(PCn,p), namely LPCEn,p,r which we defined earlier, in order to deal with
functions fi that may be highly non-injective, and which may break the reduction in Step A. For simplicity,
we ignore this aspect in the overview, but it is worth keeping in mind that this complicates the execution of
Step C on the information complexity lower bound.

Step A: Reduction to ORt(EQUAL(PCn,p)). Our idea here is to use a communication protocol for
INTERSECT(SCn,p) to give a protocol that can answer if at least one of t instances of EQUAL(PCn,p)
has a Yes answer. (A reminder that in the EQUAL(PCn,p) problem, the input consists of two instances of
PCn,p with functions {fi, gi : [n]→ [n]}pi=1 and the goal is to output Yes iff we end up at the same index in
both instances, i.e., if f1(f2(. . . fp(1) . . .)) = g1(g2(. . . gp(1) . . .)).) Given t instances of EQUAL(PCn,p),
for each instance independently, we randomly scramble the connections in every layer while preserving the
answer to EQUAL(PCn,p). We then overlay all these instances on top of each other to construct an instance
of INTERSECT(SCn,p) (note each node has exactly t neighbors in the previous layer).

By construction, given an Yes instance of ORt(EQUAL(PCn,p)), by following the mappings from the
instance of EQUAL(PCn,p) which has an Yes answer, we also obtain an element that belongs to the inter-
section of two resulting sets in INTERSECT(SCn,p). Since t = nΘ(1/p), we have t2p � n, and we argue
that the random scramblings ensure that if none of t instances of EQUAL(PCn,p) have an Yes answer, then it
is unlikely that the two resulting sets in the instance of INTERSECT(SCn,p) will intersect. This constraint
on t is what limits our lower bound to ∼n1+1/(2p).

Step B: A direct sum style argument. In this step, our goal is to argue that the randomized communication
complexity of ORt(EQUAL(PCn,p)) is asymptotically Ω(t) times larger than that of EQUAL(PCn,p). This
is reminiscent of direct sum results of the flavor that computing answers to t instances of a problem require
asymptotically t times the resources, but here we only have to compute the OR of t instances. Our approach
is to use the information complexity method that has emerged in the last decade as a potent tool to tackle
such direct sum like questions [8, 2, 18], and more recently in [3, 5] and follow-up works. The introductions
of [3, 16] contain more detailed information and references on direct sum and direct product theorems in
communication complexity.

Our hard distribution will be the uniform distribution over all inputs. Being a product distribution, the
information complexity will be at least the sum of the mutual information between the i-th input and the
transcript, for 1 ≤ i ≤ t. Using the fact that the probability of an Yes answer on a random instance of
EQUAL(PCn,p) is very small (at most O(1/n)), we prove that the mutual information between the i’th
input and the transcript can’t be much smaller than the information cost of EQUAL(PCn,p) for protocols
that err with probability o(1/n) under the uniform distribution.

Step C: Lower bound for information cost of EQUAL(PCn,p). This leaves us with the task of lower
bounding the information cost of low error protocols for EQUAL(PCn,p) under the uniform distribution.
This is the most technical of the three steps. We divide this step into two parts.

First we show that if there is a protocol with low information cost IC on the uniform distribution, then
there is a deterministic protocol that on the uniform distribution sends mostly short messages, and errs with

5

at most twice the probability. This is done by adapting the proof of the message compression result of [18]
for bounded round communication protocols. We cannot use their result as such since in order to limit the
increase in error probability to γ, the protocol needs communicate Ω(1/γ2) bits. This is prohibitive for us
as we need to keep the error probability as small as O(1/n), and can thus only afford an additive O(1/n)
increase. We present a twist to the simulation obtaining a deterministic protocol with at most twice the
original error probability. The protocol might send a long message with some small probability ε and in
other cases communicates at most O(IC /ε2) bits. In our application, we set ε to be a polynomial in 1/p.

The second part is a lower bound for EQUAL(PCn,p) against such “typically concise” deterministic
protocols. To prove this, we show that if the messages in the deterministic protocol are too short, then with
probability at least 1/2, the protocol will have little knowledge about whether the solutions to two instances
of pointer chasing are identical and therefore, will still err with probability Ω(1/n), which is significant
from our point of view. The proof extends the lower bound for pointer chasing due to Nisan and Wigderson
[24] and its adaptation due to Guha and McGregor [14]. We have to overcome some technical hurdles as
we need a lower bound for the equality checking version and not for the harder problem of computing the
pointer’s value. Further, we need to show that a constant fraction of the protocol leaves are highly uncertain
about their estimate of the pointers’ values, so that they would err with probability Ω(1/n) (with 1/n being
the collision probability for completely random and independent values).

Summarizing, Step C can be seen as a modification of techniques of [24, 14] to prove a communication
lower bound for EQUAL(PCn,p) combined with techniques borrowed from [18] to imply a lower bound for
information complexity. The relationship between information complexity and communication complexity
has been a topic of several papers, starting with [8, 18] for protocols with few rounds, and more recently
[3, 5, 4, 7, 6, 20] for general protocols.

3 Preliminaries

Constant C?. Let C? be a constant such that the probability that a function f : [n]→ [n] selected uniformly
at random is C?(1 + log n)-non-injective is bounded by 1/(2n2). The existence of C? follows from a
combination of the Chernoff and union bounds.

3.1 Information and Communication Complexity

An important part in our proofs is played by communication and information complexity, which we now
define for completeness.

The communication complexity of a protocol is the function from the input size to the maximum length
of messages generated by the protocol on an input of a specific size. For a problem X and δ ∈ [0, 1], the
communication complexity of X with error δ is the function from the input size to the infimum communica-
tion complexity of private-randomness protocols that err with probability at most δ on any input. We write
Rδ(X) to denote this quantity.

The information cost2 ICostψ(Π) of a protocol Π on input distribution ψ equals the mutual information
I(X; Π(X)), where X is a random variable distributed according to ψ and Π(X) is the transcript of Π on
input X .

The information complexity ICψ,δ of a problem X on a distribution ψ with error δ is the infimum

2Note that this is the external information cost following the terminology of [3]. For product distributions ψ, this also equals
the internal information cost. As product distributions will be our exclusive focus in this paper, this distinction is not relevant to us,
and we will simply use the term information cost.

6

ICostψ(Π) taken over all private-randomness protocols Π that err with probability at most δ for any in-
put.

3.2 Some useful information-theoretic lemmas

Let us first recall a result that says that if a random variable has large entropy, then it is behaves almost like
the uniform random variable on large sets.

Fact 1 ([25], see also [24, Lemma 2.10]). Let X be a random variable on [n] with H(X) ≥ log n− δ. Let

S ⊆ [n] and let ∆ =
√

4δn
|S| . If ∆ ≤ 1/10, then Pr[X ∈ S] ≥ |S|n (1−∆) .

Using the above result, we show that it is hard to predict with probability 1 − o(1/n) if two independent
random variables distributed on [n] collide if they have large entropy.

Lemma 2. Let X and Y be two independent random variables distributed on [n] such that both H(X) and
H(Y) are at least log n− δ, where δ = 48−2. Then

• Pr[X = Y] ≥ 1/(8n), and

• if n ≥ 4, Pr[X 6= Y] ≥ 1/4.

Proof. We first prove that there is a set SX ⊆ [n] such that |SX | ≥ 3
4n and for each x ∈ SX , Pr[X = x] ≥

1/(2n). Suppose that there is no such set. Then there is a set TX of size more than n/4 in which every

element has probability less than 1/(2n), and therefore, Pr[X ∈ TX] < |TX |
2n . Note that

√
4δn
|TX | ≤ 1/12 <

1/10, which implies that we can apply Fact 1 to TX . We obtain Pr[X ∈ TX] ≥ 11
12 · |TX |

n , which contradicts
the assumption that there is no such set.

Analogously, one can prove that there is a set SY ⊆ [n] such that |SY | ≥ 3
4n and for each y ∈ SY ,

Pr[Y = y] ≥ 1/(2n). Note that |SX ∩ SY | ≥ n/2. For each x ∈ SX ∩ SY , Pr[X = Y = x] ≥ 1/(4n2).
Hence

Pr[X = Y] ≥
∑

x∈SX∩SY

Pr[X = Y = x] ≥ 1/(8n).

To prove the second claim, for n ≥ 4, observe that for every setting x of X , |Sy \ {x}| ≥ 3n
4 − 1 ≥ n/2,

and therefore, the probability that Y 6= X is at least |Sy \ {x}| · 1/(2n) ≥ 1/4.

The following gives a bound on the entropy of a variable that randomly selects out of two random values
based on another 0-1 valued random variables.

Lemma 3. Let X0, X1, and Y be independent discrete random variables, where X0 and X1 are distributed
on the same set Ω and Y is distributed on {0, 1}. Then

H(XY) ≤ 1 +
∑1

i=0 Pr[Y = i] ·H(Xi).

Proof. For each i ∈ {0, 1} and each ω ∈ Ω, let pi,ω = Pr[Xi = ω]. Let q = Pr[Y = 0]. For each
ω ∈ Ω, Pr[XY = ω] = qp0,ω + (1 − q)p1,ω. The inequality follows from the concavity of the function

7

f(x) = x · log(1/x) on [0, 1] and simple algebraic transformations:

H(XY) =
∑
ω∈Ω

(qp0,ω + (1− q)p1,ω) · log (1/ (qp0,ω + (1− q)p1,ω))

≤
∑
ω∈Ω

(qp0,ω · log(1/qp0,ω) + (1− q)p1,ω · log(1/(1− q)p1,ω))

= q · log(1/q) + q ·
∑
ω∈Ω

p0,ω log(1/p0,ω)

+ (1− q) · log(1/(1− q)) + (1− q) ·
∑
ω∈Ω

p1,ω log(1/p1,ω)

= H(q) + q ·H(X0) + (1− q) ·H(X1)

≤ 1 +
1∑
i=0

Pr[Y = i] ·H(Xi).

4 The Main Tool and Its Applications

The main tool in our paper is the following lower bound for the communication complexity of set chasing
intersection.

Theorem 4. We have the lower bound

R1/10(INTERSECT(SCn,p)) = Ω

(
n1+1/(2p)

p16 · log3/2 n

)
,

provided n ≥ ϑ(p) for some sufficiently large function ϑ : N→ N.

We now present relatively straightforward applications of this theorem to three graph problems in the
streaming model.

Theorem 5. Let p be a positive integer. Solving the following problems with probability at least 9/10 in the
streaming model with p passes requires at least Ω

(
n1+1/(2(p+1))

p20·log3/2 n

)
bits of space:

PROBLEM 1: For two given vertices u and v in an undirected graph, check if the distance between them
is at most 2(p+ 1).

PROBLEM 2: For two given vertices u and v in a directed graph, check if there is a directed path from u
to v.

PROBLEM 3: Test if the input graph has a perfect matching.

Proof. Let us consider the problems one by one. For Problem 1, we turn an instance of INTERSECT(SCk,p+1)
into a graph on n = (2p+ 3) · k vertices. We modify the graph in Figure 2. First, we make all edges undi-
rected. Second, we merge every pair of middles vertices connected with a horizontal line into a single
vertex. Any path between the top leftmost vertex u and the top rightmost vertex v is of length at least 2p+2.
The length of the path is exactly 2p + 2 if and only if it moves to the next layer in each step. Note that
this corresponds to the case that the final sets for two instances of SCk,p+1 intersect. We create the input
stream by inserting first the edges describing the function held by P1, then by P2 and so on, until P2p+2.
If there is a streaming algorithm for the problem that uses at most T bits of space, then clearly there is
a communication protocol for INTERSECT(SCk,p+1) with total communication (2p + 2) · p · T and the

8

⇒

P2

f2g2

P1P2 P3 P4

g1f1f2

P4P3P1

g2g1f1

u uv v

Figure 3: Reduction to the perfect matching problem.

same error probability as the streaming algorithm. The protocol can be obtained by the players by simu-
lating the streaming algorithms on their parts of the input and communicating its state. This implies that
T = Ω

(
1
p2
· (n/p)1+1/(2(p+1))

p16·log3/2 n

)
= Ω

(
n1+1/(2(p+1))

p20·log3/2 n

)
.

For Problem 2, the reduction is almost the same, with the only difference being that we make all edge di-
rected from left to right and we want to figure out if there is a directed path from the top leftmost vertex to the
top rightmost vertex. Such a path exists if and only if the final sets in the instance of INTERSECT(SCk,p+1)
intersect.

For Problem 3, the reduction is slightly more complicated. We show how to modify the hard instance G
that we have created for Problem 1. Let us first add a perfect matching before and after every layer of edges
of the instance hard for Problem 1, except for the first and the last layer, in which we omit one edge. The
omitted edges are incident to the vertices u and v corresponding to value 1, i.e., the vertices that we want
to connect using a path going directly from left to right in Problem 1. See Figure 3 for an example. Note
that the additional edges constitute a matching M in which all but two vertices are matched. Now the graph
has a perfect matching iff there exists an augmenting path in M between u and v, which are the unmatched
vertices. Any augmenting path has to alternate between matched and unmatched edges, which implies in our
case, that it has to go directly from left to right. Therefore, any augmenting path in M corresponds to a path
going directly from left to right inG and connecting u and v. The only difference is that the augmenting path
has additional edges coming from the matchings were inserted into G. Therefore the streaming algorithm
for testing if a graph has a perfect matching can be used to create a protocol for INTERSECT(SCk,p+1),
where the additional edges can be placed at the beginning of the stream.

5 Step 1: Information Complexity of Pointer Chasing Equality

To prove the main theorem of the paper, we first show a lower bound for the information complexity of
Limited Pointer Chasing Equality.

Lemma 6. Let n and p be positive integers such that n ≥ 18p2. It holds

ICµ,1/(64n)(LPCEn,p,C?(1+logn)) ≥
n

229 · 35 · p16
− d2 log ne

213 · 32 · p8
− 2 = Ω

(
n

p16

)
−O

(
log n
p8

+ 1
)
,

where µ is the uniform distribution on all possible inputs of the problem.

The proof consists of two smaller steps. First we show that if there is a protocol with low information
cost on the uniform distribution, then there is a deterministic protocol that on the uniform distribution sends

9

mostly short messages, and errs with at most twice the probability. Then we show that the messages in the
deterministic protocol cannot be too short, because with probability at least 1/2, the protocol will have little
knowledge about whether the solutions to two instances of pointer chasing are identical and therefore, will
still err with probability significant from our point of view.

5.1 Transformation to Deterministic Typically Concise Protocols

Let us first define concise protocols, which send short messages most of the time.

Definition 7. We say that a protocol P is an (m, ε)-concise for an input distribution µ if for each i, the
probability that the i-th message in the protocol is longer then m is bounded by ε.

The following three facts are from [17, 18] and regard regarding information theory and random vari-
ables. They are useful in our proofs.

Fact 8 ([18, Fact 1]). Let X , Y , and Z be random variables. The following identity holds: I(X;Y,Z) =
I(X;Y) + I(X;Z|Y).

Fact 9 ([18, Fact 2]). Let X and Y be a pair of random variables. Let P be the distribution of Y and let Px
be the distribution of Y given X = x. Then I(X;Y) = EX [DKL(PX‖P)], where DKL(Q1‖Q2) denotes
the KL-divergence between distributions Q1, Q2.

Fact 10 ([17, Substate Theorem]). Let P andQ be probability distributions on N such thatDKL(P‖Q) = a.
Let ε ∈ (0, 1) and let Good = {i ∈ N : Pr(i) · 2−(a+1)/ε ≤ Q(i)}. Then Pr[X ∈ Good] ≥ 1− ε.

We now show an auxiliary lemma that shows that if DKL(P‖Q) is bounded then a relatively short
sequence of independent random variables distributed according to Q suffices to generate a random value
from P . The lemma is an adaptation of a lemma from [18].

Lemma 11. LetP andQ be two probability distributions on N such thatDKL(P‖Q) <∞. Let (Γ1,Γ2,Γ3, . . .)
be a sequence of independent random variables, each distributed according to Q. Let Γ0 = −1. Let
ε ∈ (0, 1). There is a set Good ⊆ N and a random variable R ∈ N such that

• ∑i∈Good P (i) ≥ 1− ε,
• for all x ∈ Good, Pr[ΓR = x] = P (x),

• E[R] ≤ 2(DKL(P‖Q)+1)/ε.

Proof. Let the set Good be defined as in Fact 10, i.e., Good = {i ∈ N : P (i) ·2−(a+1)/ε ≤ Q(i)}, where we
set a = DKL(P‖Q). Following [18], we use rejection sampling to prove the lemma. Consider the following
process. For consecutive positive integers j, starting from 1, do the following. Look at the value γj taken
by Γj . If γj ∈ Good, toss a biased coin and with probability P (j) · 2−(a+1)/ε/Q(j), set R = j and finish
the process. If γj 6∈ Good or the coin toss did not terminate the process, toss another biased coin and with
probability

2−(a+1)/ε · (1−∑i∈Good P (i))
(1− 2−(a+1)/ε ·∑i∈Good P (i))

,

set R = 0 and also terminate the process. Otherwise, continue with j set to j + 1. The process terminates
with probability 1.

Let us argue that R and Good have the desired three properties. The first property is a consequence of
Fact 10. To prove the other two, observe what happens when the process reaches a specific j and before

10

it moves to the next j or terminates. The process terminates with R = j and ΓR = x for a specific
x ∈ Good with probability P (x) · 2−(a+1)/ε. The probability that it terminates with R = 0 equals exactly
2−(a+1)/ε ·(1−∑i∈Good P (i)). Since these probabilities are independent of j, when the process eventually
terminates the probability of ΓR = x for each x ∈ Good is exactly P (x), which proves the second property.
Finally, the probability that the process terminates for a specific j after reaching it is exactly 2−(a+1)/ε.
Clearly, E[R] is bounded from above by the expected j for which the process stops, which in turn equals
exactly 2(a+1)/ε.

The following lemma allows for converting protocols with bounded information cost on a specific dis-
tribution into deterministic protocols that mostly send short messages on the same distribution. The proof
of the lemma is a modification of the message compression result of [18]. An important feature of our ver-
sion is that the error probability is only doubled, instead of an additive constant increase which we cannot
afford. A simple but key concept we use to achieve this is to allow the protocol to send long messages with
some small (constant) probability. We then handle such “typically concise” protocols in our lower bound of
Section 5.2.

Lemma 12. Let Π be a private-randomness protocol for a (p, r)-communication problem P such that Π
errs with probability at most δ > 0 on a distribution µ. For any q > 0, there is a protocol Π′ for P such that

• Π′ is deterministic,
• Π′ errs with probability at most 2δ on µ,
• Π′ is (m, q)-concise, where m = 128 · (ICostµ(Π) + 2) · (pr/q)2.

Proof. We start with a proof overview. There are pr− 1 communication rounds in Π. We construct a series
of intermediate protocols Π′pr−1, Π′pr−2, . . . , Π′1, where Π′i is a modification of the protocol Π that is likely
to send a short message in rounds i, i+ 1, . . . , pr− 1. In the first i− 1 rounds, Π′i behaves in the same way
as Π. In particular, Π′i uses only private randomness to generate the first i − 1 messages. In later rounds,
the protocol uses public randomness. The players in the modified protocols will convey exactly the same
information as the original protocol Π and therefore, the protocols will err with the same probability, with
the only difference being a different encoding of messages and the use of public randomness.

For convenience, let Π′pr be the original protocol Π. We now explain how we convert Π′i+1 into Π′i. Let
M0 be the random variable corresponding to sequence of the first i − 1 messages in Π′i+1. Let M1 be the
random variable describing the i-th message in Π′i+1. Let M = (M0,M1). Recall that M is distributed in
the same way as its equivalent for the original protocol P . Let Pj be the player sending the i-th message
(i.e., j ≡ i (mod p)). Let X be the combined inputs of the other players, and let Y be the input of the j-th
player. We write Mm0

1 to describe the distribution of M1 when M0 = m0. Moreover, we write Mx,y,m0
1 to

describe the distribution of M1 when X = x, Y = y, and M0 = m0. The distribution Mx,y,m0
1 does not

depend on x, because the protocol uses only private randomness and to generate the i-th message it only
uses the previous messages and y, the input of the i-th player. It follows from Fact 8 and Fact 9 that

I(X,Y ;M) = I(X,Y ;M0)+EM0 [I(X,Y ;M1|M0)] = I(X,Y ;M0)+EM0,X,Y

[
S
(
MX,Y,M0

1

∥∥∥MM0
1

)]
.

We define ai as EM0,X,Y

[
S
(
MX,Y,M0

1

∥∥∥MM0
1

)]
for this specific setting of i. Overall, it follows by in-

duction that the mutual information between the input and the protocol transcript, i.e., ICostµ(P), equals∑pr−1
i=1 ai. This also implies that S (Mx,y,m0

1 ‖Mm0
1) < ∞ for any setting X = x, Y = y, and M0 = m0

that has nonzero probability.
Recall that the first i−1 messages of Π′i are generated in the same way as in Π′i+1. We now describe how

Pj generates the i-th message. Letm0 be the messages sent so far. The distribution of the i-th message,Mm0
1

11

is known to all the players. Let (Γ1,Γ2,Γ3, . . .) be an infinite sequence of independent random variables,
where each Γi is drawn independently from the distribution Mm0

1 . The sequence of Γi’s is generated using
public randomness, so it is known to all the players as well. We now use Lemma 11, where we setQ = Mm0

1 ,
P = Mx,y,m0

1 , and ε = q/8pr. Note that the distribution Mx,y,m0
1 does not depend on x, because the

randomness is private in the first i messages in Π′i+1. Pj will transmit exactly the same information in Π′i as
in Π′i+1. The player Pj fixes a set Good and a random variable R as in Lemma 11. If ΓR ∈ Good, then the
player sends a single bit 0 followed by a prefix-free encoding of the value R. Due to the concavity of the
logarithm, the expected length of the message can be bounded by 1 + 16pr(DKL(Mx,y,m0

1 ‖Mm0
1) + 1)/q+

2 ≤ 16pr(DKL(Mx,y,m0
1 ‖Mm0

1) + 2)/q, where the additional factor of 2 and the additional additive term
of 1 come from the prefix free encoding. Overall, the expected length of the message starting with 0 equals
16pr(ai + 2)/q.

If ΓR 6∈ Good, the player generates the message from the part of distribution Mx,y,m0
1 restricted to

N \ Good and transmits the selected value prefixing it with a single bit 1. Overall, all players can decode a
message generated according to Mx,y,m0

1 and then behave in the same way as in the protocol Π′i+1.
After applying a sequence of pr − 1 steps of the transformation, we obtain a randomized protocol Π′1

that still errs with probability δ. We now show that there is a suitable setting of random bits in the protocol
to obtain the desired deterministic protocol Π′. First, let Z ∈ {0, 1} be a random variable indicating that the
algorithm returned an incorrect answer. We have E[Z] = δ. It follows from Markov’s inequality that the
probability that fixing the random bits makes the algorithm err with probability higher than 2δ on µ is at most
1/2. Consider now the i-the message in Π′1, where 1 ≤ i ≤ pr− 1. Let Z ′i be the random indicator variable
that equals 1 if the i-th message starts with 1. It follows from our construction thatE[Z ′i] ≤ ε = q/8pr. If we
fix the random bits of the protocol, the probability that the i-th message starts with 1 with probability higher
than q/2 is bounded by Markov’s inequality by 1/4pr. Finally, let Z ′′i be the random indicator variable that
the i-th message in Π′i starts with 0 and has length greater than 128(ai+2)(pr/q)2. Consider now a random
variable Wi that equals the length of the i-th message if the message starts with 0 and 0 if it starts with 1.
We know that E[Wi] ≤ 16pr(ai + 2)/q, and therefore, by Markov’s inequality E[Z ′′i] ≤ q/8pr. Applying
Markov’s inequality again, for a random settings of the protocol’s randomness, the expectation becomes
larger than q/2 with probability at most 1/4pr. Summarizing, by fixing the protocol’s random bits, with
probability at least 1−1/2−1/(4pr)·(pr−1)−1/(4pr)·(pr−1) = 1/2−(pr−1)/(2pr) > 1/2−1/2 = 0,
we obtain a deterministic protocol that errs with probability at most 2δ, and sends a message longer than
128(ai + 2)(pr/q)2 in the i-th round with probability bounded by q. The final claim follows from the fact
that all ai are bounded by ICostµ(Π).

5.2 Lower Bound for Deterministic Typically Concise Protocols

In this section, we show that a deterministic concise protocol for the Limited Pointer Chasing Equality
cannot send short messages very often, unless it errs with probability Ω(1/n). The proof follows along the
lines of the lower bound for Pointer Chasing due to Nisan and Wigderson [24] and its adaptation due to Guha
and McGregor [14]. The main technical differences come from the fact that we want to show a lower bound
for Limited Pointer Chasing Equality. First, this requires ruling out the impact of the easy case when one of
the functions is t-non-injectve for large t. Second, this requires showing that with constant probability, the
last player is unlikely to know what the solutions to the input instances are, and since they are independent,
they will collide with probability Ω(1/n).

Lemma 13. If n2 ≥ 18p2, then any deterministic (m, q)-concise protocol for LPCEn,p,C?(1+logn), where
m ≤ εn/(4p2) − d2 log ne, q = 1

12p2
, and ε = (48p2)−3, errs with probability at least 1/(16n) on the

uniform distribution over all possible inputs.

12

Proof. Recall that in the LPCEn,p,C?(1+logn) problem, there are 2p players P1, . . . , P2p, with players Pi
and Pp+i, 1 ≤ i ≤ p, holding functions fi : [n] → [n] and gi : [n] → [n], respectively. The goal of the
problem is to output “1” if one of the functions is C?(1 + log n)-non-injective or f1(f2(. . . fp(1) . . .)) =
g1(g2(. . . gp(1) . . .)). Otherwise, “0” is the correct output. The players speak in order P1 through P2p, p−1
times overall.

Let ap+1 = 1 and by induction, let ai = fi(ai+1) for each i ∈ [p]. Analogously, let bp+1 = 1 and let
bi = gi(bi+1) for each i ∈ [p]. Unless one of the functions is C?(1 + log n)-non-injective, the goal of the
problem is to find out whether a1 = b1.

We make two modifications to the protocol:

1. We augment the (m, q)-concise protocol by simulating in parallel the following natural protocol.
Initially, we append the pair (ap+1, bp+1) to each message until we reach the player Pp, who can
compute ap = fp(ap+1). Then we pass the pair (ap, bp+1) until it reaches P2p, who can compute
bp = gp(bp+1) and pass (ap, bp) to the next player. In general, whenever a message (ai, bi) reaches
Pi−1, it is updated to (ai−1, bi), and whenever a message (ai−1, bi) reaches Pp+i−1, it is updated
to (ai−1, bi−1). This protocol finally computes (a2, b2). Appending the information, increases the
length of each messages by d2 log ne. This way, we obtain a deterministic (m+ d2 log ne, q)-concise
protocol.

2. Additionally, the first time a player is reached in the protocol, if the player’s function is C?(1+log n)-
non-injective, we make the player send a message longer than m + d2 log ne bits. This may require
modifying the behavior of the protocol in some other situations.

Recall that the player’s function is C?(1 + log n)-non-injective with probability at most 1/(2n2). If
the player is already sending long messages in some cases, we can relabel and extend some of the
long messages to accommodate the transition of some short messages into long messages. In this case
the probability of sending a long message increases by at most 1/(2n2).

Likewise, if one of at least n2 prefixes of length d2 log ne is not used by the protocol at all, we can
use this prefix to transmit long messages. In this case, the probability of a long message increases by
at most 1/(2n2) as well.

Finally, if the player does not send long messages in this case and all prefixes of length d2 log ne are
used, one of these prefixes occurs with probability at most 1/n2. We extend all messages starting with
this prefix to turn them into long messages and reduce the case to first one. The extension increases
the probability of long messages by at most 1/n2.

Overall, the probability of long messages can increase by at most 1/(2n2)+1/n2 ≤ 2/n2. As a result
we obtain a deterministic (m+ d2 log ne, q + 2/n2)-concise protocol.

Let m′ = m+ d2 log ne and q′ = q + 2/n2.
From now on we think of our deterministic protocol as a decision tree of depth 2p(p− 1). The i-th layer

of nodes, 1 ≤ i ≤ 2p(p− 1), corresponds to the situation when the control is passed to the player Pj , where
j ≡ i (mod 2p). Each leaf in the tree is labeled with either a “0” or a “1”, corresponding to the decision
made by the algorithm. Each edge outgoing from nodes at layers 1 through 2p(p − 1) − 1 is labeled with
the message that the corresponding player sends, given her input and the previous messages. Edges between
the last two layers are not labeled, because the last player does not send a message.

We now introduce a few definitions for each node z in the decision tree:

• cz: We set cz to the total length of messages sent on the path from the root to z.

13

• F z1 × · · · × F zp ×Gz1 × . . .×Gzp: Let F be the set of all functions from n to n. Since the protocol is
deterministic, for each node z, the set of input functions (f1, . . . , fp, g1, . . . , gp) for which the protocol
reaches z can be described as a product F z1 × · · · ×F zp ×Gz1× . . .×Gzp ⊆ F2p. Note that if the node
is reached then the probability of each tuple in F z1 × · · · × F zp ×Gz1 × . . .×Gzp is identical.

• iz and jz: We make iz and jz be the indices of the last pair (aiz , biz) sent on the path from the root to
z. For the root we assume that the pair is (ap+1, bp+1) = (1, 1), i.e., iroot = jroot = p + 1. Recall
that for all z, iz ≥ 2 and jz ≥ 2.

• (Az, Bz): (Az, Bz) is a pair of random variables. Its random value is generated by selecting indepen-
dently uniformly at random two functions f? ∈ F ziz−1 and g? ∈ Gzjz−1 and applying them to (aiz , bjz)
to obtain (f?(aiz), g?(bjz)). (Az, Bz) describes the possible values of the pair (ai, bj) if we move
one step ahead in applying functions fi and gj , compared to the trivial algorithm that we simulate in
parallel. Since the protocol is deterministic, the inputs of players are independent, and Az and Bz
depend on inputs of disjoint sets of players, the variables Az and Bz are independent.

We say that a node z is confusing if it has the following properties:

1. All messages sent on the path to z have length bounded by m′.

2. z is a leaf or for all i ∈ [n], both |F zi | ≥ 2−2cz |F| and |Gzi | ≥ 2−2cz |F|, where cz is the total length
of messages on the path from the root to z.

3. H(Az) ≥ log n− δ and H(Bz) ≥ log n− δ, where δ = ε2/3.

It is easy to see that the root of the decision tree is confusing. We now prove by induction that the
probability that for a random input, the protocols reaches a non-confusing node in step i is bounded by
(i− 1) · (q + 3

2n
−2 + 4ε1/3). Suppose that the claim is true for step i and let us prove it for step i+ 1. We

bound the probability that a specific property is violated.

1. The probability that the first property is violated is bounded by q′, because the protocol is (m′, q′)-
concise.

2. Consider a confusing node z in step i. If i = 2p(p− 1), the children of z are leaves, and the property
holds. So it suffices to focus on the case that i < 2p(p − 1). What is the probability that the second
property is violated for some w of z? Let Pj be the player in control of step i. Without loss of
generality, let us assume that 1 ≤ j ≤ p. Note that for all t ∈ [p], Gwt = Gzt and for all t ∈ [p] \ {j},
Fwt = F zt . The property may only be violated for Fwj . For each child w of z, let mw = cw − cz . Let
W be the random variable representing the distribution of children of z. It holds

Pr

[
|FWj |
|F| < 2−2cW

]
≤ Pr

[
|FWj |
|F zj |

< 2−2mW

]
≤
∑
w

2−2mw ≤ 1
n2

∑
w

2−mw ≤ 1
n2
,

where the second to last inequality follows from the fact that mw ≥ 2 log n, and the last inequality
follows from Kraft’s inequality. Therefore the probability that a confusing node loses the second
property in the next step is bounded by 1/n2.

3. It remains to bound the probability that the third property is lost. Let z be a confusing node in
step i and let Pj be the player in charge of this step. If neither j = iz − 1 nor j − p = jz − 1,
then for any child w of z, Fwiz−1 = F ziz−1 and Gwjz−1 = Gzjz−1. In this case the pairs of variables
(Az, Bz) and (Aw, Bw) have the same distribution and therefore the respective entropies remain the

14

same. Consider now the case that j = iz − 1. Pj computes aj = fj(aiz) and we need to bound
the entropy H(Aw) of Aw for all children w of z, which is essentially the entropy of aj−1 given all
the information communicated so far. The information about fj−1 at each child w can be expressed
as a vector fwj−1 = (fwj−1(1), fwj−1(2), . . . , fwj−1(n)) of random variables in [n]. We have H(Aw) =
H(fwj−1(aj)). Moreover, it holds∑

t∈[n]

H(fwj−1(t)) ≥ H(fwj−1) = log |Fwj−1| = log |F zj−1|

≥ log(2−2cz |F|) = log |F| − 2cz ≥ n(log n− ε).
The first inequality above follows from subadditivity of entropy. The second and third inequalities
follow from the fact that the function is uniformly distributed on Fwj−1 = F zj−1 of size bounded by
the fact that z is confusing (Property 2). Finally the last inequality follows from the fact that z is
confusing (Property 1), and therefore, εn/2 ≥ 2p(p− 1) ·m′ ≥ cz .
For t uniformly distributed on [n], by Markov’s inequality, we have

Pr
t

[H(fwj−1(t)) ≤ log n− δ] ≤ ε/δ.
Unfortunately, aj may not be uniformly distributed. However, we can exploit its high entropy, at least
log n− δ. We apply Fact 1. Let S be the set of t such that H(fwj−1(t)) ≥ log n− δ. We already know
that |S| ≥ (1− ε/δ)n. Note that we can apply Fact 1, because

∆ =

√
4δ
|S|/n ≤

√
4δ

1− ε
δ

≤
√

8δ ≤
√

8 · ε1/3 ≤
√

8 · 48−1 < 1/10.

The probability that aj belongs to S is at least

|S|
n

(
1−

√
4δ
|S|/n

)
≥

(
1− ε

δ

)(
1−

√
4δ

1− ε
δ

)
≥
(

1− ε1/3
)(

1−
√

8δ
)

≥ 1− (1 +
√

8)ε1/3 ≥ 1− 4ε1/3.

This implies that
Pr
aj

[H(fwj−1(aj)) ≤ log n− δ] ≤ 4ε1/3.

The case that j − p = jz − 1 is analogous, and therefore, the probability that the third property is lost
in the next step is bounded by 4ε1/3.

Summarizing, the probability that moving from step i to step i + 1, we move from a confusing node to a
non-confusing node is bounded by q′ + 1/n2 + 4ε1/3 = q + 3

2n
−2 + 4ε1/3, which finishes the inductive

proof.
Overall, it follows that the protocol finishes in a non-confusing leaf with probability bounded by 2p(p−

1) · (q + 3
2n
−2 + 4ε1/3) ≤ 2p2 · q + 3p2

n2 + 8p2 · (48p2)−1 ≤ 1/6 + 1/6 + 1/6 = 1/2.
Consider now a confusing leaf z. Recall that we modified the protocol so that if one of the functions

is C?(1 + log n)-non-injective a message longer than m′ is transmitted. By definition, in such a case, the
simulation of the protocol leads to a leaf that is not confusing. Therefore, the correct solution to an input
instance that leads to z is solely based on whether a1 = b1. We know that the random variables Az and
Bz , which model a1 and b1, respectively, are independent and both have entropy at least log n − δ, where
δ ≤ 48−2. Observe also that n ≥

√
18p2 ≥ 4. Hence it follows from Lemma 2 that whatever solution the

protocol claims at z, be it “0” or “1”, the claim is incorrect with probability at least 1/(8n). Overall, on all
inputs the protocol has to err with probability at least 1

2 · 1
8n = 1

16n .

15

5.3 Proof of Lemma 6

We now combine Lemmas 12 and 13 to prove Lemma 6, the main result of Section 5.

Proof of Lemma 6. Consider any protocol protocol Π for LPCEn,p,C?(1+logn) that errs with probability
at most 1/(64n) on µ. By Lemma 12, there is a deterministic (m, 1/(12p2))-concise protocol Π′ for
LPCEn,p,C?(1+logn) that errs with probability at most 1/(32n) on µ, where m = 128 · (ICostµ(Π) + 2) ·(

2p2

(1/(12p2))

)2
= 213 ·32 ·p8 ·(ICostµ(Π)+2). It follows from Lemma 13 thatm ≥ n

(48p2)3·4p2 −d2 log ne =
n

216·33·p8−d2 log ne. Therefore, ICostµ(Π) ≥ n
229·35·p16− d2 logne

213·32·p8−2. Since this bound holds for any proto-
col Π that is correct with probability 1− 1/(64n), this is also a lower bound for the information complexity
of the problem.

6 Step 2: Direct Sum Theorem for Pointer Chasing Equality

The following lemma is the main result of this section.

Lemma 14. Let n, p, and t be integers such that n2 ≥ 18p2 and t ≤ n/4. Let r = C?(1 + log n). It holds

R1/3(ORt(LPCEn,p,r)) = Ω
(

tn

p16 log n

)
−O (pt2) .

Before we prove it, let us first recall two classic results. First, the information complexity is a lower
bound for randomized communication complexity of a protocol that errs with the same probability.

Lemma 15 ([2, Proposition 4.3]). Let δ ∈ (0, 1). For any communication problem P and any distribution
ψ on inputs, Rδ(P) ≥ ICψ,δ(P).

Second, if the input distribution is a product distribution on multiple instances of a subproblem, then the
total information revealed by the protocol transcript equals at least the information revealed for each of the
instances.

Lemma 16 ([2, Lemma 5.1]). Let P be a communication problem with Boolean output and let Π be a
private-randomness protocol for ORt(P) for a positive integer t. Let ψ be a distribution on inputs of P . Let
X = (X1, . . . , Xt) be a vector of independent random variables with each distributed according to ψ. For
any input x, let Π(x) be the transcript of Π on x. Then the following inequality holds:

I(X; Π(X)) ≥∑t
i=1 I(Xi; Π(X)).

Now we show the main ingredient, which is a proof that any correct protocol for ORt(LPCEn,p,r) has
to reveal almost as much information about each coordinate as if it was separately solving the corresponding
instances of LPCEn,p,r.

Lemma 17. Let Π be a private-randomness protocol for ORt(LPCEn,p,r) that errs with probability at most
δ. Let X = (X1, . . . , Xt) be a random vector with each coordinate Xi independently selected from the
uniform distribution µ on all possible inputs to LPCEn,p,r. Let Π(x) be the transcript of Π on input x.

If r ≥ C? · (log n+ 1), t ≤ n/4, and p ≤ n, then for each i ∈ [t], it holds

I(Xi; Π(X)) ≥ ICµ,2δ(LPCEn,p,r)− 4pt log n− 1.

16

Proof. For each j ∈ [t], let Yj ∈ {0, 1} be the the solution to LPCEn,p,r on a specific coordinate Xj . The
probability that Yj = 1 is bounded by 1/n + 2p · 1/(2n2) = 2/n, where the first term comes from the
probability that the equality of two instances of PCn,p holds and the other is a bound on the probability that
one of the functions is r-non-injective.

Fix i ∈ [t]. By the union bound, the probability that
∨
j 6=i Yj = 1 is bounded by t · 2/n ≤ 1/2.

If
∨
j 6=i Yj = 0, the solution to ORt(LPCEn,p,r) on the input instance equals Yi. Therefore, Π has to

compute Yi with probability at least 1 − 2δ, provided
∨
j 6=i Yj = 0. If it erred with higher probability, it

would overall err on the input instance of ORt(LPCEn,p,r) with probability greater than δ. This implies that
I(Xi; Π(X)|∨j 6=i Yj = 0) ≥ ICµ,2δ(LPCEn,p,r).

We now use I(Xi; Π(X)|∨j 6=i Yj = 0) to bound I(Xi; Π(X)) from below. By definition, we have
I(Xi; Π(X)) = H(Xi)−H(Xi|Π(X)). Note thatH(Xi) = H(Xi|

∨
j 6=i Yj = 0), because the coordinates

of Xi are independent. Let us now upper bound H(Xi|Π(X)). For each transcript π and each z ∈ {0, 1},
let pz,π = Pr[Π(X) = π|∨j 6=i Yj = z]. It follows from Lemma 3 that

H(Xi | Π(X)) = Eπ[H(Xi | Π(X) = π)]

≤ Eπ

[
1 +

1∑
z=0

Pr
[∨
j 6=i

Yj = z | Π(X) = π
]
·H
(
Xi | Π(X) = π,

∨
j 6=i

Yj = z
)]

= 1 + Eπ

[
1∑
z=0

pz,π ·
Pr
[∨

j 6=i Yj = z
]

Pr[Π(X) = π]
·H
(
Xi | Π(X) = π,

∨
j 6=i

Yj = z
)]

= 1 +
1∑
z=0

Pr
[∨
j 6=i

Yj = z
]
· Eπ

[
pz,π

Pr[Π(X) = π]
·H
(
Xi | Π(X) = π,

∨
j 6=i

Yj = z
)]

= 1 +
1∑
z=0

Pr
[∨
j 6=i

Yj = z
] ·∑

π

pz,π ·H
(
Xi | Π(X) = π,

∨
j 6=i

Yj = z
)

= 1 +
1∑
z=0

Pr
[∨
j 6=i

Yj = z
] ·H(Xi | Π(X),

∨
j 6=i

Yj = z
)
.

Note that the entropy ofXi, and therefore also any conditional entropy ofXi, is always bounded by 2p log n·
log n. Hence

H(Xi | Π(X)) ≤ 1 +H
(
Xi | Π(X),

∨
j 6=i

Yj = 0
)

+ Pr
[∨
j 6=i

Yj = 1
] · 2pn · log n

≤ 1 +H
(
Xi | Π(X),

∨
j 6=i

Yj = 0
)

+ 4pt log n.

Thus we obtain

I(Xi; Π(X)) = H(Xi)−H(Xi | Π(X))

≥ H
(
Xi |

∨
j 6=i

Yj = 0
)
−H

(
Xi | Π(X),

∨
j 6=i

Yj = 0
)
− 1− 4pt log n

≥ I
(
Xi; Π(X) |

∨
j 6=i

Yj = 0
)
− 1− 4pt log n

≥ ICµ,2δ(LPCEn,p,r)− 1− 4pt log n.

We can finally prove the main lemma of this section.

17

Proof of Lemma 14. Let Π be a private-randomness protocol for ORt(LPCEn,p,r) that errs with probability
at most 1/(128n). It follows from Lemmas 16 and 17 that

I(X; Π(X)) ≥
t∑
i=1

I(Xi; Π(X)) ≥ t · ICµ,1/(64n)(LPCEn,p,r)− 4pt2 log n− t.

By definition, this quantity bounds also ICµt,1/(128n)(ORt(LPCEn,p,r)). Therefore, by Lemma 15 and
Lemma 6, we get

R1/(128n)(ORt(LPCEn,p,r)) ≥ Ω
(
tn

p16

)
−O (pt2 log n

)
.

Via standard amplification bounds, R1/(128n)(ORt(LPCEn,p,r)) ≤ R1/3(ORt(LPCEn,p,r)) · O(log n),
which gives us

R1/3(ORt(LPCEn,p,r)) = Ω
(

tn

p16 log n

)
−O (pt2) .

7 Step 3: Reduction to Set Chasing Intersection

We give a reduction showing that under specific conditions, a protocol for INTERSECT(SCn,p) can be
used to create a communication protocol for ORt(LPCEn,p,r).

Lemma 18. Let n, p, r, and t be positive integers such that t2prp−1 ≤ n/10. If there is a communication
protocol for INTERSECT(SCn,p) that uses C bits of communication and errs with probability at most
1/10, then there is a public-randomness communication protocol for ORt(LPCEn,p,r) that uses C+2p bits
of communication and errs with probability at most 2/10.

Proof. Consider an instance of ORt(LPCEn,p,r). There are 2p players, who have t instances of LPCEn,p,r.
Each instance of LPCEn,p,r consists of two instances of PCn,p. Let fi,j and gi,j , where 1 ≤ i ≤ p and
1 ≤ j ≤ t, be the functions that describe these two instances. For each i ∈ [p], player i knows fi,j
and player p + i knows gi,j . If any of the functions fi,j or gi,j is r-non-injective, then the solution to the
problem is 1. The players can check if this is the case in one round of communication with each player
communicating only one bit. It therefore suffices to show a protocol that solves ORt(EQUAL(PCn,p)), i.e.
computes

t∨
j=1

(
f1,j(f2,j(. . . fp,j(1) . . .)) = g1,j(g2,j(. . . gp,j(1) . . .))

)
,

using C bits communication, under the assumption that no fi,j or gi,j is r-non-injective. To this end, we
show a randomized reduction of this problem to INTERSECT(SCn,p).

First, using common randomness, the players select random permutations πi,j , ρi,j : [n] → [n] for
1 ≤ i ≤ p and 1 ≤ j ≤ t. Permutations are selected independently, except that π1,j = ρ1,j for all
1 ≤ j ≤ t. Furthermore they are generated using public randomness, so they are known to all players.
(For functions f : A → B and g : B → C, we write g ◦ f to denote the function from A to C such that
(g ◦ f)(x) = g(f(x)) for all x ∈ A.) For all 1 ≤ j ≤ t, let

f ′p,j = πp,j ◦ fp,j and g′p,j = ρp,j ◦ gp,j .

For all 1 ≤ i ≤ p− 1 and 1 ≤ j ≤ t, let

f ′i,j = πi,j ◦ fi,j ◦ π−1
i+1,j and g′i,j = ρi,j ◦ gi,j ◦ ρ−1

i+1,j .

18

It is easy to see that an instance of ORt(EQUAL(PCn,p)) with f ′i,j and g′i,j is equivalent to the original
instance with fi,j and gi,j . The permutations randomly relabel intermediate and final values with final
values relabeled in the same way on both sides.

We construct an instance of INTERSECT(SCn,p) by giving the i-th player, 1 ≤ i ≤ p, a function
f?i : [n]→ P([n]) such that for any x ∈ [n],

f?i (x) = {f ′i,j(x) : 1 ≤ j ≤ t}

and by giving the p+ i-th player, 1 ≤ i ≤ p, a function g?i : [n]→ P([n]) such that for any x ∈ [n],

g?i (x) = {g′i,j(x) : 1 ≤ j ≤ t}.

The goal in this instance is to compute(
~f?1 (~f?2 (. . . ~f?p ({1}) . . .))

⋂
~g?1(~g?2(. . . ~g?p({1}) . . .))

)
6= ∅.

The instance of INTERSECT(SCn,p) that we have just defined can be seen as stacking mappings from
different instances of EQUAL(PCn,p) on top of each other. Instead of following a single function f ′i,j or g′i,j
for a given instance j, we follow all of them simultaneously, obtaining subsets of [n] instead of just single
values in [n].

Let us show a likely correspondence between the new instance of INTERSECT(SCn,p) and the original
instance of ORt(EQUAL(PCn,p)). First, if the result of solving the instance of ORt(EQUAL(PCn,p)) is 1,
then clearly, by following the mappings from the instance of EQUAL(PCn,p) resulting in 1, we also obtain
an element that belongs to the intersection of two resulting sets in INTERSECT(SCn,p).

Consider the case that the result of solving the instance of ORt(EQUAL(PCn,p)) is 0. We bound the
probability that the sets appearing in the instance of INTERSECT(SCn,p) intersect. Each element of these
two sets can be expressed as

f ′1,a1
(f ′2,a2

(. . . f ′p,ap
(1) . . .))

or
g′1,b1(g′2,b2(. . . g′p,bp(1) . . .)),

respectively, where the sequences a1, . . . , ap and b1, . . . , bp describe which of the instances the mapping
is followed. There are t2p different pairs of such sequences. What is the probability that we obtain the
same value for a specific pair of sequences? We want to show that this probability is bounded by rp−1/n.
If a1 = . . . = ap = b1 = . . . = bp, then we obtain different values, because the a1-th instance in
ORt(EQUAL(PCn,p)) results in 0. Suppose now that it is not the case that a1 = . . . = ap = b1 = . . . = bp.
If a1 6= b1, then the probability that we obtain the same value is exactly 1/n, because the final values
are created by two independent random permutations π1,a1 and ρ1,b1 . If a1 = b1, let k be the lowest
number greater than 1 such that ak 6= ak−1 or bk 6= bk−1. Since the functions f ′1,a1

◦ . . . ◦ f ′k−1,a1
and

g′1,a1
◦ . . . ◦ g′k−1,a1

are not rp−1-non-injective and are applied to two values randomly distributed by πr,ar

and ρr,br , the probability of collision is at most rp−1/n. By the linearity of expectation, the expected size of
the intersection between the two sets in the instance of INTERSECT(SCn,p) is bounded by t2p · rp−1/n ≤
1/10. By Markov’s inequality, the probability that the intersection is nonempty is bounded by 1/10, so the
probability that the reduction fails is bounded by 1/10. Therefore, if we have a communication protocol
for INTERSECT(SCn,p) that errs with probability at most 1/10, we can use this protocol to obtain a
public-randomness protocol for ORt(EQUAL(PCn,p)) that errs with probability at most 2/10, provided no
function in ORt(EQUAL(PCn,p)) is r-non-injective.

19

8 Proof of Main Tool (Theorem 4)

We now combine the results of Steps 1,2,3 to conclude our main communication complexity lower bound
(Theorem 4 from Section 4).

Proof of Theorem 4. Let t be a positive integer such that t2prp−1 ≤ n/10. Due to the result of Newman [23],
we know that every protocol with public randomness can be simulated using private randomness if we allow
for using additional O(number-of-players · log(input-size-in-bits)) communication bits and for increasing
the probability of error by an arbitrarily small constant. By combining this fact with Lemma 14, we find out
that any public-randomness protocol that errs with probability at most 2/10 has to use at least

Ω
(

tn

p16 log n

)
−O (pt2)−O(2p · log(t · 2p · n · log n)) = Ω

(
tn

p16 log n

)
−O (p(t2 + log n)

)
bits of communication. By applying Lemma 18, we get that any communication protocol for INTERSECT(SCn,p)
that errs with probability at most 1/10 has to use at least

Ω
(

tn

p16 log n

)
−O (p(t2 + log n)

)− 2p = Ω
(

tn

p16 log n

)
−O (p(t2 + log n)

)
bits of communication. It is easy to check that t = n1/(2p)

√
10r

satisfies the requirement that t2prp−1 ≤ n/10.

Additionally for sufficiently large n,
⌊
n1/(2p)
√

10r

⌋
≥ 1

2 · n
1/(2p)
√

10r
, so we can set t = Ω

(
n1/(2p)
√

logn

)
. Finally, the

communication complexity of the problem becomes

Ω

(
n1+1/(2p)

p16 · log3/2 n

)

provided n ≥ ϑ(p) for some function ϑ.

References

[1] Kook Jin Ahn and Sudipto Guha. Linear programming in the semi-streaming model with application
to the maximum matching problem. In ICALP (2), pages 526–538, 2011.

[2] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information statistics approach to
data stream and communication complexity. In FOCS, pages 209–218, 2002.

[3] Boaz Barak, Mark Braverman, Xi Chen, and Anup Rao. How to compress interactive communication.
In Leonard J. Schulman, editor, STOC, pages 67–76. ACM, 2010.

[4] Mark Braverman. Interactive information complexity. In STOC, pages 505–524, 2012.

[5] Mark Braverman and Anup Rao. Information equals amortized communication. In Rafail Ostrovsky,
editor, FOCS, pages 748–757. IEEE, 2011.

[6] Mark Braverman and Omri Weinstein. A discrepancy lower bound for information complexity. In
Anupam Gupta, Klaus Jansen, José D. P. Rolim, and Rocco A. Servedio, editors, APPROX-RANDOM,
volume 7408 of Lecture Notes in Computer Science, pages 459–470. Springer, 2012.

20

[7] Amit Chakrabarti, Ranganath Kondapally, and Zhenghui Wang. Information complexity versus cor-
ruption and applications to orthogonality and gap-hamming. In APPROX-RANDOM, pages 483–494,
2012.

[8] Amit Chakrabarti, Yaoyun Shi, Anthony Wirth, and Andrew Chi-Chih Yao. Informational complexity
and the direct sum problem for simultaneous message complexity. In FOCS, pages 270–278, 2001.

[9] Sebastian Eggert, Lasse Kliemann, Peter Munstermann, and Anand Srivastav. Bipartite matching in
the semi-streaming model. Algorithmica, 63(1-2):490–508, 2012.

[10] Leah Epstein, Asaf Levin, Julián Mestre, and Danny Segev. Improved approximation guarantees for
weighted matching in the semi-streaming model. SIAM J. Discrete Math., 25(3):1251–1265, 2011.

[11] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang. On graph
problems in a semi-streaming model. Theor. Comput. Sci., 348(2-3):207–216, 2005.

[12] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang. Graph dis-
tances in the data-stream model. SIAM J. Comput., 38(5):1709–1727, 2008.

[13] Ashish Goel, Michael Kapralov, and Sanjeev Khanna. On the communication and streaming complex-
ity of maximum bipartite matching. In SODA, pages 468–485, 2012.

[14] Sudipto Guha and Andrew McGregor. Stream order and order statistics: Quantile estimation in
random-order streams. SIAM J. Comput., 38(5):2044–2059, 2009.

[15] Monika Rauch Henzinger, Prabhakar Raghavan, and Sridhar Rajagopalan. Computing on data streams.
Technical Report 1998-011, DEC System Research Center, 1998.

[16] Rahul Jain, Attila Pereszlényi, and Penghui Yao. A direct product theorem for bounded-round public-
coin randomized communication complexity. CoRR, abs/1201.1666, 2012.

[17] Rahul Jain, Jaikumar Radhakrishnan, and Pranab Sen. Privacy and interaction in quantum communica-
tion complexity and a theorem about the relative entropy of quantum states. In FOCS, pages 429–438,
2002.

[18] Rahul Jain, Jaikumar Radhakrishnan, and Pranab Sen. A direct sum theorem in communication com-
plexity via message compression. In ICALP, pages 300–315, 2003.

[19] Michael Kapralov. Improved lower bounds for matchings in the streaming model. CoRR,
abs/1206.2269, 2012.

[20] Iordanis Kerenidis, Sophie Laplante, Virginie Lerays, Jérémie Roland, and David Xiao. Lower bounds
on information complexity via zero-communication protocols and applications. Electronic Colloquium
on Computational Complexity (ECCC), 19:38, 2012.

[21] Christian Konrad, Frédéric Magniez, and Claire Mathieu. Maximum matching in semi-streaming with
few passes. In APPROX-RANDOM, pages 231–242, 2012.

[22] Andrew McGregor. Finding graph matchings in data streams. In APPROX-RANDOM, pages 170–181,
2005.

[23] Ilan Newman. Private vs. common random bits in communication complexity. Inf. Process. Lett.,
39(2):67–71, 1991.

21

[24] Noam Nisan and Avi Wigderson. Rounds in communication complexity revisited. SIAM J. Comput.,
22(1):211–219, 1993.

[25] Ran Raz and Avi Wigderson. Probabilistic communication complexity of Boolean relations (extended
abstract). In FOCS, pages 562–567, 1989.

[26] Atish Das Sarma, Sreenivas Gollapudi, and Rina Panigrahy. Estimating PageRank on graph streams.
J. ACM, 58(3):13, 2011.

[27] Mariano Zelke. Weighted matching in the semi-streaming model. Algorithmica, 62(1-2):1–20, 2012.

22

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

