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Abstract

We prove n1+Ω(1/p)/pO(1) lower bounds for the space complexity of p-pass streaming algorithms solving
the following problems on n-vertex graphs:

• testing if an undirected graph has a perfect matching (this implies lower bounds for computing a maximum
matching or even just the maximum matching size),

• testing if two specific vertices are at distance at most 2(p+ 1) in an undirected graph,

• testing if there is a directed path from s to t for two specific vertices s and t in a directed graph.

Prior to our result, it was known that these problems require Ω(n2) space in one pass, but no n1+Ω(1) lower
bound was known for any p ≥ 2.

These streaming results follow from a communication complexity lower bound for a communication game
in which the players hold two graphs on the same set of vertices. The task of the players is to find out whether
the sets of vertices at distance exactly p + 1 from a specific vertex intersect. The game requires a significant
amount of communication only if the players are forced to speak in a specific difficult order. This is reminiscent
of lower bounds for communication problems such as indexing and pointer chasing. Among other things, our
line of attack requires proving an information cost lower bound for a decision version of the classic pointer
chasing problem and a direct sum type theorem for the disjunction of several instances of this problem.

1 Introduction

Graph problems in the streaming model have attracted a fair amount of attention over the last 15 years. Formally,
a streaming algorithm is presented with a sequence of graph edges and it can read them one by one in the order
in which they appear in the sequence. The main computational resource studied for this kind of algorithm is the
amount of space it can use, i.e., the amount of information about the graph the algorithm remembers during its
execution.

Furthermore, depending on the situation a small number of passes over the stream, instead of just one, may be
allowed. This scenario may not be possible in the case of a router observing and analyzing high frequency network
traffic, where the data is generated once and cannot be stored if it is extremely large. However, multiple passes
over the stream may make sense in the case of processing a huge data set residing in a slow external storage device.
For these kinds of devices, sequential access often maximizes readout efficiency and making a few passes over the
data stream may be reasonable.

At a more theoretical level, relations between nodes (i.e., how they are connected in the graph and what
the distances between them are) are a fundamental property of graphs that is worth studying. When it comes
to exploring the structure of graphs, allowing for multiple passes seems to greatly improve the capabilities of
streaming algorithms. For instance, the algorithm of Sarma, Gollapudi, and Panigrahy [31], which received the
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PODS best paper award, uses multiple passes to construct long random walks in the graph in order to approximate
PageRank for vertices. Also many strong lower bounds of Ω(n2) space for one pass easily break if more than one
pass is allowed. This is for instance the case for the early lower bounds of Henzinger, Raghavan, Rajogopalan [18]
and also the lower bounds of Feigenbaum et al. [13].

On the other hand, constructing lower bounds for graph problems is usually based on constructing obstacles
for local exploration, and our paper is not different in this respect. We show that finding out if two vertices are
at a specific small distance p essentially requires p/2 passes to be accomplished in space O(n). The main idea is
similar to what is done for pointer chasing. Namely, we place edges in the order opposite to the sequence which
enables easy exploration.

Our results. Let n be the number of vertices in the graph and let p be the allowed number of passes. We show
strongly superlinear lower bounds of Tn,p = Ω

(
n1+1/(2p+2)

p20 log3/2 n

)
bits of space for three problems:

• testing if the graph has a perfect matching,

• testing if two prespecified vertices u and v are at distance at most 2(p+ 1) for an undirected input graph,

• testing if there is a directed path from u and v, where u and v are prespecified vertices and the input graph is
directed.

In general, lower bounds stronger than Ω(n) require embedding a difficult instance of a problem into the “space of
edges” as opposed to the “space of vertices,” which turns out to be difficult in many cases. For instance, the Ω(n2)
lower bounds of [18] and [13] do not hold for algorithms that are allowed more than one pass.

Communication complexity is a standard tool for proving streaming lower bounds. We describe our hard
communication problem from which we reduce to the streaming problems in Section 2. We now overview related
work.

Matchings. In the maximum matching problem, the goal is to produce a maximum-cardinality set of non-adjacent
edges. Streaming algorithms for this problem and its weighted version have received a lot of attention in recent
years [13, 25, 11, 1, 24, 15, 22, 12, 32].

Our result compares most directly to the lower bound of Feigenbaum et al. [13], who show that even checking
if a given matching is of maximum size requires Ω(n2) space in one pass. Our result can be seen as an extension
of their lower bound to the case when multiple passes are allowed. Even when p ≥ 2 passes are allowed, we show
that still a superlinear amount of space, roughly n1+Ω(1/p), is required to find out if there is a perfect matching in
the graph. This of course implies that tasks such as computing a maximum matching or even simply the size of the
maximum matching also require this amount of space.

For the approximate version of the maximum matching problem, McGregor [25] showed that a (1 − ε)-
approximation can be computed in Õ(n) space with the number of passes that is a function of only ε. The only
known superlinear lower bound for the approximate matching size applies only to one-pass algorithms and shows
that the required amount of space is n1+Ω(1/ log logn) if a constant approximation factor better than 1 − e−1 is
desired [15, 22].

Shortest paths. We now move to the problem of computing distances between vertices in an undirected graph.
Feigenbaum et al. [14] show that Õ(n) space and one pass suffice to compute an O(log n/ log logn)-spanner and
therefore approximate all distances up to a factor of O(log n/ log logn). They also show a closely matching lower
bound of Ω(n1+1/t) for computing a factor t approximation to distances between all pairs of vertices.

In the result most closely related to ours, they show that computing the set of vertices at distance p from a
prespecified vertex in less than p/2 passes requires n1+Ω(1/p) space. One can improve their lower bound to show
that it holds even when the number of allowed passes is p−1. 1 As a result, to compute the distance p neighborhood
in O(n) space, essentially the best thing one can do is to simulate the BFS exploration with one step per pass over
the input, which requires p passes. In this paper, we show a similar lower bound for the problem of just checking if
two specific vertices are at distance exactly p. Our problem is algorithmically easier. If two vertices are at distance

1This follows by replacing one of their proof components with a stronger pointer chasing result from [16].
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p, dp/2e passes and O(n) space suffice, because one can simulate the BFS algorithm up to the radius of dp/2e
from both vertices of interest. This is one of the reasons why our result cannot be shown directly by applying their
lower bound.

A space lower bound of Ω(n2) for one pass algorithms to find whether a pair of nodes is at distance 3 can be
found in [13].

Directed connectivity. Feigenbaum et al. [13] show that the directed u-v connectivity problem requires Ω(n2)
bits of space to solve in one pass. However, their lower bound does not extend to more than one pass. Once again
our lower bound extends their result to show that a superlinear lower bound holds for multiple passes. (Note that
for undirected graphs, the problem of connectivity can easily be solved with one pass and Õ(n) space, using for
instance the well known union-find algorithm.)

Optimality of our lower bound. We conjecture that our lower bounds can be improved from Ω̃(n1+1/(2p+2))
to Ω̃(n1+1/(p+1)) for p = O(1). For the matching problem, our lower bound is based on showing that finding a
single augmenting path is difficult. It is an interesting question if a stronger lower bound can be proved in the case
where more augmenting paths have to be found. Currently, no o(n2)-space streaming algorithm is known for this
problem with a small number of passes.

Paper organization. We begin in Section 2 with a description of the communication problems we study and
a high-level overview of our lower bound approach. We set up some useful information-theoretic preliminaries
in Section 3. We state our main communication complexity lower bound (Theorem 4) and use it to show our
streaming lower bounds in Section 4. Our communication lower bound is proved in three steps, and we go into the
details of these steps in the next three sections. Finally, in Section 8 we put the steps together to give a proof of
Theorem 4.

2 Proof overview and techniques

Via simple reductions, our multipass streaming lower bounds for matching and connectivity reduce to proving
communication complexity lower bounds for a certain decision version of “set pointer chasing.” The reductions to
streaming are described in Section 4, and in this section we give an overview of our communication complexity
results. We start with a description of the communication problems that will be useful for us.

2.1 Communication Problems

We assume private randomness in all communication problems, unless otherwise stated. Furthermore, all messages
are public, i.e., can be seen by all players (the setting sometimes described as the blackboard model). Consider
a communication problem with p players P1, . . . , Pp. Players speak in r rounds and in each round they speak
in order P1 through Pp. At the end of the last round, the player Pp has to output the solution. We call any such
problem a (p, r)-communication problem.

We define [n] as {1, . . . , n}. For any set A, we write 2A to denote the power set of A, i.e., the set of all subsets
of A. For any function f : A→ 2B , we define a mapping

#‰

f : 2A → 2B such that
#‰

f (S) =
⋃
s∈S f(s).

Pointer and Set Chasing. The pointer chasing communication problem PCn,p, where n and p are positive inte-
gers, is a (p, p− 1)-communication problem in which the i-th player Pi has a function fi : [n]→ [n] and the goal
is to compute f1(f2(. . . fp(1) . . .)). The complexity of different versions of this problem was explored thoroughly
by a number of works [28, 10, 27, 9, 29, 16].

The set chasing communication problem SCn,p, for given positive integers n and p, is a (p, p−1)-communication
problem in which the i-th playerPi has a function fi : [n]→ 2[n] and the goal is to compute

#‰

f1(
#‰

f2(. . .
#‰

fp({1}) . . .)).
A two-player version of the problem was considered by Feigenbaum et al. [14].

Operators on Problems. For a (p, r)-communication problem X , we write EQUAL(X ) to denote a (2p, r)-
communication problem in which the first p players P1, . . . , Pp hold one instance of X , the next p players Pp+1,
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. . . , P2p hold another instance of X , and the goal is to output one bit that equals 1 if and only if the outputs for the
instances of X are equal. See Figure 1 for an example.

P4 P3 P2 P1 P5 P6 P7 P8

g4g3g2g1f1f2f3f4

1:

2:

3:

4:

5:

6:

7:

Figure 1: A sample instance of EQUAL(PC7,4) with a negative solution. It consists of two instances of PC7,4 held
by two different sets of players.

Analogously, for a (p, r)-communication problem X such that the output is a set, we write INTERSECT(X )
to denote the (2p, r)-communication problem in which the first p players P1, . . . , Pp hold one instance of X , the
next p players Pp+1, . . . , P2p hold another instance of X , and the goal is to output one bit that equals 1 if and only
if the sets that are solutions to the instances of X intersect. See Figure 2 for an example.

P4 P3 P2 P1 P5 P6 P7 P8

g4g3g2g1f1f2f3f4

1:

2:

3:

4:

5:

6:

7:

Figure 2: A sample instance of INTERSECT(SC7,4), where two final sets intersect. The edges outgoing from
vertices that are not visited were omitted.

For a (p, r)-communication problem X with a Boolean output, we write ORt(X ), where t is a positive inte-
ger, to denote the (p, r)-communication problem in which players have t instances of X and want to output the
disjunction of their results.

Limited Pointer Chasing Equality. We say that a function f : A → B is r-non-injective, where r is a positive
integer, if there is an A′ ⊆ A of size r and a b ∈ B such that for all a ∈ A′, f(a) = b.

We write LPCEn,k,r to denote a modified version of EQUAL(PCn,k). In LPCEn,k,r the last player has to
output the same value as in EQUAL(PCn,k), unless one of the functions in one of the pointer chasing instances is
r-non-injective, in which case the last player has to output 1. This is a technical extension to ensure that no element
has too many pre-images, which is necessary to make one of our reductions work.

2.2 Lower bound for INTERSECT(SCn,p)

Our multipass streaming lower bounds for matching and connectivity reduce to proving a communication com-
plexity lower bound for the set chasing intersection problem INTERSECT(SCn,p). Note that if the players spoke
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in the order P2p, P2p−1, . . . , P1, then they would be able to solve both instances of SCn,p, using at most O(n)
communication per player, which is enough to solve the intersection problem. If the players spoke in the desired
order P1, P2, . . . , P2p but were allowed a total of p rounds then they would be able to solve the instances of
SCn,p with O(n) communication per message by simulating one step in the pointer chasing instance per round.
Our main result is however that if the number of allowed rounds is p − 1, then approximately n1+Ω(1/p) bits of
communication are needed to solve the problem, even for randomized protocols with constant error.

Our result is reminiscent of the classic Ω(n) communication complexity lower bounds for problems such as
indexing and pointer chasing PCn,p [27, 16] when the players speak in the “wrong” order. Guha and McGregor [16]
adapt the proof of Nisan and Wigderson [27] to show that solving PCn,p (in p−1 passes) requires Ω(n)/pO(1) total
communication even if the protocol can be randomized and can err with small constant probability. Increasing the
number of rounds to p or letting the players speak in the opposite order (even in just one round) would result in a
problem easily solvable with messages of length O(log n).

Even more directly related is the construction of Feigenbaum et al. [14], who show that solving SCn,p requires
n1+Ω(1/p) communication in less then p passes2. Their proof follows by using a direct sum theorem of Jain,
Radhakrishnan and Sen [21] to show that solving t ≈ nΘ(1/p) instances of PCn,p requires roughly t times more
communication than solving a single instance. Then they show that an efficient protocol for solving SCn,p would
result in an efficient protocol for solving t instances of PCn,p in parallel.

Compared to SCn,p, INTERSECT(SCn,p) is a decision problem. In particular, there seems to be no reduction
allowing to reconstruct the sets reached in INTERSECT(SCn,p). The only thing that we learn after an execution
of the protocol is whether these two sets intersect. Therefore, reducing our question to that of [14] seems unlikely.

Our proof of the above communication complexity lower bound proceeds in three steps:

STEP A: Reduction to proving a communication lower bound for ORt(EQUAL(PCn,p)).

STEP B: A direct sum style step lower bounding the communication complexity of ORt(EQUAL(PCn,p)) as
roughly t times the communication complexity of EQUAL(PCn,p).

STEP C: An information complexity lower bound for EQUAL(PCn,p).

The technical body of the paper actually proves these steps in the opposite order (Steps A, B, and C are discussed in
Sections 7, 6, and 5, respectively). But here we will expand on the steps in the above order. The actual proof works
with a variant of EQUAL(PCn,p), namely LPCEn,p,r which we defined earlier, in order to deal with functions
fi that may be highly non-injective, and which may break the reduction in Step A. For simplicity, we ignore
this aspect in the overview, but it is worth keeping in mind that this complicates the execution of Step C on the
information complexity lower bound.

Step A: Reduction to proving a lower bound for ORt(EQUAL(PCn,p)). Our idea here is to use a commu-
nication protocol for INTERSECT(SCn,p) to give a protocol that can answer if at least one of t instances of
EQUAL(PCn,p) has an Yes answer, where t = nΘ(1/p). (Recall that in the EQUAL(PCn,p) problem, the input
consists of two instances of PCn,p with functions {fi, gi : [n] → [n]}pi=1 and the goal is to output Yes iff we end
up at the same index in both instances, i.e., if f1(f2(. . . fp(1) . . .)) = g1(g2(. . . gp(1) . . .)).) Given t instances
of EQUAL(PCn,p), for each instance independently, we randomly scramble the connections in every layer while
preserving the answer to EQUAL(PCn,p). We then overlay all these instances on top of each other to construct an
instance of INTERSECT(SCn,p) (note that each node has exactly t neighbors in the next layer).

By construction, given an Yes instance of ORt(EQUAL(PCn,p)), by following the mappings from the instance
of EQUAL(PCn,p) which has an Yes answer, we also obtain an element that belongs to the intersection of two
resulting sets in INTERSECT(SCn,p). Since t = nΘ(1/p), we have t2p � n, and we argue that the random
scramblings ensure that if none of t instances of EQUAL(PCn,p) have an Yes answer, then it is unlikely that the
two resulting sets in the instance of INTERSECT(SCn,p) will intersect. This constraint on t is what limits our
lower bound to ∼n1+1/(2p).

2In fact, they show this for roughly less than p/2 passes, but replacing the lower bound of [27] with the lower bound of [16] and
extending some other complexity results to the setting with multiple players yields the improved bound claimed here.
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Step B: A direct sum style argument. In this step, our goal is to argue that the randomized communication
complexity of ORt(EQUAL(PCn,p)) is asymptotically Ω(t) times larger than that of EQUAL(PCn,p). This is
reminiscent of direct sum results of the flavor that computing answers to t instances of a problem requires asymp-
totically t times the resources, but here we only have to compute the OR of t instances. Our approach is to use the
information complexity method that has emerged in the last decade as a potent tool to tackle such direct sum like
questions [8, 2, 21], and more recently in [3, 5] and follow-up works. The introductions of [3, 19] contain more
detailed information and references on direct sum and direct product theorems in communication complexity.

Our hard distribution will be the uniform distribution over all inputs. Being a product distribution, the infor-
mation complexity will be at least the sum of the mutual information between the i-th input and the transcript, for
1 ≤ i ≤ t. Using the fact that the probability of an Yes answer on a random instance of EQUAL(PCn,p) is very
small (at most O(1/n)), we prove that the mutual information between the i-th input and the transcript cannot be
much smaller than the information cost of EQUAL(PCn,p) for protocols that err with probability o(1/n) under the
uniform distribution.

Step C: Lower bound for information cost of EQUAL(PCn,p). This leaves us with the task of lower bounding
the information cost of low error protocols for EQUAL(PCn,p) under the uniform distribution. This is the most
technical of the three steps. We divide this step into two parts.

First we show that if there were a protocol with low information cost IC on the uniform distribution, then
there would exist a deterministic protocol that on the uniform distribution would send mostly short messages and
err with at most twice the probability. This is done by adapting the proof of the message compression result of
[21] for bounded round communication protocols. We cannot use their result as such since in order to limit the
increase in error probability to γ, the protocol needs to communicate Ω(1/γ2) bits. This is prohibitive for us as we
need to keep the error probability as small as O(1/n), and can thus only afford an additive O(1/n) increase. We
present a twist to the simulation obtaining a deterministic protocol with at most twice the original error probability.
The protocol may send a long message with some small probability ε and in other cases communicates at most
O(IC /ε2) bits. In our application, we set ε to be a polynomial in 1/p.

The second part is a lower bound for EQUAL(PCn,p) against such “typically concise” deterministic protocols.
To prove this, we show that if the messages in the deterministic protocol are too short, then with probability at least
1/2, the protocol will have little knowledge about whether the solutions to two instances of pointer chasing are
identical and therefore, will still err with probability Ω(1/n), which is significant from our point of view. The proof
extends the lower bound for pointer chasing due to Nisan and Wigderson [27] and its adaptation due to Guha and
McGregor [16]. We have to overcome some technical hurdles as we need a lower bound for the equality checking
version and not for the harder problem of computing the pointer’s value. Further, we need to show that a constant
fraction of the protocol leaves are highly uncertain about their estimate of the pointers’ values, so that they would
err with probability Ω(1/n) (with 1/n being the collision probability for completely random and independent
values).

Summarizing, Step C can be seen as a modification of techniques of [27, 16] to prove a communication lower
bound for EQUAL(PCn,p) combined with techniques borrowed from [21] to imply a lower bound for information
complexity. The relationship between information complexity and communication complexity has been a topic of
several papers, starting with [8, 21] for protocols with few rounds, and more recently [3, 5, 4, 7, 6, 23] for general
protocols.

3 Preliminaries

Constant C?. Let C? be a constant such that the probability that a function f : [n] → [n] selected uniformly at
random is C?(1 + log n)-non-injective is bounded by 1/(2n2). The existence of C? follows from a combination of
the Chernoff and union bounds.
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3.1 Information and Communication Complexity

Communication complexity and information complexity play an important role in our proofs. We now provide
necessary definitions for completeness.

The communication complexity of a protocol is the function from the input size to the maximum length of
messages generated by the protocol on an input of a specific size. For a problem X and δ ∈ [0, 1], the communi-
cation complexity of X with error δ is the function from the input size to the infimum communication complexity
of private-randomness protocols that err with probability at most δ on any input. We write Rδ(X ) to denote this
quantity.

The information cost3 ICostψ(Π) of a protocol Π on input distribution ψ equals the mutual information
I(X; Π(X)), where X is the input distributed according to ψ and Π(X) is the transcript of Π on input X .

The information complexity ICψ,δ of a problem X on a distribution ψ with error δ is the infimum ICostψ(Π)
taken over all private-randomness protocols Π that err with probability at most δ for any input.

3.2 Useful information-theoretic lemmas

Let us first recall a result that says that if a random variable has large entropy, then it behaves almost like the
uniform random variable on large sets.

Fact 1 ([30], see also [27, Lemma 2.10]). Let X be a random variable on [n] with H(X) ≥ log n− δ. Let S ⊆ [n]

and let ∆ =
√

4δn
|S| . If ∆ ≤ 1/10, then Pr[X ∈ S] ≥ |S|n (1−∆) .

Using the above result, we show that it is hard to guess correctly with probability 1 − o(1/n) if two independent
random variables distributed on [n] collide if they have large entropy.

Lemma 2. Let X and Y be two independent random variables distributed on [n] such that both H(X) and H(Y )
are at least log n− δ, where δ = 48−2. Then

• Pr[X = Y ] ≥ 1/(8n), and

• if n ≥ 4, Pr[X 6= Y ] ≥ 1/4.

Proof. We first prove that there is a set SX ⊆ [n] such that |SX | ≥ 3
4n and for each x ∈ SX , Pr[X = x] ≥ 1/(2n).

Suppose that there is no such set. Then there is a set TX of size more than n/4 in which every element has

probability less than 1/(2n), and therefore, Pr[X ∈ TX ] < |TX |
2n . Note that

√
4δn
|TX | ≤ 1/12 < 1/10, which implies

that we can apply Fact 1 to TX . We obtain Pr[X ∈ TX ] ≥ 11
12 ·

|TX |
n , which contradicts the size of TX and implies

that SX with the desired properties does exist.
Analogously, one can prove that there is a set SY ⊆ [n] such that |SY | ≥ 3

4n and for each y ∈ SY , Pr[Y =
y] ≥ 1/(2n). Note that |SX ∩ SY | ≥ n/2. For each x ∈ SX ∩ SY , Pr[X = Y = x] ≥ 1/(4n2). Hence

Pr[X = Y ] ≥
∑

x∈SX∩SY

Pr[X = Y = x] ≥ 1/(8n).

To prove the second claim, for n ≥ 4, observe that for every setting x of X , |Sy \ {x}| ≥ 3n
4 − 1 ≥ n/2, and

therefore, the probability that Y 6= X is at least |Sy \ {x}| · 1/(2n) ≥ 1/4.

The following lemma gives a bound on the entropy of a variable that randomly selects out of two random
values based on another 0-1 valued random variable.

3Note that this is the external information cost following the terminology of [3]. For product distributions ψ, this also equals the internal
information cost. As product distributions will be our exclusive focus in this paper, this distinction is not relevant to us, and we will simply
use the term information cost.
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Lemma 3. Let X0, X1, and Y be independent discrete random variables, where X0 and X1 are distributed on the
same set Ω and Y is distributed on {0, 1}. Then

H(XY ) ≤ 1 +
1∑
i=0

Pr[Y = i] ·H(Xi).

Proof. For each i ∈ {0, 1} and each ω ∈ Ω, let pi,ω = Pr[Xi = ω]. Let q = Pr[Y = 0]. For each ω ∈ Ω,
Pr[XY = ω] = qp0,ω+(1−q)p1,ω. The inequality follows from the concavity of the function f(x) = x · log(1/x)
on [0, 1] and simple algebraic transformations:

H(XY ) =
∑
ω∈Ω

(qp0,ω + (1− q)p1,ω) · log (1/ (qp0,ω + (1− q)p1,ω))

≤
∑
ω∈Ω

(qp0,ω · log(1/qp0,ω) + (1− q)p1,ω · log(1/(1− q)p1,ω))

= q · log(1/q) + q ·
∑
ω∈Ω

p0,ω log(1/p0,ω)

+ (1− q) · log(1/(1− q)) + (1− q) ·
∑
ω∈Ω

p1,ω log(1/p1,ω)

= H(q) + q ·H(X0) + (1− q) ·H(X1)

≤ 1 +
1∑
i=0

Pr[Y = i] ·H(Xi).

4 The Main Tool and Its Applications

The main tool in our paper is the following lower bound for the communication complexity of set chasing inter-
section.

Theorem 4. For n larger than some positive constant and p ≤ logn
log logn ,

R1/10(INTERSECT(SCn,p)) = Ω

(
n1+1/(2p)

p16 · log3/2 n

)
.

We now present relatively straightforward applications of this theorem to three graph problems in the streaming
model.

Theorem 5. Solving the following problems with probability at least 9/10 in the streaming model with p =

O
(

logn
log logn

)
passes requires at least Ω

(
n1+1/(2(p+1))

p20·log3/2 n

)
bits of space:

PROBLEM 1: For two given vertices u and v in an undirected graph, check if the distance between them is at
most 2(p+ 1).

PROBLEM 2: For two given vertices u and v in a directed graph, check if there is a directed path from u to v.

PROBLEM 3: Test if the input graph has a perfect matching.

Proof. Let us consider the problems one by one. For Problem 1, we turn an instance of INTERSECT(SCk,p+1)
into a graph on n = (2p + 3) · k vertices. We modify the graph in Figure 2 as follows. First, we make all edges
undirected. Second, we merge every pair of middle vertices connected with a horizontal line into a single vertex.
Any path between the top leftmost vertex u and the top rightmost vertex v is of length at least 2p+ 2. The length
of the path is exactly 2p + 2 if and only if it moves to the next layer in each step. Note that this corresponds
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⇒

P2

f2g2

P1P2 P3 P4

g1f1f2

P4P3P1

g2g1f1

u uv v

Figure 3: Reduction to the perfect matching problem.

to the case that the final sets for two instances of SCk,p+1 intersect. We create the input stream by inserting
first the edges describing the function held by P1, then by P2 and so on, until P2p+2. If there is a streaming
algorithm for the problem that uses at most T bits of space, then clearly there is a communication protocol for
INTERSECT(SCk,p+1) with total communication (2p+ 2) · p · T and the same error probability as the streaming
algorithm. The protocol can be obtained by the players by simulating the streaming algorithms on their parts of
the input and communicating its state. This implies that T = Ω

(
1
p2
· (n/p)1+1/(2(p+1))

p16·log3/2 n

)
= Ω

(
n1+1/(2(p+1))

p20·log3/2 n

)
.

For Problem 2, the reduction is almost the same, with the only difference being that we make all edge directed
from left to right and we want to figure out if there is a directed path from the top leftmost vertex to the top rightmost
vertex. Such a path exists if and only if the final sets in the instance of INTERSECT(SCk,p+1) intersect.

For Problem 3, the reduction is slightly more complicated. We show how to modify the hard instance G that
we have created for Problem 1. Let us first add a perfect matching before and after every layer of edges of the
hard instance for Problem 1, except for the first and the last layer, in which we omit one edge. The omitted edges
are incident to the vertices u and v corresponding to value 1, i.e., the vertices that we want to connect using a
path going directly from left to right in Problem 1. See Figure 3 for an example. Note that the additional edges
constitute a matching M in which all but two vertices are matched. Now the graph has a perfect matching iff
there exists an augmenting path in M between u and v, which are the unmatched vertices. Any augmenting path
has to alternate between matched and unmatched edges, which implies in our case, that it has to go directly from
left to right. Therefore, any augmenting path in M corresponds to a path going directly from left to right in G
and connecting u and v. The only difference is that the augmenting path has additional edges coming from the
matchings were inserted intoG. Therefore the streaming algorithm for testing if a graph has a perfect matching can
be used to create a protocol for INTERSECT(SCk,p+1), where the additional edges can be placed at the beginning
of the stream.

5 Step 1: Information Complexity of Pointer Chasing Equality

To prove the main theorem of the paper, we first show a lower bound for the information complexity of Limited
Pointer Chasing Equality.

Lemma 6. Let n and p be positive integers such that n ≥ 18p2. It holds

ICµ,1/(64n)(LPCEn,p,C?(1+logn)) ≥
n

229 · 35 · p16
− d2 log ne

213 · 32 · p8
− 2

= Ω

(
n

p16

)
−O

(
log n

p8
+ 1

)
,

where µ is the uniform distribution on all possible inputs of the problem.
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The proof consists of two smaller steps. First we show that if there is a protocol with low information cost
on the uniform distribution, then there is a deterministic protocol that on the uniform distribution sends mostly
short messages, and errs with at most twice the probability. Then we show that the messages in the deterministic
protocol cannot be too short. Otherwise, with probability at least 1/2, the protocol would have little knowledge
about whether the solutions to two instances of pointer chasing are identical. In this case the protocol would still
err with probability Ω(1/n).

5.1 Transformation to Deterministic Typically Concise Protocols

Let us first define concise protocols, which send short messages most of the time.

Definition 7. We say that a protocol P is an (m, ε)-concise protocol for an input distribution µ if for each i, the
probability that the i-th message in the protocol is longer then m is bounded by ε.

The following three facts from [20, 21] are very useful in our proofs. They regard information theory and
random variables. For a distribution P on N, we write P (i) to denote the probability of selecting i from P . For
two distributions P and Q, we write DKL(P‖Q) to denote the Kullback-Leibler divergence of Q from P .

Fact 8 ([21, Fact 1]). Let X , Y , and Z be random variables. The following identity holds: I(X;Y,Z) =
I(X;Y ) + I(X;Z|Y ).

Fact 9 ([21, Fact 2]). Let X and Y be a pair of random variables. Let P be the distribution of Y and let Px
be the distribution of Y given X = x. Then I(X;Y ) = EX [DKL(PX‖P )], where DKL(Q1‖Q2) denotes the
KL-divergence between distributions Q1, Q2.

Fact 10 ([20, 21, Substate Theorem]). Let P and Q be probability distributions on N such that DKL(P‖Q) = a.
Let ε ∈ (0, 1) and let Good = {i ∈ N : P (i) · 2−(a+1)/ε ≤ Q(i)}. If X is a random variable distributed according
to P , then Pr[X ∈ Good] ≥ 1− ε.

We now show an auxiliary lemma that shows that if DKL(P‖Q) is bounded then a relatively short sequence of
independent random variables distributed according to Q suffices to generate a random value from P . The lemma
is an adaptation of a lemma from [21].

Lemma 11. Let P and Q be two probability distributions on N such that DKL(P‖Q) < ∞. Let (Γ1,Γ2,Γ3, . . .)
be a sequence of independent random variables, each distributed according to Q. Let Γ0 = −1. Let ε ∈ (0, 1).
There is a set Good ⊆ N and a random variable R ∈ N such that

• ∑i∈Good P (i) ≥ 1− ε,

• for all x ∈ Good, Pr[ΓR = x] = P (x),

• E[R] ≤ 2(DKL(P‖Q)+1)/ε.

Proof. Let the set Good be defined as in Fact 10, i.e., Good = {i ∈ N : P (i) · 2−(a+1)/ε ≤ Q(i)}, where we
set a = DKL(P‖Q). Following [21], we use rejection sampling to prove the lemma. Consider the following
process. For consecutive positive integers j, starting from 1, do the following. Look at the value γj taken by Γj .
If γj ∈ Good, toss a biased coin and with probability P (j) · 2−(a+1)/ε/Q(j), set R = j and finish the process. If
γj 6∈ Good or the coin toss did not terminate the process, toss another biased coin and with probability

2−(a+1)/ε · (1−∑i∈Good P (i))

(1− 2−(a+1)/ε ·∑i∈Good P (i))
,

set R = 0 and also terminate the process. Otherwise, continue with j increased by 1. The process terminates with
probability 1.

10



Let us argue that R and Good have the desired three properties. The first property is a consequence of Fact 10.
To prove the other two, observe what happens when the process reaches a specific j. The process terminates with
R = j and ΓR = x for a specific x ∈ Good with probability P (x) · 2−(a+1)/ε. The probability that it terminates
with R = 0 equals exactly 2−(a+1)/ε · (1−∑i∈Good P (i)). Since these probabilities are independent of j, when
the process eventually terminates, the probability of ΓR = x for each x ∈ Good is exactly P (x), which proves
the second property. Finally, the probability that the process terminates for a specific j after reaching it is exactly
2−(a+1)/ε. Clearly, E[R] is bounded from above by the expected j for which the process stops, which in turn
equals exactly 2(a+1)/ε.

The following lemma allows for converting protocols with bounded information cost on a specific distribution
into deterministic protocols that mostly send short messages on the same distribution. The proof of the lemma
is a modification of the message compression result of [21]. An important feature of our version is that the
error probability is only doubled, instead of an additive constant increase which we cannot afford. A simple but
key concept we use to achieve this is to allow the protocol to send long messages with some small (constant)
probability. We then handle such “typically concise” protocols in our lower bound of Section 5.2.

Lemma 12. Let Π be a private-randomness protocol for a (p, r)-communication problem P such that Π errs with
probability at most δ > 0 on a distribution µ. For any q > 0, there is a protocol Π′ for P such that

• Π′ is deterministic,

• Π′ errs with probability at most 2δ on µ,

• Π′ is (m, q)-concise, where m = 128 · (ICostµ(Π) + 2) · (pr/q)2.

Proof. We start with a proof overview. There are pr− 1 messages sent in Π. We construct a series of intermediate
protocols Π′pr−1, Π′pr−2, . . . , Π′1, where Π′i is a modification of the protocol Π in which, for i ≤ j ≤ pr − 1,
the j-th message is likely to be short. The first i − 1 messages of Π′i are the same as the messages of Π. In
particular, Π′i uses only private randomness to generate the first i − 1 messages. Later messages are generated
using public randomness. The players in the modified protocols will convey exactly the same information as the
original protocol Π and therefore, the protocols will err with the same probability, with the only difference being a
different encoding of messages and the use of public randomness.

For convenience, let Π′pr be the original protocol Π. We now explain how we convert Π′i+1 into Π′i. Let M0

be the random variable corresponding to the sequence of the first i − 1 messages in Π′i+1. Let M1 be the random
variable describing the i-th message in Π′i+1. Let M = (M0,M1). Recall that M is distributed in the same way
as its equivalent for the original protocol P . Let Pj be the player sending the i-th message (i.e., j ≡ i (mod p)).
Let X be the combined inputs of the other players, and let Y be the input of the j-th player. We write Mm0

1 to
describe the distribution of M1 when M0 = m0. Moreover, we write Mx,y,m0

1 to describe the distribution of M1

when X = x, Y = y, and M0 = m0. The distribution Mx,y,m0
1 does not depend on x, because the protocol uses

only private randomness and to generate the i-th message it only uses the previous messages and y, the input of
the i-th player. It follows from Fact 8 and Fact 9 that

I(X,Y ;M) = I(X,Y ;M0) + I(X,Y ;M1|M0)

= I(X,Y ;M0) + EM0,X,Y

[
DKL

(
MX,Y,M0

1

∥∥∥MM0
1

)]
.

We define ai as EM0,X,Y

[
DKL

(
MX,Y,M0

1

∥∥∥MM0
1

)]
for this specific setting of i. Overall, it follows by induction

that the mutual information between the input and the protocol transcript, i.e., ICostµ(P ), equals
∑pr−1

i=1 ai. This
also implies that DKL (Mx,y,m0

1 ‖Mm0
1 ) < ∞ for any setting X = x, Y = y, and M0 = m0 that has nonzero

probability.
Recall that the first i − 1 messages of Π′i are generated in the same way as in Π′i+1. We now describe how

Pj generates the i-th message. Let m0 be the messages sent so far. The distribution of the i-th message, Mm0
1 is
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known to all the players. Let (Γ1,Γ2,Γ3, . . .) be an infinite sequence of independent random variables, where each
Γi is drawn independently from the distributionMm0

1 . The sequence of Γi’s is generated using public randomness,
so it is known to all the players as well. We now use Lemma 11, where we set Q = Mm0

1 , P = Mx,y,m0
1 , and

ε = q/8pr. Note that the distribution Mx,y,m0
1 does not depend on x, because the randomness is private in the

first i messages in Π′i+1. Pj will transmit exactly the same information in Π′i as in Π′i+1. The player Pj fixes a set
Good and a random variable R as in Lemma 11. If ΓR ∈ Good, then the player sends a single bit 0 followed by
a prefix-free encoding of the value R. Due to the concavity of the logarithm, the expected length of the message
can be bounded by 1 + 16pr(DKL(Mx,y,m0

1 ‖Mm0
1 ) + 1)/q + 2 ≤ 16pr(DKL(Mx,y,m0

1 ‖Mm0
1 ) + 2)/q, where

the additional factor of 2 and the additional additive term of 1 come from the prefix free encoding. Overall, the
expected length of the message starting with 0 equals 16pr(ai + 2)/q.

If ΓR 6∈ Good, the player generates the message from the part of distribution Mx,y,m0
1 restricted to N \ Good

and transmits the selected value prefixing it with a single bit 1. Overall, all players can decode a message generated
according to Mx,y,m0

1 and then behave in the same way as in the protocol Π′i+1.
After applying a sequence of pr − 1 steps of the transformation, we obtain a randomized protocol Π′1 that still

errs with probability δ. We now show that there is a suitable setting of random bits in the protocol to obtain the
desired deterministic protocol Π′. First, let Z ∈ {0, 1} be a random variable indicating that the algorithm returned
an incorrect answer. We have E[Z] = δ, where this expectation and all expectations in the remainder of this proof
are taken over both inputs drawn from µ and random bits of the protocol Π′1. It follows from Markov’s inequality
that the probability that fixing the random bits makes the algorithm err with probability higher than 2δ on µ is
at most 1/2. Consider now the i-the message in Π′1, where 1 ≤ i ≤ pr − 1. Let Z ′i be the random indicator
variable that equals 1 if the i-th message starts with 1. It follows from our construction that E[Z ′i] ≤ ε = q/8pr.
If we fix the random bits of the protocol, the probability that the i-th message starts with 1 with probability higher
than q/2 is bounded by Markov’s inequality by 1/4pr. Finally, let Z ′′i be the random indicator variable that
the i-th message in Π′i starts with 0 and has length greater than 128(ai + 2)(pr/q)2. Consider now a random
variable Wi that equals the length of the i-th message if the message starts with 0 and 0 if it starts with 1. We
know that E[Wi] ≤ 16pr(ai + 2)/q, and therefore, by Markov’s inequality E[Z ′′i ] ≤ q/8pr. Applying Markov’s
inequality again, for a random settings of the protocol’s randomness, the expectation becomes larger than q/2
with probability at most 1/4pr. Summarizing, by fixing the protocol’s random bits, with probability at least
1−1/2−1/(4pr)·(pr−1)−1/(4pr)·(pr−1) = 1/2−(pr−1)/(2pr) > 1/2−1/2 = 0, we obtain a deterministic
protocol that errs with probability at most 2δ, and sends the i-th message longer than 128(ai + 2)(pr/q)2 with
probability bounded by q. The final claim follows from the fact that all ai are bounded by ICostµ(Π).

5.2 Lower Bound for Deterministic Typically Concise Protocols

In this section, we show that a deterministic concise protocol for the Limited Pointer Chasing Equality cannot send
short messages very often, unless it errs with probability Ω(1/n). The proof follows along the lines of the lower
bound for Pointer Chasing due to Nisan and Wigderson [27] and its adaptation due to Guha and McGregor [16].
The main technical differences come from the fact that we want to show a lower bound for Limited Pointer Chasing
Equality. First, this requires ruling out the impact of the easy case when one of the functions is t-non-injectve for
large t. Second, this requires showing that with constant probability, the last player is unlikely to know what the
solutions to the input instances are, and since they are independent, they will collide with probability Ω(1/n).

Lemma 13. If n2 ≥ 18p2, then any deterministic (m, q)-concise protocol for LPCEn,p,C?(1+logn), where m ≤
εn/(4p2)−d2 log ne, q = 1

12p2
, and ε = (48p2)−3, errs with probability at least 1/(16n) on the uniform distribu-

tion over all possible inputs.

Proof. Recall that in the LPCEn,p,C?(1+logn) problem, there are 2p players P1, . . . , P2p, with players Pi and Pp+i,
1 ≤ i ≤ p, holding functions fi : [n] → [n] and gi : [n] → [n], respectively. The goal of the problem is to
output “1” if one of the functions is C?(1 + log n)-non-injective or f1(f2(. . . fp(1) . . .)) = g1(g2(. . . gp(1) . . .)).
Otherwise, “0” is the correct output. The players speak in order P1 through P2p and this repeats p− 1 times.
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Let ap+1 = 1 and by induction, let ai = fi(ai+1) for each i ∈ [p]. Analogously, let bp+1 = 1 and let
bi = gi(bi+1) for each i ∈ [p]. Unless one of the functions is C?(1 + log n)-non-injective, the goal of the problem
is to find out whether a1 = b1.

We make two modifications to the protocol:

1. We augment the (m, q)-concise protocol by simulating in parallel the following natural protocol. Initially, we
append the pair (ap+1, bp+1) to each message until we reach the player Pp, who can compute ap = fp(ap+1).
Then we pass the pair (ap, bp+1) until it reaches P2p, who can compute bp = gp(bp+1) and pass (ap, bp) to the
next player. In general, whenever a message (ai, bi) reaches Pi−1, it is updated to (ai−1, bi), and whenever
a message (ai−1, bi) reaches Pp+i−1, it is updated to (ai−1, bi−1). This protocol finally computes (a2, b2).
Appending the information, increases the length of each messages by d2 log ne. This way, we obtain a
deterministic (m+ d2 log ne, q)-concise protocol.

2. The first time a player whose function is C?(1+ log n)-non-injective is reached in the protocol, we make the
player send a message longer than m + d2 log ne bits. This may require modifying other messages sent by
the player. We now describe how this can be done depending on the protocol’s behavior.

(a) If the player is already sending long messages in some cases, we can relabel and extend some of the
long messages to accommodate the transition of some short messages into long messages. Recall that
the player’s function is C?(1 + log n)-non-injective with probability at most 1/(2n2). Hence, in this
case, the probability of sending a long message increases by at most 1/(2n2).

(b) Likewise, if one of at least n2 prefixes of length d2 log ne is not used by the protocol at all, we can use
this prefix to transmit long messages. In this case, the probability of a long message increases by at
most 1/(2n2) as well.

(c) Finally, if the player does not send long messages and all prefixes of length d2 log ne are used, one of
these prefixes occurs with probability at most 1/n2. We extend all messages starting with this prefix
to turn them into long messages and reduce the case to the first case. The extension increases the
probability of long messages by at most 1/n2.

Overall, the probability of long messages can increase by at most 1/(2n2) + 1/n2 ≤ 2/n2. As a result we
obtain a deterministic (m+ d2 log ne, q + 2/n2)-concise protocol.

Let m′ = m+ d2 log ne and q′ = q + 2/n2.
From now on we think of our deterministic protocol as a decision tree of depth 2p(p − 1). The i-th layer of

nodes, 1 ≤ i ≤ 2p(p − 1), corresponds to the situation when the control is passed to the player Pj , where j ≡ i
(mod 2p). Each leaf in the tree is labeled with either a “0” or a “1”, corresponding to the decision made by the
algorithm. Each edge outgoing from nodes at layers 1 through 2p(p− 1)− 1 is labeled with the message that the
corresponding player sends, given his input and the previous messages. Edges between the last two layers are not
labeled, because the last player does not send a message.

We now introduce a few definitions for each node z in the decision tree:

• cz: We set cz to the total length of the messages sent on the path from the root to z.

• F z1 × · · · × F zp × Gz1 × . . . × Gzp: Let F be the set of all functions from n to n. Since the protocol is
deterministic, for each node z, the set of input functions (f1, . . . , fp, g1, . . . , gp) for which the protocol
reaches z can be described as a product F z1 × · · · × F zp × Gz1 × . . . × Gzp ⊆ F2p. Note that if the node is
reached then the probability of each tuple in F z1 × · · · × F zp ×Gz1 × . . .×Gzp is identical.

• iz and jz: We make iz and jz be the indices of the last pair (aiz , bjz) sent on the path from the root to z. For
the root we assume that the pair is (ap+1, bp+1) = (1, 1), i.e., iroot = jroot = p + 1. Recall that for all z,
iz ≥ 2 and jz ≥ 2.
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• (Az, Bz): (Az, Bz) is a pair of random variables. Its random value is generated by selecting two functions
f? ∈ F ziz−1 and g? ∈ Gzjz−1 independently and uniformly at random and applying them to (aiz , bjz) to
obtain (f?(aiz), g?(bjz)). (Az, Bz) describes the possible values of the pair (ai, bj) if we move one step
ahead in applying functions fi and gj , compared to the trivial algorithm that we simulate in parallel. Since
the protocol is deterministic, the inputs of the players are independent, and Az and Bz depend on inputs of
disjoint sets of players, the variables Az and Bz are independent.

We say that a node z is confusing if it has the following properties:

1. All messages sent on the path to z have length bounded by m′.

2. z is a leaf or for all i ∈ [p], both |F zi | ≥ 2−2cz |F| and |Gzi | ≥ 2−2cz |F|, where cz is the total length of the
messages on the path from the root to z.

3. H(Az) ≥ log n− δ and H(Bz) ≥ log n− δ, where δ = ε2/3.

It is easy to see that the root of the decision tree is confusing. We now prove by induction that the probability
that for a random input, the protocol reaches a non-confusing node in step i is bounded by (i−1)·(q+ 3

2n
−2+4ε1/3).

Suppose that the claim is true for step i and let us prove it for step i + 1. We bound the probability that a specific
property is violated.

1. The probability that the first property is violated is bounded by q′, because the protocol is (m′, q′)-concise.

2. Consider a confusing node z in step i. If i = 2p(p− 1), the children of z are leaves, and the property holds.
So it suffices to focus on the case that i < 2p(p − 1). What is the probability that the second property is
violated for some child w of z? Let Pj be the player in control of step i. Without loss of generality, let us
assume that 1 ≤ j ≤ p. Note that for all t ∈ [p], Gwt = Gzt and for all t ∈ [p] \ {j}, Fwt = F zt . The property
may only be violated for Fwj . For each child w of z, let mw = cw − cz . Let W be the random variable
representing the distribution of children of z. It holds

Pr

[
|FWj |
|F| < 2−2cW

]
≤ Pr

[
|FWj |
|F zj |

< 2−2mW

]
≤
∑
w

2−2mw

≤ 1

n2

∑
w

2−mw ≤ 1

n2
,

where the second to last inequality follows from the fact that mw ≥ 2 log n, and the last inequality follows
from Kraft’s inequality. Therefore the probability that a confusing node loses the second property in the next
step is bounded by 1/n2.

3. It remains to bound the probability that the third property is lost. Let z be a confusing node in step i and
let Pj be the player in charge of this step. If neither j = iz − 1 nor j − p = jz − 1, then for any child w
of z, Fwiz−1 = F ziz−1 and Gwjz−1 = Gzjz−1. In this case the pairs of variables (Az, Bz) and (Aw, Bw) have
the same distribution and therefore the respective entropies remain the same. Consider now the case that
j = iz− 1. Pj computes aj = fj(aiz) and we need to bound the entropy H(Aw) of Aw for all children w of
z, which is essentially the entropy of aj−1 given all the information communicated so far. The information
about fj−1 at each child w can be expressed as a vector fwj−1 = (fwj−1(1), fwj−1(2), . . . , fwj−1(n)) of random
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variables in [n]. We have H(Aw) = H(fwj−1(aj)). Moreover, it holds∑
t∈[n]

H(fwj−1(t)) ≥ H(fwj−1)

= log |Fwj−1|
= log |F zj−1|
≥ log(2−2cz |F|)
= log |F| − 2cz

≥ n(log n− ε).

The first inequality above follows from subadditivity of entropy. The second and third inequalities follow
from the fact that the function is uniformly distributed on Fwj−1 = F zj−1 of size bounded by the fact that z is
confusing (Property 2). Finally the last inequality follows from the fact that z is confusing (Property 1), and
therefore, εn/2 ≥ 2p(p− 1) ·m′ ≥ cz .
For t uniformly distributed on [n], by Markov’s inequality, we have

Pr
t

[H(fwj−1(t)) ≤ log n− δ] ≤ ε/δ.

Unfortunately, aj may not be uniformly distributed. However, we can exploit its high entropy, at least
log n − δ. We apply Fact 1. Let S be the set of t such that H(fwj−1(t)) ≥ log n − δ. We already know that
|S| ≥ (1− ε/δ)n. Note that we can apply Fact 1, because

∆ =

√
4δ

|S|/n ≤
√

4δ

1− ε
δ

≤
√

8δ ≤
√

8 · ε1/3 ≤
√

8 · 48−1 < 1/10.

The probability that aj belongs to S is at least

|S|
n

(
1−

√
4δ

|S|/n

)
≥
(

1− ε

δ

)(
1−

√
4δ

1− ε
δ

)
≥
(

1− ε1/3
)(

1−
√

8δ
)

≥ 1− (1 +
√

8)ε1/3 ≥ 1− 4ε1/3.

This implies that
Pr
aj

[H(fwj−1(aj)) ≤ log n− δ] ≤ 4ε1/3.

The case that j − p = jz − 1 is analogous, and therefore, the probability that the third property is lost in the
next step is bounded by 4ε1/3.

Summarizing, the probability that moving from step i to step i + 1, we move from a confusing node to a non-
confusing node is bounded by q′ + 1/n2 + 4ε1/3 = q + 3

2n
−2 + 4ε1/3, which finishes the inductive proof.

Overall, it follows that the protocol finishes in a non-confusing leaf with probability bounded by 2p(p − 1) ·
(q + 3

2n
−2 + 4ε1/3) ≤ 2p2 · q + 3p2

n2 + 8p2 · (48p2)−1 ≤ 1/6 + 1/6 + 1/6 = 1/2.
Consider now a confusing leaf z. Recall that we modified the protocol so that if one of the functions is

C?(1 + log n)-non-injective a message longer than m′ is transmitted. By definition, in such a case, the simulation
of the protocol leads to a leaf that is not confusing. Therefore, the correct solution to an input instance that leads
to z is solely based on whether a1 = b1. We know that the random variables Az and Bz , which model a1 and
b1, respectively, are independent and both have entropy at least log n − δ, where δ ≤ 48−2. Observe also that
n ≥

√
18p2 ≥ 4. Hence it follows from Lemma 2 that whatever solution the protocol claims at z, be it “0” or “1”,

the claim is incorrect with probability at least 1/(8n). Overall, on all inputs the protocol has to err with probability
at least 1

2 · 1
8n = 1

16n .
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5.3 Proof of Lemma 6

We now combine Lemmas 12 and 13 to prove Lemma 6, the main result of Section 5.

Proof of Lemma 6. Consider any protocol protocol Π for LPCEn,p,C?(1+logn) that errs with probability at most
1/(64n) on µ. By Lemma 12, there is a deterministic (m, 1/(12p2))-concise protocol Π′ for LPCEn,p,C?(1+logn)

that errs with probability at most 1/(32n) on µ, where m = 128 · (ICostµ(Π) + 2) ·
(

2p2

(1/(12p2))

)2
= 213 · 32 · p8 ·

(ICostµ(Π) + 2). It follows from Lemma 13 that m ≥ n
(48p2)3·4p2 − d2 log ne = n

216·33·p8 − d2 log ne. Therefore,

ICostµ(Π) ≥ n
229·35·p16 −

d2 logne
213·32·p8 − 2. Since this bound holds for any protocol Π that is correct with probability

1− 1/(64n), this is also a lower bound for the information complexity of the problem.

6 Step 2: Direct Sum Theorem for Pointer Chasing Equality

The following lemma is the main result of this section.

Lemma 14. Let n, p, and t be integers such that n2 ≥ 18p2 and t ≤ n/4. Let r = C?(1 + log n). It holds

R1/3(ORt(LPCEn,p,r)) = Ω

(
tn

p16 log n

)
−O

(
pt2
)
.

Before we prove it, let us first recall two classic results. First, the information complexity is a lower bound for
the randomized communication complexity of a protocol that errs with the same probability.

Lemma 15 ([2, Proposition 4.3]). Let δ ∈ (0, 1). For any communication problem P and any distribution ψ on
inputs, Rδ(P) ≥ ICψ,δ(P).

Second, if the input distribution is a product distribution on multiple instances of a subproblem, then the total
information revealed by the protocol transcript equals at least the information revealed for each of the instances.

Lemma 16 ([2, Lemma 5.1]). Let P be a communication problem with Boolean output and let Π be a private-
randomness protocol for ORt(P) for a positive integer t. Let ψ be a distribution on inputs of P . Let X =
(X1, . . . , Xt) be a vector of independent random variables with each distributed according to ψ. For any input x,
let Π(x) be the transcript of Π on x. Then the following inequality holds:

I(X; Π(X)) ≥∑t
i=1 I(Xi; Π(X)).

Now we show the main ingredient, which is a proof that any correct protocol for ORt(LPCEn,p,r) has to reveal
almost as much information about each coordinate as if it was separately solving the corresponding instances of
LPCEn,p,r.

Lemma 17. Let Π be a private-randomness protocol for ORt(LPCEn,p,r) that errs with probability at most δ.
Let X = (X1, . . . , Xt) be a random vector with each coordinate Xi independently selected from the uniform
distribution µ on all possible inputs to LPCEn,p,r. Let Π(x) be the transcript of Π on input x.

If r ≥ C? · (log n+ 1), t ≤ n/4, and p ≤ n, then for each i ∈ [t], it holds

I(Xi; Π(X)) ≥ ICµ,2δ(LPCEn,p,r)− 4pt log n− 1.

Proof. For each j ∈ [t], let Yj ∈ {0, 1} be the the solution to LPCEn,p,r on a specific coordinate Xj . The
probability that Yj = 1 is bounded by 1/n+ 2p · 1/(2n2) = 2/n, where the first term comes from the probability
that the equality of two instances of PCn,p holds and the other is a bound on the probability that one of the functions
is r-non-injective.

Fix i ∈ [t]. By the union bound, the probability that
∨
j 6=i Yj = 1 is bounded by t ·2/n ≤ 1/2. If

∨
j 6=i Yj = 0,

the solution to ORt(LPCEn,p,r) on the input instance equals Yi. Therefore, Π has to compute Yi with probability
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at least 1 − 2δ, provided
∨
j 6=i Yj = 0. If it erred with higher probability, it would overall err on the input

instance of ORt(LPCEn,p,r) with probability greater than δ. This implies that I(Xi; Π(X)|∨j 6=i Yj = 0) ≥
ICµ,2δ(LPCEn,p,r).

We now use I(Xi; Π(X)|∨j 6=i Yj = 0) to bound I(Xi; Π(X)) from below. By definition, we have I(Xi; Π(X)) =
H(Xi) − H(Xi|Π(X)). Note that H(Xi) = H(Xi|

∨
j 6=i Yj = 0), because the coordinates of Xi are indepen-

dent. Let us now upper bound H(Xi|Π(X)). For each transcript π and each z ∈ {0, 1}, let pz,π = Pr[Π(X) =
π|∨j 6=i Yj = z]. It follows from Lemma 3 that

H(Xi | Π(X)) = Eπ[H(Xi | Π(X) = π)]

≤ Eπ
[
1 +

1∑
z=0

Pr
[∨
j 6=i

Yj = z | Π(X) = π
]
·H
(
Xi | Π(X) = π,

∨
j 6=i

Yj = z
)]

= 1 + Eπ

[
1∑
z=0

pz,π ·
Pr
[∨

j 6=i Yj = z
]

Pr[Π(X) = π]
·H
(
Xi | Π(X) = π,

∨
j 6=i

Yj = z
)]

= 1 +
1∑
z=0

Pr
[∨
j 6=i

Yj = z
]
· Eπ

[
pz,π

Pr[Π(X) = π]
·H
(
Xi | Π(X) = π,

∨
j 6=i

Yj = z
)]

= 1 +

1∑
z=0

Pr
[∨
j 6=i

Yj = z
]
·
∑
π

pz,π ·H
(
Xi | Π(X) = π,

∨
j 6=i

Yj = z
)

= 1 +
1∑
z=0

Pr
[∨
j 6=i

Yj = z
]
·H
(
Xi | Π(X),

∨
j 6=i

Yj = z
)
.

Note that the entropy of Xi, and therefore also any conditional entropy of Xi, is always bounded by 2p log n.
Hence

H(Xi | Π(X)) ≤ 1 +H
(
Xi | Π(X),

∨
j 6=i

Yj = 0
)

+ Pr
[∨
j 6=i

Yj = 1
]
· 2pn · log n

≤ 1 +H
(
Xi | Π(X),

∨
j 6=i

Yj = 0
)

+ 4pt log n.

Thus we obtain

I(Xi; Π(X)) = H(Xi)−H(Xi | Π(X))

≥ H
(
Xi |

∨
j 6=i

Yj = 0
)
−H

(
Xi | Π(X),

∨
j 6=i

Yj = 0
)
− 1− 4pt log n

≥ I
(
Xi; Π(X) |

∨
j 6=i

Yj = 0
)
− 1− 4pt log n

≥ ICµ,2δ(LPCEn,p,r)− 1− 4pt log n.

We can finally prove the main lemma of this section.

Proof of Lemma 14. Let Π be a private-randomness protocol for ORt(LPCEn,p,r) that errs with probability at
most 1/(128n). It follows from Lemmas 16 and 17 that

I(X; Π(X)) ≥
t∑
i=1

I(Xi; Π(X)) ≥ t · ICµ,1/(64n)(LPCEn,p,r)− 4pt2 log n− t.
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By definition, this quantity bounds also ICµt,1/(128n)(ORt(LPCEn,p,r)). Therefore, by Lemma 15 and Lemma 6,
we get

R1/(128n)(ORt(LPCEn,p,r)) ≥ Ω

(
tn

p16

)
−O

(
pt2 log n

)
.

Via standard amplification bounds, R1/(128n)(ORt(LPCEn,p,r)) ≤ R1/3(ORt(LPCEn,p,r)) · O(log n), which
gives us

R1/3(ORt(LPCEn,p,r)) = Ω

(
tn

p16 log n

)
−O

(
pt2
)
.

7 Step 3: Reduction to Set Chasing Intersection

We give a reduction showing that under specific conditions, a protocol for INTERSECT(SCn,p) can be used to
create a communication protocol for ORt(LPCEn,p,r).

Lemma 18. Let n, p, r, and t be positive integers such that t2prp−1 ≤ n/10. If there is a communication protocol
for INTERSECT(SCn,p) that uses C bits of communication and errs with probability at most 1/10, then there is
a public-randomness communication protocol for ORt(LPCEn,p,r) that uses C + 2p bits of communication and
errs with probability at most 2/10.

Proof. Consider an instance of ORt(LPCEn,p,r). There are 2p players, who have t instances of LPCEn,p,r. Each
instance of LPCEn,p,r consists of two instances of PCn,p. Let fi,j and gi,j , where 1 ≤ i ≤ p and 1 ≤ j ≤ t, be
the functions that describe these two instances. For each i ∈ [p], player i knows fi,j and player p + i knows gi,j .
If any of the functions fi,j or gi,j is r-non-injective, then the solution to the problem is 1. The players can check if
this is the case in one round of communication with each player communicating only one bit. It therefore suffices
to show a protocol that solves ORt(EQUAL(PCn,p)), i.e., computes

t∨
j=1

(
f1,j(f2,j(. . . fp,j(1) . . .)) = g1,j(g2,j(. . . gp,j(1) . . .))

)
,

using C bits communication, under the assumption that no fi,j or gi,j is r-non-injective. To this end, we show a
randomized reduction of this problem to INTERSECT(SCn,p).

First, using common randomness, the players select random permutations πi,j , ρi,j : [n] → [n] for 1 ≤ i ≤ p
and 1 ≤ j ≤ t. Permutations are selected independently, except that π1,j = ρ1,j for all 1 ≤ j ≤ t. Furthermore
they are generated using public randomness, so they are known to all players. (For functions f : A → B and
g : B → C, we write g ◦ f to denote the function from A to C such that (g ◦ f)(x) = g(f(x)) for all x ∈ A.) For
all 1 ≤ j ≤ t, let

f ′p,j = πp,j ◦ fp,j and g′p,j = ρp,j ◦ gp,j .
For all 1 ≤ i ≤ p− 1 and 1 ≤ j ≤ t, let

f ′i,j = πi,j ◦ fi,j ◦ π−1
i+1,j and g′i,j = ρi,j ◦ gi,j ◦ ρ−1

i+1,j .

It is easy to see that an instance of ORt(EQUAL(PCn,p)) with f ′i,j and g′i,j is equivalent to the original instance
with fi,j and gi,j . The permutations randomly relabel intermediate and final values with final values relabeled in
the same way on both sides.

We construct an instance of INTERSECT(SCn,p) by giving the i-th player, 1 ≤ i ≤ p, a function f?i : [n]→
2[n] such that for any x ∈ [n],

f?i (x) = {f ′i,j(x) : 1 ≤ j ≤ t}

and by giving the p+ i-th player, 1 ≤ i ≤ p, a function g?i : [n]→ 2[n] such that for any x ∈ [n],

g?i (x) = {g′i,j(x) : 1 ≤ j ≤ t}.
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The goal in this instance is to compute(
# ‰

f?1 (
# ‰

f?2 (. . .
# ‰

f?p ({1}) . . .)) ∩ #‰

g?1(
#‰

g?2(. . .
#‰

g?p({1}) . . .))
)
6= ∅.

The instance of INTERSECT(SCn,p) that we have just defined can be seen as stacking mappings from differ-
ent instances of EQUAL(PCn,p) on top of each other. Instead of following a single function f ′i,j or g′i,j for a given
instance j, we follow all of them simultaneously, obtaining subsets of [n] instead of just single values in [n].

Let us show a likely correspondence between the new instance of INTERSECT(SCn,p) and the original in-
stance of ORt(EQUAL(PCn,p)). First, if the result of solving the instance of ORt(EQUAL(PCn,p)) is 1, then
clearly, by following the mappings from the instance of EQUAL(PCn,p) resulting in 1, we also obtain an element
that belongs to the intersection of two resulting sets in INTERSECT(SCn,p).

Consider the case that the result of solving the instance of ORt(EQUAL(PCn,p)) is 0. We bound the proba-
bility that the sets appearing in the instance of INTERSECT(SCn,p) intersect. Each element of these two sets can
be expressed as

f ′1,a1(f ′2,a2(. . . f ′p,ap(1) . . .))

or
g′1,b1(g′2,b2(. . . g′p,bp(1) . . .)),

respectively, where the sequences a1, . . . , ap and b1, . . . , bp describe which of the instances the mapping is followed.
There are t2p different pairs of such sequences. What is the probability that we obtain the same value for a specific
pair of sequences? We want to show that this probability is bounded by rp−1/n. If a1 = . . . = ap = b1 = . . . = bp,
then we obtain different values, because the a1-th instance in ORt(EQUAL(PCn,p)) results in 0. Suppose now
that it is not the case that a1 = . . . = ap = b1 = . . . = bp. If a1 6= b1, then the probability that we obtain the
same value is exactly 1/n, because the final values are created by two independent random permutations π1,a1 and
ρ1,b1 . If a1 = b1, let k be the lowest number greater than 1 such that ak 6= ak−1 or bk 6= bk−1. Since the functions
f ′1,a1 ◦ . . . ◦ f ′k−1,a1

and g′1,a1 ◦ . . . ◦ g′k−1,a1
are not rp−1-non-injective and are applied to two values randomly

distributed by πr,ar and ρr,br , the probability of collision is at most rp−1/n. By the linearity of expectation,
the expected size of the intersection between the two sets in the instance of INTERSECT(SCn,p) is bounded by
t2p ·rp−1/n ≤ 1/10. By Markov’s inequality, the probability that the intersection is nonempty is bounded by 1/10,
so the probability that the reduction fails is bounded by 1/10. Therefore, if we have a communication protocol
for INTERSECT(SCn,p) that errs with probability at most 1/10, we can use this protocol to obtain a public-
randomness protocol for ORt(EQUAL(PCn,p)) that errs with probability at most 2/10, provided no function in
ORt(EQUAL(PCn,p)) is r-non-injective.

8 Proof of Main Tool (Theorem 4)

We now combine the results of Steps 1,2,3 to conclude our main communication complexity lower bound (Theorem
4 from Section 4).

Proof of Theorem 4. Let r = C?(1+logn) and let t =
⌊
n1/(2p)
√

10r

⌋
. Due to the result of Newman [26], we know that

every protocol with public randomness can be simulated using private randomness if we allow for using additional
O(log(input-size-in-bits)) communication bits and for increasing the probability of error by an arbitrarily small
constant. By combining this fact with Lemma 14 (which can be applied for n greater than some constant), we find
out that any public-randomness protocol for ORt(LPCEn,p,r) that errs with probability at most 2/10 has to use at
least

Ω

(
tn

p16 log n

)
−O

(
pt2
)
−O(log(t · 2p · n · log n)) = Ω

(
tn

p16 log n

)
−O

(
pt2 + log n

)
bits of communication. Note that for n greater than some positive constant, the first term dominates the second, so
we can express the lower bound as simply Ω

(
tn

p16 logn

)
.
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Note that for our setting of t, t2prp−1 ≤ n/10. We can therefore apply Lemma 18. We learn that any
communication protocol for INTERSECT(SCn,p) that errs with probability at most 1/10 has to use at least

Ω
(

tn
p16 logn

)
− 2p bits of communication. As before, the first term dominates the second for sufficiently large

n and the lower bound becomes

Ω

(
n1+1/(2p)

p16 · log3/2 n

)
.
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