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Abstract

We show how to efficiently compile any given circuit C' into a leakage-resistant
circuit C such that any function on the wires of C that leaks 1nformat10n during a
computation C (x) yields advantage in computing the product of |C (1) elements of the
alternating group A,. In combination with new compression bounds for A, products,
also obtained here, C withstands leakage from virtually any class of functions against
which average-case lower bounds are known. This includes communication protocols,
and AC? circuits augmented with few arbitrary symmetric gates. If NC! % TCP then
the construction resists TC? leakage as well. We also conjecture that our construction
resists NC! leakage. In addition, we extend the construction to the multi-query setting
by relying on a simple secure hardware component.

We build on Barrington’s theorem [JCSS "89] and on the previous leakage-resistant
constructions by Ishai et al. [Crypto '03] and Faust et al. [Eurocrypt '10]. Our con-
struction exploits properties of A, beyond what is sufficient for Barrington’s theorem.
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1 Introduction

Motivated by successful attacks on cryptographic hardware, a recent, exciting line of work
known as leakage-resistant cryptography considers models in which the adversary obtains
more information from cryptographic algorithms than just their input/output behavior. A
general goal in this area is to compile any circuit into a new “shielded” circuit such that any
attack exploiting this extra information can in fact be carried out just using input/output
access (and hence does not succeed under standard hardness assumptions). However, the
seminal impossibility result on obfuscation [BGIT01] implies that one cannot shield circuits
against an attack that obtains just one extra bit of information about the circuit, if this
bit is computed as an arbitrary efficient leakage function of the wires of the circuit. More
specifically it is sufficient that the leakage function is powerful enough to evaluate the shielded
circuit on its own description. Still, this negative result does not necessarily hinder the
scope of a theoretical study of leakage-resistant cryptography, because in practice this extra
information is quite difficult to obtain and is typically limited to some simple-to-compute
functions such as the Hamming weight of the bits carried on the wires. Thus, it makes sense
to focus our attention on attacks where the extra information is obtained from the circuit
by evaluating a computationally restricted leakage function.

One line of works considers leakage functions that operate on disjoint sets of the wires
of the circuit, where the sets are chosen by the compiler (as opposed to the adversary).
This setting has become known as the “only computation leaks” model, after Micali and
Reyzin [MRO04]. Ishai, Sahai, and Wagner in [ISW03] allow the leakage function to output
projections of few of (the values carried on) the wires in each set. Their result is greatly
generalized by a series of works [GR10, JV10, DF12, GR12] culminating in the construction
by Goldwasser and Rothblum [GR12] which allows any arbitrary function of the sets, as long
as the function has bounded output length.

In a different direction, Faust et al. [FRR*10] allow leakage functions that are computable
by small, bounded-depth circuits with And, Or, and Not gates (AC®). In contrast to the
previous setting, here the leakage function accesses all wires simultaneously. In the case of
an unbounded number of queries from the adversary — so-called “continual leakage” — the
compiled circuits in [FRRT10], unlike [ISW03, GR12], utilize a secure hardware component.
The latter is a simple gadget to which the leakage function does not have access. This use of
secure hardware was removed recently by Rothblum [Rot12] at the expense of introducing a
computational assumption.

In this work we present a new construction which significantly extends both lines of
work, except that in the case of an unbounded number of queries we have to rely on a secure
hardware component, similarly to [FRR*10].

1.1  Our results

We show how to efficiently compile any given circuit C' into a leakage-resistant circuit C
such that any function on the wires of C' that leaks information during some computation
C'(x) yields advantage in computing iterated group products over the alternating group A,



which recall is the group of even permutations of a set of size u. (For background on this
group, see e.g. [KS04, §4.3].)

For simplicity, we first focus on the setting where the adversary makes a single query to
the circuit, and we do not use any secure hardware. Defined next, our compiler is randomized
and takes two inputs: a circuit C': {0,1}" x {0,1}" — {0,1}", and a value k € {0,1}" for
(C’s second input. It outputs a circuit C: {0,1}™ — {0,1}" that is functionally equivalent
to C(-, k). The only parts of C that depend on k and the random coins are the values of its
constant gates; the rest is determined by C. The adversary depends on C' and thus knows
everything about C' except the values of certain constant gates. The adversary then selects
both an input x to the circuit and a leakage function to be evaluated on the wires of the
circuit. The requirement that the adversary “learns nothing” from the output of the leakage
function is formalized by providing an efficient simulator S. S sees only the input z and
output C'(x) of the circuit, and produces a set of wire values that is indistinguishable from
the real set of wire values by the leakage function. Throughout the paper we will use |C| to
denote the number of wires in a circuit C', which is the input length of the leakage functions.

Definition 1.1 (Leakage-secure compiler). Let Comp(-,-) denote a randomized algorithm
that takes as input a circuit C': {0,1}" x {0,1}" — {0,1}" and a string k& € {0,1}". For
a class of leakage functions £, Comp is an (L, €)-leakage-secure compiler if the following
properties hold. R
1. (Structure.) For every C' and k, Comp(C, k) outputs a circuit C' : {0,1}" — {0,1}"
which is completely determined by C' except for the values of its constant gates.
2. (Correctness.) For every C' and k and every z € {0,1}", C(z) = C(z, k) with proba-
bility 1 over the choice of C' + Comp(C, k).
3. (Security.) There exists a randomized polynomial-time algorithm S such that for every
C and k, every z € {0,1}", and every ¢ € £ with domain {0, 1}/°!:

—

A(UW,), 0(S(C,z,C(x)))) < €

where W, € {0, 1}‘6‘ denotes the values carried by the wires of C(z), and the statistical
distance A is over the choice of C' «+— Comp(C, k) and the random coins of S.

The security of our construction is proved against leakage classes £ for which iterated
products over A, are hard in the following sense. As discussed later, we exploit specific
properties of A,. However, when possible we present things over any group G.

Definition 1.2 (e-fooled). Let G be a group (whose operation is written multiplicatively).
For o € G and t € N, let D, denote the uniform distribution over {(z1,...,z;) € G'| [[, z; =
a}, and let Ugt denote the uniform distribution over G'*.

Then a set of functions L is e-fooled by G if A(¢(D,),¢(Ugt)) < € for every a € G and
every { € L with domain G*.

We will use the notation D,,Ugt throughout the paper. Our security reductions are
computable by simple, local (a.k.a. NC%) functions.
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Definition 1.3 (Local extension). A function f : G* — G* is a d-local function if each
output element depends on at most d input elements. If d = O(1) as a function of ¢, we
simply say local. For a set of functions L, the d-local extension of L is the set of all functions
0(f(-)) where ¢ € L and f is a d-local function.

Note that 1-local functions are also known as projections.
Our compiler is given by the following main theorem.

Theorem 1.4. Let G be a group. For every polynomial-time computable function t = t(n),
there is a compiler Comp for which the following holds.
1. For every C : {0,1}" x {0,1}" — {0,1}" and k € {0,1}", Comp(C, k) runs in time
poly(|C|,t) and outputs a circuit C' of size O(t2 - |C|) and depth O(t - depth(C)).
2. For every set of functions L and every € > 0, if the 4-local extension of L is e-fooled
by G then Comp is an (L, € - t - |C|)-leakage-secure compiler.

Note that making ¢ smaller reduces the size overhead of C , but that larger values of ¢ are
necessary to find rich classes £ that are fooled by G°.

To instantiate our construction we prove in §3 that (A,)" fools a number of well-studied
classes of functions (with parameters polynomially related to ¢). For all these results we can
and will choose u = 5. One class is that of number-on-forehead multiparty protocols intro-
duced by Chandra, Furst, and Lipton [CFL83]; here our result relies on the long-standing
lower bound by Babai, Nisan, and Szegedy [BNS92|, whose proof is increasingly stream-
lined in [CT93, Raz00, VWO08]. Another is the class AC” of bounded-depth And/Or/Not
circuits augmented with few gates computing arbitrary symmetric functions, such as parity
and majority. This is the richest circuit class for which super-polynomial average-case lower
bounds are known [Vio07]. In fact, one can allow few gates whose local extension has low
number-on-forehead communication under any partition, such as polynomial threshold func-
tions [Nis93, Violl]. We also consider the class TC® of bounded-depth circuits of majority
gates; for this class no lower bound is known, and our results rely on the standard complexity
assumption TCY # NC*,

Obviously (4,)! does not fool NC! circuits of size poly(t) when u = O(1), for such circuits
can simply compute the product. However it is not clear how such a computation would go
when u = w(1). Indeed, Cook and McKenzie in [CM87] show that computing the product of
n given permutations of a set of n elements is complete for L=Space(logn). We conjecture
the stronger (assuming L # NC?) result that (A,,)" fools NC! circuits of size poly(n).

The following theorem summarizes the results above. They can also be seen as giving
compression bounds (cf. [HN10, DI06, Drul2] among others). In fact, we essentially recover
for As-products the parameters of the AC” compression bound by Dubrov and Ishai [DI06]
(building on their result). In the following, O4(-) and €4(-) hide constants that depend only
on d.

Theorem 1.5. (A45)" e-fools L for:
1. L = number-on-forehead protocols with s parties communicating < c bits, under a
specific partition of the input; e = 26~ /(*47),



2. L = AC® circuits with depth < d, size < t941°8Y an additional Oq(log®t) arbitrary
symmetric gates, and t°! bits of output; € = t—2allogt)

3. If TCY # NC! then for every k and infinitely many t, £ = TC? circuits with size < t*
and klogt bits of output; e = t~F.

4. L = ACY circuits with depth < d, size < QOd(t(Fé)/d), and t° bits of output, for any
§ < 1; e=2"Rl=/%),

The straightforward combination of Theorems 1.4 and 1.5 gives an (L, €)-secure compiler
for the circuit classes listed in items 2-4 of the latter, choosing ¢t = |C| for the following
corollary. The combination is less straightforward for protocols, which are not closed under
composition with arbitrary local functions. We obtain item 1 of the following corollary by
showing (in §4) that the local extension of a number-in-hand protocol is computable by a
number-on-forehead protocol.

Corollary 1.6. There is a single efficient compiler Comp, outputting a circuit C of size
|C| = O(|C?), that is an (L, €)-leakage secure compiler for each of the following.
1. £ = number-in-hand protocols with s parties communicating < ¢ - \6 |13 bits, for a fived
0 >0 and a fixed partition ofa into s = O(1) sets; € = 9=
2. L = AC° circuits with depth < d, size < |C|Ca00sIC) g, additional 04(log? |C|) arbi-
trary symmetric gates, and |C|*0! bits of output; e = |C|al0sICl).
3. If TCY # NC* then for every k and infinitely many |C|, £ = TC" circuits with size
< |C|¥ and klog|C| bits of output; e = |C|7*.
4. L = AC® circuits with depth < d, size < 20d(|é‘(1_6)/3d), and |6|5/3 bits of output, for
any 6 < 1;e= 2= (CI0 /30
In particular, our construction resists leakage from functions such as parity, majority,
inner product, and polynomial thresholds. Besides being well-studied, these functions break
most previous constructions. For example, inner product breaks [DF12, GR12], and parity
breaks [ISW03, FRRT10, Rot12]. Also, small TC® circuits can be shown to break at least
one instantiation of the construction [JV10] using the fact that such circuits may compute
division, cf. [All01]. In fact, we are only aware of one construction that is not easily bro-
ken in TC®. This is the construction [GR10] which relies on the Decisional-Diffie-Hellman
assumption. It is broken by any leakage function that can decrypt a certain public-key cryp-
tosystem based on it, but decryption here involves modular exponentiation (to a poly-length
exponent); whether this is doable in small depth is an open problem.
Assuming the conjecture we made above that (A,)" fools NC! circuits of size poly(n),
the compiled circuit C also withstands NC! leakage.
Finally, note that the last item shows that we recover the security of [FRR"10] against
ACP leakage functions.

Multiple queries. We also consider the setting in which the adversary makes multiple,
adaptive queries to the circuit C'. As in the previous setting, each query consists of both an
input to the circuit and a leakage function. The adversary is assumed to be computationally
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unbounded, except for the restriction on the leakage functions. We defer until §5 the formal
definition of security in this setting, but it is a natural extension of Definition 1.1.

If the number of queries ¢ is fixed in advance and known to the compiler, then our
construction in Theorem 1.4 can be extended with little difficulty to this setting. The
resulting construction increases the size of C' by a factor of O(gq) and likewise the security
degrades by a factor of ¢ (details omitted).

When the number of queries ¢ is not a priori bounded, we adopt the approach of [FRR™10]
and augment C with a so-called secure hardware component. In our construction, this com-
ponent is a randomized, inputless gate that on each execution outputs a sample from Djq,
where id denotes the identity element of A;. We refer to such gates as Dj4-gates, and any
circuit that contains one as a Djy-circuit. The complexity of this component is comparable
to the one in [FRR*10] which outputs a uniform bit vector with parity 0. (Secure hardware
components are also used in [GR10, JV10], but there the components are not inputless and
furthermore the distribution sampled is significantly more complex.)

To prove security in this setting, a slightly stronger property is required of (As)" than
what is given by Theorem 1.5. Specifically we require that, for every ¢ € £ and every ¢’ € L
that is chosen adaptively based on the output of ¢, the distribution (¢(x), ¢'(x)) when z « D,,
has statistical distance < € from the corresponding distribution when x <« Ug:. We show in
§5.1 that each of the classes £ listed in Theorem 1.5 has this property; the only difference is
that for AC? circuits with symmetric gates, we restrict the output length to O(log?t).

We defer the details for now and simply state our result for multiple queries.

Corollary 1.7. There is a single efficient compiler Comp, outpulting a Dig-circuit C of size
|IC| = O(|C)?), that is a q-query (L, ¢€)-leakage secure compiler for any q and each of the
following. R
1. £ = number-in-hand protocols with s parties communicating < §-|C|"/? bits, for a fized
0 >0 and a fixed partition ofé\ into s = O(1) sets; e =q - 9=
2. L = AC® circuits with depth < d, size < |é|Od(log|a‘), an additional Og(log? |6|) arbi-
trary symmetric gates, and Oq(log? |6]) bits of output; € = q - ]5|_Qd(log|6|).
3. If TC® # NC* then for every k and infinitely many |C|, £ = TC circuits with size
< |CI* and klog|C| bits of output; € = q - |C|*.
4. £ = AC° circuits with depth < d, size < 2Od(|é‘(176>/3d), and |6|5/3 bits of output, for
any 0 <1, e=gq- 9~ S2a(|C|1=/3)

Organization. In §2 we describe our construction and prove the key lemma that enables
the proof of Theorem 1.4. In §3 we show that various computational models are fooled by
(As)!, proving Theorem 1.5. In §4 we prove Theorem 1.4 (and Corollary 1.6), and in §5 we
extend our construction to multiple queries.



2 The construction

In this section we describe our main construction. Our compiler uses the general framework
of the works [ISW03, FRR*10]. In this framework, to every wire of C' there corresponds
in the compiled circuit C a “bundle” of wires which encode the same information. (In
[ISW03, FRR"10] a bit b is encoded by a bundle z whose parity is b.) One then uses
appropriate gadgets to simulate the computation of C' on the bundles. Note the distinction
between gates and gadgets in C: gadgets operate on bundles of wires, and are composed of
gates that operate on individual wires.

The main differences between our construction and the ones in [ISW03, FRR*10] are in
the encoding and in the gadgets. A side-benefit of our gadgets is that they allow for a more
modular construction yielding an arguably more intuitive proof of security. Next we describe
our encoding, our gadgets, and the proof of security. But first we make some remarks on the
group used throughout.

The choice of the group. This work exploits 3 properties of the alternating group As.

(i) It fools various classes in the sense of Definition 1.2 (see Theorem 1.5). We show that
this is implied by the fact that every element of A5 is a commutator; such groups are known
as perfect [HP89].

(ii) It supports Barrington’s encoding of NC!' computation [Bar89], which we use in the
construction of the NAND gadget below. (This is implied by the group being non-solvable,
which in turn is implied by it being perfect.)

(iii) It has specific elements that support a more efficient encoding of certain functions
such as parity, improving on (ii). This is used in Theorem 1.5 to obtain improved parameters
and in particular to match the parameters of the previous compression bound in [DI06].

We point out that (i) is not implied by (ii). Indeed, for (ii) the group Ss is typically
chosen. However (S5)* does not even (1/2)-fool the 1-local extension of parity, which can
compute the sign of the product permutation. This is because the sign of D, always equals
the sign of a, whereas the sign of Ug,): is equidistributed over {—1,1}.

The group encoding. We encode a bit b € {0,1} by a tuple of elements over a group
G as follows. Let id denote G’s identity element, and fix an element id # o € G. Then
(x1,...,2) € G" encodes b when

id ifb=0
I -
; a ifb=1.
As in [Bar89|, we can use any « for which there exists an element 3 € G such that «, £,

and aBa~!37! are in the same conjugacy class. Equivalently, there must exist three elements
08,7, p € G such that the following two equations hold.

yay~t =4 pofaflpT = a. (1)



For G = Aj; and using cycle notation, these values can be set as follows: o = (12345),
B = p=(14235), v = (12354).

For convenience we present the construction over G as opposed to {0, 1} and using gates
for group multiplication and inversion. It is straightforward to obtain a construction over
{0,1} and any standard basis by implementing group operations via bit operations.

The NAND gadget. We assume without loss of generality that C, the circuit input to the
compiler, contains only fan-in-2 gates that compute the Nand function. We now describe
the NAND gadget that simulates each Nand gate in C'. Given as input two bundles z,y € G*
with products in {id, a}, the NAND gadget outputs a bundle z € G* that encodes the Nand
of x and y, i.e., that satisfies:

sz{id if TLai =Ly =a o)

«Q otherwise.

The output bundle z € G'* is computed by the following steps.

1. Set Y — (/y Y, Y2, Y1, Y - ’yil)' (ThlS gives Hz Yi € {Idvﬁ})

1

2. Compute z7 := (z;',...,27") and similarly y~!.

3. Compute z € G* by concatenating (z,y,z ',y ). (This gives [[, z: € {id, afa"'57}.)
4. Set Z — (p-Z1,Z2, ..., Zae—1, Zar - p~*). (This gives [[;z; € {id, a}.)

5. Set z «— (Z3;',...,Z;" - @). (This maintains [, Z; € {id,a} but if the product in step
4 was « it is now id, and vice versa.)

6. Compute and output z € G* by multiplying consecutive groups of 4 elements in z:

4 8 4t
Z = HZ,HZ;,..., H Zi | -
s

=1 i i=4t—3
From the equations (1) it can be verified that (2) is satisfied.

Warm-up for the RANDOM gadget. The second and last gadget that we need is called
RANDOM and is essentially applied to every bundle in C that corresponds to a wire in C.
This gadget has to satisfy two properties. First we need that on input z € G'*, the RANDOM
gadget outputs a bundle z € G'* that is distributed uniformly over {z € G* | T[], zi = [[; =i}
This is necessary both for the correctness and security of the construction. The second
property, necessary only for the security, is that given an input-output pair (z, z) for this
gadget, we should be able to compute locally a distribution on the gadget’s wires that is
indistinguishable from the real distribution. (This allows us to replace the real distribution
on the wires of C' with the one in which each RANDOM gadget is reconstructed. Then we
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can replace each bundle of wires in C with a uniform bundle, which the simulator can do
by itself, and blame any inconsistency on the reconstructor.) This property is called local
reconstructibility and is a variant of the one in [FRRT10].

Before describing our gadget, we note that there is a simple gadget that satisfies the first
property but not the second. Namely, choose r{,...,7,_7 € G uniformly at random, and
output

z= (-1, T Ty T, o, T ). (3)

Indeed, this basic re-randomization technique has been used to great effect in a number of
works, e.g. [AIK06, GGH'08, AAW10]. However, this simple gadget does not satisfy local
reconstructibility. One reason is that given x, z, one can come up with values for the r; that
are consistent with each gate in the circuit if and only if [] z; = [] z;. However, the latter is
an NC'-hard question, whereas consistency of the r may be checked by, say, a DNF.

By contrast, one feature of our gadget is that given x, z one can produce consistent values
for the wires even if [[2; # [] z:;. The catch is that in the latter case the values of certain
constant gates are not chosen as in the correct implementation, but the leakage functions
will not be able to distinguish this.

The RANDOM gadget. We now describe our gadget. The computation corresponds to
replacing each pair (r;,7; ') in (3) with a pair (R, L) € G x G* such that (IL =) - (I Ly) =
id, and then computing the multiplications in a specific order.

First, choose RV, ..., R*D ¢ G* uniformly at random. Next, choose L®, ... L") € Gt

at random conditioned on .
[1L = (H RE-“”) (4)
J J

for 1 <4 < ¢. In the single-query setting, we think of Comp choosing these values and
hardwiring them into C; in the multi-query setting, each pair (R, L") will be output
by a secure hardware component. We will drop the superscripts on R and L when they are
clear from context. Condition (4) implies the following equation.

<x1 | HR;») | (H 1O, HRg.2>> (H 20 ) e 5)

So, we compute z by letting z; € G be the result of the ith parenthesized expression in (5).
Clearly this z has the correct distribution. We perform each iterated multiplication by a
depth-O(t) tree of fan-in-2 multiplication gates in a specific way, described now.

For z1, the product is computed in the straightforward way from left to right by a depth-¢
tree that computes each prefix product



for m = 1,...,t in order, and outputs z; := A;. The product for z; is computed in the
straightforward way from left to right as well.

Now let 1 < ¢ < t. The product for z; is computed by a depth-2t tree that multiplies
“from the inside out”. That is, it computes in order a sequence \i,...,\y_1 defined by
A1 := L; - ; and recursively for j =1,...,t —1 by

/\gj = )\gj_l'Rj
Agji1 = Li—j - Agj

and then outputs z; := Ao;_1 - Ry.
By way of illustration, when ¢t = 3 the sequence is computed as follows.

AL = Ls T
Ay = Ly L Ry
A3 = Ly Ls x; R
Ay = Lo Ls X Ry Ry
A5 = Ly Lo Ly T Ry Ry
Z; = A = Ly Lo Ls T; R, R, Rs.

The following key lemma in this work shows that the RANDOM gadget is locally recon-
structible. We say that z,z € G* are plausible if it is possible for RANDOM(z) to output z,

e if [,z =11, 2.

Lemma 2.1. There is a poly(t)-time computable distribution on 1-local functions Ryaxpou :
Gt x Gt — GIFYPoML for which the following holds. Let W,_,. denote the distribution on the
wires of z = RANDOM (). For any ¢ with domain GI™"M and any plausible z,z € G*, if

A(E(RRANDOM(xa Z))ye(Wx—w)) > € (t - 1)

then some I-local extension of ¢ is not e-fooled by G, i.e., there is a g € G and a 1-local
function f : Gt — GIFNM| qych, that

A(L(f(Dy)), €(f(Ucr))) = €.

Proof. We first describe an alternate procedure for generating W,_,.. Fix any plausible
z,z € G'. For the tree computing z;, choose each A; uniformly at random for j = 1,...,¢—1,
and compute each R§-1) = )\j_fl -Ajfor j =1,...,t, defining \; := z; and Ao := 1. Choose
the wires for the tree computing 2, analogously. Then for ¢+ = 2,...,¢t — 1 in order, choose
the wires for the tree computing z; as follows.

1. Choose L% € G'* uniformly over vectors with product = (I, Rg-i_l))*l.

2. For j =1,...,t—1 choose \y; € G uniformly at random.



3. For j =0,...t —1 compute A\yji := Lf_)j - Agj, where A\g := x;.

4. For 57 =1,...,t compute Rgi) = )\Q_jl_l - Agj, where Ay 1= z;.

To show that this distribution is identical to W, _.,, it is enough to observe that the
vectors R, L are distributed correctly, i.e. uniformly conditioned on (4) and on the ith
parenthesized expression in (5) equalling z; for all . This is because the above procedure
computes consistent wire values, and the R, L®) (along with z,2) determine the values of
all other wires. R and L® are clearly distributed correctly. Then for each 1 < i < ¢, L®
is distributed correctly assuming that R~V is, Rg-i) is uniform for 1 < j < ¢, and Rﬁi) takes
the unique consistent value.

This computation is sequential, due to the selection of L based on R~V in step 1.
This selection is there to ensure condition (4). However by dropping this condition, we can
break the dependencies between multiplication trees and give a local reconstructor. Namely,
we define Ryanpon(, 2) to be the above computation except that L@ is chosen uniformly at
random in step 1. Note that Ry xpon 1S a distribution on 1-local functions.

To prove the lemma, we define a set of hybrid distributions H,, on the wires of RANDOM
for m = 1,...,¢t — 1. Fix any plausible z,z € G*. In H,,, the wires in the tree computing
z; for i < m are chosen as in W,_,,, and for i > m the wires are chosen as in Ryxpou(, 2)-
Then, we have H; = Ryawpon(, 2) and H;_y = W,_,, (note that the first and last trees are
distributed identically in W,_,, and Rgapou (2, 2)). Thus if there is a function ¢ such that

A((Rpaxpom(, 2)), 6(Wez)) > €+ (t — 1)
then there is an m € [2,¢ — 1] such that

A(U(Hp-1),0(Hp)) > €. (6)

Now let ¢ € G be the fixed value (depending on z, z) such that Hj R](mfl) = ¢ with

probability 1 in both H,, and H,,_;. Thus in H,,_; (resp. H,,), L™ is distributed according
to Ugt (resp. Dy-1). (Note that this g is arbitrary, i.e. not only « or id, and hence we are
using the full generality of Definition 1.2.) Because H,, 1 and H,, differ only in the tree
computing z,,, and because the distribution on these wires is independent of all other wires
when z and z are fixed, by an averaging argument we can fix all wires outside this tree while
preserving (6). Then given a vector v € G' distributed according to either Ug: or D1,
a I-local function (of v) can generate H,,_; or H,, by setting LU := v and performing
steps 2-4 in the above computation. Fixing the randomness of this function by an averaging
argument, we obtain the function f : G'* — GI**NPoMl ip the statement of the lemma. [

Using the above gadgets and Lemma 2.1 one may complete the proof of Theorem 1.4
essentially following [FRR*10, Lemma 13]. For completeness we include a proof in §4.
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3 On compressing group products

In this section we show that (As)* fools in the sense of Definition 1.2 a number of com-
putational models, proving Theorem 1.5. We start this section by recalling a number of
facts related to groups and computation. Then in each of the subsections we analyze each
computational model in turn.

First, it will be convenient later to prove that ¢(D,,) and ¢(D,q) are close for every a € G,
¢ € L, and we observe that this is sufficient.

Lemma 3.1. If A(¢(D,),4(Dig)) < € for every a € G and every { in the 1-local extension
of L, then L is e-fooled by G'*t.

Proof. If L is not e-fooled by G'* then there exists a € G, £ € L such that A(¢(D,,),(Ugt)) >
€. Then by an averaging argument there exists # € G such that A({(D,),l(Dg)) > e.
Finally defining ¢'(zq,...,2¢) := €(z1,...,2; - §) in the 1-local extension of L, we have
A(f’(Dag—l),gl(Did» Z €. ]

We will also make use of the random self-reducibility of the distributions D,,.

Lemma 3.2. There exists a distribution on 1-local functions R : Gt — G such that for any
a € G and any x in the support of D,, R(x) = D,.

Proof. R chooses r1,...,r;_1 € G uniformly at random, and outputs
—1 -1
(-1, 77 Xo e, o, Ty @)

Recall the following standard terminology: a is an involution if « = o™, and «a is the
commutator of B and v if @ = ByB~ 1y~ We say that M : {0,1}" — (A5)* a- computes a
function f : {0,1}" — {0,1} if for every z, [[, M(z); = o/@ (where o® = id and o' = ).

The next theorem follows from [Bar89 Theorem 5] because every element of As is a
commutator.

Theorem 3.3 ([Bar89]). For every a € As and every fan-in-2 circuit C : {0,1}" — {0,1}
of depth d, there is a 1-local function M : {0,1}" — (A5)O(4d) that a-computes C.

Moreover, let fi,..., fm : {0,1}" — {0, 1} be functions such that for each i < m there is
a 1-local function M/ : {0,1}" — (As)" that a-computes f;. Then, for every fan-in-2 circuit
C :{0,1Y™ — {0,1} of depth d there is a 1-local function M : {0,1}™" — (A5)°4) that
a-computes C(f1(+), ..., fm()).

The next lemma allows certain functions to be more efficiently a-computed. This can
be compared with the works by Cai and Lipton [yCL94] and Cleve [Cle91] which give in-
creasingly efficient versions of Barrington’s construction (here efficiency is measured in the
length of M’s output). Our construction is simpler than the ones given in these works, but
also less general.

Lemma 3.4. For every involution o € As, the following holds.
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1. There is a 1-local function M : {0,1}" — (A5)" that a-computes @, ;.

2. If M and M’ a-compute some Boolean functions f and f', then their concatenation
(M, M) a-computes the function f & f'.

Proof. For the first item: given input = € {0, 1}", output y € (A5)" such that y; = a™. The
correctness of this construction, as well as the second item, follows from the isomorphism
between the group {0,1} (under @) and the subgroup {id,a} C As. O

We need the following fact about As. Note that because every k-cycle (a; as - -+ ax) can
be written as a product of k — 1 transpositions (a; as)(a; as) - - - (a1 ag), every element of As
is either a 3-cycle, a 5-cycle, the product of two disjoint transpositions, or the identity.

Fact 3.5. Fvery non-involution in As is the commutator of two involutions.

Proof. Let a,b,c,d, e denote arbitrary, distinct elements of {1,...,5}. Every non-involution
in Aj is either a 3-cycle (a b ¢) which is the commutator of involutions (a b)(d e) and (b ¢)(d e),
or a b-cycle (a b ¢ d e) which is the commutator of involutions (b €)(c d) and (a d)(b¢). O

3.1 Multi-party protocols

In this section we consider functions computable by a multi-party communication protocol
in the “number on forehead” model [CFL83], defined as follows. A protocol P with n-bit
inputs consists of k = k(n) parties, each with unlimited computational power. The input
x € {0,1}*" is partitioned into k blocks, and party i sees all input bits except those in the
1th block. The parties communicate in the broadcast model, so every bit sent is seen by all
parties. The (m = m(n))-bit output of P is defined to be the final m bits that are broadcast,
and the cost of P is the total number of bits broadcast by all parties. When P’s input comes
from a group G, we assume some canonical representation of G’s elements as (log|G|)-bit
strings.
We prove the following compression bound for such protocols.

Theorem 3.6. There is a partition of the inputs in (As)" into k pieces such that any k-party

protocol communicating ¢ bits and outputting < c bits is e-fooled by (As)" fore = 2=t/ (k*45))

We prove this theorem by combining an efficient translation from bits to group products
with the following lower bound. Define the generalized inner-product function GIPF, :
{0,1}"* — {0,1} as

n k
GIP, (z) == @ /\ T
i=1 j=1

Then we have the following lemma, originally due to Babai, Nisan, and Szegedy [BNS92]
and with increasingly streamlined proofs in [CT93, Raz00, VWO08S|.

Lemma 3.7 ([BNS92]). There is a partition of the inputs to GI P, into k blocks such that
for every protocol P : {0,1}" — {0,1} with k parties that communicates at most ¢ bits,
Pr,[P(z) = GIP, (7)) < 1+ 2¢-90/4),
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We give the following translation to bits from group products.

Lemma 3.8. For every a € As, there is a 1-local function M : {0,1}"* — (A5)°0*") that
a-computes GIP, k.

Proof. Assume a is an involution. Let M’ : {0, 1}* — (A5)°%*) be the function guaranteed by
Theorem 3.3 that a-computes the k-wise AND of its input. Then letting () := (i1, Tik)
for each 7 < n, the function

M(z) = (M'(zD),..., M (™))

a-computes GIP, ; by the second item of Lemma 3.4.
If o is not an involution, let 3,7 € As be the involutions guaranteed by Fact 3.5 such
that a = 3v67y (note that = 37! and v = ~1). Then let M’ instead 3-compute the AND

of its input, and compute M as
M(z) = (M'(zV), ..., M (x™), v, M (D), ..., M'(z™),~). O
We now give the proof of Theorem 3.6.

Proof of Theorem 3.6. For an appropriate n = Q(t/k?), let M : {0,1}"* — (A45)! be the
1-local function guaranteed by Lemma 3.8 that a-computes GIP, . Consider the partition
on the t elements of the input from (A;)" that is induced by M from the partition on GIP,
guaranteed by Lemma 3.7.

Assume for contradiction that some protocol on this partition is not e-fooled. Without
loss of generality the protocol outputs 1 bit. (The last player can simulate whatever set
maximizes the statistical distance of the multi-bit protocol output distributions.) By Lemma
3.1, there is an o € A5 and a protocol P : (A5)" — {0,1} with k parties communicating < ¢
bits such that A(P(D,), P(Dig)) > 2¢781/®4%) for a suitable constant £3.

By combining the P with M we now give a distribution on protocols P’ : {0,1}"* —
{0,1} for GIP,  with the same number of parties, the same communication, and the same
advantage up to the constant 5. This contradicts Lemma 3.7.

On input x, each party in P’ first computes the portion of y := M(z) € (A45)" that
depends on the input bits it can see; this is done with no communication as M is 1-local.
Next each party computes the portion of z := (y; - 71,77 -y - 79, ..., 77 - 4) that depends
on the input bits it can see, again with no communication. (r is a public random string.)
Finally the parties compute and output P(z) using the protocol P.

Note for every x such that GI P, x(x) = 1 (resp. GI P, x(z) = 0), z is distributed according
to D, (resp. Diy) over the choice of r. The proof is now completed using the fact that
Pr,[GIP, 1(z) = 0] > Pr [GIP, (x) = 1] > 1/2 — 2720/?") [yW08, Claim 2.11]. O

3.2 T

In this section we observe that, because computing products over Ajs is complete for NC!, if
TCP? 4 NC' then the set of TC circuits with O(logt) bits of output is t~“-fooled by (A45)*.
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Recall that NC! is the class of poly-size fan-in-2 And/Or/Not circuits with depth O(log n),
and TC? is the class of poly-size unbounded-fan-in constant-depth circuits where each gate
computes, for some ¢, the c-threshold function which is 1 iff > ¢ inputs are 1.

The high-level idea behind the next theorem is the following. Assume there is an o € A5
and a TCY circuit C that can distinguish between D, and Diy with advantage > ¢t~ for
some k. Then for any NC! circuit B we construct a TCY circuit that, on input z, chooses
m = t°®) samples from the distribution D,z and outputs 1 iff the number of samples on
which C outputs 1 is sufficiently close to m-Pr[C(D,,) = 1]. This last check can be computed
with threshold gates, and we can sample from D_s@) by using Theorem 3.3 to obtain a single
element in its support and then relying on the random self-reducibility of this distribution.

Theorem 3.9. If TC® # NC' then Vk and infinitely many t, the class £ of TC® circuits
with size < t* and output length klogt is t=*-fooled by (As)".

Proof. Assume that 3k such that for sufficiently large ¢, £ is not t~*-fooled by (As)!. Then
by Lemma 3.1 there exists an a € A5 and a TC? circuit C : (A5)! — {0,1}*198? with size
< tF such that A(C(D,),C(Diyg)) > t7%. Let S C {0,1}*°8! be the set that maximizes
Pr[C(D,) € S]—Pr[C(Diy) € S], and note that checking z € S can be done by a TC? circuit
of size t°*%). Thus, there is a TC? circuit C’ : (A45)* — {0, 1} of size t°*) such that

Pr[C'(D,) = 1] — Pr[C"(Dig) = 1] > t 7. (7)

Define €, := Pr[C'(D,) = 1] and €4 := Pr[C’(Diy) = 1], and note that e, > t*.

Let B : {0,1}" — {0,1} be any NC! circuit, and for an appropriate ¢t = n°" let
M :{0,1}" — (As5)" be the 1-local function (guaranteed by Theorem 3.3) that a-computes
B. Let C" : {0,1}* — {0,1} be the randomized TC® circuit that performs the following
steps on input x € {0, 1}".

1. Compute y = M(z) € (As5)".

2. For m := t3%(n + 2) /e, = n°® sample 2, ..., 2, € (A4s)" independently from D,z
by computing R(y) where R is the 1-local function from Lemma 3.2.

3. Use two layers of threshold gates to output 1 iff
(1—1/(2t) -mea < > C'(z) < (1+1/(2t5)) - mea.
i=1

We now prove the following claim.
Claim. Vz € {0,1}": Pr[C"(z) = B(x)] > 1 —27""! over the random coins of C".

This implies the theorem, as follows. By a union bound there is a way to fix the random
coins of C” such that C”(z) = B(x) for every . Then because B € NC' was arbitrary and
C" € TCY, we have TC" = NC'.
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Proof of Claim. Denote X := 3", C'(2;), and p := E[X].
Fix z, and first assume B(z) = 1 which means y = me, = t3*(n + 2). Then

Pr(C”(x) = B@)] = Pr[|X —pl < p/(2")] 21— 27" 2127

by a Chernoff bound.
Now assume B(z) = 0. Then pu = mey, and since €,/6g > 1+ 1/t* by (7), we have
(1 —1/(2t%)) - mes > p(1+ 1/(3t%)). Then using another Chernoff bound, we have

Pr[C"(z) = B(z)] > 1 = Pr[X > p(1+1/3*))] >1—e " >1-271 O

This completes the proof of the theorem. O

3.3 AC°

In this section, we observe that by combining the following compression bound against AC®
due to Dubrov and Ishai [DI06] with our Lemma 3.4 above, we can obtain a quantitatively
identical compression bound for As-products against ACP.

Let ©71(b) denote the uniform distribution over n-bit strings with parity = b.

Theorem 3.10 ([DI06]). For every 0 < 0 < 1 and every d € N, there is a constant € > 0
such that the following holds. For every unbounded-fan-in circuit C : {0,1}* — {0,1}"" of
depth < d and size < genli=0/d,

1-6)/d

A(C(@1(0), C(a71 (1)) < 27

Theorem 3.11. For every 0 < § < 1 and every d € N, there is a constant € > 0 such that
the following holds. Let L be the class of unbounded-fan-in circuits C : (As)' — {0,1}" of
depth < d and size < 2" Then, £ is 27"~ _fooled by (As)".

Proof. Assume for contradiction that £ is not 27" ~""*_fooled by (As)’. Then by Lemma
3.1 there is a circuit C' € £ and an o € A5 such that

A(C(Dy),C(Dyg)) > 271"
For n = Q(t), let M : {0,1}" — (A5)" be the 1-local function guaranteed by Lemma 3.4 and
Fact 3.5 such that . . '
T] () — {.d if &2 =0
Pl a it &) x;=1.
Let R be the function from Lemma 3.2. Then we have

A(C(ROM(&7(0))), CROM (&7 (1)) 2 27 = gm0/

for appropriately chosen € = €'(€) and §' = §’(0). Noting that the depth of C'(R(M(+))) is
d+ 1 and using an averaging argument to fix the randomness of R, this contradicts Theorem
3.10. O
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3.4 AC" with symmetric gates

Here we show that our hardness assumption holds when L is the class of unbounded-fan-in
constant-depth circuits that contain t°1°8?) And/Or/Not gates and O(log®t) gates that each
compute an arbitrary symmetric function. Specifically, we prove the following.

Theorem 3.12. For every d, there is an € > 0 such that the following holds for every t.

Let L be the set of functions £ : (As)" — {0, 1}t0‘1 where each output bit of £ is computable
by an unbounded-fan-in circuit of depth < d that contains < t*1°6' And/Or/Not gates and
< elog®t arbitrary symmetric gates.

Then, L is t=<°8*_fooled by (As)*.

Note that in fact these circuits have up to O(t%!-log® t) arbitrary symmetric gates, though
each output bit only depends on O(log?t) of them.

The proof of Theorem 3.12 extends a lower bound due to Viola [Vio07] and combines it
with an efficient translation from bits to group products. Viola’s lower bound shows that the
following function PAP, ,, : {0, 1}”2’” — {0, 1} (for “parity-and-parity”) is hard on average
for this circuit class to compute.

PAP, n(x) := @ /\ @x”k

i=1 j=1 k=1
We use the following translation from PAP-inputs to group products.

Theorem 3.13. For every o € As, there is a 1-local function M : {0,1}7°™ — (A0 m)
that a-computes PAP, ,,.

The proof of this theorem is analogous to that of Lemma 3.8, using the “moreover” part
of Theorem 3.3. We omit the details.

For the remainder of this section, we let PAP denote PAP, 31055 By combining The-
orem 3.13 with the random self-reducibility of the distributions D,, we prove the following.

Lemma 3.14. Let £ be as in Theorem 3.12, and assume that L is not t=<'°¢*_fooled by (As)".
Then there is an n = Q(v/t/logt), an € = €'(¢) > 0, and a function ¢ : {0,1}7*0-3lsn _,
{0, 1}7t0'1 such that each output bit of ¢' is computable by an unbounded-fan-in circuit of depth
< d+1 that contains < n¢ 8" And/Or/Not gates and < € log® n arbitrary symmetric gates,
and

A('(PAP7Y(1)), £'(PAP7Y(0))) > n~<lem,

Proof. If L is not t=¢!°¢*-fooled by (As)!, then there is an o € A5 and an ¢ € £ such that
A(0(Dy), (D)) >t~ For an appropriate n = Q(v/t/logt), let M : {0, 1} 0-3lgn _,
(As5)* be the 1-local function guaranteed by Theorem 3.13 that a-computes PAP. Let R :
(A5)" — (A5)" be the randomized 1-local function from Lemma 3.2. Then ¢ := ¢(R(M(+)))
satisfies the lemma, and by an averaging argument we can fix the randomness of R so that
¢’ is deterministic. O
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We now prove Theorem 3.12. The lower bound in [Vio07] shows that, when restricted to
one output bit and with domain {0,1}%*0318" circuits in £ have correlation n=0°2") with
PAP. This is done by showing that with probability 1 —n=21°¢™ over a random restriction
p to the input bits of a circuit C' € L, we have both that PAP|, = GIP and that C|,
is computable by a (0.3logn)-party protocol communicating log” n bits, which triggers the
lower bound of Lemma 3.7.

In addition to the translation to group products above, we extend this argument to
output bits by using a union bound to show that p satisfies these properties simultaneously for
all output bits, again with probability 1—n 216" The protocol now exchanges t*!-log® n <
n%2! bits which is still sufficiently small to use Lemma 3.7.

tO.l

Proof of Theorem 3.12. Assume that L is not t~<°¢'-fooled by (As)!, and let n, €, and ¢/ =
(01,...,00.) be given by Lemma 3.14. Let R be the following distribution over restrictions
p on n?-0.3logn bits that leave n - 0.3logn bits unrestricted:

e Choose p’ uniformly over all restrictions that leave (n? - 0.3logn)%? bits unset.

o If PAP|, has > 1 input unrestricted per bottom @ gate, then choose p” uniformly over
restrictions to the remaining bits that leave exactly 1 input unrestricted per bottom &
gate.

e Else, choose p” uniformly over all restrictions to the remaining bits that leave exactly
n - 0.3logn bits unrestricted.

e Output p=p' o p”.

Say that p is good if PAP)|, has exactly 1 input unrestricted per bottom & gate and for
everyi = 1,...,t%!, ¢}|, is computable by a (0.3 log n)-party protocol (under any partitioning
of the input) exchanging log®n bits of communication. Combining [Vio07, Claim 11 &
Lemma 12] with a union bound over all £;, we obtain

Pr [p is good] > 1 — n~leem)
p—R

Because A(¢/(PAP~Y(1)),'(PAP(0))) > n~%8" there is a set S C {0,1}""" such
that
Pr[¢'(z) € S | PAP(z) = 1] — Pr[¢'(z) € S | PAP(z) = 0] > n~ 8™, (8)

For any p that is good, let P, : {0,1}"031en — {0 1} be the following (0.3logn)-party
protocol exchanging t°! - log°n + 1 < n®2' bits. On input y, the parties first compute
each £|,(y) by communicating t*! - log” n bits, and then output 1 iff ¢|,(y) € S using one
additional bit of communication.

For every p that is good, PAP|, is equal (up to complementing some inputs) to the
generalized inner-product function GIP from §3.1. Thus, by Lemma 3.7 we have

Pr(B,(y) = PAP|,(y)] < 1/2+ g (9)

17



for every good p.

Now notice that choosing a random z € {0, 1} 93167 can be thought of as first choosing
p from R and then choosing y uniformly over {0, 1}"031°¢” Then letting Ej, denote the event
“p is good and PAP|,(y) =", we have

Pr[¢'(z) € § | PAP(z) =1] = Pr[l'(z) € S | PAP(z) = 0]
= Prltl,(y) € S | PAP(y) = 1] = Pr[t'],(y) € S | PAP|,(y) = 0]
< Pilll,(y) € S | B1] = Pr[t'],(y) € S | Ey] + Prlp is not good
= Dr[B(y) =1 E] = Pr[P,(y) = 1| Eo] + Prlp is not good]
N Eg[Pp(y) =1|E]+ Eé‘[Pp(y) =0 Eo] -1 +P;r[p is not, good]

Q(1) Q(1)

< (12427 )/(1)2—-2"" )—1—|—f;r[pisn0tgood]

= 27"y Pr[p is not good|
p

< nfﬂ(logn)

which contradicts (8) for sufficiently small ¢’. Note that the second inequality follows from
(9) because PAP|, = GIP is balanced up to an additive factor of 9 O

4 Proof of Theorem 1.4 and Corollary 1.6

Theorem 1.4. Let G be a group. For every polynomial-time computable function t = t(n),
there is a compiler Comp for which the following holds.
1. For every C : {0,1}" x {0,1}" — {0,1}" and k € {0,1}", Comp(C, k) runs in time
poly(|C|,t) and outputs a circuit C of size O(t? - |C|) and depth O(t - depth(C)).
2. For every set of functions L and every € > 0, if the 4-local extension of L is e-fooled
by G* then Comp is an (L, € -t - |C|)-leakage-secure compiler.

Proof. Let C' : {0,1}" x {0,1}" — {0,1}" and k € {0,1}" be the input to Comp. As
described in §2, Comp constructs a circuit C by replacing each wire in C' with a bundle of
¢ wires, and replacing each gate in C' with a set of gadgets. Specifically for each Nand gate
in in C' with two input wires and m output wires, C' contains a NAND gadget followed by m
RANDOM gadgets in parallel (each of which takes as input the NAND gadget’s output).

In order for C(z) to map {0,1}" — {0,1}", it must encode z € {0,1}" to ' € (G*)"
as a first step, and decode 2’ € (G")" to z € {0,1}" as a final step. This is done in the
following straightforward way. The input encoder sets each x} to be either (id,...,id) or
(id, ..., @) depending if x; = 0 or 1. The output decoder computes each product H;Zl(zg) i
and sets z; = 0 or 1 depending if this product is id or . The decoder may use any correct
multiplication tree, i.e. the specific tree used is not relevant to the proof of security.
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The size/depth bounds of Comp are immediate. To prove that C is a correct circuit (i.e.
that C () = C(z, k) for every x), one can apply an inductive argument to show that each
bundle at the output of a RANDOM gadget correctly encodes the value of the corresponding
wire in C, and thus the output decoder indeed produces C(z, k).

In the hybrid arguments below, we will crucially use the fact that each bundle of the
secret state and each bundle at the output of a RANDOM gadget is uniform (over the random
coins of Comp) subJect to correctly encoding the corresponding wire of C.

On input (C,z,C(x)), the simulator S computes a distribution on the wires of C' as
follows.

First, S computes the wires for the encoder and decoder honestly. For the encoder
this is straightforward. For the decoder, S chooses n vectors z, € G' which are uniform
conditioned on the correct product (determined by C(z);), and then computes the wires
for the multiplication trees honestly. These wires are distributed identically to the real
distribution on C'(x)’s wires and thus will not affect the hybrid arguments that follow, which
is why these multiplication trees and the complexity of S for this step are not of interest.

Next, S chooses uniformly at random the values for each wire encoding the secret input
k, as well as each connecting wire at the output of a RANDOM gate (except those which touch
the output decoder and have already been chosen).

Next, for each NAND gadget S computes values for its internal wires and for its output
wires by simply evaluating the gadget. (Here we use the fact that the output of one NAND
gadget is never the input of another, so all NAND input bundles have already been set.)

Finally, S computes internal wire values for each RANDOM gadget using Rpaxpou-

Now let C « Comp(C, k), and recall that Wx denotes the real distribution on the wires
of C(x). We define an intermediate distribution W, as follows: first draw a sample from

W,, and then recompute the internal wires of each RANDOM gadget from its input/output
bundles using Rpxxpou-

We now show that W, is indistinguishable (by £) from both W, and S (C,z, C (x)).
Claim 1. If the 1-local extension of L is e-fooled by G, then ¥Vl € L:

A(W),6(W,)) < e-|C|- (t—1).

Proof. Assume that there an ¢ € £ such that A(¢(W)), E(/Wx)) >¢€-|C|-(t—1). Define some
fixed ordering on the < |C| RANDOM gadgets of C. Then by a hybrid argument, there is
an m < |C| and two distributions H and H’, defined as follows, for which A(¢/(H),¢(H')) >
€-(t—1). H is defined by first drawing a sample from /V[Z;, and then recomputing the internal
wires of RANDOM gadgets 1, ..., m from their input/output bundles; H' is the same except
only random gadgets 1,...,m — 1 are recomputed.

Now by an averaging argument, we can fix all wires in both H and H’ except those
internal to the mth RANDOM gadget, obtaining a function ¢’ (with domain GI*¥PoM)) in the
1-local extension of £. Then ¢ distinguishes the real wires of the mth RANDOM gadget from
those computed by Rgawpon With advantage > € - (t — 1). In combination with Lemma 2.1,
this contradicts the claim’s hypothesis. O]

19



Claim 2. If the 4-local extension of L is e-fooled by G, then ¥Vl € L:
A(US(Cz,C())), L(W}) < e-[C],

Proof. Assume that there an ¢ € £ such that A(((S(C,z,C(z))),((W")) > ¢-|C|. Define

some fixed ordering on the < |C| bundles of C' that either encode a bit of the secret input k
or are at the output of a RANDOM gadget but do not touch the output decoder. Then by a
hybrid argument, there is an m < |C| and two distributions H and H’, defined as follows,
for which A(¢(H),¢(H’)) > e. In H, bundles 1,...,m are uniformly random and bundles
m+1,...,|C| are random subject to correctly encoding the value of the corresponding wire
in C; in H' only bundles 1,...,m — 1 are uniformly random. In both, each NAND’s internal
wires are computed using the gadget itself, and each RANDOM’s internal wires are computed
using Rranpou-

Let g € {id, a} be the value encoded by the mth bundle in W, (determined by C, k and
x). Note that the mth bundle is necessarily the input of a NAND gadget, and is either the
output of a RANDOM gadget or a bundle encoding a bit of k. By an averaging argument, we
can fix all wires in H and H’ while preserving A(¢(H),¢(H')) > €, except for the following:
the mth bundle, the internal and output wires of the NAND gadget that it touches, the
internal wires of the RANDOM gadgets that are adjacent to the output of this NAND gadget,
and the internal wires of the RANDOM gadget that outputs the mth bundle (if it exists).

Finally, a 4-local function can compute one of the two distributions from an input v € G'*
distributed according to either Ug: or D,: it plugs v into the mth bundle and computes the
(4-local) NAND gadget and the (1-local) Rianpon- O

Finally, because A is a metric, these two claims give part 2 of the theorem. O

Corollary 1.6. There is a single efficient compiler Comp, outputting a circuit C of size
IC| = O(|C|?), that is an (L, €)-leakage secure compiler for each of the following.
1. L = number-in-hand protocols with s parties communicating < - |6|1/3 bits, for a fized
0 >0 and a fixed partition ofa into s = O(1) sets; € = 9-CI?)
2. L = AC? circuits with depth < d, size < |6|Od(10g|a‘), an additional Og(log? |6|) arbi-
trary symmetric gates, and |C|*% bits of output; € = |6|’Qd(log|@|).
3. If TC® # NC* then for every k and infinitely many |C|, £ = TC circuits with size
< |CI* and klog|C| bits of output; € = |C|~*.
4. L = AC® circuits with depth < d, size < 20‘1('6‘(176)/%), and |6|5/3 bits of output, for
any 6 < 1;e= 2-Sa(|C| 1=/
Proof. For all four items, we choose t = |C|. As mentioned in §1.1, items 2-4 follow in a
straightforward manner from Theorem 1.4 and the results of §3. We now give the proof of
item 1.
We say that a set of functions F' = {f : G* — {0, 1}|é|} is uniformly d-local if for all
j< |6|7 the set S; := {i <t | 3f € F whose jth output depends on its ith input} has size
|S;| < d. Then, the proof of Theorem 1.4 establishes that, for every C, there are two sets
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Fy, F5 of functions f : G* — {0, 1}|é| for which the following holds. First, F} is uniformly
1-local and F3 is uniformly 4-local. Second, for every k € {0,1}", if there is a function ¢ on

domain {0, 1}/ and an z € {0,1}" such that
A(UW,), U(S(C, 2, C(x))) > et |C] (10)
for C « Comp(C, k), then there is a ¢ € G and a function f € F; U F; such that

A(L(f(Dy)), ((f(Ucr))) = €. (11)

Namely F) contains the 1-local functions computing the reduction in Claim 1 above (which
essentially is the reduction from Lemma 2.1), and F5 contains the 4-local functions computing
the reduction in Claim 2 above.

Let S be the partition of strings in (As)" onto 6 foreheads given by Theorem 3.6. We
define a partition S of strings in {0, 1}'6‘ into 6 hands as follows. For each index j < |C],
assign 7 to hand ¢ for some 7 < 6 such that for every f € F} U Fy, the jth output bit of f
does not depend on any input element on forehead 7 in S. This is possible by the definition
of uniformly d-local, because each output bit could possibly depend on < 4 4+ 1 = 5 input
elements and thus < 5 foreheads of S. ~

Now let P’ be any 6-party number-in-hand protocol on domain {0, 1}/°! under the parti-
tion S’. Assume that (10) holds for the function ¢ computed by P’, and let f € F; U F, and
g € G be given that satisfy (11). We define a 6-party number-on-forehead protocol P under
partition S that computes ¢(f(-)) with the same amount of communication as P’, which
contradicts Theorem 3.6. Specifically, player ¢ in P(z) acts as player ¢ in P'(f(x)). This
is possible because, by construction, player i in P(x) can compute every bit of f(z) that is
held by player i in P'(f(z)). O

5 Multi-query security via secure hardware

In this section we consider the extension of our construction to the setting where the ad-
versary can make multiple, adaptive queries. We follow the approach of [FRR*10], using a
simple secure hardware component. As mentioned in §1.1, in our setting this component has
no input and outputs a sample from the distribution Dj4.

We generalize Definition 1.1 to the multi-query setting following [FRR*10, Definition 1],
beginning with an overview. As before, the adversary A is restricted to choosing leakage
functions from some class £ and remains otherwise computationally unbounded. A makes ¢
queries to the circuit C, denoted (x;,¢;) € {0,1}" x L for ¢ < ¢, and in response to the ith
query A receives (C(x;), fz(/V[Z)) where W; denotes the wires of C (x;). A chooses its queries
adaptively, meaning that each query can depend on all responses seen so far.

On input (C, k), the compiler from §2 implicitly computes a string ky € (G*)" that
encodes k. In the multi-query setting, this encoding must be “refreshed” between queries,
as otherwise A can learn, say, the first bit of &k after O(t) queries. To accomplish this, the
compiler below outputs a circuit C : {0,1}" x (GY)" — {0,1}" x (G')" as well as an initial
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encoding EO. Then, the second output /k\rz of C (x;, E_l) is used as the second input to C in the
(i+1)th query. (This corresponds to the notion of a stateful circuit in [FRR*10].) Crucially
A does not directly obtain any E, but the leakage functions operate on these values as they
are carried on wires of C. R R

For an adversary A interacting with such a circuit C' on initial encoding kg, we let

~

(x1,01) = A(C) be the first query, and then inductively define
(%Ei) = 6(%%—1)
(i1, liv1) = A(C,v1,y1, (W), -, 15, Ls(W5)). (12)

We note two final differences from the single-query setting. First, the circuit C is random-
1zed, which means that it contains gates whose output comes from some distribution rather
than being deterministically fixed by the input. (In our construction, the only randomized
gates will be the secure hardware components which output a sample from Di4.) Second,
the simulator S is stateful, which means that between subsequent evaluations it maintains
some state. (In our construction the state will be an element of (G*)™.)

Definition 5.1. Let Comp(-,-) be a randomized algorithm that takes as input a circuit
C:{0,1}" x {0,1}" — {0,1}" and a string k € {0,1}". For a class of leakage functions L,
Comp is a g-query (L, €)-leakage-secure compiler if the following properties hold.

1. (Structure.) For every C and k, Comp(C, k) outputs a string ko € (GH™, and a ran-
domized circuit C': {0,1}" x (G*)™ — {0,1}" x (G*)™ which is completely determined
by C.

2. (Correctness.) For every A as above, every C, k, and every ¢ < ¢: y; = C(z;, k) with
probability 1.

3. (Security.) There is a randomized polynomial-time stateful algorithm S such that
the following holds for every C,k and every A as above. Let D,., denote the dis-
tribution (€;(W1),...,¢,(W,)), and let Dy, denote the corresponding distribution
(1 (S(C,z1,11)), .-, €, (S(C, x4, y,))) when each /T/I7J in (12) (1 < j < i) is replaced
with S(C,x;,y;). Then, A(Dieal, Dsim) < €.

The construction. Recall from §1.1 that a Djy-gate is a gate with no input that on each
execution of the circuit outputs a string of length 2¢ sampled from D4, and any circuit that
contains one or more Dj4-gates is a D;d;circuit. R

Then, Comp outputs a Dig-circuit C' : {0,1}" x (G)" — {0,1}" x (G")™ as follows. C
is identical to the construction in §2 with two exceptions. First, each pair (R®, L0+D) in
each RANDOM gadget is computed by a Djy-gate. Second, C computes its second output EZ
by applying a RANDOM gadget to each bundle of its second input k; ;. L

The simulator S then operates as follows. For the first query, S chooses kg, k1 € (G*)™

~

uniformly at random, and produces wire values for C (.lef\o) conditioned on output (y, k1)
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as described in Theorem 1.4. Between queries ¢ and ¢ + 1, S stores the value ?i‘\i, and for the
(7 + 1)th query it chooses k;y1 uniformly at random and proceeds in the same manner.

Proving the security of this construction requires a slightly stronger property of the group
encoding than what is given by Definition 1.2. Namely, it requires that the leakage class £
cannot distinguish the distributions D, and Ug: even with two adaptive queries. The need
for this is due to the fact that each k; (1 <i < ¢) is given as input to two leakage functions:
once when EZ is an output of C and once when it is an input. Formally, we require the
following strengthening of Definition 1.2.

Definition 5.2. Let G be a group and ¢t € N. A set of functions L is 2-adaptive e-fooled by
G' if for every a € G, every £ € L, and every function A : range({) — L, the following two
distributions are e-close in statistical distance.

1. Sample w < D, compute ¢' := A({(w)), and output ({(w), ' (w)).
2. Sample w « Ugt, compute ¢ := A(¢(w)), and output (¢(w), ¢'(w)).

With this stronger property, the following theorem can be proved by building on Theorem
1.4. Specifically, one first uses Theorem 1.4 to show that the security property of Definition
5.1 holds when the /S\imulja\tor chooses each k; as in the real execution but the internal wires
of each evaluation C(xz;, k;) are reconstructed. Then, a hybrid argument over each bundle
in each EZ is used to show that the security property is satisfied even when S chooses each
k; uniformly at random. The proof is essentially identical to the proof of [FRR*10, Lemma
15], and we omit the details.

Theorem 5.3. Let G be a group. For every polynomial-time computable function t =
t(n,|C]), there is a compiler Comp for which the following holds.
1. For every C : {0,1}" x {0,1}* — {0,1}" and k € {0,1}", Comp(C, k) runs in time
poly(|C|,t) and outputs a Dig-circuit C of size O(t* - |C|) and depth O(t - depth(C)).
2. For every set of functions L, every q € N, and every € > 0, if the 4-local extension of

L is 2-adaptive e-fooled by G* then Comp is a q-query (L, €')-leakage-secure compiler
fore = (qg+1)-e- (n+1t-|C|).

Similarly to Corollary 1.6, Corollary 1.7 is derived as a result of Theorem 5.3 and the

following subsection, by choosing ¢t = |C|.

5.1 Adaptive compression bounds

In this section, we show that the function classes from §3 are 2-adaptive fooled by (As)*. For
the class of functions computable by AC? with symmetric gates, this requires asymptotically
smaller output length.
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5.1.1 Multi-party protocols

Theorem 5.4. There is a partition of the inputs in (As)' into k pieces such that the set
L of k-party number-on-forehead protocols communicating ¢ bits and outputting < c bits is
2-adaptive e-fooled by (As)t for e = 20~/ (k24%)

Proof. The partition is the same as in Theorem 3.6. Assume that £ is not 2-adaptive e-fooled
by (As5)!, and let o € A5, P’ € L, and A : range(P’) — L violate Definition 5.2.

Consider the following k-party protocol P that communicates and outputs 2¢ bits. On
input z, the parties first compute P’(x) by communicating ¢ bits. Then, they each determine
P" = A(P'(x)) with no communication. Finally, they compute P”(z) again communicating
c bits. By assumption we have A(P(D,), P(Ua;)t)) > €, which contradicts Theorem 3.6. [

5.1.2 TC°

Theorem 5.5. If TC? # NC' then Vk and infinitely many t, the class £ of TC® circuits
with size < t* and output length klogt is 2-adaptive t=*-fooled by (As).

Proof. Assume that there exists k such that for sufficiently large t, £ is not 2-adaptive ¢~*-
fooled by (As)!. Let a € As, € : (As)t — {0,1}*1°8* "and A : {0,1}*1°8* — £ be the choices
that violate Definition 5.2. Let /9, .../}, € £ be all possible circuits that A could output.
Let ¢ : (A5)t — {0,1}%1¢? be the following procedure. On input x € (As)t: first
compute ¢(x), then select ¢’ := K’g(x) (identifying ¢(z) € {0,1}*'°8! with the natural number
it represents), and finally output (¢(x),#(z)). Clearly ¢’ is computable by a TC circuit of
size t°*%)| and by assumption we have A(¢"(D,), " (Uiag)r)) > t~* which contradicts Theorem

3.9. [l

5.1.3 AC°

The proof of the following theorem is essentially identical to the previous proof.

Theorem 5.6. For every 0 < 6 < 1 and every integer d > 0, there is a constant € > 0 such
that the following holds. Let L be the class of unbounded-fanin circuits C' : (As)t — {0, 1}t5
of depth < d and size < 2" Then, L is 2-adaptive 2=<1""""" -fooled by (As)".

Proof. Assume that £ is not 2-adaptive 271" ~""“_fooled by (As)!, and let o € As, £ € L,
and A : {0,1}" — £ be the choices that violate Definition 5.2. Let £}, . .. s € L be all
possible circuits that A could output.

Let ¢ : (A5)' — {0,1}%" be the following procedure. On input z € (As)*: first compute
{(z), then select ¢’ := £}, and finally output ({(z),¢(z)). Clearly ¢" is computable by an
ACP circuit of depth 2d + O(1) and size 2 - 2¢"~""" 4 2" + O(1) = e/t =DM g an
appropriate ¢ and ', which contradicts Theorem 3.11. H
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5.1.4 AC’ with symmetric gates

Recall that in §3.4, it was shown that (A5)! ¢t~ ?0°¢%)_fools the class of unbounded-fan-in
constant-depth circuits that contain t?1°6Y And/Or/Not gates and O(log®t) arbitrary sym-
metric gates and output t*! bits. To apply the technique from the two preceding proofs to
this class, one needs to restrict the output length to O(1) to ensure that the circuit ¢” still
contains only O(log?t) symmetric gates. However, by a more careful extension of Theorem
3.12 we can improve the output length to Q(logt). In the following, we focus mainly on the
necessary changes to the proof of Theorem 3.12.

Theorem 5.7. For every d, there is an € > 0 such that the following holds for every t.

Let L be the set of functions { : (As)" — {0, 1}610g2t where each output bit of { is com-
putable by an unbounded-fan-in circuit of depth < d that contains < t<°6' And/Or/Not gates
and < elog?t arbitrary symmetric gates.

Then, L is 2-adaptive t=<'°8*_fooled by (As).

Proof. Assume that £ is not 2-adaptive t=¢!°¢’-fooled by (As)!, and let o € As, £y € L, and
A {0, 1}€1°g2t — L be the choices that violate Definition 5.2. Let 1, ..., {1zt € L be all
possible circuits that A could output.

For an appropriate n = Q(v/t/logt) and for eachi = 0, ..., ¢t let ¢ : {0, 1}"2'0310?5" —
{0, 1}€1°g2t be the corresponding function given by Lemma 3.14. These functions have the
property that the distribution (¢} (x), Zg(z)(@) when z +— PAP~1(1) has statistical distance

> n~¢1°8" from the corresponding distribution when 2 « PAP~'(0), for ¢ = ¢/(¢) > 0.

Let R be the distribution on random restrictions p given in the proof of Theorem 3.12.
Say that p is good if PAP|, = GIP (i.e. PAP|, has exactly 1 input restricted per bottom
@ gate) and for every i < t°¢* and j < elog®t, l; ;| is computable by a (0.3logn)-party
protocol exchanging log® n bits (where ¢; ; denotes the jth output bit of £;.) Because the

o(1)

number of £} ; is elog?¢ - (t°¢* + 1) and because ¢ = n®", when e is sufficiently small we

obtain
Pr [p is good] > 1 — nflee™
p—R
by combining [Vio07, Claim 11 & Lemma 12| with a union bound.

For any p that is good, let P, : {0,1}%031¢" — {0 1} be the following (0.3 logn)-party
protocol exchanging 2elog®tlog’ n+1 = logo(l) n bits. On input y, the parties first compute
each of the elog®t output bits of £y|,(y), exchanging a total of €log®tlog” n bits. Then, each
party chooses ¢ := 626|p(y) with no communication. Then, the parties compute each of the
elog® t output bits of ¢/ ,(y) again exchanging elog® tlog® n bits. Finally, the parties use one
additional bit of communication to output 1 iff (¢|,(y), ¢;|,(y)) € S for the appropriate set
S corresponding to (8) in Theorem 3.12.

The rest of the proof follows the same argument as Theorem 3.12. O]
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