Electronic Colloquium on Computational Complexity, Report No. 4 (2013)

Finite state verifiers with constant randomness™

A. C. Cem Say'
Bogazigi University, Department of Computer Engineering, Bebek 34342 Istanbul, Turkey
say@boun.edu.tr

Abuzer Yakaryilmaz?*
University of Latvia, Faculty of Computing, Raina bulv. 19, Riga, LV-1586, Latvia
abuzer@lu.lv

November 11, 2012

Keywords: interactive proof systems, randomness complexity, constant randomness, probabilistic finite
automata, multihead automata, NL

Abstract

We give a new characterization of NL as the class of languages whose members have cer-
tificates that can be verified with small error in polynomial time by finite state machines that
use a constant number of random bits, as opposed to its conventional description in terms of
deterministic logarithmic-space verifiers. It turns out that allowing two-way interaction with
the prover does not change the class of verifiable languages, and that no polynomially bounded
amount of randomness is useful for constant-memory computers when used as language rec-
ognizers, or public-coin verifiers. A corollary of our main result is that the class of outcome
problems corresponding to O(logn)-space bounded games of incomplete information where the
universal player is allowed a constant number of moves equals NL.

1 Introduction

It is known that allowing constant-memory computers to use random bits and to commit small
amounts of error increases their power, both as language recognizers [Fre81], and as verifiers of
membership proofs [CL89, DS92]. In this paper, we examine the effects of restricting such proba-
bilistic machines (2pfa’s) to use only a constant number of random bits, independent of the length
of the input. We prove that such constant-randomness 2pfa’s are able to verify membership in
precisely the languages in NL. This is an interesting addition to the facts that NL has deterministic
logspace verifiers, and NP is the class of languages that has logspace verifiers that use logarith-
mically many random bits [CL95]. We obtain this result by demonstrating that such verifiers are
equivalent to multihead finite automata. Allowing these constant-coin verifiers to use logarithmic

*Some of the material in this paper was first presented in “A. C. Cem Say, Abuzer Yakaryilmaz, Finite state
verifiers with constant randomness, Lecture Notes in Computer Science Vol. 7318, How the World Computes: Turing
Centenary Conference and 8th Conference on Computability in Furope, CiE 2012, Cambridge, UK, June 18-23, 2012,
Proceedings, 2012, pp.646-654.”

TSay was partially supported by TUBITAK with grant 108E142.

#Yakaryilmaz was partially supported by TUBITAK with grant 108E142 and FP7 FET-Open project QCS.

ISSN 1433-8092

space, and to have two-way interaction with the prover, does not augment the class of verifiable lan-
guages. No nonregular language has such an interactive proof system if the verifier is restricted to
use public coins. We also show that, when used as recognizers, no amount of polynomially-bounded
randomness gives standard 2pfa’s any power beyond their deterministic versions.

The rest of this paper is structured as follows: Section 2 provides the necessary background.
Our results on the new characterization of NL in terms of finite state verifiers, and the public-coin
case, are presented in Section 3. Several variants of the verifier model are examined in Sections
4 and 5. A characterization of the class of outcome problems corresponding to O(logn)-space
bounded games of incomplete information where the universal player is allowed a constant number
of moves is given in Section 6. Section 7 is a conclusion.

2 Preliminaries

For background on interactive proof systems with bounds on the usage of space and /or randomness,
the reader is referred to [Con93b].

The main model of verifier that we will use is a probabilistic Turing machine (PTM) with a
read-only input tape and a single read/write work tape. The input tape holds the input string
between two occurrences of the end-marker symbol ¢, and we assume that the machine’s transition
function never attempts to move the input head beyond the end-markers. The input tape head is on
the left end-marker at the start of the process. The verifier exchanges information with a prover by
writing and reading one symbol at a time from the communication alphabet I' in a communication
cell. Using this information channel, the prover attempts to prove the membership of the input
string in the language under consideration. Of course, one should not trust this blindly, and we
even allow the possibility that the prover sends an infinite sequence of symbols, a contingency that
could cause careless verifiers to run forever. The machine also has access to a source of random bits.
The state set of the verifier PTM is Q = RUDU{qqa, ¢}, where R is the set of coin-tossing states, D
is the set of deterministic states, and ¢, (accept) and ¢, (reject) are the halting states. One of the
non-halting states is designated as the start state. A configuration of the verifier is defined to be
the 4-tuple consisting of its current internal state, input head position, work tape content, and work
tape head position. Associated with each state ¢ € @, there is a communication symbol v, € T'.
The special “null symbol” € is guaranteed to be a member of I'. A “communication step” starts
when any state ¢ € RU D with ~y, # € is entered, with 7, being written in the communication cell.
The prover can be modeled as a prover transition function p, which determines the symbol v € T’
to be written in response, based on the input string and the entire communication that has taken
place so far.! Let ¢ = {—1,0,+1} denote the set of possible head movement directions. When the
verifier reads the response of the prover, it behaves according to the verifier transition function §
as follows: For ¢ € R, §(q,0,0,v,b) = (¢,0',d;,d,) indicates that the machine will switch to state
q', write 6 on the work tape, move the input head in direction d; € ¢, and the work tape head
in direction d,, € ¢, if it is originally in state g, scanning the symbols o, 6, and « in the input
and work tapes, and the communication cell, respectively, and seeing the random bit b as a result
of the coin toss. For ¢ € D, §(q,0,0,v) = (¢',¢,d;,dy) has a similar meaning, but without the
randomness. If 7, = ¢, the verifier transition function described above is applied directly, without
any communication.

There are two different definitions of interactive proofs for language membership. We start with
the “strong” definition.

!This ensures that the prover is not able to detect how many moves have been executed by the verifier up to the
present communication step.

We say that language L has a (private-coin) interactive proof system (IPS) with error probability
¢ if there exists a prover P and a verifier V' such that

1. for every x € L, the interaction of P and V on input w results in acceptance with probability
at least 1 — ¢, and,

2. for every x ¢ L, and for any prover P*, the interaction of P* and V on input x results in
rejection with probability at least 1 — ¢.

Interactive proof systems where the verifier accepts every member of the language with proba-
bility 1 are said to have perfect completeness.

IP is the class of languages that have interactive proof systems with polynomial-time verifiers,
and with error probability e for some e < 3. IP({restriction 1),-- -, (restriction k)) will denote the
class of languages that have IPSs with (restriction 1),--- , (restriction k) [Con93b, CL95]. We will
be examining restrictions on expected runtime, worst-case space (i.e. work tape cells), and random
bits. We use the notations cons, log, poly, and exp to stand for functions that are O(1), O(logn),
O(n®), and 2°") for any constant ¢, respectively. For instance, IP = IP(poly-time).

We will also be considering the effects of restricting tape head movement on our models. In the
general case, both the input and the work tape heads are allowed to move in both directions (except
when the input head is on an end-marker) or to stay put, as represented by the set ¢ = {—1,0,+1}
in the definition above. A machine where a particular head is not allowed to move left is said to
have one-way access to the corresponding tape. Heads which are restricted even further so that
they are not allowed to stay put, and must move right at every step, are called real-time. These
features will be represented by the notations lway-input and rt-input, respectively, in the restriction
lists in class names.

Replacing condition 2 in the definition above with the weaker condition

2. for every x ¢ L, and for any prover P*, the interaction of P* and V on input z results in
acceptance with probability at most

leads to our definition of the IP, (restriction-list) classes, the counterparts of IP(restriction-list)
with these alternative kinds of verifiers that do not have to halt with high probability for all inputs.
Note that, since these “weak” IPS’s are less constrained than the “strong” ones of the previous
definition, the IP classes are always contained in the corresponding IP,, classes.

A one-way interactive proof system [Con93a] is an IPS where the prover is restricted so that it
maps the set of input strings to the set of sequences from the communication alphabet.? For input
string w, the prover writes the ith symbol of the corresponding sequence in the communication
cell at the ith time the verifier enters a state ¢ with 7, # €. This ensures that the communication
between the prover and the verifier is one-way. The corresponding language classes are named by
prefixing the class names mentioned above with the designation “oneway-". Note that a one-way IPS
can be modeled as a verifier which has one-way access to an additional “certificate” tape, on which
a purported membership proof of the input string has been written, without the need to mention a
prover or a communication cell at all, as in the definitions of conventional nondeterministic classes.

The following equalities are trivial:

NP = oneway-IP(poly-time, poly-space, O-random-bits) (1)

2Note the terminological accident here. We have already used the word “one-way” to describe tape heads which
can not move to the left. Unfortunately, IPSs where the prover does all the talking also happen to be called with
this name in the literature. We will be clear about which feature we are referring to throughout the paper.

NL = oneway-IP(poly-time, log-space, 0-random-bits) (2)

Note that specifying 0 as the randomness complexity of the verifier is just a way of saying that
it is deterministic.
Allowing logarithmic amounts of randomness yields the characterization [CL95]

NP = oneway-IP(poly-time, log-space, log-random-bits)
= IP(poly-time, log-space, log-random-bits)

(3)

with an improvement in the space bound. Relaxing the randomness bound of the one-way IPS
further does not help on its own, since [Con93a|

oneway-IP(poly-time, log-space) = NP, (4)
but allowing interaction as well famously yields [Con91, Sha92]
IP(poly-time, log-space) = PSPACE. (5)

A public-coin IPS, also known as an Arthur-Merlin game, is an IPS where the coins of the verifier
can be seen by the prover when they are flipped, thereby ensuring that the prover always knows
the verifier’s configuration during the communication. The public-coin version of IP((restriction
1), -+, (restriction k)) will be named AM((restriction 1), --- , (restriction k)), and the notation will
also be extended to the weak definition in a similar way. It is known [Con89, GS86, Sha92] that

AM (exp-time, log-space) = P, (6)

and
AM(poly-time, poly-space) = PSPACE. (7)

The relationships in Equations 1-7 remain true for the weak definition of IPS’s, since logarith-
mically bounded space is sufficient to cut off unacceptably long computational paths. When one
considers finite state verifiers, [DS92] which use only a constant amount of cells on the work tape,?
the difference between the weak and strong definitions of becomes evident.

With no limits on the runtime, or the number of random bits to be used, weak IPS’s with finite
state verifiers exist for a vast class of languages; oneway-IP,, (cons-space) contains every recursively
enumerable language, whereas IP(cons-space) is contained in SPACE(22O(")) [CL89]. It has been
proven [DS92] that Arthur-Merlin games with finite state verifiers exist for languages outside the
class of languages recognizable by “stand-alone” 2pfa’s, and that some languages have linear-time
finite state verifiers only if the public-coin restriction is not enforced, in contrast to Equations 5
and 7.

We will focus on verifiers which use a constant number of random bits for any input.

In the next section, we will demonstrate an interesting relationship between constant-space,
constant-randomness verifiers and multihead finite automata. A k-head finite automaton (2nfa(k))
is simply a nondeterministic finite-state machine with k two-way heads that it can direct on a read-
only tape containing the input string, flanked by two end-markers. A configuration of a 2nfa(k) is
a tuple consisting of its current state and head positions. Deterministic multihead finite automata
(2dfa(k)’s) are defined analogously. The classes of languages recognized by these machine families
will be denoted as 2NFA(k) and 2DFA(k), respectively. We will also look at probabilistic versions
of multihead automata (2pfa(k)’s). Detailed information about these machines can be found in
[HKM11, Mac97]. We note the following important facts that will be used in our proofs.

31t is easy to see that such machines can be simulated by machines with longer programs which have no work tape
at all, namely, two-way probabilistic finite automata (2pfa’s) [Fre81].

Fact 1. Ug>12NFA(k) = NL [Har72].
Fact 2. Uy>12DFA(k) = L [Har72)].

Fact 3. Every 2nfa(k) (resp., 2dfa(k)) has an equivalent 2nfa(2k) (resp., 2dfa(2k)) that halts in
O(n¥) time on every computational branch.

Multihead finite automata where all heads are restricted to one-way movement (one-way k-head
automata) will be denoted 1nfa(k)’s. The corresponding language classes are named 1INFA(k). The
probabilistic and deterministic versions of these machines will be denoted 1pfa(k) and 1ldfa(k),
respectively.

3 2pfa verifiers with constant randomness and 2nfa(k)’s

We start our examination of the effects of limiting the number of random bits by noting that
machines that are not helped by a prover about their input are very weak when restricted to work
with constant workspace, and polynomially bounded randomness.

Theorem 1. For any polynomial p, every 2pfa whose expected number of coin tosses on halting
computational branches is O(p(n)) for input strings of length n recognizes a reqular language with
bounded error.

Proof. This is a straightforward modification of the proof (in [DS90]) of the following fact [DS90,
KF91]:

For any polynomial p, 2pfa’s with expected runtime O(p(n)) recognize only the regular lan-
guages with bounded error.

See Appendix A for the details. O
Our new characterization of NL is demonstrated by the following lemmas.
Lemma 1. NL C oneway-IP, (cons-space, cons-random-bits).

Proof. Let L be any language in NL. By Fact 1, L is recognized by a 2nfa(k) M. We show
how to construct a weak one-way IPS with the required properties that recognizes L with perfect
completeness for any desired error probability € < % As mentioned above, this is equivalent to
demonstrating how every member of L has a membership certificate that can be checked with
such a verifier. We start by building a verifier V that simulates one run of M, by consulting the
certificate for choosing among the nondeterministic branches of M. V uses just r = [log k| random
bits to branch to k computation paths (each path has probability at least 27") while scanning the
left input end-marker. Each such path will use its head to track the position of the corresponding
head of M. For every step of the simulation of M, the certificate contains a symbol conveying the
list of k symbols that would be scanned by M’s heads at this step, together with an indication of
which nondeterministic choice should now be taken by M to eventually reach the accept state. The
ith path of V rejects immediately if it sees that the present certificate symbol is inconsistent with
what the i¢th head is currently scanning, and updates its state and head position according to M’s
program and the information given by the certificate otherwise.

If the input string is accepted by M, the certificate will lead all paths of V' to acceptance,
by giving correct information about what the heads are seeing and the nondeterministic choice at
every step, yielding a total acceptance probability of 1. Otherwise, any certificate must “lie” about
at least one head in order to make some paths accept, causing the path responsible for that head

to reject, so the acceptance probability in that case is at most 1 —27". To reduce the unacceptably
high error bound for nonmembers, we chain several copies of V to run one after another,* on a
correspondingly long certificate, and accept if and only if all copies accept, rejecting otherwise.
It is easy to see that a chain of m copies of V involves an error of (1 —27")™, and therefore
m > h)g(lf%;*r) iterations are sufficient to obtain an error of ¢, where the total number of random
bits used by the resulting verifier would be O(k log k log %) Note that a 2nfa(k) with state set @
has at most |Q|(n + 2)* distinct reachable configurations on any input of length n, and therefore

V runs in polynomial time for correct proofs of membership. O

The proof of Lemma 1 shows that 2NFA(2), which contains nonregular languages, has verifiers
with two random bits. This is the minimum number of useful random bits for 2pfa verifiers. A single
coin toss would create just two computational paths with equal probability. Since a probabilistic
machine that always responds correctly can be replaced by its deterministic counterpart, we must
have the verifier err for at least one input string. But the probability of such an error is at least %
in a machine that tosses its coin only once, which would violate our bounded error condition.

The reader should also note that the IPSs of Lemma 1 are strictly more powerful than 2pfa’s
unaided by a prover, even when the latter are allowed to use an unbounded number of fair coins,
since it is known [Kan89, Mac98] that the class of languages recognizable by such stand-alone 2pfa’s
is properly contained in the class L.

The reason why the construction in Lemma 1 does not yield an IPS according to the strong
definition is that an evil prover can supply an infinitely long fake certificate that makes some paths
of the verifier enter infinite loops by lying® about a head that those paths cannot see, at the cost
of being rejected by the path responsible for that head. If we forgo the guarantee of halting with
probability 1 for members of the language, (thereby losing perfect completeness,) and the capability
of reducing the error bound to any desired nonzero value, settling for an e that is near (but of course
strictly less than) %, we can create a strong one-way IPS for any language in NL, as the next lemma
shows.

Lemma 2. NL C oneway-IP(cons-space, cons-random-bits).

Proof. Let L be any language in NL. We first use the construction in the beginning of the proof of
Lemma 1 to build a verifier V' that uses r = [log k] random bits to simulate one run of the 2nfa(k)
associated with L, accepts correct certificates for members of L with probability 1, and rejects any
incorrect certificate with probability at least 27". We then augment V to obtain a new verifier V’,
which uses r + 1 more random bits, as follows: V' rejects directly with probability 22:—111 With the
remaining probability, V'’ transfers control to V.

V' accepts correct membership certificates with probability %, i.e. with an error of 22:—;1

Any incorrect certificate is rejected with probability at least 2222:7111, yielding a strong IPS with error

bound 222227111 Note that an honest prover can always supply a certificate that causes V' to halt with

probability 1 for members of L within polynomial time; and V' can be tricked to running forever
. . .. 2r

by evil provers only with probability at most % O

We will now show that two-way interaction with the prover does not augment the power of
constant-randomness verifiers, even if they are allowed to use logarithmic space, and no requirement

4Note that the certificate guides the paths of V' to position their heads back on the left end-marker and to start
the next round of coin-flipping simultaneously.

®We can assume that the simulated multihead automaton has the desirable property mentioned in Fact 3. Any
prover that causes a long runtime must therefore be lying.

of halting with probability 1, let alone a time bound, is imposed on computations for inputs in the
language.

Lemma 3. IP,(log-space, cons-random-bits) C NL.

Proof. We start by showing that any language in IP,,(log-space, cons-random-bits) has an IPS with
a worst-case polynomial bound on the runtime of the verifier.

Suppose that a language L has a weak IPS with error € consisting of prover P and logspace
verifier V', which always uses at most r random bits. Assume without loss of generality that
V' tosses all of its coins at the start, and then transfers control to the appropriate member of
S={M;i, Mo, ..., My}, where each M; is a deterministic logspace verifier corresponding to the ith
possible assignment to the r-bit random string. The prover P can be viewed as communicating
with these deterministic verifiers, and eventually convincing more than half of them to accept the
input strings in L. Note that the number of distinct reachable configurations of any of the M; is
bounded by a polynomial, say, ¢(n), in the input length n, and these machines can therefore run
for at most c(n) steps between any two consecutive communication steps.

Some members of S can have the same communication transcript, that is, they can send precisely
the same sequence of symbols to P, and therefore receive the same sequence of responses. Since
this is a private-coin system, P does not know which particular M; it is talking to in such cases.
From the point of view of P, the state of V at any communication step is a probabilistic mixture
(an “ensemble”) of the configurations of the deterministic verifiers consistent with the interchange
so far. Since such an ensemble can contain at most 2" elements, the total number of possible
ensembles is itself bounded by a polynomial, say, p(n), in n. We therefore conclude that P does
not need to communicate more than p(n) symbols to convince V for any input string in L, since a
longer communication would necessarily repeat an ensemble and can be shortened without changing
the result. It follows that all accepting branches of V' have polynomially bounded runtime for all
members of L when communicating with P. We build a new logspace verifier V' that simulates
V, rejecting when the execution of any M; has exceeded this time bound, say, t(n). The new IPS
consisting of V' and P is clearly seen to handle the language L with error e, r random bits, and
within time t(n).

Let us now proceed to show that L € NL, by building a one-way IPS with a deterministic
logspace verifier M for L. We will use the probabilistic verifier V' described above in our con-
struction. Let us say that V and P use the communication alphabet I'; and that V has state set
@ = CUN, where C' = {q € Q | 74 # €} is the set of states which communicate with the prover, and
N is the set of “noncommunicating” states. Recall that V starts by randomly picking a member
of the set S of 2" deterministic verifiers, the M;.

The purported membership certificate that our new verifier M will check consists of 2" tracks,
each with alphabet T'=T'U {(, 0c0}. The ith track is supposed to contain a transcript of M;’s
communications with the prover about the input x. The ith track square of the jth certificate
symbol contains

e v, if M; receives the prover response 7y in its jth communication step,
e (O, if M; performs a halting computation with fewer than j communications, and,

e oo otherwise, that is, if M; enters a nonhalting path of noncommunicating states after per-
forming fewer than j communications.

To process the jth certificate symbol, M simulates all the M;’s that are indicated to be on
a halting path on the input = until they reach their jth communication step, terminate, or are

detected to have entered an infinite loop by running more than c¢(n) steps. M rejects if it detects
a mismatch between the track content and the actual computation of M;.

Recall that some members of S can have the same communication transcript, and are therefore
indistinguishable by the prover, for the input at hand. Partition S into blocks, each of which
correspond to a different communication transcript. M discovers this partition as it goes through
the certificate. At the start, it considers all the M;’s as in the same block in the initial partition.
Whenever it scans a new certificate symbol, M refines the partition to separate the M;’s that
send different symbols, or perform no communication, and rejects if the certificate is claiming that
different prover messages are being received by two verifiers in the same block of the new partition.
If any track contains a communication symbol after the appearance of a () on an oo, M rejects.
If it detects that the certificate is longer than p(n) steps, M rejects. M accepts if the certificate
survives these tests, and a majority of the M;’s are verified to terminate with acceptance.

Clearly, a majority of the members of S accept as a result of their interaction with P on the
input «x if and only if x € L. If the input is not in L, there is no prover that can fool V for more
than half of its possible coin strings to cause acceptance together, and no certificate can make M
accept this input.]

We have proven that

Theorem 2.
oneway-|P(cons-space, cons-random-bits) = NL = IP,,(log-space, cons-random-bits).

Let REG denote the set of regular languages. We also have the following to say about the
public-coin versions of these verifiers.

Fact 4. AM,,(cons-space, cons-random-bits) = REG.
This is a special case of the following theorem.

Theorem 3. For any resource bounds r(n) and s(n), where r(n) is computable in space s(n), and
r(n) € O(s(n)), AMy(s-space, r-random-bits) = NSPACE(s).

Proof. One direction is obvious. For the other direction, we adapt the proof of Lemma 3. Let
V' be a public-coin verifier utilizing r(n) coins and s(n) space for a language L. We build a
deterministic verifier M. Let the set S consist of the 27" deterministic verifiers (the M;’s in the
terminology of Lemma 3) obtained by hardwiring all possible coin sequences to V. Since the prover
is now free to send different messages to each of these verifiers, we do not have to worry about
checking for consistency among the supplied communication transcripts of those machines. M can
therefore simulate them sequentially, rather than in parallel, requiring its certificate to just present
the transcripts of the communication between each M; and the prover one after another. This
certificate can be controlled in s(n) space. O

4 Restrictions on heads

4.1 One-way verifiers

In this section, we will show that a relationship similar to the one established in Section 3 exists
between verifiers that are further restricted to perform one-way access to their input string, and
the family of one-way multihead machines, the 1nfa(k)’s.

Theorem 4.

oneway-IP(cons-space, cons-random-bits, lway-input) =
IP(cons-space, cons-random-bits, lway-input) = Ug>1 INFA(k).

Proof. One of the nontrivial inclusions is easy to prove: Replace the 2nfa(k) mentioned in the proof
of Lemma 2 with any 1nfa(k), and the construction there yields an equivalent one-way IPS with a
constant-space, constant-randomness verifier that has a one-way input head.

For the remaining inclusion, suppose that we are given an IPS with a verifier V', which always
uses at most r random bits, and a one-way input head, for a language L. We start by transforming
V to a set S of 2" 1dfa verifiers, each of which simulates a version of V' with a different assignment
to the r-bit random string.

We build a Infa(2") M to recognize L. As in the proof of Lemma 3, M guesses a certificate,
and simulates V' to see if this certificate describes a correct transcription of a dialogue of V' with
the prover that ends with the input string being accepted with high probability. M uses a different
head for representing the head position of each machine in set S. For each newly guessed certificate
symbol v, M goes through all the machines in S. Each such machine A can either spend a finite
number of steps without communicating with the prover, or enter an infinite loop with no further
communication. The number of distinct configurations of A in this situation equals the number
of internal states of V', so M can detect if A has entered such a loop easily. In this manner, M
simulates A until it determines that A is looping, or has halted, or has communicated. M checks
the certificate for consistency with the information available to the prover, counts the number of
the elements of S that are observed to accept for legitimate certificates, and halts and accepts if
this counter reaches 2"~ + 1.

If the input is in L, then a prover convinces a majority of the machines in S to accept. M would
then have an accepting computation path corresponding to that prover. If the input is not in L,
there is no prover that can fool more than half of V’s paths to accept together, and M therefore
has no accepting path for this input. O

The family of one-way multihead automata is known [HKM11] to recognize a proper subclass of
NL that properly contains the regular languages. For instance, the language of binary palindromes
is not a member of this class, but its complement is. We can therefore conclude that restricting the
input head of a verifier to one-way movement does reduce its overall computational power under
these resource bounds.

4.2 Real-time verifiers

The class of languages recognized by real-time nfa(k)’s is precisely the class of regular languages,
since having multiple real-time heads on the same tape is no different than having a single head.
In contrast, we will now show that constant-randomness finite-state verifiers with real-time access
to their input can verify membership in some non-context-free languages. Consider the language
TWIN = {wcw|w € {a,b}*} on the alphabet {a,b,c}.

Theorem 5. TWIN € oneway-IP(cons-space, cons-random-bits, rt-input).

Proof. We describe the verifier. Use a random bit to split to two branches on the left end-marker.
The first branch immediately starts reading the certificate and comparing it with the prefix of the
input that is followed by the first ¢, whereas the second branch does not consult the certificate until
it sees a c¢ in the input. The first branch rejects if the comparison fails, or if it sees that the number
of ¢’s in the input is not 1. The second branch compares the certificate with the input postfix after

the first ¢, and rejects if that comparison fails. Both branches use two more random bits during
the execution,® and reject if both these bits turn out to be zero. They otherwise accept.

Members of TWIN will be verified to be so with probability % when the certificate is the substring
appearing on either side of the c. No certificate can convince the verifier with probability greater
than % when the input is not in TWIN.]

Note that oneway-IP(cons-space, cons-random-bits, rt-input) also contains some nonstochastic
languages, not recognizable by 2pfa’s with unbounded error. For example, by using an argument
similar to the one for TWIN, it is not hard to show that

NH € oneway-IP(cons-space, cons-random-bits, rt-input),

where [NH71] NH = {a®ba¥ ba¥2b---a¥b | x,t,y1, -,y €ZT and Ik (1 <k <t),z = Zle Yi}-
In our results above, although the input head was real-time, the certificate head was not, and
the algorithms used its capability to stay put in some steps critically. Restricting the verifiers to
having real-time access on both the input and certificate tapes would indeed reduce the class of
languages with constant-space, constant-randomness to REG, since the construction of Theorem 4
can be adapted to obtain an equivalent 1nfa(k) with all heads working real-time for such a verifier.

5 2pfa’s with multiple heads

We have seen that constant randomness seems to convey the power of possessing multiple heads to
single-head verifiers. We now turn to machines that already have multiple heads. In this section, we
examine the effect of limiting the number of allowed coin tosses of 2pfa(k)’s, that is, probabilistic
multihead automata. This will turn out to be relevant for understanding the relationship between
the class L and its randomized generalizations.

5.1 Two-way heads

Hartmanis’ proof of Facts 1 and 2 [Har72| is based on a demonstration that multihead finite au-
tomata and logarithmic-space Turing machines can simulate each other with polynomial slowdown.
This interchangeability, which extends to the probabilistic versions of these models as well [Mac97],
will be useful for our analyses in this section.

Let us consider the minimum amount of useful randomness for stand-alone 2pfa(k)’s. Of the
several modes of recognition associated with probabilistic machines, (i.e. with one-sided or two-
sided, bounded or unbounded error), we take the least restricted one, namely, two-sided unbounded
error, where all and only the strings that are members of the language in question are to be accepted
with any probability greater than % We will use the following variant of Theorem 3.

Theorem 6. For any resource bounds r(n) and s(n), where r(n) is computable in space s(n), s(n)
is space constructible, and r(n) € O(s(n)), the class of languages recognized with PTM’s that use
at most r(n) random bits and s(n) space is contained in SPACE(s).

Proof. We start with a probabilistic Turing machine M with the properties mentioned in the
statement of the theorem. We build a deterministic Turing machine D as follows. D computes
r(n), and starts to simulate all the 2"(") deterministic Turing machines that correspond to different
coin sequences of M sequentially on the input. Simulations that are detected to enter infinite loops
(by running more than 2s(n) steps) are cut off. D counts the simulations that are seen to accept,

SFor instance, they may flip coins when scanning the ¢ symbol and the right end-marker.

10

and accepts if and only if this value exceeds 27" ~1. Tt is clear that D uses O(s(n)) space, and

recognizes the language of M. O

Assume that we are given a 2pfa(k), say, P, that uses at most logarithmically many random bits.
There exists a logarithmic-space PTM, say, T', that uses precisely the same number of coins, and
recognizes the same language as P with unbounded error [Mac97]. By Theorem 6, this language
is in the class L. Note that any language in L is trivially recognized by a 2pfa(k) that uses no
randomness by Fact 2, so we conclude that the class of languages recognized with unbounded error
by probabilistic multihead finite automata that are restricted to use an amount of random bits that
is logarithmically bounded in terms of the input length is identical to the class corresponding to
the deterministic versions of these machines.

Recall that RL is the class of languages recognized with one-sided bounded error by logspace
PTM’s in polynomial time. Theorem 1 implies that the logarithmic-randomness and polynomial-
randomness classes for single-head 2pfa’s coincide. An analogous result for multiple-head 2pfa’s
would establish that L = RL.

Let us now turn to multihead finite-state verifiers. By the relationship with logarithmic-space
Turing machines mentioned above, Equations 2 through 6, as well as our Theorem 2, can also be
viewed as statements about the power of IPS’s whose verifiers are multihead finite automata with
two-way heads, so we already know that we can use this verifier model to build IPS’s with zero
error for NL, and that constant randomness does not increase their power. Note that the number
of heads of the verifier will depend on the language under consideration in the constructions for
these characterizations.

If we allow arbitrarily small nonzero error and polynomial randomness, but require that at
most a constant number of coin tosses can be private, we can build an IPS where the finite-state
verifier is a 2pfa(2) with a halting probability of 1 for every language in NL: The first head runs the
algorithm of Lemma 1, and the second head performs a random walk whose expected completion
time is a suitably large polynomial (see, for instance, [DS92]). If this walk completes before the
first head announces its decision, the verifier rejects.

5.2 One-way heads

A “stand-alone” finite automaton with k one-way heads using r coins can be simulated with a
1dfa(k2") that simulates all the 2" 1dfa(k)’s corresponding to different coin sequences in parallel, and
accepts if a majority of these 1dfa(k)’s accept. We also know the following about these machines:

Fact 5. For every k > 1, the class of languages recognized with bounded error by 1pfa(k)’s using
a constant number of coins strictly contains the class of languages recognized by 1dfa(k)’s. [Fre79,
Kut91]

Fact 6. For a fivzed k > 1, there exists a language recognized by a Ipfa(2) using a constant number
of coins, but not by any Infa(k). [Fre79]

Theorem 7. Deterministic finite automata with multiple one-way heads can verify membership in
precisely the languages in Up>11INFA(k) with zero error in linear time.

Proof. Every language in Ug>11NFA(k) can be assumed to have a nondeterministic one-way multi-
head finite automaton which recognizes it, and is guaranteed to halt in linear time. 1dfa(k) verifiers
can handle precisely the same languages as 1nfa(k) recognizers by definition. O

By a simple extension of the proof of Theorem 4, we have

11

Theorem 8. Finite automata with multiple one-way heads that use at most a constant amount of
random bits independent of their input can verify membership (according to both the strong and the
weak definitions, and with either one-way or two-way communication with the prover) in precisely
the languages in Up>11INFA(k).

When nonzero bounded error is tolerated, the construction of Theorem 4 can be modified to
obtain constant-coin 1pfa(2) verifiers that halt with probability 1 for each language in Up>1 INFA(k),
by simply using the second head as a clock.

6 Private alternation with fixed number of universal moves

Reif [Rei79] defined the private alternating Turing machine (PATM) to model two-person games of
incomplete information, where one of the players is allowed to hide some of its moves from the other
player, as opposed to games of complete information, that are well-known to be modeled by the
alternating Turing machines (ATM’s) of [CKS81], with which we assume the reader to be familiar.
A portion of the memory of a PATM is private to the universal states, and cannot be read when
the machine is in an existential state. The extreme special case where the existential player cannot
see any moves of the universal player is modeled by the blind alternating Turing machine (BATM),
which allows the universal states to change only that private portion. Language recognition by
PATM’s is defined similarly to that by ATM’s: A string is accepted if and only if there exists a
winning strategy for the existential player in the corresponding game.

These models are linked to our results by the observation that a language has an IPS with
perfect completeness and just a guarantee that nonmembers will be accepted with probability less
than 1 if and only if it is recognized by a PATM with the same space and time bounds as the
verifier of that IPS: One simply views the coin-tosses of the verifier as universal moves, and the
branchings due to the prover messages as possible existential moves of the PATM. Our Theorem 2
can then be translated to

Theorem 9. For any space bound s(n) = O(logn), the class of languages recognized by s(n)-space
PATM’s (or BATM’s) that are allowed to make a constant number of universal moves equals NL.

For contrast, we recall the corresponding classes when the bound on the number of universal
moves is removed below. (BASPACE(s(n)) (resp. PASPACE(s(n))) denotes the class of languages
recognized by s(n)-space BATM’s (resp. PATM’s).)

Fact 7. BASPACE(1) = NSPACE(n). [PR79)
Fact 8. PASPACE(1) = E. [PR79)

Fact 9. BASPACE(log) = PSPACE. [Rei79]
Fact 10. PASPACE(log) = EXPTIME. [Rei79)]

7 Open questions
We have been able to represent the relationship between NL and NP in the form
NL = IP(cons-space, cons-random-bits) C IP(log-space, log-random-bits) = NP.

Further examination of other classes like IP(cons-space, log-random-bits) would be interesting.

12

Do our results for constant-space verifiers stand when a polynomial bound is imposed on the
overall runtime? Every language that can be verified by a constant-randomness 2pfa that halts
with probability 1 is recognized in linear time by a 2nfa(k) for some k. Does there exist a language
in NL which cannot be recognized in linear time by any 2nfa(k)?

Tables 1 and 2 summarize some of our findings on bounded-randomness 2pfa(k) variants, both
as recognizers, and as verifiers in one-way IPS’s. BPTISP(poly, log) denotes the class of languages
recognized with bounded error by PTM’s operating in polynomial time and logarithmic space. The
cells marked 77 and 79 correspond to classes that contain the classes corresponding to the cells to
their left, and are contained in the classes corresponding to the cells above them. Can one find
better characterizations for these classes?

Table 1: Complexity classes associated with different settings of 2pfa variants as bounded-error
recognizers.

randommness complexity: 0 cons ‘ log ‘ poly ‘
single-head two-way REG REG REG REG
single-head one-way REG REG REG REG
multihead two-way L L L |BPTISP(poly, log)
multihead one-way Ur>11DFA(k)|Uk>11DFA(k)| ™ 79

Although we have proved that
IP,, (cons-space, cons-random-bits) = IP(cons-space, cons-random-bits),

we are able to reduce the error probabilities to arbitrary desired positive values only for verification
according to the weak definition. Is this also possible for the strong definition? Similarly, is there
a way to reduce the error (which gets worse as the number of heads in the simulated automaton
increases) of single-head verifiers with one-way access to their inputs to arbitrary desired positive
values?

In their study [NY09] of interactive proof systems whose verifiers are quantum finite automata
(qfa’s), Nishimura and Yamakami used a weak model of real-time gfa’s [KW97] whose stand-
alone versions cannot even recognize all regular languages. They showed that letting such verifiers
communicate with a prover results in a proof system which can handle all and only the regular
languages. Since general qfa models [Hirl0, YS11] that make full use of the nonclassical features of
quantum mechanics are able to simulate any corresponding classical system easily, we conclude that
one-way interactive proof systems that would use qfa’s defined according to this modern approach
would be able to handle all of oneway-IP(cons-space, cons-random-bits, rt-input), outperforming the
systems of [NY09], despite the fact that the latter allow for two-way interaction between the verifier
and the prover. The study of qfa verifiers is an interesting avenue for further research.

Table 2: Complexity classes associated with different settings of 2pfa variants as bounded-error
verifiers.

randommness complexity: ‘ 0 ‘ cons ‘
single-head two-way REG NL
single-head one-way REG Ur>11NFA(k)
multihead two-way NL NL
multihead one-way Uk>11INFA(k)|Uk>1 INFA(E)

13

Acknowledgements

We are grateful to Martin Kutrib, who helped us immensely with our questions about nfa(k)’s. We
also thank Rusins Freivalds, Taylan Cemgil, Richard Lipton, and Gokalp Demirci for their helpful
answers, and Alexander Rivosh for his valuable assistance with the references in Russian.

References

[CKS81] Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alternation. Journal of
the ACM, 28(1):114-133, 1981.

[CL89] Anne Condon and Richard J. Lipton. On the complexity of space bounded interactive
proofs. In Proceedings of the 30th Annual Symposium on Foundations of Computer
Science, pages 462-467, 1989.

[CL95] Anne Condon and Richard Ladner. Interactive proof systems with polynomially bounded
strategies. Journal of Computer and System Sciences, 50(3):506-518, June 1995.

[Con89] Anne Condon. Computational Models of Games. MIT Press, 1989.

[Con91] Anne Condon. Space-bounded probabilistic game automata. Journal of the ACM,
38(2):472-494, April 1991.

[Con93a] Anne Condon. The complexity of the max word problem and the power of one-way
interactive proof systems. Computational Complexity, 3(3):292-305, 1993.

[Con93b] Anne Condon. Complezity Theory: Current Research, chapter The complexity of space
bounded interactive proof systems, pages 147-190. Cambridge University Press, 1993.

[DS90] Cynthia Dwork and Larry Stockmeyer. A time complexity gap for two-way probabilistic
finite-state automata. SIAM Journal on Computing, 19(6):1011-1123, 1990.

[DS92] Cynthia Dwork and Larry Stockmeyer. Finite state verifiers I: The power of interaction.
Journal of the ACM, 39(4):800-828, 1992.

[Fre79] Rausips Freivalds. Language recognition using finite probabilistic multitape and multihead
automata. Problemy Peredachi Informatsii, 15(3):99-106, 1979. Russian.

[Fre81] Rausins Freivalds. Probabilistic two-way machines. In Proceedings of the International
Symposium on Mathematical Foundations of Computer Science, pages 33—45, 1981.

[GS86] Shafi Goldwasser and Michael Sipser. Private coins versus public coins in interactive proof
systems. In Proceedings of the 18th Annual ACM Symposium on Theory of Computing
(STOC’86), pages 59-68, 1986.

[Har72] Juris Hartmanis. On non-determinancy in simple computing devices. Acta Informatica,
1:336-344, 1972.

[Hirl0] Mika Hirvensalo. Quantum automata with open time evolution. International Journal
of Natural Computing Research, 1(1):70-85, 2010.

[HKM11] Markus Holzer, Martin Kutrib, and Andreas Malcher. Complexity of multi-head finite
automata: Origins and directions. Theoretical Computer Science, 412:83-96, 2011.

14

[Kan89]

[KF0]

[KF91]

[Kut91]

[KW97]

[Mac97]

[Mac98]

[NHT71]

[NY09]

[PR79]

[Rei79]

[Sha92]
[YS11]

Janis Kaneps. Stochasticity of the languages acceptable by two-way finite probabilistic
automata. Diskretnaya Matematika, 1:63-67, 1989. (Russian).

Janis Kaneps and Rusins Freivalds. Minimal nontrivial space complexity of probabilistic
one-way Turing machines. In Proceedings on Mathematical Foundations of Computer
Science, volume 452 of Lecture Notes in Computer Science, pages 355-361, New York,
NY, USA, 1990. Springer-Verlag New York, Inc.

Janis Kaneps and Riisins Freivalds. Running time to recognize nonregular languages by
2-way probabilistic automata. In Automata, Languages and Programming, volume 510
of Lecture Notes in Computer Science, pages 174-185. Springer, 1991.

Mirostaw Kutylowski. Multihead one-way finite automata. Theoretical Computer Science,
85(1):135-153, 1991.

Attila Kondacs and John Watrous. On the power of quantum finite state automata.
In FOCS’97: Proceedings of the 38th Annual Symposium on Foundations of Computer
Science, pages 66-75, 1997.

Ioan I. Macarie. Multihead two-way probabilistic finite automata. Theory of Computing
Systems, 30(1):91-109, 1997.

Ioan I. Macarie. Space-efficient deterministic simulation of probabilistic automata. STAM
Journal on Computing, 27(2):448-465, April 1998.

Masakazu Nasu and Namio Honda. A context-free language which is not acceptable by
a probabilistic automaton. Information and Control, 18(3):233-236, 1971.

Harumichi Nishimura and Tomoyuki Yamakami. An application of quantum finite au-
tomata to interactive proof systems. Journal of Computer and System Sciences, 75:255—
269, 2009.

Gary L. Peterson and John H. Reif. Multiple-person alternation. In Proceedings of the
20th Annual Symposium on Foundations of Computer Science (FOCS’79), pages 348—
363. IEEE Computer Society, 1979.

John H. Reif. Universal games of incomplete information. In Proceedings of the Eleventh
Annual ACM Symposium on Theory of Computing (STOC’79), pages 288-308. ACM,
1979.

Adi Shamir. IP = PSPACE. Journal of the ACM, 39(4):869-877, October 1992.

Abuzer Yakaryilmaz and A. C. Cem Say. Unbounded-error quantum computation with
small space bounds. Information and Computation, 209(6):873-892, 2011.

A The proof of Theorem 1

Our proof of Theorem 1 is based on the following [DS90, KF91]

Fact 11. For any polynomial p, 2pfa’s with expected runtime O(p(n)) recognize only the regular
languages with bounded error.

15

We start by noting that no such program which respects a worst-case bound b(n) on the number
of random bits that it uses can possibly have a computational path in which a configuration of the
form (r,4), where 7 is a coin-tossing state, and ¢ is a head position, repeats. Therefore, O(n) is a
tight bound on the number of usable random bits under a worst-case regime. It is also clear that
contiguous subsequences of configurations with deterministic states can have at most linear length
in halting computational paths. Therefore, all halting paths of such a machine have worst-case
runtime O(n?). Furthermore, any nonhalting path must enter an infinite loop of deterministic
configurations in O(n?) steps.

When b(n) is a bound on the expected number of coin tosses, it has a similar relationship
with the runtime. Any halting path that tosses k coins has length O(kn). Any nonhalting path
with nonzero probability must toss only a finite number (k) of coins, so it must enter an infinite
deterministic loop within O(kn) steps. So the expected runtime of the halting paths is O(nb(n)).

We could use Fact 11 directly to prove Theorem 1 if we had a guarantee that the machines
we consider have polynomial expected time. There is no such comfort, however, since it is easy to
demonstrate cases where a sizable ratio of computational paths do not halt, and expected time is
therefore not bounded.

For this reason, we look at the proof of Fact 11 in detail. One starts by defining a quantitative
measure of the nonregularity of a language L C X*. For a positive integer n, two strings w, w’ € X*
are n-dissimilar, written w ~p,, w', if |w| < n, |w’'| < n, and there exists a distinguishing string
v € X* with |wv| < n, |w'v] <n, and wv € L iff w'v ¢ L. Let Np(n) be the maximum k such that
there exist k distinct strings that are pairwise ~ . It can be shown [KF90] that

Fact 12. If L is not regular, then Np(n) > § + 1 for infinitely many n.

In the rest of the proof, Dwork and Stockmeyer [DS90] develop a technique for constructing a
Markov chain P4 ., with 2c states that models the computation of a given 2pfa A with c states
on the concatenated string xy, where x and y are given strings. State 1 of the Markov chain
corresponds to M being at the beginning of its computation on the last symbol of ¢x. (Note that
every 2pfa can be modified to start here, without changing the recognized language. The nonhalting
states of the modified 2pfa are {q1,q2,...,¢.—1}.) For 1 < j < ¢ —1, state j of the Markov chain
corresponds to M being in the configuration with the machine in state g; and the head on the last
symbol of ¢z, and state ¢ + j — 1 corresponds to M being in the configuration with the machine
in state g; and the head on the first symbol of y¢. State 2c — 1 corresponds to a disjunction of
rejection, infinite loop with the head never leaving the region ¢x, and infinite loop within the region
y¢. State 2c corresponds to acceptance. The probability that Py4 ., is absorbed in state 2¢ when
started in state 1 equals the probability that A accepts xy.

The proof then considers any 2pfa M that recognizes language L in expected time T'(n), and
proceeds to establish a lower bound, in terms of Ny (n), on T'(n). This is accomplished by showing
that, for sufficiently large values of n, if the desired lower bound does not exist, then there must
be two pairwise »p, , strings w and w’, with distinguishing string v, such that the Markov chains
Py and Py, are “too close” according to a notion of closeness defined in [DS90]. In a step
crucial for our purposes, ([DS90], page 1015, Lemma 4.2,) it is proven that, if Pps ., and Py 1, are
so close, and if it is guaranteed that both Markov chains are absorbed to state 2c—1 or 2¢ with total
probability 1 within expected time T'(n), then the acceptance probabilities of wv and w'v must be
so close that they must both be members (or non-members) of L, contradicting their n-dissimilarity,
thereby establishing the desired bound on 7'(n). Fact 11 is then obtained by combining this result
with Fact 12.

In the case of our machines, the Markov chains produced according to the construction men-
tioned above do turn out to be that close to each other, but they do not necessarily satisfy the

16

guarantee of absorption to state 2c¢ — 1 or 2¢, since M can possibly enter an infinite loop in which
the head shuttles back and forth over the ¢w (resp., ¢w’) and v¢ regions. Fortunately, this problem
goes away on a careful look: Consider all cycles of transitions that have probability 1 between
the two regions in the produced Markov chains. The set of states appearing in such a cycle is an
absorbing class. Furthermore, it is certain that absorption to either state 2c — 1, or 2¢, or one of
these loop classes will take place within expected time nb(n), and the acceptance probability would
not change if one redirected these transitions to state 2c — 1, so Lemma 4.2 of [DS90] still applies,
and we can conclude with the same reasoning as in the proof of Fact 11 that if b(n) is polynomially
bounded, then L is regular.

ECCC ISSN 1433-8092
17

http://eccc.hpi-web.de

