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ABSTRACT. We prove that the set disjointness problem has randomized communication
complexity˝.

p
n=2kk/ in the number-on-the-forehead model with k parties, a quadratic

improvement on the previous bound ˝.
p
n=2k/1=2. Our result remains valid for quan-

tum protocols, where it is essentially tight. Proving it was an open problem since 1997,
even in restricted settings such as one-way classical protocols with k D 4 parties. We
obtain other near-optimal results for multiparty set disjointness, including an XOR lemma,
a direct product theorem, and lower bounds for nondeterministic and Merlin-Arthur proto-
cols. The proof contributes a novel technique for lower bounds on multiparty communica-
tion, based on directional derivatives of communication protocols over the reals.
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1. INTRODUCTION

Set disjointness is by far the most studied problem in communication complexity the-
ory [4, 31, 44, 5, 8, 45, 51, 34, 11, 54, 47, 50, 38, 20, 10, 12, 33]. The simplest ver-
sion of the problem features two parties, Alice and Bob. Alice receives as input a subset
S ✓ f1; 2; : : : ; ng; Bob receives a subset T ✓ f1; 2; : : : ; ng, and their goal is to determine
with minimal communication whether the subsets are disjoint. One also studies a promise
version of this problem called unique set disjointness, in which the intersection S Z T is
either empty or contains a single element. The communication complexity of two-party set
disjointness is thoroughly understood. One of the earliest results in the area is a tight lower
bound of n C 1 bits for deterministic protocols solving set disjointness. For randomized
protocols, a lower bound of ˝.

p
n/ was obtained by Babai, Frankl, and Simon [4] and

strengthened to a tight ˝.n/ by Kalyanasundaram and Schnitger [31]. Simpler proofs of
the linear lower bound were discovered by Razborov [44] and Bar-Yossef et al. [8]. All
three proofs [31, 44, 8] of the linear lower bound apply to unique set disjointness. Finally,
Razborov [45] obtained a tight lower bound of ˝.

p
n/ on the bounded-error quantum

communication complexity of set disjointness and unique set disjointness, with a simpler
proof discovered several years later [47]. Already in the two-party setting, the study of
set disjointness contributed to communication complexity theory a variety of techniques,
including ideas from combinatorics, Kolmogorov complexity, information theory, matrix
analysis, and Fourier analysis.

We study the complexity of set disjointness in the model with three or more parties.
We use the number-on-the-forehead model of multiparty communication, due to Chandra,
Furst, and Lipton [18]. This model features k parties and a function f .x1; x2; : : : ; xk/with
k arguments. Communication occurs in broadcast, a bit sent by any given party instantly
reaching everyone else. The input .x1; x2; : : : ; xk/ is distributed among the parties by
giving the i th party the arguments x1; : : : ; xi�1; xiC1; : : : ; xk but not xi . One can think
of xi as written on the i th party’s forehead, hence the name of the model. The number-
on-the-forehead model is the main model in the area because any other way of assigning
arguments to parties results in a less powerful model (provided of course that one does not
assign all the arguments to some party, in which case there is never a need to communicate).

In the k-party version of set disjointness, the inputs are S1; S2; : : : ; Sk ✓ f1; 2; : : : ; ng;
and the i th party knows all the inputs except for Si : The goal is to determine whether the
sets have empty intersection: S1 Z S2 Z � � � Z Sk D ¿: For unique set disjointness, the
parties additionally know that the intersection S1ZS2Z � � �ZSk is either empty or contains
a unique element. It is common to represent the input to set disjointness by a k⇥n Boolean
matrix X D Œxij ç, whose rows correspond to the characteristic vectors of the input sets. In
this notation, set disjointness is given by simple CNF formula:

DISJk;n.X/ D
n̂

jD1

k_
iD1

xij : (1.1)

Unique set disjointness UDISJk;n is given by an identical formula, with the understanding
that the input matrix X contains at most one column consisting entirely of ones.

Progress on the communication complexity of set disjointness for k > 3 parties is
summarized in Table 1. In a surprising result, Grolmusz [27] proved an upper bound
of O.log2 n C k2n=2k/ on the deterministic communication complexity of this problem.
Proving a strong lower bound, even for k D 3; turned out to be difficult. Tesson [51] and
Beame et al. [11] obtained a lower bound of ˝

�
1
k

logn
�

for randomized protocols. Four
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years later, Lee and Shraibman [38] and Chattopadhyay and Ada [20] gave an improved
result. These authors generalized the two-party method of [46, 47] to k > 3 parties and
thereby obtained a lower bound of ˝.n=22kk/1=.kC1/ on the randomized communication
complexity of set disjointness. Their lower bound was strengthened by Beame and Huynh-
Ngoc [10] to .n˝.

p
k= logn/=2k

2

/1=.kC1/, which is an improvement for k large enough. All
lower bounds listed up to this point are weaker than ˝.n=2k3/1=.kC1/; which means that
they become subpolynomial as soon as the number of parties k starts to grow. Three years
later, a lower bound of ˝.n=4k/1=4 was obtained in [48] on the randomized communica-
tion complexity of set disjointness, which remains polynomial for up to k ⇡ 1

2
logn and

comes close to matching Grolmusz’s upper bound.
The ˝.n=4k/1=4 lower bound is not an accidental numerical value. It represents what

we call the triangle inequality barrier in multiparty communication complexity, described
in detail at the end of the introduction. We are able to break this barrier and obtain a
quadratically stronger lower bound. In the theorem that follows, R✏ denotes ✏-error ran-
domized communication complexity.

THEOREM 1.1 (Main result). Set disjointness and unique set disjointness have randomized
communication complexity

R1=3.DISJk;n/ > R1=3.UDISJk;n/ D ˝
✓p

n

2kk

◆
:

Bound Reference

O

✓
log2 nC k2n

2k

◆
Grolmusz [27]

˝

✓
logn
k

◆
Tesson [51], Beame, Pitassi, Segerlind, and Wigderson [11]

˝

✓
n

22kk

◆ 1

kC1
Lee and Shraibman [38], Chattopadhyay and Ada [20] 

n˝.
p
k= logn/

2k2

!
1

kC1
Beame and Huynh-Ngoc [10]

˝
⇣ n
4k

⌘1=4
Sherstov [48]

˝

✓p
n

2kk

◆
This paper

TABLE 1. Communication complexity of k-party set disjointness.
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Two remarks are in order. Over the years, the lack of progress on set disjointness
prompted researchers to consider restricted multiparty protocols, such as one-way pro-
tocols where the parties 1; 2; : : : ; k speak in that order and the last party announces the
answer. An even more restricted form of communication is a simultaneous protocol, in
which the parties simultaneously and independently send a message to a referee who then
announces the answer. In 1997, Wigderson proved a lower bound of˝.

p
n/ for solving set

disjointness by a simultaneous protocol with k D 3 parties (unpublished by Wigderson, the
proof appeared in [5]). Since then, several papers [5, 51, 11, 54, 12, 33] have examined the
multiparty complexity of set disjointness for simultaneous, one-way, and other restricted
kinds of protocols. The strongest communication lower bound [51, 11] obtained in that line
of research was ˝.n=kk/1=.k�1/: To summarize, prior to our work it was an open prob-
lem to generalize Wigderson’s 1997 lower bound even to k D 4 parties, communicating
one-way or simultaneously.

Second, by the results of [37, 14], all communication lower bounds in this paper general-
ize to the quantum model. In particular, Theorem 1.1 implies a lower bound of

p
n=2kCo.k/

on the bounded-error quantum communication complexity of set disjointness. This lower
bound essentially matches the well-known quantum protocol for set disjointness due to
Buhrman, Cleve, and Wigderson [16], with cost d

p
n=2ke logO.1/ n. For the reader’s con-

venience, we provide a sketch of the protocol in Remark 5.4. Thus, our results essentially
settle the bounded-error quantum communication complexity of set disjointness:

p
n

2kCo.k/
6 Q1=3.UDISJk;n/ 6 Q1=3.DISJk;n/ 6

⇠ p
n

2k=2

⇡
logO.1/ n:

Our technique allows us to obtain several additional results, discussed next.

XOR lemmas and direct product theorems. In a seminal paper, Yao [55] asked whether
computation admits economies of scale. More concretely, suppose that solving a single
instance of a given decision problem with probability of correctness 2=3 requires R units
of a computational resource (such as time, memory, communication, or queries). Common
sense suggests that solving ` independent instances of the problem requires˝.`R/ units of
the resource. After all, having less than ✏`R units overall, for a small constant ✏ > 0; leaves
less than ✏R units per instance, intuitively forcing the algorithm to guess random answers
for many of the instances and resulting in overall correctness probability 2�⇥.`/: Such a
statement is called a strong direct product theorem. A related notion is an XOR lemma,
which asserts that computing the XOR of the answers to the ` problem instances requires
˝.`R/ resources, even to achieve correctness probability 1

2
C 2�⇥.`/: XOR lemmas and

direct product theorems are motivated by basic intellectual curiosity as well as a number of
applications, including separations of circuit classes, improvement of soundness in proof
systems, inapproximability results for optimization problems, and time-space trade-offs.

In communication complexity, the direct product question has been studied for over
twenty years. We refer the reader to [33, 49] for an up-to-date overview of the literature,
focusing here exclusively on set disjointness. The direct product question for two-party
set disjointness has been resolved completely and definitively [34, 11, 12, 30, 33, 49], in-
cluding classical one-way protocols [30], classical two-way protocols [11, 33], quantum
one-way protocols [12], and quantum two-way protocols [34, 49]. Proving any kind of di-
rect product result for three or more parties remained an open problem until the paper [48]
a year ago. In [48], a communication lower bound of ` � ˝.n=4k/1=4 was proved for the
following tasks: computing the XOR of ` instances of set disjointness with probability of
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correctness 1
2
C 2�⇥.`/I solving ` instances of set disjointness simultaneously with proba-

bility of correctness at least 2�⇥.`/. We obtain an improved result:

THEOREM 1.2. Let ✏ > 0 be a sufficiently small absolute constant. The following tasks
require ` �˝.pn=2kk/ bits of communication each:

(i) computing the XOR of ` instances of UDISJk;n with probability at least 1
2
C2�✏`I

(ii) solving with probability 2�✏` at least .1 � ✏/` among ` instances of UDISJk;n:

Theorem 1.2 generalizes Theorem 1.1, showing that ˝.
p
n=2kk/ is in fact a lower

bound on the per-instance cost of set disjointness. The communication lower bound in
Theorem 1.2 is quadratically stronger than in previous work [48]. Clearly, Theorem 1.2
also holds for set disjointness, a problem harder than UDISJk;n: Finally, this theorem gen-
eralizes to quantum protocols, where it is essentially tight.

Nondeterministic and Merlin-Arthur communication. Nondeterministic communica-
tion is defined in complete analogy with computational complexity. A nondeterministic
protocol starts with a guess string, whose length counts toward the protocol’s communi-
cation cost, and proceeds deterministically thenceforth. A nondeterministic protocol for
a given communication problem F is required to output the correct answer for all guess
strings when presented with a negative instance of F; and for some guess string when
presented with a positive instance. We further consider Merlin-Arthur protocols [3, 6], a
communication model that combines the power of randomization and nondeterminism. As
before, a Merlin-Arthur protocol for a given problem F starts with a guess string, whose
length counts toward the communication cost. From then on, the parties run an ordinary
randomized protocol. The randomized phase in a Merlin-Arthur protocol must produce
the correct answer with probability at least 2=3 for all guess strings when presented with a
negative instance of F; and for some guess string when presented with a positive instance.

Nondeterministic and Merlin-Arthur protocols have been extensively studied for k D 2
parties but are much less understood for k > 3: To illustrate, it was only four years ago that
the first nontrivial lower bound, n˝.1=k/=22k ;was obtained [23] on the multiparty commu-
nication complexity of set disjointness in these models. That lower bound was improved
in [48] to ˝.n=4k/1=4 for nondeterministic protocols and ˝.n=4k/1=8 for Merlin-Arthur
protocols, both of which are tight up to a polynomial. In this paper, we obtain quadratically
stronger lower bounds in both models.

THEOREM 1.3. Set disjointness has nondeterministic and Merlin-Arthur complexity

N.DISJk;n/ D ˝
✓p

n

2kk

◆
;

MA.DISJk;n/ D ˝
✓p

n

2kk

◆1=2
:

Set disjointness should be contrasted in this regard with its complement :DISJk;n; whose
nondeterministic complexity is at most lognCO.1/: Indeed, it suffices to guess an element
i 2 f1; 2; : : : ; ng and verify with two bits of communication that i 2 S1 Z S2 Z � � �Z Sk :

Small-bias communication and discrepancy. Much of the work in communication com-
plexity revolves around the notion of discrepancy. Roughly speaking, the discrepancy of
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a function F is the maximum correlation of F with a constant-cost communication pro-
tocol. One of the many uses of discrepancy is proving lower bounds for small-bias pro-
tocols, which are randomized protocols with probability of correctness vanishingly close
to the trivial value 1=2: Quantitatively speaking, any function with discrepancy � requires
log 1p

�
bits of communication to achieve correctness probability 1

2
C 1

2

p
� : The converse

also holds, up to minor numerical adjustments. Thus, the study of discrepancy is the study
of small-bias communication.

In a famous result, Babai, Nisan, and Szegedy [7] proved that the generalized inner
product function

Ln
jD1

Vk
iD1 xij has exponentially small discrepancy, exp.�˝.n=4k//:

Thus, generalized inner product does not admit an efficient protocol with any nonnegligi-
ble advantage over random guessing, much less a bounded-error protocol. The proof in [7]
crucially exploits the XOR function, and until several years ago it was unknown whether
any constant-depth f^;_;:g-circuit of polynomial size has small discrepancy. The most
natural candidate, set disjointness, is of no use here: while its bounded-error communica-
tion complexity is high, its discrepancy turns out to be ⇥.1=n/: The question was finally
resolved for k D 2 parties in [17, 46, 47], with a bound of exp.�˝.n1=3// on the dis-
crepancy of an f^;_g-formula of depth 3 and size n: Since then, a series of papers have
studied the question for k > 3 parties. Table 2 gives a quantitative summary of this line of
research. The best multiparty bound prior to this paper was exp.�˝.n=4k/1=7/; obtained
in [48] for an f^;_g-formula of depth 3 and size nk: We prove the following stronger
result.

THEOREM 1.4. There is an explicit k-party communication problem Hk;n; given by an
f^;_g-formula of depth 3 and size nk; with discrepancy

disc.Hk;n/ D exp
⇢
�˝

⇣ n

4kk2

⌘1=3�
:

Depth Discrepancy Reference

3 expf�˝.n1=3/g, k D 2 Buhrman, Vereshchagin, and de Wolf [17]
Sherstov [46, 47]

3 exp
⇢
�˝

⇣ n
4k

⌘1=.6k2k/�
Chattopadhyay [19]

6 exp
⇢
�˝

⇣ n

231k

⌘1=29�
Beame and Huynh-Ngoc [10]

3 exp
⇢
�˝

⇣ n
4k

⌘1=7�
Sherstov [48]

3 exp
⇢
�˝

⇣ n

4kk2

⌘1=3�
This paper

TABLE 2. Multiparty discrepancy of constant-depth f^;_g-circuits of
size nk.
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In particular,

R
1

2

�exp
⇢
�˝

⇣
n

4

k

k

2

⌘
1=3

�.Hk;n/ D ˝ ⇣ n

4kk2

⌘1=3
:

Theorem 1.4 is satisfying in that it matches the state of the art for two-party communi-
cation, i.e., even in the setting of two parties no bound is known better than the multiparty
bound of Theorem 1.4. This theorem is qualitatively optimal with respect to the number
of parties k: by the results in [2, 29], every polynomial-size f^;_;:g-circuit of constant
depth has discrepancy at least 2� logc n for k > logc n parties, where c > 1 is a constant.
Theorem 1.4 is also optimal with respect to circuit depth because polynomial-size DNF and
CNF formulas have discrepancy at least 1=nO.1/, regardless of the number of parties k: In
Section 6.4, we give applications of Theorem 1.4 to circuit complexity.

The triangle inequality barrier. To properly set the stage for our approach, we first out-
line the proof of the previous best lower bound for set disjointness [48] and explain its
fundamental limitations. Let G be a k-party communication problem, with domain X D
X1 ⇥X2 ⇥ � � � ⇥Xk . In what follows, we refer to G as a gadget. The paper [48] studies
the communication complexity of composed functions of the form F D f .G;G; : : : ; G/;
where f W f0; 1gn ! f0; 1g. Thus, the new communication problem F has domain X n D
X n
1 ⇥X n

2 ⇥ � � � ⇥X n
k

. The motivation for studying composed communication problems
is obvious from (1.1), which shows that DISJk;nm D ANDn.DISJk;m; : : : ;DISJk;m/.

Assume henceforth that f does not approximate in the infinity norm to a low-degree
real polynomial, an assumption that holds for f D ANDn and any other function of the
smallest practical significance. Now, consider a linear operator L that maps real functions
˘ WX n ! R to real functions L˘ W f0; 1gn ! R in the following natural way: the value
.L˘/.x1; x2; : : : ; xn/ is obtained by averaging˘ one way or another on the setG�1.x1/⇥
G�1.x2/ ⇥ � � � ⇥ G�1.xn/. The operator L is defined the way it is in order to ensure that
f D LF: The approach of [48] is to prove that if ˘ WX n ! Œ0; 1ç is the acceptance
probability of any low-cost ✏-error randomized protocol, then L˘ approximates in the
infinity norm to a low-degree real polynomial Qf . This immediately rules out an efficient
protocol for F , for its existence would force

jf � Qf j D jLF � Qf j ⇡ jLF � L˘ j D jL.F �–̆
6✏

/j 6 ✏;

in contradiction to the inapproximability of f by low-degree polynomials.
The difficult part of the above program is proving thatL˘ approximates to a low-degree

polynomial. The paper [48] does so constructively, by arguing that the Fourier spectrum
of L˘ resides almost entirely on low-order characters:

jbL˘.S/j < 2r � 2�jS j
 
n

jS j

!�1
; S ✓ f1; 2; : : : ; ng; (1.2)

where r is the cost of the communication protocol. In particular, an approximating poly-
nomial for L˘ results from truncating the Fourier spectrum at degree r CO.1/: The type
of concentration in (1.2) is quite extreme, and it requires a fairly complicated gadget G. A
key technical result in [48] is that the set disjointness problem on O.4kn2=jS j2/ variables
is an acceptable choice for G: A fundamental limitation of this approach is that the size of
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the gadget G must grow with n, for the obvious reason that the number of Fourier coeffi-
cients of L˘ grows with n and we apply a triangle inequality across them. We refer to this
obstacle as the triangle inequality barrier.

Our proof. For our main result, we must make do with a gadget G whose size is inde-
pendent of n: This requires breaking the triangle inequality barrier, i.e., finding a way to
approximate protocols by low-degree polynomials without summing discarded Fourier co-
efficients term by term. In the setting of k D 2 parties, the triangle inequality barrier was
successfully overcome in 2007 using matrix analysis [47]. For multiparty communication,
the problem remained wide open prior to this paper because matrix-analytic tools do not
apply to k > 3:

Our solution involves two steps. First, we derive a criterion for the approximability of
any given function �W f0; 1gn ! R by low-degree polynomials. Specifically, recall that the
directional derivative of � in the direction S ✓ f1; 2; : : : ; ng at the point x 2 f0; 1gn is
given by .@�=@S/.x/ D 1

2
�.x/� 1

2
�.x˚ 1S /; where 1S denotes the characteristic vector

of S: Directional derivatives of higher order are obtained by differentiating repeatedly. We
prove that the error in an infinity-norm approximation of � by a degree-d polynomial does
not exceed

KdC1�.�; d C 1/CKdC2�.�; d C 2/CKdC3�.�; d C 3/C � � � ; (1.3)

whereK > 2 is an absolute constant and �.�; i/ is the maximum magnitude of a degree-i
directional derivative of � with respect to any pairwise disjoint sets S1; S2; : : : ; Si : The
crucial point is that the dimension n of the ambient hypercube never figures in (1.3). Thus,
we are able to prove that � approximates to a low-degree polynomial by taking a global
view of the analytic structure of �, without assuming any bound on the sum of the absolute
values of �’s high-order Fourier coefficients. This makes it possible to approximate a large
class of functions � that were off limits to previous techniques, including communication
protocols. The author finds this result to be of general interest in Boolean function analysis,
independent of its use in this paper to prove communication lower bounds.

To apply the above criterion to multiparty communication, we must bound the direc-
tional derivatives of L˘ for every ˘ derived from a low-cost communication protocol.
This is equivalent to bounding the repeated discrepancy of the gadget G; a new com-
munication complexity measure that we introduce. The standard notion of discrepancy,
reviewed above, involves fixing a probability distribution � on the domain of G and chal-
lenging a constant-cost communication protocol to solve an instance X of G chosen at
random according to�: In computing the repeated discrepancy ofG; one presents the com-
munication protocol with infinitely many instances X1; X2; X3; : : : of the given communi-
cation problem G; each chosen independently from � conditioned on G.X1/ D G.X2/ D
G.X3/ D � � � : Thus, the instances are either all positive or all negative, and the proto-
col’s challenge is to tell which is the case. It is considerably harder to bound the repeated
discrepancy than the usual discrepancy because the additional instances X2; X3; : : : gen-
erally reveal new information about the truth status of X1: In fact, it is not clear a priori
whether there is any distribution � under which set disjointness has repeated discrepancy
less than the maximum possible value 1, let alone o.1/ as our application requires. By a
detailed probabilistic analysis, we are able to prove the desired o.1/ bound for a suitable
distribution �.

Once we have overcome the above two challenges, we obtain an efficient way to trans-
form communication protocols into approximating polynomials. This passage then allows
us to expeditiously prove all the results of this paper, stated as Theorems 1.1–1.4 above.
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2. PRELIMINARIES

There are two common ways to encode the Boolean values “true” and “false,” the classic
encoding using 1; 0 and a more recent one using �1;C1: The former is more convenient in
combinatorial applications, whereas the latter is more natural and economical when work-
ing with analytic tools such as the Fourier transform or matrix analysis. In this paper, we
will use both encodings depending on context. To exclude any possibility of confusion, we
reserve the term Boolean predicate in the remainder of the paper for mappings of the form
X ! f0; 1g; and the term Boolean function for mappings X ! f�1;C1g: As a nota-
tional aid to distinguish predicates from functions, we always typeset the former with an as-
terisk, as in PARITY⇤ and AND⇤; reserving unstarred symbols such as PARITY and AND
for the corresponding Boolean functions. More generally, to every Boolean function f we
associate the corresponding Boolean predicate f ⇤ D .1 � f /=2: A partial function f on
X is a function whose domain of definition, denoted dom f; is a nonempty proper subset
of X : For emphasis, we will sometimes refer to functions with dom f DX as total. For
(possibly partial) Boolean functions f and g on f0; 1gn and X ; respectively, we let f ı g
denote the componentwise composition of f with g; i.e., the (possibly partial) Boolean
function on X n given by .f ı g/.x1; x2; : : : ; xn/ D f .g⇤.x1/; g⇤.x2/; : : : ; g⇤.xn//.
Clearly, the domain of f ı g is the set of all .x1; x2; : : : ; xn/ 2 .domg/n for which
.g⇤.x1/; g⇤.x2/; : : : ; g⇤.xn// 2 domf:

We let " denote the empty string, which is the only element of the zero-dimensional
hypercube f0; 1g0. For a bit string x 2 f0; 1gn; we let jxj D x1C x2C � � �C xn denote the
Hamming weight of x: The kth level of the Boolean hypercube f0; 1gn is the subset fx 2
f0; 1gn W jxj D kg: The componentwise conjunction and componentwise XOR of x; y 2
f0; 1gn are denoted x ^ y D .x1 ^ y1; : : : ; xn ^ yn/ and x˚ y D .x1˚ y1; : : : ; xn˚ yn/:
In particular, jx ^ yj refers to the number of components in which x and y both have a 1:
The bitwise negation of a string x 2 f0; 1gn is denoted x D .x1 ˚ 1; : : : ; xn ˚ 1/: The
notation log x refers to the logarithm of x to base 2. For a subset S ✓ f1; 2; : : : ; ng; its
characteristic vector 1S is given by

.1S /i D
(
1 if i 2 S;
0 otherwise.

For i D 1; 2; : : : ; n; we define ei D 1fig: In other words, ei is the vector with 1 in the i th
component and zeroes everywhere else. We identify f0; 1gn with the n-dimensional vector
space GF.2/n; with addition corresponding to componentwise XOR. This makes available
standard vector space notation, e.g., ax˚by D .: : : ; .aixi /˚.biyi /; : : : / for a; b 2 f0; 1g
and strings x; y 2 f0; 1gn: A more complicated instance of this notation that we will use
many times is w ˚ ´11S

1

˚ ´21S
2

˚ � � � ˚ ´d1S
d

; where ´1; ´2; : : : ; ´d 2 f0; 1g; w 2
f0; 1gn; and S1; S2; : : : ; Sd ✓ f1; 2; : : : ; ng:

The parity of a Boolean string x 2 f0; 1gn; denoted PARITY⇤.x/ 2 f0; 1g; is defined
as usual by PARITY⇤.x/ DLn

iD1 xi : We adopt the convention that 
n

�1

!
D
 
n

�2

!
D
 
n

�3

!
D � � � D 0

for every positive integer n: For positive integers n;m; k; one has

kX
iD0

 
n

i

! 
m

k � i

!
D
 
nCm
k

!
; (2.1)
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a combinatorial identity known as Vandermonde’s convolution. The total degree of a mul-
tivariate real polynomial p is denoted degp: The Kronecker delta is given by

ıx;y D
(
1 if x D y;
0 otherwise,

where x; y are elements of some set. We let ZC D f1; 2; 3; : : : ; g and N D f0; 1; 2; 3; : : : g
denote positive integers and natural numbers, respectively. We adopt the convention that
the linear span of the empty set is the zero vector: span ¿ D f0g: The symmetric group
of order n is denoted Sn: For a string x 2 f0; 1gn and a permutation � 2 Sn; we define
�x D .x�.1/; x�.2/; : : : ; x�.n//. A function f W f0; 1gn ! R is called symmetric if f .x/ D
f .�x/ for all x and all � 2 Sn: Equivalently, f is symmetric if and only if it is determined
uniquely by the Hamming weight jxj of the input.

The familiar functions ANDn;ORnW f0; 1gn ! f�1;C1g are given by ANDn.x/ DVn
iD1 xi and ORn.x/ D Wn

iD1 xi : We also define a partial Boolean function AANDn on
f0; 1gn as the restriction of ANDn to the set fx W jxj > n � 1g: In other words,

AANDn.x/ D
(

ANDn.x/ if jxj > n � 1;
undefined otherwise.

Analogously, we define a partial Boolean function fORn on f0; 1gn as the restriction of ORn
to the set fx W jxj 6 1g:

2.1. Norms and products. For a finite set X ; the linear space of real functions on X is
denoted RX : This space is equipped with the usual norms and inner product:

kf k1 D max
x2X
jf .x/j .f 2 RX /; (2.2)

kf k1 D
X
x2X
jf .x/j .f 2 RX /; (2.3)

hf; gi D
X
x2X

f .x/g.x/ .f; g 2 RX /: (2.4)

The tensor product of f 2 RX and g 2 RY is the function f ˝ g 2 RX ⇥Y given by
.f ˝ g/.x; y/ D f .x/g.y/: The tensor product f ˝ f ˝ � � �˝ f (n times) is abbreviated
f ˝n: When specialized to real matrices, tensor product is the usual Kronecker product.
The pointwise (Hadamard) product of f; g 2 RX is denoted f � g 2 RX and given by
.f � g/.x/ D f .x/g.x/: Note that as functions, f � g is a restriction of f ˝ g: Tensor
product notation generalizes to partial functions in the natural way: if f and g are partial
real functions on X and Y ; respectively, then f ˝ g is a partial function on X ⇥ Y
with domain domf ⇥ domg and is given by .f ˝ g/.x; y/ D f .x/g.y/ on that domain.
Similarly, f ˝n D f ˝ f ˝ � � � ˝ f (n times) is a partial function on X n with domain
.domf /n:

The support of a function f WX ! R is defined as the set supp f D fx 2 X W
f .x/ ¤ 0g: For a real number � and subsets F;G ✓ RX ; we use the standard notation
�F D f�f W f 2 F g and F C G D ff C g W f 2 F; g 2 Gg: Clearly, �F and
F CG are convex whenever F and G are convex. More generally, we adopt the shorthand
�1F1C�2F2C� � �C�kFk D f�1f1C�2f2C� � �C�kfk W f1 2 F1; f2 2 F2; : : : ; fk 2 Fkg;
where �1;�2; : : : ;�k are reals and F1; F2; : : : ; Fk ✓ RX . A conical combination of
f1; f2; : : : ; fk 2 RX is any function of the form �1f1 C �2f2 C � � � C �kfk ; where
�1;�2; : : : ;�k are nonnegative. A convex combination of f1; f2; : : : ; fk 2 RX is any
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function of the form �1f1 C �2f2 C � � � C �kfk ; where �1;�2; : : : ;�k are nonnegative
and additionally sum to 1: The convex hull of F ✓ RX , denoted convF; is the set of all
convex combinations of functions in F:

2.2. Matrices. For a set X such as X D f0; 1g or X D R; the symbol X n⇥m denotes
the family of n ⇥ m matrices with entries in X : The symbol X n⇥⇤ denotes the family
of matrices that have n rows and entries in X ; and analogously X ⇤⇥m denotes matrices
with m columns and entries in X . The notation (2.2)–(2.4) applies to any real matrices:
kAk1 D max jAi;j j; kAk1 D P

i;j jAi;j j; and hA;Bi D P
i;j Ai;jBi;j : For a matrix

A D ŒAi;j ç of size n ⇥m and a permutation � 2 Sm; we let �A D ŒAi;�.j /çi;j denote the
result of permuting the columns of A according to � . The notation A D˚ B means that
the matrices A;B are the same up to a permutation of columns, i.e., A D �B for some
permutation �: A submatrix of A is a matrix obtained from A by discarding zero or more
rows and zero or more columns, keeping unchanged the relative ordering of the remaining
rows and columns. For a Boolean matrix A 2 f0; 1gn⇥m and a string x 2 f0; 1gm; we let
Ajx denote the submatrix of A obtained by removing those columns i for which xi D 0:

Ajx D

26664
A1;i

1

A1;i
2

� � � A1;ijxj
A2;i

1

A2;i
2

� � � A2;ijxj
:::

:::
: : :

:::
An;i

1

An;i
2

� � � An;ijxj

37775 ;
where i1 < i2 < � � � < ijxj are the distinct indices such that xi

1

D xi
2

D � � � D xijxj D 1.
By convention, Aj0m D ": The notation B v A means that

B D

26664
Ai
1

;j
1

Ai
1

;j
2

� � � Ai
1

;j
m

Ai
2

;j
1

Ai
2

;j
2

� � � Ai
2

;j
m

:::
:::

: : :
:::

Ai
n

;j
1

Ai
n

;j
2

� � � Ai
n

;j
m

37775
for some row indices i1 < i2 < � � � < in and some distinct column indices j1; j2; : : : ; jm;
where n⇥m is the dimension of B: In other words, B v A means that B is a submatrix of
A; up to a permutation of columns.

We use lowercase letters .a; b; u; v; w; x; y; ´/ for row vectors and Boolean strings, and
uppercase letters .A;B;M;X; Y / for real and Boolean matrices. The convention of using
lowercase letters for row vectors is somewhat unusual, and for that reason we emphasize
it. We identify Boolean strings with corresponding row vectors, e.g., the string 00111 is
used interchangeably with the row vector

⇥
0 0 1 1 1

⇤
: Similarly, 111 : : : 1 refers to

an all-ones row, and 0m1m refers to the row vector whose 2m components are m zeroes
followed by m ones. On occasion, we will use bracket notation to emphasize that the
string should be interpreted as a row vector, e.g., Œ0m1mç:We use standard matrix-theoretic
notation to typeset block matrices, e.g.,

⇥
A00 A01 A10 A11

⇤
;


A

111 : : : 1

�
;

24Bb
b0

35 :
Here the first matrix is composed of four blocks, the second matrix is obtained by adding
an all-ones row to A; and the third matrix is obtained by adding the row vectors b and b0
to B: When warranted, we will use vertical and horizontal lines as in (4.13) to emphasize
block structure.
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The set disjointness function DISJ on Boolean matrices X is defined by

DISJ.X/ D
(
C1 if X contains an all-ones column,
�1 otherwise.

In particular, DISJ�1.C1/ is the family of all Boolean matrices with an all-ones column.
By convention, DISJ."/ D �1: Note that

DISJ

X
x

�
D DISJ.X jx/

for any matrixX 2 f0; 1gn⇥m and any row vector x 2 f0; 1gm:We let DISJk;nW f0; 1gk⇥n !
f�1;C1g be the restriction of DISJ to matrices of size k ⇥ n. In Boolean notation,

DISJk;n.X/ D
n̂

jD1

k_
iD1

Xi;j : (2.5)

The partial function UDISJk;n on f0; 1gk⇥n, called unique set disjointness, is defined as
the restriction of DISJk;n to k ⇥ n Boolean matrices with at most one column consisting
entirely of ones. In other words,

UDISJk;n.X/ D
(

DISJk;n.X/ if jx1 ^ x2 ^ � � � ^ xkj 6 1;

undefined otherwise,
(2.6)

where x1; x2; : : : ; xk are the rows of X: As usual, DISJ⇤k;n and UDISJ⇤k;n denote the cor-
responding Boolean predicates, given by DISJ⇤k;n D .1 � DISJk;n/=2 and UDISJ⇤k;n D
.1 � UDISJk;n/=2:

2.3. Probability. We view probability distributions first and foremost as real functions.
This makes available various notational devices introduced above. In particular, for proba-
bility distributions � and �; the symbol supp� denotes the support of �, and �˝� denotes
the probability distribution given by .�˝�/.x; y/ D �.x/�.y/:We define �⇥� D �˝�,
the former notation being more standard for probability distributions. The Hellinger dis-
tance between probability distributions � and � on a finite set X is given by

H.�;�/ D
 
1

2

X
x2X

.
p
�.x/ �

p
�.x//2

!1=2
D
 
1 �

X
x2X

p
�.x/�.x/

!1=2
:

The term “distance” is used here in the proper sense, i.e., H is a metric. The statistical
distance between � and � is defined to be 1

2
k� � �k1: The Hellinger distance between

two random variables taking values in the same finite set X is defined to be the Hellinger
distance between their respective probability distributions. Analogously, one defines the
statistical distance between two random variables. The following classical fact [36, 42]
gives basic properties of Hellinger distance and relates it to statistical distance.

FACT 2.1. For any probability distributions �;�1;�2; : : : ;�n and �;�1;�2; : : : ;�n;
(i) 0 6 H.�;�/ 6 1;

(ii) 2H.�;�/2 6 k� � �k1 6 2
p
2H.�;�/;

(iii) H.�1 ˝ � � �˝ �n;�1 ˝ � � �˝ �n/ 6
p
H.�1;�1/2 C � � �CH.�n;�n/2:
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Parts (ii) and (iii) give a useful technique for bounding the statistical distance between
product distributions and have seen several uses in the complexity literature; cf. [43, 9].
For the reader’s convenience, we include a proof of this classical result.

Proof. Part (i) is immediate from the defining equations for Hellinger distance. For (ii),
we have

2H.�;�/2 D
X
x2X

.
p
�.x/ �

p
�.x//2

6
X
x2X
j
p
�.x/ �

p
�.x/j.

p
�.x/C

p
�.x//

D k� � �k1;
and in the reverse direction

k� � �k1 D
X
x2X
j
p
�.x/ �

p
�.x/j.

p
�.x/C

p
�.x//

6
 X
x2X

.
p
�.x/ �

p
�.x//2

!1=2  X
x2X

.
p
�.x/C

p
�.x//2

!1=2

D p2H.�;�/
 X
x2X

.
p
�.x/C

p
�.x//2

!1=2

D 2H.�;�/
 
1C

X
x2X

p
�.x/�.x/

!1=2
D 2H.�;�/

p
2 �H.�;�/2

6 2
p
2H.�;�/:

For (iii), let Xi denote the domain of �i and �i . Then

H.�1 ˝ � � �˝ �n;�1 ˝ � � �˝ �n/2

D 1 �
X
x
1

2X
1

� � �
X

x
n

2X
n

p
�1.x1/ � � ��n.xn/�1.x1/ � � ��n.xn/

D 1 �
nY
iD1

0@ X
x
i

2X
i

p
�i .xi /�i .xi /

1A
D 1 �

nY
iD1
.1 �H.�i ;�i /2/

6
nX
iD1

H.�i ;�i /
2;

where the final step uses (i).

The set membership symbol 2, when used in the subscript of an expectation operator,
means that the expectation is taken over a uniformly random element of the indicated set.
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2.4. Fourier transform. Consider the real vector space of functions f0; 1gn ! R: For
S ✓ f1; 2; : : : ; ng; define �S W f0; 1gn ! f�1;C1g by �S .x/ D .�1/

P
i2S xi : Then every

function f W f0; 1gn ! R has a unique representation of the form

f D
X

S✓f1;2;:::;ng

Of .S/�S ;

where Of .S/ D 2�n
P
x2f0;1gn f .x/�S .x/: The reals Of .S/ are called the Fourier coeffi-

cients of f: Formally, the Fourier transform is the linear transformation f 7! Of ;where Of is
viewed as a function on the power set of f1; 2; : : : ; ng: This makes available the shorthands

k Of k1 D
X

S✓f1;2;:::;ng
j Of .S/j; k Of k1 D max

S✓f1;2;:::;ng
j Of .S/j:

PROPOSITION 2.2. For all functions f; gW f0; 1gn ! R;
(i) k Of k1 6 2�nkf k1;

(ii) k Of k1 6 kf k1;
(iii) k1f C gk1 6 k Of k1 C k Ogk1;
(iv) kbf � gk1 6 k Of k1k Ogk1:

Proof. Item (i) is immediate by definition, and (ii) follows directly from (i). Item (iii) is
trivial. The submultiplicativity (iv) can be verified as follows:

kbf � gk1 D X
S✓f1;2;:::;ng

jbf � g.S/j

D
X

S✓f1;2;:::;ng

ˇ̌̌̌
ˇ̌ X
T✓f1;2;:::;ng

Of .T / Og.S ˚ T /
ˇ̌̌̌
ˇ̌

6
X

S✓f1;2;:::;ng

X
T✓f1;2;:::;ng

j Of .T /j j Og.S ˚ T /j

D k Of k1k Ogk1;
where S ˚ T D .S Z T /Y .S Z T / denotes the symmetric difference of sets.

The convolution of f; gW f0; 1gn ! R is the function f ⇤ gW f0; 1gn ! R given by

.f ⇤ g/.x/ D
X

y2f0;1gn
f .y/g.x ˚ y/:

Some papers define convolution using an additional normalizing factor of 2�n, but the
above definition is more classical and better serves our needs. The Fourier spectrum of the
convolution is given by

1f ⇤ g.S/ D 2n Of .S/ Og.S/; S ✓ f1; 2; : : : ; ng:
In particular, convolution is a symmetric operation: f ⇤ g D g ⇤ f: It also follows that
convolving f with the function 2�n

P
jS j>d �S is tantamount to discarding the Fourier

coefficients of f of order less than d : 
2�n

X
jS j>d

�S

!
⇤ f D

X
jS j>d

Of .S/�S : (2.7)
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For any given f W f0; 1gn ! R; it is straightforward to verify the existence and unique-
ness of a multilinear real polynomial Qf WRn ! R such that f ⌘ Qf on f0; 1gn: Following
standard practice, we will identify f with its multilinear extension Qf to Rn: In particular,
we define degf D deg Qf : The polynomial Qf can be read off from the Fourier expansion
of f; with the useful consequence that degf D maxfjS j W Of .S/ ¤ 0g:
2.5. Approximation by polynomials. Let f WX ! R be given, for a finite subset X ⇢
Rn: The ✏-approximate degree of f; denoted deg✏.f /; is the least degree of a real polyno-
mial p such that kf � pk1 6 ✏: We generalize this definition to partial functions f on
X by letting deg✏.f / be the least degree of a real polynomial p with

jf .x/ � p.x/j 6 ✏; x 2 domf;

jp.x/j 6 1C ✏; x 2X n domf:

)
(2.8)

For a (possibly partial) real function f on a finite subset X ⇢ Rn;we defineE.f; d/ to be
the least ✏ such that (2.8) holds for some polynomial of degree at most d: In this notation,
deg✏.f / D minfd W E.f; d/ 6 ✏g: When f is a total function, E.f; d/ is simply the least
error to which f can be approximated by a real polynomial of degree no greater than d .
We will need the following dual characterization of the approximate degree.

FACT 2.3. Let f be a .possibly partial/ real function on f0; 1gn: Then deg✏.f / > d if and
only if there exists  W f0; 1gn ! R such thatX

x2domf

f .x/ .x/ �
X

x…domf

j .x/j � ✏k k1 > 0;

and O .S/ D 0 for jS j 6 d:

Fact 2.3 follows from linear programming duality; see [47, 49] for details. A related notion
is that of threshold degree deg˙.f /; defined for a .possibly partial/ Boolean function f as
the limit

deg˙.f / D lim
✏&0

deg1�✏.f /:

Equivalently, deg˙.f / is the least degree of a real polynomial p with f .x/ D sgnp.x/
for x 2 domf: We recall two well-known results on the polynomial approximation of
Boolean functions, the first due to Minsky and Papert [40] and the second due to Nisan and
Szegedy [41].

THEOREM 2.4 (Minsky and Papert). The function MPn.x/ DWn
iD1

V4n2

jD1 xij obeys

deg˙.MPn/ D n:

THEOREM 2.5 (Nisan and Szegedy). The functions ANDn and AANDn obey

deg1=3.ANDn/ > deg1=3.AANDn/ D ⇥.
p
n/:

2.6. Multiparty communication. An excellent reference on communication complex-
ity is the monograph by Kushilevitz and Nisan [35]. In this overview, we will limit
ourselves to key definitions and notation. The main model of communication of inter-
est to us is the randomized multiparty number-on-the-forehead model, due to Chandra,
Furst, and Lipton [18]. Here one considers a (possibly partial) Boolean function F on
X1 ⇥X2 ⇥ � � � ⇥Xk ; for some finite sets X1;X2; : : : ;Xk : There are k parties. A given
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input .x1; x2; : : : ; xk/ 2 X1 ⇥X2 ⇥ � � � ⇥Xk is distributed among the parties by plac-
ing xi on the forehead of party i (for i D 1; 2; : : : ; k). In other words, party i knows
x1; : : : ; xi�1; xiC1; : : : ; xk but not xi : The parties communicate by writing bits on a shared
blackboard, visible to all. They also have access to a shared source of random bits. Their
goal is to devise a communication protocol that will allow them to accurately predict the
value of F everywhere on the domain of F: An ✏-error protocol for F is one which, on ev-
ery input .x1; x2; : : : ; xk/ 2 domF; produces the correct answer F.x1; x2; : : : ; xk/ with
probability at least 1 � ✏: The cost of a communication protocol is the total number of
bits written to the blackboard in the worst case. The ✏-error randomized communication
complexity of F; denoted R✏.F /, is the least cost of an ✏-error communication protocol
for F in this model. The canonical quantity to study is R1=3.F /; where the choice of
1=3 is largely arbitrary since the error probability of a protocol can be decreased from 1=3
to any other positive constant at the expense of increasing the communication cost by a
constant factor.

The nondeterministic model is similar in some ways and different in others from the
randomized model. As in the randomized model, one considers a (possibly partial) Boolean
function F on X1 ⇥ X2 ⇥ � � � ⇥ Xk ; for some finite sets X1;X2; : : : ;Xk : An input
.x1; x2; : : : ; xk/ 2X1⇥X2⇥� � �⇥Xk is distributed among the k parties as before, giving
the i th party all the arguments except xi : Beyond this setup, nondeterministic computation
proceeds as follows. At the start of the protocol, c1 bits appear on the shared blackboard.
Given the values of those bits, the parties execute an agreed-upon deterministic protocol
with communication cost at most c2: A nondeterministic protocol for F is required to
output the correct answer for at least one nondeterministic choice of the c1 bits when
F.x1; x2; : : : ; xk/ D �1 and for all possible choices when F.x1; x2; : : : ; xk/ D C1.
As usual, the protocol is allowed to behave arbitrarily on inputs outside the domain of
F . The cost of a nondeterministic protocol is defined as c1 C c2. The nondeterministic
communication complexity of F , denoted N.F /; is the least cost of a nondeterministic
protocol for F:

The Merlin-Arthur model [3, 6] combines the power of randomization and nondeter-
minism. Similar to the nondeterministic model, the protocol starts with a nondeterministic
guess of c1 bits, followed by c2 bits of communication. However, the communication
can now be randomized, and the requirement is that the error probability be at most ✏ for
at least one nondeterministic guess when F.x1; x2; : : : ; xk/ D �1 and for all possible
nondeterministic guesses when F.x1; x2; : : : ; xk/ D C1. The cost of a Merlin-Arthur
protocol is defined as c1 C c2: The ✏-error Merlin-Arthur communication complexity of
F , denoted MA✏.F /, is the least cost of an ✏-error Merlin-Arthur protocol for F: Clearly,
MA✏.F / 6 minfN.F /;R✏.F /g for every F .

In much of this paper, the input to a k-party communication problem will be an ordered
sequence of matrices X1; X2; : : : ; Xn 2 f0; 1gk;⇤; with the understanding that the i th party
sees rows 1; : : : ; i � 1; i C 1; : : : ; k of every matrix. The main communication problem of
interest to us is the k-party set disjointness problem DISJk;n, defined in (2.5). In words,
the goal in the set disjointness problem is to determine whether a given k ⇥ n Boolean
matrix contains an all-ones column, where the i th party sees the entire matrix except for
the i th row. We will also consider the k-party communication problem UDISJk;n called
unique set disjointness, given by (2.6). Observe that UDISJk;n is a promise version of set
disjointness, the promise being that the input matrix has at most one column consisting
entirely of ones.
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A common operation in this paper is that of composing functions to obtain communica-
tion problems. Specifically, let G be a (possibly partial) Boolean function on X1 ⇥X2 ⇥
� � � ⇥Xk ; representing a k-party communication problem, and let f be a (possibly partial)
Boolean function on f0; 1gn: We view the composition f ıG as a k-party communication
problem on X n

1 ⇥X n
2 ⇥ � � � ⇥X n

k
: With these conventions, one has

DISJk;rs D ANDr ı DISJk;s;

UDISJk;rs DAANDr ı UDISJk;s
for all positive integers r; s:

2.7. Discrepancy and generalized discrepancy. A k-dimensional cylinder intersection
is a function �WX1 ⇥X2 ⇥ � � � ⇥Xk ! f0; 1g of the form

�.x1; : : : ; xk/ D
kY
iD1

�i .x1; : : : ; xi�1; xiC1; : : : ; xk/;

where �i WX1 ⇥ � � � ⇥Xi�1 ⇥XiC1 ⇥ � � � ⇥Xk ! f0; 1g: In other words, a k-dimensional
cylinder intersection is the product of k functions with range f0; 1g; where the i th function
does not depend on the i th coordinate but may depend arbitrarily on the other k � 1 co-
ordinates. In particular, a one-dimensional cylinder intersection is one of the two constant
functions 0; 1: Cylinder intersections were introduced by Babai, Nisan, and Szegedy [7]
and play a fundamental role in the theory due to the following fact.

FACT 2.6. Let ˘ WX1 ⇥X2 ⇥ � � � ⇥Xk ! f�1;C1g be a deterministic k-party commu-
nication protocol with cost r: Then

˘ D
2rX
iD1

ai�i

for some cylinder intersections �1; : : : ;�2r with pairwise disjoint support and some coef-
ficients a1; : : : ; a2r 2 f�1;C1g:

Since a randomized protocol with cost r is a probability distribution on deterministic
protocols of cost r; Fact 2.6 implies the following two results on randomized communica-
tion complexity.

COROLLARY 2.7. Let F be a .possibly partial/ Boolean function on X1⇥X2⇥� � �⇥Xk :
If R✏.F / D r; then

jF.X/ �˘.X/j 6 ✏

1 � ✏ ; X 2 domF;

j˘.X/j 6 1

1 � ✏ ; X 2X1 ⇥ � � � ⇥Xk ;

where ˘ D P
� a�� is a linear combination of cylinder intersections with

P
� ja�j 6

2r=.1 � ✏/:
COROLLARY 2.8. Let˘ be a randomized k-party protocol with domain X1 ⇥X2 ⇥ � � � ⇥
Xk : If ˘ has communication cost r bits, then

PŒ˘.X/ D �1ç ⌘
X
�

a��.X/; X 2X1 ⇥X2 ⇥ � � � ⇥Xk ;
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where the sum is over cylinder intersections and
P
� ja�j 6 2r :

For a (possibly partial) Boolean function F on X1 ⇥X2 ⇥ � � � ⇥Xk and a probability
distribution P on X1 ⇥X2 ⇥ � � � ⇥Xk ; the discrepancy of F with respect to P is given by

discP .F / D
X

X…domF

P.X/Cmax
�

ˇ̌̌̌
ˇ X
X2domF

F.X/P.X/�.X/

ˇ̌̌̌
ˇ ;

where the maximum is over cylinder intersections. The least discrepancy over all distri-
butions is denoted disc.F / D minP discP .F /: As Fact 2.6 suggests, upper bounds on the
discrepancy give lower bounds on communication complexity. This technique is known as
the discrepancy method [21, 7, 35]:

THEOREM 2.9 (Discrepancy method). Let F be a .possibly partial/ Boolean function on
X1 ⇥X2 ⇥ � � � ⇥Xk : Then

2R✏.F / > 1 � 2✏
disc.F /

:

A more general technique, originally applied by Klauck [32] in the two-party quantum
model and subsequently adapted to many other settings [45, 39, 47, 38, 20], is the gener-
alized discrepancy method.

THEOREM 2.10 (Generalized discrepancy method). Let F be a .possibly partial/ Boolean
function on X1 ⇥X2 ⇥ � � � ⇥Xk : Then for every nonzero  WX1 ⇥X2 ⇥ � � � ⇥Xk ! R;

2R✏.F / > 1 � ✏
max� jh�; ij

� X
X2domF

F.X/ .X/ �
X

X…domF

j .X/j � ✏

1 � ✏ k k1
�
;

where the maximum is over cylinder intersections �:

Complete proofs of Theorems 2.9 and 2.10 can be found in [48, Theorems 2.9, 2.10]. The
ideas of the generalized discrepancy method have been adapted to nondeterministic and
Merlin-Arthur communication. The following result [23, Theorem 4.1] gives a criterion
for high communication complexity in these models.

THEOREM 2.11 (Gavinsky and Sherstov). Let F be a (possibly partial) k-party commu-
nication problem on X D X1 ⇥X2 ⇥ � � � ⇥Xk : Fix a function H WX ! f�1;C1g and
a probability distribution P on domF: Put

˛ D P.F �1.�1/ZH�1.�1//;
ˇ D P.F �1.�1/ZH�1.C1//;
Q D log

˛

ˇ C discP .H/
:

Then

N.F / > Q;

MA1=3.F / > min
⇢
˝.
p
Q/; ˝

✓
Q

log.2=˛/

◆�
:

Theorem 2.11 was stated in [23] for total functions F; but the proof in that paper applies
to partial functions as well.
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3. DIRECTIONAL DERIVATIVES AND APPROXIMATION

Directional derivatives are meaningful for any function on the Boolean hypercube with
values in a ring R: The directional derivative of f W f0; 1gn ! R in the direction S ✓
f1; 2; : : : ; ng is usually defined as the function .@f=@S/.x/ D f .x/ � f .x ˚ 1S /: Di-
rectional derivatives of higher order are obtained by differentiating more than once. As a
special case, partial derivatives are given by .@f=@fig/.x/ D f .x/�f .x˚ei /:Directional
derivatives have been studied mostly for the field R D F2, motivated by applications to
circuit complexity and cryptography [53, 1, 25, 26, 52, 22]. In particular, the uniformity
norm U d of Gowers [25, 26] is defined in terms of the expected value of a randomly cho-
sen order-d directional derivative for R D F2. To a lesser extent, directional derivatives
have been studied for R a finite field [24] and the field of reals [13]. In this work, deriva-
tives serve the purpose of determining how well a given function f W f0; 1gn ! R can be
approximated by a polynomial p 2 RŒx1; x2; : : : ; xnç of given degree d: Consequently, we
work with the field R D R.

3.1. Definition and basic properties. Let d be a positive integer. For a given function
f W f0; 1gn ! R and sets S1; S2; : : : ; Sd ✓ f1; 2; : : : ; ng; we define the directional deriva-
tive of f with respect to S1; S2; : : : ; Sd to be the function @df=@S1@S2 � � � @Sd W f0; 1gn !
R given by

@df

@S1 @S2 � � � @Sd .x/ D E
´2f0;1gd

"
.�1/j´jf

 
x ˚

dM
iD1

´i1S
i

!#
: (3.1)

The order of the directional derivative is the number of sets involved. Thus, (3.1) is a
directional derivative of order d: We collect basic properties of directional derivatives in
the following proposition.

PROPOSITION 3.1 (Folklore). Let f W f0; 1gn ! R be a given function, S1; S2; : : : ; Sd ✓
f1; 2; : : : ; ng given sets, and � W f1; 2; : : : ; dg ! f1; 2; : : : ; dg a permutation. Then

(i) @d=@S1@S2 � � � @Sd is a linear transformation of Rf0;1gn into itself I
(ii) @df=@S1@S2 � � � @Sd ⌘ @.@d�1f=@S1@S2 � � � @Sd�1/=@Sd I

(iii) @df=@S1@S2 � � � @Sd ⌘ @df=@S�.1/@S�.2/ � � � @S�.d/I
(iv) k@df=@S1@S2 � � � @Sdk1 6 kf k1I
(v) @df=@S1@S2 � � � @Sd ⌘ 0 whenever Si D ¿ for some i I

(vi) @df=@S1@S2 � � � @Sd ⌘ 0 whenever S1; S2; : : : ; Sd are pairwise disjoint and
degf 6 d � 1:

Proof. Items (i)–(iv) follow immediately from the definition. Since @f=@¿ ⌘ 0 for any
function f; item (v) follows directly from (ii) and (iii). To prove (vi), we may assume
by (i) that f D �T with jT j 6 d � 1: For such f; observe that @f=@Si ⌘ 0 whenever
T Z Si D ¿. Since jT j 6 d � 1 and S1; S2; : : : ; Sd are pairwise disjoint, we have
T Z Si D ¿ for some i; thus forcing @f=@Si ⌘ 0: That @df=@S1 @S2 � � � @Sd ⌘ 0 now
follows from (ii) and (iii).

Item (vi) in Proposition 3.1 provides intuition for why directional derivatives might be
relevant in characterizing the least error in an approximation of f by a real polynomial of
given degree. This intuition will be borne out at the end of Section 3. The disjointness
assumption in Proposition 3.1(vi) cannot be removed, even when 1S

1

; 1S
2

; : : : ; 1S
d

are
linearly independent as vectors in Fn2 . For example, @2x1=@f1; 2g @f1; 3g D x1 � 1

2
6⌘ 0:
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We now define the key complexity measure in our study.

DEFINITION 3.2. Let f W f0; 1gn ! R be a given function. For d D 1; 2; : : : ; n; define

�.f; d/ D max
S
1

;:::;S
d

����� @df

@S1 @S2 � � � @Sd

�����
1
;

where the maximum is over nonempty pairwise disjoint sets S1; S2; : : : ; Sd ✓ f1; 2; : : : ; ng:
Define �.f; nC 1/ D �.f; nC 2/ D � � � D 0:
It is helpful to think of �.f; d/ as a measure of smoothness. Our ultimate goal is to
understand how this complexity measure relates to the approximation of f by polynomials.
As a first step in that direction, we have:

THEOREM 3.3. For all functions f W f0; 1gn ! R and all d D 1; 2; : : : ; n;
E.f; d � 1/ > �.f; d/:

Furthermore,

E.AND⇤n; d � 1/ > 2d.1�O.
d

n

//�1�.AND⇤n; d /:

Proof. Write f D p C ⇠; where p is a polynomial of degree at most d � 1 and k⇠k1 6
E.f; d � 1/: Then

�.f; d/ 6 �.p; d/C�.⇠; d /
D �.⇠; d / by Proposition 3.1(vi)
6 E.f; d � 1/ by Proposition 3.1(iv).

To prove the second part, note that �.AND⇤n; d / D 2�d since AND⇤n is supported on
exactly one point and takes on 1 at that point. At the same time, Buhrman et al. [15] show
that E.AND⇤n; d � 1/ > 2�1�⇥.d

2=n/:

Thus, �.f; d/ is always a lower bound on the least error in an approximation of f
by a polynomial of degree less than d; and the gap between the two quantities can be
considerable. Our challenge is to prove a partial converse to this result. Specifically, we
will be able to show that

E.f; d � 1/ 6 Kd�.f; d/CKdC1�.f; d C 1/C � � �
CKdCi�.f; d C i/C � � � ; (3.2)

where K > 2 is an absolute constant.

3.2. Elementary dual functions. The proof of (3.2) requires considerable preparatory
work. Basic building blocks in it are the linear functionals to which partial derivatives
correspond. We start with a formal definition of these fundamental objects.

DEFINITION 3.4 (Elementary dual function). For a string w 2 f0; 1gn and nonempty pair-
wise disjoint subsets S1; : : : ; Sd ✓ f1; 2; : : : ; ng; let  w;S

1

;:::;S
d

W f0; 1gn ! R be the
function that has support

supp w;S
1

;:::;S
d

D
(
w ˚

dM
iD1

´i1S
i

W ´ 2 f0; 1gd
)
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and is defined on that support by

 w;S
1

;:::;S
d

 
w ˚

dM
iD1

´i1S
i

!
D .�1/j´j

2d
; ´ 2 f0; 1gd :

An elementary dual function of degree d is any of the functions  w;S
1

;:::;S
d

, where w 2
f0; 1gn and S1; : : : ; Sd ✓ f1; 2; : : : ; ng are nonempty pairwise disjoint sets.

An elementary dual function can be written in several ways using the above notation.
For example,  w;S

1

;:::;S
d

⌘  w;S
�.1/

;:::;S
�.d/

for any permutation � on f1; 2; : : : ; dg: One
also has  w;S;T ⌘  w˚1

S

˚1
T

;S;T and more generally  w˚´
1

1
S

1

˚���˚´
d

1
S

d

;S
1

;:::;S
d

D
.�1/j´j w;S

1

;:::;S
d

: We now establish key properties of elementary dual functions, moti-
vating the term itself and relating it to directional derivatives.

THEOREM 3.5 (On elementary dual functions).
(i) For every f W f0; 1gn ! R; one has hf; w;S

1

;:::;S
d

i D .@df=@S1@S2 � � � @Sd /.w/:
(ii) The negation of a degree-d elementary dual function is a degree-d elementary

dual function.
(iii) If p is a polynomial of degree less than d; then h w;S

1

;:::;S
d

; pi D 0: Equiva-
lently,  w;S

1

;:::;S
d

2 spanf�S W jS j > dg:
(iv) Every �S with jS j > d is the sum of 2n elementary dual functions of degree d .

In particular, every function in spanf�S W jS j > dg is a linear combination of
degree-d elementary dual functions.

(v) For every function f W f0; 1gn ! R and d D 1; 2; : : : ; n; one has �.f; d/ D
maxhf; w;S

1

;:::;S
d

i D max jhf; w;S
1

;:::;S
d

ij; where the maximum is taken over
degree-d elementary dual functions  w;S

1

;:::;S
d

.

Proof. Item (i) is immediate from the definitions, and (ii) follows from � w;S
1

;:::;S
d

D
 w˚1

S

1

;S
1

;:::;S
d

: Item (iii) follows from (i) and Proposition 3.1(vi).
For (iv), it suffices by symmetry to consider �f1;2;:::;Dg for D D d; d C 1; : : : ; n: For

every u 2 f0; 1gn�d ;

 0du;f1g;:::;fdg.x/ D
(
2�d�f1;:::;dg.x/ if .xdC1; : : : ; xn/ D u;
0 otherwise.

Therefore,

�f1;:::;Dg.x/ D 2d
X

u2f0;1gn�d
.�1/u1C���CuD�d 0du;f1g;:::;fdg.x/:

By (ii), each of the functions in the final summation is a degree-d elementary dual function,
so that �f1;:::;Dg is indeed the sum of 2n elementary dual functions of degree d:

Finally, (v) is immediate from (i) and (ii).

DEFINITION. For d D 1; : : : ; n; define  n;d ✓ Rf0;1gn to be the convex hull of degree-
d elementary dual functions,  n;d D convf�w;S

1

;:::;S
d

g: Define  n;nC1; n;nC2; : : : ✓
Rf0;1gn by  n;nC1 D  n;nC2 D � � � D f0g:
By Theorem 3.5(ii), the convex sets  n;1; n;2; : : : ; n;n are all closed under negation and
hence contain 0. As a result, we have c n;d ✓ C n;d for all C > c > 0: We will use this
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fact without mention throughout this section, including Lemmas 3.6, 3.10, and 3.11 and
Theorems 3.7 and 3.12. The next lemma establishes useful analytic properties of  n;d :

LEMMA 3.6. Let f; W f0; 1gn ! R be given, d 2 f1; 2; : : : ; ng: Then

(i)  2 2nk O k1 n;d ✓ 2nk k1 n;d whenever  2 spanf�S W jS j > dgI
(ii) .f ⇤  w;S

1

;:::;S
d

/.x/ D .@df=@S1@S2 � � � @Sd /.x ˚ w/I
(iii) kf ⇤  k1 6 �.f; d/ whenever  2  n;d :

Proof. (i) Recall from Theorem 3.5(iv) that �S 2 2n n;d for every subset S ✓ f1; 2; : : : ; ng
with jS j > d: Therefore, 2 2nk O k1 n;d by convexity. The containment 2nk O k1 n;d ✓
2nk k1 n;d is immediate from Proposition 2.2(ii).

(ii) Writing out the convolution explicitly,

.f ⇤  w;S
1

;:::;S
d

/.x/ D
X

y2f0;1gn
f .y/ w;S

1

;:::;S
d

.x ˚ y/

D hf; x˚w;S
1

;:::;S
d

i

D
 

@df

@S1@S2 � � � @Sd

!
.x ˚ w/;

where the final step uses Theorem 3.5(i).
(iii) It is a direct consequence of (ii) that kf ⇤  w;S

1

;:::;S
d

k1 6 �.f; d/ for every
elementary dual function  w;S

1

;:::;S
d

. By convexity, (iii) follows.

Recall that our goal is to establish a partial converse to Theorem 3.3, i.e., prove that
functions with small derivatives can be approximated well by low-degree polynomials. To
help the reader build some intuition for the proof, we illustrate our technique in a particu-
larly simple setting. Specifically, we give a short proof that E.f; d � 1/ 6 2n�.f; d/. We
actually prove something stronger, namely, that every f can be approximated pointwise
within 2n�.f; d/ by its truncated Fourier polynomial

P
jS j6d�1 Of .S/�S : We do so by

expressing the discarded part of the Fourier spectrum,X
jS j>d

Of .S/�S .x/; (3.3)

as a linear combination of order-d directional derivatives of f at appropriate points, where
the absolute values of the coefficients in the linear combination sum to at most 2n: Since the
magnitude of an order-d derivative of f cannot exceed �.f; d/; we arrive at the desired
upper bound on the approximation error.

THEOREM 3.7. For all functions f W f0; 1gn ! R and all d D 1; 2; : : : ; n;

E.f; d � 1/ 6

������XjS j>d Of .S/�S
������
1

6 2n�.f; d/:

Proof. Define  W f0; 1gn ! R by  .x/ D 2�nPjS j>d �S : Then by Lemma 3.6(i),

 2 2n n;d : (3.4)
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As a result,������XjS j>d Of .S/�S
������
1

D kf ⇤  k1 by (2.7)

6 2n max
 02 

n;d

kf ⇤  0k1 by (3.4)

6 2n�.f; d/ by Lemma 3.6(iii).

Theorem 3.7 serves an illustrative purpose and is of little interest by itself. To obtain the
actual result that we want, (3.2), we need to consider directional derivatives of all orders
starting at d: Specifically, we express the discarded portion of the Fourier spectrum, (3.3),
as a linear combination of directional derivatives of f of orders i D d; d C 1; : : : ; n;
where the sum of the absolute values of the coefficients of order-i derivatives is Ki for
some absolute constant K > 2: Since an order-i derivative cannot exceed �.f; i/; the
desired bound (3.2) follows.

To find the kind of linear combination described in the previous paragraph, we will
express the function  D 2�n

P
jS j>d �S as a linear combination of elementary dual

functions of orders d; d C 1; : : : ; n with small coefficients. That is a nontrivial task, and it
will take up the next few pages. Once we have obtained the needed representation for  ;
we will be able to prove (3.2) easily using a convolution argument, cf. Theorem 3.7.

3.3. Symmetric extensions. Consider the operation of extending a symmetric function
gW f0; 1gm ! R to a larger domain f0; 1gn, illustrated schematically in Figure 3.1. The
extended function is again symmetric, supported on mC 1 equispaced levels of the hyper-
cube, and normalized such that the sum on each of these levels is the same as for g: Here,
we relate the metric and Fourier-theoretic properties of the original function to those of its
extension.

LEMMA 3.8. Let n;m;� be positive integers, m� 6 n: Let gW f0; 1gm ! R be a given
symmetric function. Consider the symmetric function GW f0; 1gn ! R given by

G.x/ D
(�

n
jxj
��1� m

jxj=�
�
g.1jxj=�00 : : : 0/ if jxj D 0;�; 2�; : : : ; m�;

0 otherwise.
(3.5)

Then:
(i) the Fourier coefficients of G are given by

OG.S/ D 2�n
mX
iD0

 
m

i

!
g.1i0m�i / E

x2f0;1gn; jxjDi�
Œ�S .x/çI

(ii) G 2 spanf�S W jS j > dg if and only if g 2 spanf�S W jS j > dgI
(iii) G 2  n;d whenever g 2  m;d .

Proof. (i) By the symmetry of g and G,

OG.S/ D 2�n
nX
iD0

 
n

i

!
G.1i0n�i / E

jxjDi
Œ�S .x/ç

D 2�n
mX
iD0

 
m

i

!
g.1i0m�i / E

jxjDi�
Œ�S .x/ç:
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f0; 1gn
f0; 1gm

FIGURE 3.1. Extending a symmetric function from f0; 1gm to f0; 1gn:

(ii) Since g is symmetric, g … spanf�S W jS j > dg if and only ifX
x2f0;1gm

g.x/p.x1 C � � �C xm/ ¤ 0

for some univariate polynomial p of degree less than d: Analogously, G … spanf�S W
jS j > dg if and only ifX

x2f0;1gn
G.x/q.x1 C � � �C xn/ ¤ 0

for some univariate polynomial q of degree less than d: Finally, the definition ofG ensuresX
x2f0;1gm

g.x/p.x1 C � � �C xm/ D
X

x2f0;1gn
G.x/p

✓
x1 C � � �C xn

�

◆
for every polynomial p; regardless of degree.

(iii) For nonempty pairwise disjoint subsets T1; T2; : : : ; Tm ✓ f1; 2; : : : ; ng; define
LT

1

;:::;T
m

to be the linear transformation that sends a function �W f0; 1gm ! R into the
function LT

1

;:::;T
m

�W f0; 1gn ! R such that

.LT
1

;:::;T
m

�/.u11T
1

˚ � � �˚ um1T
m

/ D �.u/; u 2 f0; 1gm;
and .LT

1

;:::;T
m

�/.x/ D 0 whenever x ¤ u11T
1

˚ � � �˚ um1T
m

for any u: We claim that

G D E
T
1

;:::;T
m

ŒLT
1

;:::;T
m

gç; (3.6)

where the expectation is over pairwise disjoint subsets T1; T2; : : : ; Tm ✓ f1; 2; : : : ; ng of
cardinality � each. Indeed, the right-hand side of (3.6) is a function f0; 1gn ! R that is
symmetric, sums to

�
m
i

�
g.1i0m�i / on inputs of Hamming weight i� .i D 0; 1; 2; : : : ; m/,

and vanishes on all other inputs. There is only one function that has these three properties,
namely, the function G in the statement of the lemma.

In view of (3.6) it suffices to show that underLT
1

;:::;T
m

, the image of an elementary dual
function f0; 1gm ! R is an elementary dual function f0; 1gn ! R of the same degree. By
definition, the elementary dual function  w;S

1

;:::;S
d

W f0; 1gm ! R satisfies

 w;S
1

;:::;S
d

.w ˚ ´11S
1

˚ � � �˚ ´d1S
d

/ D .�1/j´j
2d

; ´ 2 f0; 1gd ;
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and vanishes on the remaining 2m�2d points of f0; 1gm: Thus,LT
1

;:::;T
m

 w;S
1

;:::;S
d

obeys

.LT
1

;:::;T
m

 w;S
1

;:::;S
d

/

 
mM
iD1

wi1T
i

˚
dM
iD1

´i1R
i

!
D .�1/j´j

2d
; ´ 2 f0; 1gd ;

and vanishes on the remaining 2n�2d points of f0; 1gn;whereR1; : : : ; Rd ✓ f1; 2; : : : ; ng
are the nonempty pairwise disjoint sets Ri D S

j2S
i

Tj : Therefore, LT
1

;:::;T
m

 w;S
1

;:::;S
d

is a degree-d elementary dual function.

The next lemma takes as given the Fourier coefficients of the extended symmetric func-
tion and solves for the values of the original symmetric function.

LEMMA 3.9. Let F W f0; 1gn ! R be a symmetric function and m 2 f1; 2; : : : ; ng: Then
there exist reals g0; g1; : : : ; gm such that

mX
iD0

gi E
x2f0;1gn
jxjDibn=mc

Œ�S .x/ç D OF .S/ .jS j 6 m/; (3.7)

mX
iD0
jgi j 6 .8m � 1/k OF k1: (3.8)

Proof. Abbreviate � D bn=mc; so that m� 6 n 6 2m�: The expectation in (3.7)
depends only on the cardinality of S . As a result, it suffices to prove the lemma for
S D ¿; f1g; f1; 2g; f1; 2; 3g; : : : ; f1; 2; : : : ; mg: To that end, consider the matrix

A D


E
jxjDi�

Œ�f1;2;:::;j g.x/ç
�
j;i

;

where i; j D 0; 1; 2; : : : ; m. Then the sought reals g0; g1; : : : ; gm are given by2666664
g0
g1
g2
:::
gm

3777775 D A�1
26666664

OF .¿/
OF .f1g/
OF .f1; 2g/

:::
OF .f1; 2; : : : ; mg/

37777775
whenever A is nonsingular. Consequently, the proof will be complete once we show that
the inverse of A exists and obeys

kA�1k1 6 8m � 1: (3.9)

We will calculate A�1 explicitly. Consider polynomials p0; p1; : : : ; pmW f0; 1gn ! R,
each of degree m, given by

pj .x/ D .�1/m�j
mä�m

 
m

j

!
mY
iD0
i¤j

.jxj � i�/; j D 0; 1; : : : ; m:

Then

pj .x/ D
(
1 if jxj D j�;
0 if jxj 2 f0;�; 2�; : : : ; m�g n fj�g:
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It follows that

ıi;j D E
jxjDi�

Œpj .x/ç

D
mX
kD0
Opj .f1; 2; : : : ; kg/ E

jxjDi�

2664 X
S✓f1;2;:::;ng
jS jDk

�S .x/

3775
D

mX
kD0
Opj .f1; 2; : : : ; kg/

 
n

k

!
E

jxjDi�
Œ�f1;:::;kg.x/ç

D
mX
kD0
Opj .f1; 2; : : : ; kg/

 
n

k

!
Ak;i .i; j D 0; 1; : : : ; m/;

where the second and third steps use the symmetry of pj and the symmetry of the expec-
tation operator, respectively. This gives the explicit form

A�1 D
" 
n

k

!
Opj .f1; 2; : : : ; kg/

#
j;k

;

showing in particular that A is nonsingular. It remains to prove (3.9). Applying Proposi-
tion 2.2(iii)–(iv),

k Opj k1 6 1

mä�m

 
m

j

!
mY
iD0
i¤j

k3jxj � i�k1

D 1

mä�m

 
m

j

!
mY
iD0
i¤j

⇣n
2
C
ˇ̌̌n
2
� i�

ˇ̌̌⌘

6 1

mä�m

 
m

j

!
mY
iD0
i¤j

✓
2m�

2
C
ˇ̌̌̌
2m�

2
� i�

ˇ̌̌̌◆
since n 6 2m�

D m

2m � j

 
2m

m

! 
m

j

!
:

Hence,

kA�1k1 D
mX
jD0
k Opj k1 6

 
2m

m

!
mX
jD0

 
m

j

!
D 2m

 
2m

m

!
6 8m � 1:

3.4. Bounding the global error. At this point, we have all the tools at our disposal to
express  D 2�n

P
jS j>d �S as a linear combination of elementary dual functions of

orders d; d C 1; : : : ; n with small coefficients. We do so by means of an iterative process
that can be visualized as “chasing the bulge,” to borrow the metaphor from linear algebra.
Originally, the Fourier spectrum of  is supported on characters of degree d or higher.
In the i th iteration, the smallest degree of a nonzero Fourier coefficient grows by a factor
of c, and the magnitude of the nonzero Fourier coefficients grows by a factor of at most
8c
id : In this way, each iteration pushes the Fourier spectrum further back at the expense

of a controlled increase in the magnitude of the remaining coefficients, which results in
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d cd c2d

1

8cd

8cdCc
2d

FIGURE 3.2. Chasing the bulge.

a growing “bulge” of Fourier mass on characters of high degree. This process is shown
schematically in Figure 3.2. The next lemma corresponds to a single iteration.

LEMMA 3.10. Let D be a given integer, 1 6 D 6 n. Let F W f0; 1gn ! R be a symmetric
function with F 2 spanf�S W jS j > Dg: Then for every integer m > D; there is a
symmetric function GW f0; 1gn ! R such that

G 2 2n 16mk OF k1 n;D; (3.10)
F �G 2 spanf�S W jS j > mC 1g; (3.11)

k2F �Gk1 6 8mk OF k1: (3.12)

Proof. When m > n; Lemma 3.6(i) shows that F 2 2nk OF k1 n;D ✓ 2n 2nk OF k1 n;D ✓
2n 16mk OF k1 n;D : As a result, the lemma holds in that case with G D F .

In the remainder of the proof, we treat the complementary case m 6 n: Define � D
bn=mc > 1: By Lemma 3.9, there exist reals g0; g1; : : : ; gm that obey (3.7) and (3.8). Let
gW f0; 1gm ! R be the symmetric function given by g.x/ D 2n

�
m
jxj
��1

gjxj: Then (3.7)
and (3.8) can be restated as

OF .S/ D 2�n
mX
iD0

 
m

i

!
g.1i0m�i / E

x2f0;1gn
jxjDi�

Œ�S .x/ç .jS j 6 m/; (3.13)

kgk1 6 2n.8m � 1/k OF k1: (3.14)

Now define GW f0; 1gn ! R by (3.5). Then Lemma 3.8(i) gives

OF .S/ D OG.S/; jS j 6 m: (3.15)

Since the Fourier spectrum of F is supported on characters of order D or higher (where
D 6 m), we conclude that G 2 spanf�S W jS j > Dg: This results in the following chain
of implications:

g 2 spanf�S W jS j > Dg by Lemma 3.8(ii),
g 2 2mkgk1 m;D by Lemma 3.6(i),

g 2 2n 16mk OF k1 m;D by (3.14),

G 2 2n 16mk OF k1 n;D by Lemma 3.8(iii). (3.16)
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Finally,

k2F �Gk1 6 k OF k1 C k OGk1
6 k OF k1 C 2�nkgk1 by Lemma 3.8(i)

6 8mk OF k1 by (3.14). (3.17)

Now (3.10)–(3.12) follow from (3.16), (3.15), and (3.17), respectively.

By iteratively applying the previous lemma, we obtain the desired representation for
2�n

P
jS j>d �S .

LEMMA 3.11. Let F W f0; 1gn ! R be a symmetric function with F 2 spanf�S W jS j > dg;
where d is an integer with 1 6 d 6 n: Then for every real c > 1;

F 2 2nk OF k1
1X
iD0

✓
2
4c

2�c
c�1

◆cid
 n;dcide: (3.18)

Proof. We will construct symmetric functions F1; F2; : : : ; Fi ; : : : W f0; 1gn ! R, where

Fi 2 2nk OF k1
✓
2
4c

2�c
c�1

◆ci�1d
 n;dci�1de; (3.19)

F � F1 � F2 � � � � � Fi 2 spanf�S W jS j > dcideg; (3.20)

k3F � F1 � F2 � � � � � Fik1 6 8
c

iC1
d�cd

c�1 k OF k1: (3.21)

Before carrying out the construction, let us finish the proof assuming the existence of such
a sequence. Since cid > n for all i sufficiently large, (3.19) implies that only finitely
many functions in the sequence fFig1iD1 are nonzero. The series

P1
iD1 Fi is therefore

well-defined, and (3.20) gives F DP1iD1 Fi : Property (3.19) now settles (3.18).
We will constructF1; F2; : : : ; Fi ; : : : using induction to ensure properties (3.19)–(3.21).

The base case i D 0 is immediate from the assumed membership F 2 spanf�S W jS j > dg:
For the inductive step, fix i > 1 and assume that the symmetric functions F1; F2; : : : ; Fi�1
have already been constructed. Then by the inductive hypothesis,

F � F1 � � � � � Fi�1 2 spanf�S W jS j > dci�1deg;
k1F � F1 � � � � � Fi�1k1 6 8

c

i

d�cd
c�1 k OF k1: (3.22)

There are two cases to consider. In the degenerate case when dci�1de D dcide; one ob-
tains (3.19)–(3.21) trivially by letting Fi D 0: In the complementary case when dci�1de <
dcide; we have dci�1de 6 bcidc: As a result, Lemma 3.10 is applicable with parameters
D D dci�1de and m D bcidc to the symmetric function F � F1 � F2 � � � � � Fi�1 and
yields a symmetric function Fi such that

Fi 2 2n 16bcidck1F � F1 � � � � � Fi�1k1 n;dci�1de;
.F � F1 � � � � � Fi�1/ � Fi 2 spanf�S W jS j > bcidc C 1g;
k6.F � F1 � � � � � Fi�1/ � Fik1 6 8bc

idck1F � F1 � � � � � Fi�1k1:
These three properties establish (3.19)–(3.21) in view of (3.22).

We have reached the main result of Section 3, stated earlier as (3.2).
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THEOREM 3.12. Let c > 1 be a given real number. Then for every d D 1; 2; : : : ; n and
every function f W f0; 1gn ! R;

E.f; d � 1/ 6

������XjS j>d Of .S/�S
������
1

6
1X
iD0

✓
2
4c

2�c
c�1

◆cid
�.f; dcide/: (3.23)

In particular,

E.f; d � 1/ 6
nX
iDd

56i�.f; i/; (3.24)

E.f; d � 1/ 6
blog n

d

cX
iD0

�
214
�
2id�.f; 2id/: (3.25)

Proof. The function c 7! 2.4c
2�c/=.c�1/ attains its minimum on .1;1/ at the point c D

1Cp3=4 D 1:8660 : : : : Substituting this value in (3.23) and noting that d.1Cp3=4/ide <
d.1Cp3=4/iC1de gives (3.24). For the alternate bound (3.25), let c D 2 in (3.23).

It remains to prove (3.23). Abbreviate K D 2.4c
2�c/=.c�1/ and define  W f0; 1gn ! R

by  .x/ D 2�nPjS j>d �S : Then by Lemma 3.11,

 2
1X
iD0

Kc
id n;dcide: (3.26)

As a result,������XjS j>d Of .S/�S
������
1

D kf ⇤  k1 by (2.7)

6
1X
iD0

Kc
id max
 02 

n;dci de
kf ⇤  0k1 by (3.26)

6
1X
iD0

Kc
id�.f; dcide/: by Lemma 3.6(iii).

4. REPEATED DISCREPANCY OF SET DISJOINTNESS

Let G be a multiparty communication problem, such as set disjointness. The classic
notion of discrepancy, reviewed in Section 2, involves fixing a probability distribution ⇡
on the domain of G and challenging a communication protocol to solve an instance X
of G chosen at random according to ⇡: If some low-cost protocol solves this task with
nonnegligible accuracy, one says that G has high discrepancy with respect to ⇡ . In this
paper, we introduce a rather different notion which we call repeated discrepancy. Here,
one presents the communication protocol with arbitrarily many instances X1; X2; X3; : : :
of the given communication problem G; each chosen independently from ⇡ conditioned
on G.X1/ D G.X2/ D G.X3/ D � � � : Thus, the instances are either all positive or all
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negative, and the protocol’s challenge is to tell which is the case. The formal definition
given next is somewhat more subtle, but the intuition is exactly the same.

DEFINITION 4.1. Let G be a (possibly partial) k-party communication problem on X D
X1 ⇥X2 ⇥ � � � ⇥Xk and ⇡ a probability distribution on the domain of G: The repeated
discrepancy of G with respect to ⇡ is

rdisc⇡.G/ D sup
n;r2ZC

max
�

ˇ̌̌̌
ˇ E
:::;X

i;j

;:::

"
�.: : : ; Xi;j ; : : :/

nY
iD1

G.Xi;1/

#ˇ̌̌̌
ˇ
1=n

;

where the maximum is over k-dimensional cylinder intersections � on X nr D X nr
1 ⇥

X nr
2 ⇥ � � � ⇥X nr

k
; and the arguments Xi;j .i D 1; 2; : : : ; n; j D 1; 2; : : : ; r/ are chosen

independently according to ⇡ conditioned on G.Xi;1/ D G.Xi;2/ D � � � D G.Xi;r / for
each i .

We focus on probability distributions ⇡ that are balanced on the domain of G; meaning
that negative and positive instances carry equal weight: ⇡.G�1.�1// D ⇡.G�1.C1//:We
define

rdisc.G/ D inf
⇡

rdisc⇡.G/;

where the infimum is over all probability distributions on the domain of G that are bal-
anced. Our motivation for studying repeated discrepancy comes from the approximation
theoretic contribution of this paper, Theorem 3.12. Using it, we will now prove that re-
peated discrepancy gives a highly efficient way to approximate multiparty protocols by
polynomials.

THEOREM 4.2. Let G be a (possibly partial) k-party communication problem on X D
X1 ⇥X2 ⇥ � � � ⇥Xk . For an integer n > 1 and a balanced probability distribution ⇡ on
domG; consider the linear operator L⇡;nWRX n ! Rf0;1gn given by

.L⇡;n�/.x/ D E
X
1

⇠⇡
x

1

� � � E
X
n

⇠⇡
x

n

�.X1; : : : ; Xn/; x 2 f0; 1gn;

where ⇡0 and ⇡1 are the probability distributions induced by ⇡ onG�1.C1/ andG�1.�1/;
respectively. Then for some absolute constant c > 0 and every k-dimensional cylinder in-
tersection � on X n DX n

1 ⇥X n
2 ⇥ � � � ⇥X n

k
;

E.L⇡;n�; d � 1/ 6 .c rdisc⇡.G//d ; d D 1; 2; : : : ; n:
Proof. Put�d D max��.L⇡;n�; d /; where the maximum is over k-dimensional cylinder
intersections. In light of (3.24), it suffices to prove that

�d 6 .2 rdisc⇡.G//d ; d D 1; 2; : : : ; n: (4.1)

Fix w 2 f0; 1gn and pairwise disjoint sets S1; S2; : : : ; Sd ✓ f1; 2; : : : ; ng such that

�d D max
�

ˇ̌̌̌
ˇ @d .L⇡;n�/

@S1 @S2 � � � @Sd .w/
ˇ̌̌̌
ˇ ; (4.2)
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where the maximum is over k-dimensional cylinder intersections. Then by the definition
of directional derivative,

�d D max
�

ˇ̌̌̌
E

´2f0;1gd
E

X
1

;X
2

;:::;X
n

�.X1; X2; : : : ; Xn/ .�1/j´j
ˇ̌̌̌
; (4.3)

where

Xi ⇠

˚
⇡w

i

˚´
1

if i 2 S1;
⇡w

i

˚´
2

if i 2 S2;
:::

:::
⇡w

i

˚´
d

if i 2 Sd ;
⇡w

i

otherwise.

In other words, the cylinder intersection � receives zero or more arguments distributed in-
dependently according to ⇡´

1

; zero or more arguments distributed independently according
to ⇡´

1

; zero or more arguments distributed independently according to ⇡´
2

; and so on, for
a total of n arguments. To simplify the remainder of the proof, we will manipulate the
input to � as follows.

(i) We will discard any argumentsXi whose probability distribution does not depend
on ´, simply by fixing them so as to maximize the expectation in (4.3) with respect
to the remaining arguments. This simplification is legal because after one or more
arguments Xi are fixed, � continues to be a cylinder intersection with respect to
the remaining arguments.

(ii) We will provide the cylinder intersection with additional arguments drawn inde-
pendently from each of the probability distributions ⇡´

1

;⇡´
1

; : : : ;⇡´
d

;⇡´
d

, so
that there are exactly n arguments per distribution. This simplification is legal
because the cylinder intersection can always choose to ignore the newly provided
arguments.

Applying these two simplifications, we arrive at

�d 6 max
�

ˇ̌̌̌
ˇ̌̌ E
´2f0;1gd

E
X
1;1

;:::;X
1;n

⇠⇡
´

1

Y
1;1

;:::;Y
1;n

⇠⇡
´

1

� � � E
X
d;1

;:::;X
d;n

⇠⇡
´

d

Y
d;1

;:::;Y
d;n

⇠⇡
´

d

�.: : : ; Xi;1; : : : ; Xi;n; Yi;1; : : : ; Yi;n; : : : / .�1/j´j
ˇ̌̌̌
ˇ̌̌ : (4.4)
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It remains to eliminate ⇡´
1

; : : : ;⇡´
d

: Rewriting (4.4) in tensor notation,

�d 6 2�d max
�

ˇ̌̌̌
ˇ̌ X
´2f0;1gd

.�1/j´j
*
�;

dO
iD1

.⇡˝n´
i

˝ ⇡˝n´
i

/

+ˇ̌̌̌
ˇ̌

D 2�d max
�

ˇ̌̌̌
ˇ
*
�;

dO
iD1

.⇡˝n0 ˝ ⇡˝n1 � ⇡˝n1 ˝ ⇡˝n0 /

+ˇ̌̌̌
ˇ

D 2�d max
�

ˇ̌̌̌
ˇ
*
�;

dO
iD1

.⇡˝n0 ˝ ⇡˝n0 � ⇡˝n1 ˝ ⇡˝n0

� ⇡˝n0 ˝ ⇡˝n0 C ⇡˝n0 ˝ ⇡˝n1 /

+ˇ̌̌̌
ˇ

D 2�d max
�

ˇ̌̌̌
ˇ̌ X
y2f0;1gd

.�1/jyj
X

´2f0;1gd
.�1/j´j

*
�;

dO
iD1

.⇡˝n´
i

^y
i

˝ ⇡˝n´
i

^y
i

/

+ˇ̌̌̌
ˇ̌

6 max
y2f0;1gd

max
�

ˇ̌̌̌
ˇ̌ X
´2f0;1gd

.�1/j´j
*
�;

dO
iD1

.⇡˝n´
i

^y
i

˝ ⇡˝n´
i

^y
i

/

+ˇ̌̌̌
ˇ̌ : (4.5)

For every y 2 f0; 1gd ; the probability distribution
Nd
iD1.⇡

˝n
´
i

^y
i

˝ ⇡˝n´
i

^y
i

/ is the same as
.⇡˝n´

1

˝ � � � ˝ ⇡˝n´
d

/ ˝ .⇡˝n0 ˝ � � � ˝ ⇡˝n0 /, up to a permutation of the coordinates. The
inner maximum in (4.5) is therefore the same for all y; namely,

2d max
�

ˇ̌̌̌
ˇ E
´2f0;1gd

E
X
1;1

;:::;X
1;n

⇠⇡
´

1

� � � E
X
d;1

;:::;X
d;n

⇠⇡
´

d

E
Y
1;1

;:::;Y
d;n

⇠⇡
0

�.: : : ; Xi;j ; Yi;j ; : : : / .�1/j´j
ˇ̌̌̌
:

The variables Yi;j can be discarded, as argued in (i) at the beginning of this proof. This
leaves us with

�d 6 2d max
�

ˇ̌̌̌
ˇ E
´2f0;1gd

E
X
1;1

;:::;X
1;n

⇠⇡
´

1

� � � E
X
d;1

;:::;X
d;n

⇠⇡
´

d

�.: : : ; Xi;j ; : : : /

dY
iD1

G.Xi;1/

ˇ̌̌̌
ˇ :

Since ⇡ is balanced, (4.1) follows immediately.

Theorem 1.1 gives a highly efficient way to transform communication protocols for
composed problems f ıG into approximating polynomials for f; as long as the base com-
munication problem G has repeated discrepancy smaller than a certain absolute constant.
This result is centrally relevant to the set disjointness problem in light of its composed
structure: DISJk;rs D ANDr ı DISJk;s for any integers r; s: In the remainder of this sec-
tion, we will obtain a near-tight upper bound on the repeated discrepancy of set disjoint-
ness, which we will later use to prove the main result of this paper.
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4.1. Key distributions and definitions. Let Tk be the k ⇥ 2k�1 matrix whose columns
are the 2k�1 distinct columns of the same parity as the all-ones vector 1k : Let Fk be
the k ⇥ 2k�1 matrix whose columns are the 2k�1 distinct columns of the same parity
as the vector 01k�1: Thus, the columns of Tk and Fk form a partition of f0; 1gk : We
use Tk and Fk to encode true and false instances of set disjointness, respectively, hence
the choice of notation. Let Hk be the k ⇥ 2k matrix whose columns are the 2k distinct
vectors in f0; 1gk ; and let H 0

k
be the k ⇥ .2k � 1/ matrix whose columns are the 2k � 1

distinct vectors in f0; 1gk n f1kg. The choice of letter for Hk and H 0
k

is a reference to
the hypercube. For definitiveness one may assume that the columns of Tk ; Fk;Hk ;H 0k are
ordered lexicographically, although the choice of ordering is immaterial for our purposes.
For an integer m > 1; we define shorthands

Hk;m D
⇥
Hk Hk : : : Hkù

m

⇤
; H 0k;m D

⇥
H 0k H 0k : : : H 0kù

m

⇤
:

For a Boolean matrix A; we define

A D A˚

2666664
1 1 � � � 1
0 0 � � � 0
0 0 � � � 0
:::

:::
: : :

:::
0 0 : : : 0

3777775 :
When A is a Boolean matrix of dimension 1⇥ 1, this notation is consistent with our earlier
shorthand a D a˚ 1 for a 2 f0; 1g: Observe that for any matrices A;A1; A2; : : : ; An;

A D A; (4.6)⇥
A1 A2 � � � An

⇤ D ⇥A1 A2 � � � An
⇤
: (4.7)

Moreover,

Hk;m D˚ Hk;m; (4.8)

Tk D˚ Fk ; (4.9)

Fk D˚ Tk : (4.10)

In this section, we will encounter a variety of probability distributions on matrix se-
quences. Describing them formulaically, using probability mass functions, is both tedious
and unenlightening from the standpoint of proof. Instead, we will define each probability
distribution algorithmically, by giving a procedure for generating a random element. We
refer to such a specification as an algorithmic description of the given distribution. We will
often use the following shorthand: for fixed matrices A1; A2; : : : ; At ; the notation

.A˚
1 ; A

˚
2 ; : : : ; A

˚
t / (4.11)

stands for a random tuple of matrices obtained from .A1; A2; : : : ; At / by permuting the
columns in each of the t matrices independently and uniformly at random. In other words,
(4.11) refers to a random tuple .�1A1; �2A2; : : : ; �tAt /; where �1; �2; : : : ; �t are column
permutations chosen independently and uniformly at random. We will also use (4.11) to
refer to the resulting probability distribution on matrix tuples, which will enable us to use
shorthands like B ⇠ A˚ and .B1; B2; : : : ; Bt / ⇠ .A˚

1 ; A
˚
2 ; : : : ; A

˚
t /: As an important

special case, the ˚ notation applies to row vectors, which are matrices with a single row.
On occasion, it will be necessary to apply the ˚ notation to a submatrix rather than the
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Algorithm 1: Alternate algorithmic description of �k;m for k > 2

(i) Choose f 2 f0; 1g uniformly at random.
(ii) Choose 2k row vectors a0k�1 ; b0k�1 ; : : : ; a1k�1 ; b1k�1 independently according

to

a1k�1 ⇠ Œ02m f ç˚;

a´ ⇠ Œ02m12m f ˚´1˚� � �˚´k�1ç˚; ´ ¤ 1k�1;
b´ ⇠ Œ0m1m f ˚´1˚� � �˚´k�1ç˚; ´ 2 f0; 1gk�1:

(iii) Define A´; B´ for ´ 2 f0; 1gk�1 by

A´ D

2666664
´1 ´1 � � � ´1
´2 ´2 � � � ´2
:::

:::
:::

´k�1 ´k�1 � � � ´k�1
a´

3777775 ; B´ D

2666664
´1 ´1 � � � ´1
´2 ´2 � � � ´2
:::

:::
:::

´k�1 ´k�1 � � � ´k�1
b´

3777775 :
(iv) Output .ŒA0k�1 � � � A1k�1 ç˚; ŒB0k�1 � � � B1k�1 ç˚/:

entire matrix. For example, Œ Œ0m1mç˚ 0 0 1ç refers to a random row vector whose
last three components are 0; 0; 1 and the first 2m components are a uniformly random
permutation of the row vector 0m1m:

We say that a probability distribution � on matrix sequences .A1; A2; : : : ; At / is in-
variant under column permutations if �.A1; A2; : : : ; At / D �.�1A1; �2A2; : : : ; �tAt /
for every choice of column permutations �1; �2; : : : ; �t : Most of the randomized proce-
dures in this section involve choosing .A1; A2; : : : ; At / by some process and outputting
.A˚
1 ; A

˚
2 ; : : : ; A

˚
t /; so that the resulting probability distribution on matrix sequences is

invariant under column permutations.
We now define the main probability distribution of interest to us, which we call �k;m:

Nearly all of the work in this section is devoted to understanding various metric properties
of �k;m and of probability distributions derived from it.

DEFINITION. For positive integers k;m, let �k;m be the probability distribution whose
algorithmic description is as follows: choose M 2 fTk ; Fkg uniformly at random and
output .ŒM H 0

k;2m
ç˚; ŒM Hk;mç

˚/:

We will need to establish an alternate procedure for sampling from �k;m, whereby one
first chooses rows 1; 2; : : : ; k � 1 and then the remaining row according to the conditional
probability distribution. Such a procedure is given by Algorithm 1.

PROPOSITION 4.3. Algorithm 1 is a valid algorithmic description of �k;m for k > 2.

Proof. By inspection, the output distribution of Algorithm 1 has the following properties:
(i) it is invariant under column permutations; (ii) with probability 1=2, the output is a
matrix pair .A;B/ with A D˚ ŒTk H 0

k;2m
ç and B D˚ ŒTk Hk;mçI (iii) with probability

1=2; the output is a matrix pair .A;B/ with A D˚ ŒFk H 0
k;2m

ç and B D˚ ŒFk Hk;mç:

There is only one probability distribution with these three properties, namely, �k;m:
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Algorithm 2: Alternate algorithmic description of �k;m
(i) Choose f; f 0 2 f0; 1g uniformly at random.

(ii) Choose 2kC1 row vectors a´; a0´; b´; b0´, for ´ 2 f0; 1gk�1; independently accord-
ing to

a1k�1 ⇠ Œ02m f ç˚;

a0
1k�1 ⇠ Œ02m f 0ç˚;

a´ ⇠ Œ02m12m f ˚´1˚� � �˚´k�1ç˚; ´ ¤ 1k�1;
a0´ ⇠ Œ02m12m f 0˚´1˚� � �˚´k�1ç˚; ´ ¤ 1k�1;
b´ ⇠ Œ0m1m f ˚´1˚� � �˚´k�1ç˚; ´ 2 f0; 1gk�1;
b0´ ⇠ Œ0m1m f 0˚´1˚� � �˚´k�1ç˚; ´ 2 f0; 1gk�1:

(iii) Define A´; B´ for ´ 2 f0; 1gk�1 by

A´D

266666664

´1 ´1 � � � ´1
´2 ´2 � � � ´2
:::

:::
:::

´k�1 ´k�1 � � � ´k�1
a´
a0´

377777775 ; B´D
266666664

´1 ´1 � � � ´1
´2 ´2 � � � ´2
:::

:::
:::

´k�1 ´k�1 � � � ´k�1
b´
b0´

377777775 : (4.12)

(iv) Output .ŒA0k�1 � � � A1k�1 ç˚; ŒB0k�1 � � � B1k�1 ç˚/:

We now define a key probability distribution �k;m derived from �k;m:

DEFINITION. For integers k > 2 andm > 1; define �k;m to be the probability distribution
with the following algorithmic description:

(i) pick a matrix pair .A;B/ 2 f0; 1gk�1;⇤ ⇥ f0; 1gk�1;⇤ according to the marginal
distribution of �k;m on the first k � 1 rows;

(ii) consider the probability distribution induced by �k;m on matrix pairs of the form⇣h
A

⇤
i
;
h
B

⇤
i⌘
; and choose

⇣h
A

a

i
;
h
B

b

i⌘
;
⇣h
A

a

0
i
;
h
B

b

0
i⌘

independently according to
that distribution;

(iii) output
✓

A

a

a

0

�
;


B

b

b

0

�◆
:

By symmetry of the columns, �k;m is invariant under column permutations. To reason
effectively about �k;m, we need a more explicit algorithmic description.

PROPOSITION 4.4. Algorithm 2 is a valid algorithmic description of �k;m.

Proof. Immediate from the description of �k;m given by Algorithm 1.

In analyzing the repeated discrepancy of set disjointness, we will need to argue that the
last two rows of a matrix pair drawn according to �k;m do not reveal too much information
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Algorithm 3: Definition of ⌫i
k;m

.i D 0; 1/
(i) Choose f; f 0 2 f0; 1g uniformly at random.

(ii) Choose 2kC1 row vectors a´; a0´; b´; b0´, for ´ 2 f0; 1gk�1; independently accord-
ing to

a1k�1 D Œ02m�1 f 0ç;

a0
1k�1 D Œ02m�1 0 f 0ç;

a´ ⇠ Œ Œ02m�112m�1ç˚ 1 f ˚´1˚� � �˚´k�1 0ç; ´ ¤ 1k�1;
a0´ ⇠ Œ Œ02m�112m�1ç˚ 1 0 f 0˚´1˚� � �˚´k�1ç; ´ ¤ 1k�1;
b´ ⇠ Œ Œ0m�11m�1ç˚ i f ˚´1˚� � �˚´k�1 i ç; ´ 2 f0; 1gk�1;
b0´ ⇠ Œ Œ0m�11m�1ç˚ i i f 0˚´1˚� � �˚´k�1ç; ´ 2 f0; 1gk�1:

(iii) Define A´; B´ for ´ 2 f0; 1gk�1 by (4.12).
(iv) Output .ŒA0k�1 � � � A1k�1 ç˚; ŒB0k�1 � � � B1k�1 ç˚/:

about the remaining rows. We will do so by showing that �k;m is close in statistical distance
to certain probability distributions ⌫0

k;m
; ⌫1
k;m

in which no information is revealed.

DEFINITION. For integers k > 2 and m > 1; define ⌫0
k;m

and ⌫1
k;m

to be the probability
distributions whose algorithmic descriptions are given by Algorithm 3.

Comparing Algorithms 2 and 3, we see that the new distributions ⌫0
k;m

and ⌫1
k;m

differ
from �k;m exclusively in step (ii) of the algorithmic description. An alternate, global view
of ⌫0

k;m
and ⌫1

k;m
is given by the following proposition.

PROPOSITION 4.5. Algorithm 4 is a valid algorithmic description of ⌫0
k;m

and ⌫1
k;m
:

Proof. Algorithm 4 is obtained from Algorithm 3 by reordering the columns prior to the
application of the ˚ operator. Specifically, in the notation of Algorithm 3, the last two
columns of A1k�1 and the last three columns of each A´ .´ ¤ 1k�1/ are moved up front
and listed before any of the remaining columns; likewise, the last three columns of each
B´ .´ 2 f0; 1gk�1/ are moved up front and listed before any of the remaining columns.
The subsequent application of the ˚ operator in both algorithms ensures that the output
distributions are the same.

Closely related to ⌫0
k;m

and ⌫1
k;m

are the distributions ⌫0
k;P

1

;:::;P
8

and ⌫1
k;P

1

;:::;P
8

, defined
next.

DEFINITION 4.6. Let P1; : : : ; P8 2 f0; 1gk�1;⇤: The probability distribution ⌫0
k;P

1

;:::;P
8

on matrix pairs is given by choosing M1;M2 2 fTk�1; Fk�1g uniformly at random and
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Algorithm 4: Alternate algorithmic description of ⌫i
k;m

.i D 0; 1/
(i) Choose 2kC1 row vectors a´; a0´; b´; b0´, for ´ 2 f0; 1gk�1; independently accord-

ing to

a1k�1 D a0
1k�1 D 02m�1;

a´; a
0
´ ⇠ Œ02m�112m�1ç˚; ´ ¤ 1k�1;

b´; b
0
´ ⇠ Œ0m�11m�1ç˚; ´ 2 f0; 1gk�1:

(ii) Define A´; B´ for ´ 2 f0; 1gk�1 by (4.12).
(iii) Choose M1;M2 2 fTk�1; Fk�1g uniformly at random and output the matrix pair24 H 0

k�1 M1 M1 M2 M2

11 : : : 1 11 : : : 1 00 : : : 0 00 : : : 0 00 : : : 0
11 : : : 1 00 : : : 0 00 : : : 0 11 : : : 1 00 : : : 0

A0k�1 � � � A1k�1

35˚

;

264 Hk�1 M1 M1 M2 M2

i i : : : i 11 : : : 1 00 : : : 0 i i : : : i i i : : : i

i i : : : i i i : : : i i i : : : i 11 : : : 1 00 : : : 0

B0k�1 � � � B1k�1

375
˚

:

outputting the pair24 M1 P1 M2 P2 M1 M2 P3 P4
111 : : : 1 000 : : : 0 00000000 : : : 0 11 : : : 1
000 : : : 0 111 : : : 1 00000000 : : : 0 11 : : : 1

35˚

;

24 M1 P5 M2 P6 M1 M2 P7 P8
111 : : : 1 000 : : : 0 00000000 : : : 0 11 : : : 1
000 : : : 0 111 : : : 1 00000000 : : : 0 11 : : : 1

35˚

: (4.13)

The probability distribution ⌫1
k;P

1

;:::;P
8

on matrix pairs is given by choosing M1;M2 2
fTk�1; Fk�1g uniformly at random and outputting the pair24 M1 P1 M2 P2 M1 M2 P3 P4

111 : : : 1 000 : : : 0 00000000 : : : 0 11 : : : 1
000 : : : 0 111 : : : 1 00000000 : : : 0 11 : : : 1

35˚

;

24 M2 P5 M1 P6 P7 M1 M2 P8
111 : : : 1 000 : : : 0 00 : : : 0 11111111 : : : 1
000 : : : 0 111 : : : 1 00 : : : 0 11111111 : : : 1

35˚

:

It is not hard to see, as we will soon, that ⌫0
k;m

is a convex combination of probability
distributions ⌫0

k;P
1

;:::;P
8

; and analogously for ⌫1
k;m
: This will enable us to replace ⌫0

k;m
and

⌫1
k;m

in our arguments by particularly simple and highly structured distributions.

DEFINITION. A matrix pair .A;B/ is .k;m; ˛/-good if264 H 0
k�1;2m0 H 0

k�1;2m0 Hk�1;2m0

11 : : : 1 00 : : : 0 00 : : : 0
00 : : : 0 11 : : : 1 00 : : : 0

375 v A
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and HkC1;m0 v B; where m0 D d1�˛
2
� me: A matrix pair .A;B/ is .k;m; ˛/-bad if it is

not .k;m; ˛/-good.

It will be necessary to control the quantitative contribution of bad matrix pairs in the anal-
ysis of set disjointness. In the definition that follows, we give a special name to probability
distributions ⌫i

k;P
1

;:::;P
8

supported on good matrix pairs.

DEFINITION. Let G 0
k;m;˛

denote the set of all probability distributions ⌫0
k;P

1

;:::;P
8

that are
supported on .k;m; ˛/-good matrix pairs. (The letter G is a reference to good pairs.)
Analogously, let G 1

k;m;˛
denote the set of all probability distributions ⌫1

k;P
1

;:::;P
8

that are
supported on .k;m; ˛/-good matrix pairs.

The following proposition gives a convenient characterization of probability distribu-
tions in G 0

k;m;˛
and G 1

k;m;˛
:

PROPOSITION 4.7. Let k > 2 and m > 1 be integers, m0 D d1�˛
2
� me: Fix matrices

P1; : : : ; P8 2 f0; 1gk�1;⇤ and i 2 f0; 1g: Then ⌫i
k;P

1

;:::;P
8

2 G i
k;m;˛

if and only if the
following three conditions hold:

(i) H 0
k�1;2m0 v P1; P2;

(ii) Hk�1;2m0 v P3;
(iii) Hk�1;m0 v P5; P6; P7; P8:

Proof. Immediate from the definitions of ⌫i
k;P

1

;:::;P
8

and .k;m; ˛/-good matrix pairs.

4.2. Technical lemmas. We now establish key properties of the probability distributions
introduced so far. Our main result here, Theorem 4.12, will be an approximate represen-
tation of �k;m out of the convex hulls of G 0

k;m;˛
and G 1

k;m;˛
, with careful control of the

error term. We start with an auxiliary lemma which we will use to show the proximity of
�k;m; ⌫

0
k;m

, and ⌫1
k;m

in statistical distance.

LEMMA 4.8. For an integer m > 1; consider the probability distributions ˛m;1; ˛m;2; ˇm
on f1; 2; : : : ; mC 2g given by

˛m;j .i/ D
 
m

i � j

!2 
2m

m

!�1
; j D 1; 2;

ˇm.i/ D
 
mC 2
i

! 
mC 1
i � 1

! 
2mC 3
mC 1

!�1
:

Then there is an absolute constant c > 0 such that

H.˛m;j ; ˇm/ 6 cp
m
; j D 1; 2:

That the functions ˛m;1; ˛m;2; ˇm are probability distributions follows from Vandermonde’s
convolution, (2.1).
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Proof of Lemma 4.8. For j D 1; 2; elementary arithmetic gives

1� c
m
� cji �

m
2
j

m
6 ˛m;j .i/

ˇm.i/
6 1C c

m
C cji �

m
2
j

m
.i D 1; 2; : : : ; mC2/

for some absolute constant c > 0, so that j1 �p˛m;j .i/=ˇm.i/j 6 c
m
.1C ji � m

2
j/. As a

result,

2H.˛m;j ; ˇm/
2 D E

i⇠ˇ
m

24 1 �s˛m;j .i/

ˇm.i/

!235
6 c2

m2

⇢
1C 2 E

ˇ
m

ˇ̌̌
i � m

2

ˇ̌̌
C E
ˇ
m

⇣
i � m

2

⌘2��
6 c2

m2

(
1C 2

s
E
ˇ
m

⇣
i � m

2

⌘2�C E
ˇ
m

⇣
i � m

2

⌘2�)
; (4.14)

where we used the fact that EX 6
p

EŒX2ç for a real random variable X: Furthermore,

E
ˇ
m

Œi ç D
 
2mC 3
mC 1

!�1 mC2X
iD1

i

 
mC 2
i

! 
mC 1
i � 1

!

D
 
2mC 3
mC 1

!�1
.mC 2/

mC2X
iD1

 
mC 1
i � 1

!2

D
 
2mC 3
mC 1

!�1
.mC 2/

 
2mC 2
mC 1

!
D .mC 2/2

2mC 3
and

E
ˇ
m

Œi.i � 1/ç D
 
2mC 3
mC 1

!�1 mC2X
iD1

i.i � 1/
 
mC 2
i

! 
mC 1
i � 1

!

D
 
2mC 3
mC 1

!�1
.mC 1/.mC 2/

mC2X
iD2

 
m

i � 2

! 
mC 1
i � 1

!

D
 
2mC 3
mC 1

!�1
.mC 1/.mC 2/

mX
iD0

 
m

i

! 
mC 1
m � i

!

D
 
2mC 3
mC 1

!�1
.mC 1/.mC 2/

 
2mC 1
m

!
D .mC 1/.mC 2/2

2.2mC 3/ ;

whence

E
ˇ
m

⇣
i � m

2

⌘2� D m2

4
� .m � 1/ E

ˇ
m

Œi çC E
ˇ
m

Œi.i � 1/ç D O.m/:

In view of (4.14), the proof is complete.
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A fairly direct consequence of the previous lemma is that the probability distributions
�k;m; ⌫

0
k;m

, and ⌫1
k;m

are within O.2k=
p
m/ of each other in statistical distance. In what

follows, we prove a superior upper bound of O.
p
2k=m/; which is tight. The analysis

exploits the multiplicative property of Hellinger distance.

LEMMA 4.9. There is a constant c > 0 such that for all integers k > 2 and m > 1;

k�k;m � ⌫ik;mk1 6

s
c2k

m
; i D 0; 1:

Proof. Throughout the proof, the term “algorithmic description” will refer to Algorithm 2
in the case of �k;m and Algorithm 3 in the case of ⌫0

k;m
and ⌫1

k;m
: As we have noted earlier,

the algorithmic descriptions of these three distributions are identical except for step (ii). In
particular, observe that

�k;m D 1

4

X
f;f 02f0;1g

�
f;f 0
k;m

;

⌫ik;m D
1

4

X
f;f 02f0;1g

⌫
i;f;f 0
k;m

; i D 0; 1;

where �f;f
0

k;m
; ⌫
0;f;f 0
k;m

; ⌫
1;f;f 0
k;m

are the distributions that result from �k;m; ⌫
0
k;m
; ⌫1
k;m

, respec-
tively, when one conditions on the choice of f; f 0 in step (i) of the algorithmic description.
Therefore,

k�k;m � ⌫ik;mk1 6 max
f;f 0

����f;f 0
k;m
� ⌫i;f;f 0

k;m

���
1

6 2
p
2max
f;f 0

H
⇣
�
f;f 0
k;m

; ⌫
i;f;f 0
k;m

⌘
; i D 0; 1; (4.15)

where the second step uses Fact 2.1.
In the remainder of the proof, we consider f; f 0 fixed. Define the column histogram

of a matrix X 2 f0; 1gkC1;⇤ to be the vector of 2kC1 natural numbers indicating how
many times each string in f0; 1gkC1 occurs as a column of X: If D1 and D2 are two
probability distributions on f0; 1gkC1;⇤ that are invariant under column permutations, then
the Hellinger distance between D1 and D2 is obviously the same as the Hellinger distance
between the column histograms of matrices drawn from D1 versus D2: An analogous
statement holds for probability distributions D1;D2 on matrix pairs. As a result, we need
only consider the column histograms of matrix pairs drawn from �

f;f 0
k;m

; ⌫
0;f;f 0
k;m

; ⌫
1;f;f 0
k;m

.
Furthermore, for every matrix pair

.A;B/ 2 supp�f;f
0

k;m
Y supp ⌫0;f;f

0
k;m

Y supp ⌫1;f;f
0

k;m
;

the column histograms of A and B are uniquely determined by the number of occurrences
of 266666664

´1
´2
:::

´k�1
f ˚ ´1 ˚ ´2 ˚ � � �˚ ´k�1
f 0 ˚ ´1 ˚ ´2 ˚ � � �˚ ´k�1

377777775 (4.16)
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as a column ofA and B; respectively, for each ´ 2 f0; 1gk�1: Thus, we need 2k�1 numbers
per matrix, rather than 2kC1, to describe the column histograms of A and B:

With this in mind, for .A;B/ ⇠ �f;f 0
k;m

, define a�;´ and b�;´ (where ´ 2 f0; 1gk�1) to be
the number of occurrences of (4.16) as a column in A and B , respectively. Analogously,
for .A;B/ ⇠ ⌫

i;f;f 0
k;m

; define a⌫i ;´ and b⌫i ;´ .´ 2 f0; 1gk�1/ to be the number of occur-
rences of (4.16) as a column in A and B , respectively. By the preceding discussion, the
Hellinger distance between �f;f

0
k;m

and ⌫i;f;f
0

k;m
is the same as the Hellinger distance between

.: : : ; a�;´; b�;´; : : : / and .: : : ; a⌫i ;´; b⌫i ;´; : : : /, viewed as random variables in N2k : By
step (ii) of the algorithmic description, the random variables

a�;0k�1 ; b�;0k�1 ; : : : ; a�;1k�1 ; b�;1k�1

are independent. Similarly, for each i D 0; 1; the random variables

a⌫i ;0k�1 ; b⌫i ;0k�1 ; : : : ; a⌫i ;1k�1 ; b⌫i ;1k�1

are independent. Therefore,

H
⇣
�
f;f 0
k;m

; ⌫
i;f;f 0
k;m

⌘
D H..: : : ; a�;´; b�;´; : : : /; .: : : ; a⌫i ;´; b⌫i ;´; : : : //

6

p X
´2f0;1gk�1

H.a�;´; a⌫i ;´/
2 C

X
´2f0;1gk�1

H.b�;´; b⌫i ;´/
2; (4.17)

where the second step uses Fact 2.1. The probability distributions of these random vari-
ables are easily calculated from step (ii) of the algorithmic description. From first princi-
ples,

H.a�;1k�1 ; a⌫i ;1k�1/ 6

p
1

2

 
1 �

r
1 � 1

2mC 1

!2
C 1

2

 
0 �

r
1

2mC 1

!2
D O

✓
1p
m

◆
: (4.18)

In the notation of Lemma 4.8, the remaining variables are governed by
a�;´ ⇠ ˇ2m�1;
a⌫i ;´ ⇠ ˛2m�1;1 or a⌫i ;´ ⇠ ˛2m�1;2

�
´ ¤ 1k�1;

b�;´ ⇠ ˇm�1;
b⌫i ;´ ⇠ ˛m�1;1 or b⌫i ;´ ⇠ ˛m�1;2

)
´ 2 f0; 1gk�1;

where the precise distribution of a⌫i ;´ and b⌫i ;´ depends on f; f 0: By Lemma 4.8,

H.a�;´; a⌫i ;´/ 6 c0p
m
; ´ ¤ 1k�1; (4.19)

H.b�;´; b⌫i ;´/ 6 c0p
m
; ´ 2 f0; 1gk�1; (4.20)

for an absolute constant c0 > 0. By (4.15) and (4.17)–(4.20), the proof is complete.

Our next result shows that �k;m is supported almost entirely on good matrix pairs.

LEMMA 4.10. For 0 < ˛ < 1; the probability distribution �k;m places at most 2�c˛2mCk
probability mass on .k;m; ˛/-bad matrix pairs, where c > 0 is an absolute constant.
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Proof. Define m0 D d.1 � ˛/m=2e: Throughout the proof, we will refer to the description
of �k;m given by Algorithm 2. We may assume that m > 2; in which case 2m � 1 > 2m0

and the matrix A1k�1 in the algorithm is guaranteed to have at least 2m0 occurrences of the
column 266666664

1
1
:::
1
0
0

377777775 : (4.21)

As a result, the output of the algorithm is .k;m; ˛/-good provided that the four vectors266666664

´1
´2
:::

´k�1
0
0

377777775 ;
266666664

´1
´2
:::

´k�1
0
1

377777775 ;
266666664

´1
´2
:::

´k�1
1
0

377777775 ;
266666664

´1
´2
:::

´k�1
1
1

377777775 (4.22)

each occur at least 2m0 times as a column of A´ (for ´ 2 f0; 1gk�1; ´ ¤ 1k�1/ and at least
m0 times as a column of B´ (for ´ 2 f0; 1gk�1/: Let EA

´

and EB
´

be the events that A´
and B´, respectively, enjoy this property. Then

PŒ:EA
´

ç 6
 
4mC 1
2m

!�1 (2m0�1X
iD0

 
2m

i

! 
2mC 1
i C 1

!

C
2mX

iD2m�2m0C1

 
2m

i

! 
2mC 1
i C 1

!)

6
 
4mC 1
2m

!�1 
2mC 1
m

!˚
2m0�1X
iD0

 
2m

i

!
C

2mX
iD2m�2m0C1

 
2m

i

! 
6 2�˝.˛

2m/;

where the final step uses Stirling’s approximation and the Chernoff bound. Similarly,

PŒ:EB
´

ç D
 
2mC 1
m

!�1˚m0�1X
iD0

 
m

i

! 
mC 1
i C 1

!
C

mX
iDm�m0C1

 
m

i

! 
mC 1
i C 1

! 
6 2�˝.˛

2m/:

Applying a union bound over all ´; we find that a .k;m; ˛/-bad matrix pair is generated
with probability no greater than 2�c˛2mCk for some constant c > 0:

We now prove an analogous result for the probability distributions ⌫0
k;m

and ⌫1
k;m

, show-
ing along the way that ⌫i

k;m
can be accurately approximated by a convex combination of

probability distributions in G i
k;m;˛

:
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LEMMA 4.11. For 0 < ˛ < 1 and any integers k > 2 and m > 1; one has

⌫ik;m D ⌫i;good
k;m

C ⌫i;bad
k;m

.i D 0; 1/; (4.23)

where:

(i) ⌫i;good
k;m

is a conical combination of probability distributions ⌫i
k;P

1

;:::;P
8

2 G i
k;m;˛

such that P1; P2; P4 do not contain an all-ones column,

(ii) k⌫i;good
k;m
k1 6 1;

(iii) k⌫i;bad
k;m
k1 6 2�c˛

2mCk for an absolute constant c > 0.

Proof. Fix i 2 f0; 1g for the remainder of the proof and consider the description of ⌫i
k;m

given by Algorithm 4. Conditioned on the choice of matrices A´; B´ in steps (i)–(ii) of the
algorithm, the output is distributed according to ⌫i

k;P
1

;:::;P
8

for some P1; : : : ; P8 such that
P1; P2; P4 do not contain an all-ones column. This gives the representation (4.23), where
⌫
i;good
k;m

and ⌫i;bad
k;m

are conical combinations of probability distributions ⌫i
k;P

1

;:::;P
8

2 G i
k;m;˛

and ⌫i
k;P

1

;:::;P
8

… G i
k;m;˛

, respectively, for which P1; P2; P4 do not contain an all-ones
column.

It remains to prove (iii). Define m0 D d.1 � ˛/m=2e: We may assume that m > 2;
in which case 2m � 1 > 2m0 and the vector (4.21) is guaranteed to occur at least 2m0
times as a column of A1k�1 in Algorithm 4. We infer that, conditioned on steps (i)–(ii) of
the algorithm, the output is .k;m; ˛/-good whenever the four vectors (4.22) each occur at
least 2m0 times as a column of A´ (for ´ 2 f0; 1gk�1; ´ ¤ 1k�1/ and at least m0 times
as a column of B´ (for ´ 2 f0; 1gk�1/: The 2k � 1 matrices A´; B´ simultaneously enjoy
this property with probability at least 1 � 2�c˛2mCk for an absolute constant c > 0; by a
calculation analogous to that in Lemma 4.10. It follows that

k⌫i;bad
k;m
k1 D 1 � k⌫i;good

k;m
k1 6 2�c˛

2mCk :

We have reached the main result of this subsection, which states that �k;m can be ac-
curately approximated by a convex combination of probability distributions in G 0

k;m;˛
or

G 1
k;m;˛

; with the statistical distance supported almost entirely on good matrix pairs.

THEOREM 4.12. Let c > 0 be a sufficiently small absolute constant. For every ˛ 2 .0; 1/;
the probability distribution �k;m can be expressed as

�k;m D �i1 C �i2 C �i3 .i D 0; 1/; (4.24)

where:

(i) �i1 is a conical combination of probability distributions ⌫i
k;P

1

;:::;P
8

2 G i
k;m;˛

such
that P1; P2; P4 do not contain an all-ones column, and moreover k�i1k1 6 1I

(ii) �i2 is a real function such that k�i2k1 6
p
2k=.cm/C2�c˛2mCk ; with support on

.k;m; ˛/-good matrix pairsI
(iii) �i3 is a real function with k�i3k1 6 2�c˛

2mCk :

Proof. Decompose

⌫ik;m D ⌫i;good
k;m

C ⌫i;bad
k;m
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as in Lemma 4.11, so that

k⌫i;bad
k;m
k1 6 2�c

0˛2mCk (4.25)

for some absolute constant c0 > 0: Analogously, write

�k;m D �good
k;m
C �bad

k;m;

where �good
k;m

and �bad
k;m

are nonnegative functions supported on .k;m; ˛/-good and .k;m; ˛/-
bad matrix pairs, respectively. Then

k�bad
k;mk1 6 2�c

0˛2mCk (4.26)

by Lemma 4.10. Letting

�i1 D ⌫i;good
k;m

;

�i2 D �good
k;m
� ⌫i;good

k;m
;

�i3 D �bad
k;m;

we immediately have (4.24). Furthermore,

k�i2k1 D k.�k;m � �bad
k;m/ � .⌫ik;m � ⌫i;bad

k;m
/k1

6 k�k;m � ⌫ik;mk1 C k�bad
k;mk1 C k⌫i;bad

k;m
k1

6

s
2k

c00m
C 2 � 2�c0˛2mCk (4.27)

for an absolute constant c00 > 0, where the final step uses (4.25), (4.26), and Lemma 4.9.
Now items (i)–(iii) follow from Lemma 4.11(i)–(ii), (4.27), and (4.26), respectively, by
taking c D c.c0; c00/ > 0 small enough.

We close this subsection with a few basic observations regarding k-party protocols. On
several occasions in this manuscript, we will need to argue that a communication problem
does not become easier from the standpoint of communication complexity if we manipulate
the protocol’s input in a particular way. The input will always come in the form of a matrix
sequence .X1; X2; : : : ; Xn/, and manipulations that we will encounter include discarding
one or more of the arguments, reordering the arguments, applying a uniformly random
column permutation to one of the arguments, adding a fixed matrix to one of the arguments,
and so on. Rather than treat these instances individually as they arise, we find it more
economical to address them all at once.

DEFINITION 4.13. Let .X1; X2; : : : ; Xn/ be a random variable with range f0; 1gk⇥m1 ⇥
f0; 1gk⇥m2 ⇥ � � � ⇥ f0; 1gk⇥mn : The following random variables are said to be derivable
from .X1; X2; : : : ; Xn/ in one step without communication:

(i) .X2; : : : ; Xn/I
(ii) .X1; : : : ; Xn; X1/I

(iii) .X�.1/; : : : ; X�.n//; where � 2 Sn is a fixed permutation;
(iv) .�1X1; : : : ; �nXn/; where �1; : : : ; �n are fixed column permutations;
(v) .X1; : : : ; Xn; �X1/; where � is a uniformly random column permutation, inde-

pendent of any other variables;
(vi) .X1; : : : ; Xn; A/; where A is a fixed Boolean matrix;

(vii) .ŒX1 A1ç; : : : ; ŒXn Anç/; where A1; : : : ; An are fixed Boolean matrices;
(viii) .X1 ˚ A1; : : : ; Xn ˚ An/; where A1; : : : ; An are fixed Boolean matrices;
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(ix) .X1; : : : ; Xn; � ŒX1 Aç/; where A is a fixed Boolean matrix and � is a uniformly
random column permutation, independent of any other variables.

A random variable .Y1; : : : ; Yr / is said to be derivable from .X1; : : : ; Xn/ with no commu-
nication, denoted .X1; : : : ; Xn/› .Y1; : : : ; Yr /; if there exists a finite sequence of random
variables starting with .X1; : : : ; Xn/ and ending with .Y1; : : : ; Yr /; where every random
variable in the sequence is derivable in one step with no communication from the one
immediately preceding it.

If .Y1; : : : ; Yr / is a random variable derivable from .X1; : : : ; Xn/ with no communica-
tion, then the former is the result of deterministic or randomized processing of the latter. In
particular, .X1; : : : ; Xn/ and .Y1; : : : ; Yr / will in general be highly correlated. The follow-
ing proposition shows that there is no advantage to providing a communication protocol
with .Y1; : : : ; Yr / instead of .X1; : : : ; Xn/.

PROPOSITION 4.14. Consider random variables

X D .X1; : : : ; Xn/ 2 f0; 1gk⇥m1 ⇥ � � � ⇥ f0; 1gk⇥mn ;
X 0 D .X 01; : : : ; X 0n0/ 2 f0; 1gk⇥m0

1 ⇥ � � � ⇥ f0; 1gk⇥m0
n

0 ;

X 00 D .X 001 ; : : : ; X 00n00/ 2 f0; 1gk⇥m00
1 ⇥ � � � ⇥ f0; 1gk⇥m00

n

00 ;

where X ›X 0 ›X 00. Then for every real function f;

max
�

ˇ̌
E�.X 00/f .X/

ˇ̌
6 max

�

ˇ̌
E�.X 0/f .X/

ˇ̌
; (4.28)

where the maximum is over k-dimensional cylinder intersections �:

Proof. By induction, we may assume that X 00 is derivable from X 0 in one step with no
communication. In other words, it suffices to consider cases (i)–(ix) in Definition 4.13. In
what follows, we let � denote the right-hand side of (4.28).

Cases (i)–(iv) are trivial because as a function family, cylinder intersections are closed
under the operations of removing, duplicating, and reordering columns of the input matrix.
For (v), we have

max
�

ˇ̌̌̌
E
�

E
X;X 0 �.X

0
1; : : : ; X

0
n0 ; �X 01/f .X/

ˇ̌̌̌
6 E

�
max
�

ˇ̌̌̌
E

X;X 0 �.X
0
1; : : : ; X

0
n0 ; �X 01/f .X/

ˇ̌̌̌
:

The final expression is bounded by � , by a combination of (ii) followed by (iv). For (vi),

max
�

ˇ̌̌̌
E

X;X 0 �.X
0
1; : : : ; X

0
n0 ; A/f .X/

ˇ̌̌̌
6 max

�

ˇ̌̌̌
E

X;X 0 �.X
0
1; : : : ; X

0
n0/f .X/

ˇ̌̌̌
because with A fixed, � is a cylinder intersection with respect to the remaining arguments
X 01; : : : ; X

0
n0 : The proof for (vii) is analogous. Case (viii) is immediate because as a func-

tion family, cylinder intersections are closed under the operation of adding a fixed matrix
to the input matrix. Finally, (ix) is a combination of (ii), (vii), and (v), in that order.

4.3. Discrepancy analysis. Building on the work in the previous two subsections, we
will now prove the desired upper bound on the repeated discrepancy of set disjointness.
We start by defining the probability distribution with respect to which we will bound the
discrepancy.
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DEFINITION. For positive integers k;m; let ⇡k;m be the probability distribution whose
algorithmic description is as follows: choose M 2 fTk ; Fkg uniformly at random and
output ŒM H 0

k;m
ç˚:

In words, we are interested in the probability distribution whereby true and false instances
of set disjointness are generated by randomly permuting the columns of ŒFk H 0

k;m
ç and

ŒTk H 0
k;m
ç; respectively. For our purposes, a vital property of this probability distribution

is the equivalence of the following tasks from the standpoint of communication complexity:

(i) for X drawn according to ⇡k;m; determine DISJ.X/;
(ii) for X1; X2; : : : ; Xi ; : : : drawn independently according to ⇡k;m conditioned on

DISJ.X1/ D DISJ.X2/ D � � � D DISJ.Xi / D � � � ; determine DISJ.X1/:

Thus, it does not help to have access to additional instances of set disjointness with the
same truth status as the given instance. This is a very unusual property for a probability
distribution to have, and in particular the probability distribution used in the previous best
lower bound for set disjointness [48] fails badly in this regard.

This property of ⇡k;m comes at a cost: the columns of X ⇠ ⇡k;m are highly interde-
pendent, and the inductive analysis of the discrepancy is considerably more involved than
in [48]. As a matter of fact, ⇡k;m is not directly usable in an inductive argument because
it does not lead to a decomposition into subproblems with like distributions. (To be more
precise, forcing an inductive argument with ⇡k;m would result in a much weaker bound on
the repeated discrepancy of set disjointness than what we prove.) Instead, we will need
to analyze the discrepancy of set disjointness under a distribution more exotic than ⇡k;m,
which provides the communication protocol with additional information.

A description of this exotic distribution is as follows. We will analyze the XOR of
several independent instances of set disjointness, rather than a single instance. Fix a non-
negative integer d and subsets Z1; Z2; : : : ; Zn ✓ f0; 1gd : Given matrix pairs .At;´; Bt;´/,
where t D 1; 2; : : : ; n and ´ 2 Zt ; the symbol

enc.: : : ; At;´; Bt;´; : : : /

shall denote the following ordered list of matrices:

(i) the matrices At;´; listed in lexicographic order by .t; ´/;
(ii) the matrices ŒBt;´ Bt;´0 ç for all t and all ´; ´0 2 Zt such that j´˚´0j D 1; listed

in lexicographic order by .t; ´; ´0/;
(iii) the matrices ŒBt;´ Bt;´0 ç for all t and all ´; ´0 2 Zt such that j´˚´0j D 1; listed

in lexicographic order by .t; ´; ´0/.

The abbreviation enc stands for “encoding” and highlights the fact that the communication
protocol does not have direct access to the matrix pairs At;´; Bt;´. In particular, for d D 0
the matrices Bt;´ do not appear on the list enc.: : : ; At;´; Bt;´; : : : / at all. The symbol

� enc.: : : ; At;´; Bt;´; : : : / (4.29)

refers to the result of permuting the columns for each of the matrices in the ordered list
enc.: : : ; At;´; Bt;´; : : : / according to �; where � D .: : : ; �t;´; : : : ; �t;´;´0 ; : : : ; � 0t;´;´0 ; : : : /
is an ordered list of column permutations, one for each of the matrices on the matrix list.
In our analysis, � will always be chosen uniformly at random, so that (4.29) is simply
the result of permuting the columns for each of the matrices on the list independently and
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uniformly at random. With these notations in place, we define

� .k;m; d;Z1; : : : ; Zn/

D max
�

ˇ̌̌̌
ˇ̌ E
:::;.A

t;´

;B
t;´

/;:::
E
�
�.� enc.: : : ; At;´; Bt;´; : : : //

nY
tD1

Y
´2Z

t

DISJ.At;´/

ˇ̌̌̌
ˇ̌ ;

where: the maximum is over k-dimensional cylinder intersections �; the first expectation
is over the matrix pairs .At;´; Bt;´/ distributed independently according to �k;m; and the
second expectation is over column permutations chosen independently and uniformly at
random for each matrix on the list enc.: : : ; At;´; Bt;´; : : : /: This completes the description.
Note the conceptual duality: from the point of view of the communication protocol, its
input is an array of bits distributed according to some probability distribution, namely, the
one to which we referred as “exotic” above; from the point of view of analysis, the input is
an encoding of smaller and simpler objects, namely, the matrix pairs .At;´; Bt;´/:

For nonnegative integers `1; `2; : : : ; `n; we let

� .k;m; d; `1; : : : ; `n/ D max
jZ
1

jD`
1

� � � max
jZ
n

jD`
n

� .k;m; d;Z1; : : : ; Zn/;

where the maximum is over all possible subsets Z1; Z2; : : : ; Zn ✓ f0; 1gd of cardi-
nalities `1; `2; : : : ; `n; respectively. Observe that � .k;m; d; `1; : : : ; `n/ is only defined
for `1; : : : ; `n 2 f0; 1; 2; 3; : : : ; 2d g: The only setting of interest to us is d D 0 and
`1 D `2 D � � � D `n D 1; in which case enc.: : : ; At;´; Bt;´; : : : / D .: : : ; At;´; : : : /
and

� .k;m; 0;

n·
1; : : : ; 1/

D max
�

ˇ̌̌̌
ˇ E
X
1

;:::;X
n

⇠⇡
k;2m

�.X1; : : : ; Xn/

nY
iD1

DISJ.Xi /

ˇ̌̌̌
ˇ : (4.30)

However, the inductive analysis below requires consideration of � .k;m; d; `1; : : : ; `n/ for
all possible parameters. We start by deriving a recurrence relation for � .

LEMMA 4.15. Let c > 0 be the absolute constant from Theorem 4.12. Then for 0 < ˛ < 1
and k > 2; the quantity � .k;m; d; `1; : : : ; `n/2 does not exceed

`
1X

i
1

;j
1

D0
� � �

`
nX

i
n

;j
n

D0

(
nY
tD1

 
`t

it

! 
`t � it
jt

! s
2k

cm
C 2k

2c˛2m

!i
t

 
2k

2c˛2m

!j
t

)
⇥ max

`0
1

>2maxf0;`
1

�i
1

�.dC1/j
1

g
:::

`0
n

>2maxf0;`
n

�i
n

�.dC1/j
n

g

�

✓
k � 1;

⇠
.1 � ˛/m

2

⇡
; d C 1; `01; : : : ; `0n

◆
:

Moreover,

� .1;m; d; `1; : : : ; `n/ D
(
0 if `1 C � � �C `n > 0;
1 otherwise.
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Proof. The claim regarding � .1;m; d; `1; : : : ; `n/ is obvious because the probability dis-
tribution �k;m places equal weight on the positive and negative instances of set disjoint-
ness. In what follows, we prove the recurrence relation.

Abbreviate � D � .k;m; d; `1; : : : ; `n/: Let Z1; : : : ; Zn ✓ f0; 1gd be subsets of car-
dinalities `1; : : : ; `n, respectively, such that � .k;m; d;Z1; : : : ; Zn/ D �: Let � be a k-
dimensional cylinder intersection for which

� D

ˇ̌̌̌
ˇ̌̌ E
:::;


A

t;´

a

t;´

�
;


B

t;´

b

t;´

�
;:::

E
�

�

✓
� enc

✓
: : : ;


At;´
at;´

�
;


Bt;´
bt;´

�
; : : :

◆◆

⇥
nY
tD1

Y
´2Z

t

DISJ

At;´
at;´

�ˇ̌̌̌ˇ̌̌ ;
where the inner expectation is over the independent permutation of the columns for each
of the matrices on the encoded list, and the outer expectation is over matrix pairs✓

At;´
at;´

�
;


Bt;´
bt;´

�◆
; t D 1; 2; : : : ; n; ´ 2 Zt ;

each drawn independently according to �k;m (as usual, at;´ and bt;´ denote row vectors).
The starting point in the proof is a reduction to .k � 1/-dimensional cylinder intersections
using the Cauchy-Schwarz inequality, a technique due to Babai, Nisan, and Szegedy [7].
Rearranging,

� 6 E
�

E
:::;A

t;´

;B
t;´

;:::

ˇ̌̌̌
ˇ̌ E
:::;a

t;´

;b
t;´

;:::
�

✓
� enc

✓
: : : ;


At;´
at;´

�
;


Bt;´
bt;´

�
; : : :

◆◆

⇥
nY
tD1

Y
´2Z

t

DISJ

At;´
at;´

�ˇ̌̌̌ˇ̌ ; (4.31)

where the second expectation is over the marginal probability distribution on the pairs
.At;´; Bt;´/, and the third expectation is over the conditional probability distribution on the
pairs .at;´; bt;´/ for fixed .At;´; Bt;´/: Recall that � is the pointwise product of two func-
tions � D � ��0;where � depends only on the first k�1 rows and has range f0; 1g; and �0 is
a .k�1/-dimensional cylinder intersection with respect to the first k�1 rows for any fixed
value of the kth row. Since the innermost expectation in (4.31) is over .: : : ; at;´; bt;´; : : : /
for fixed .: : : ; At;´; Bt;´; : : : /; the function � can be taken outside the innermost expecta-
tion and absorbed into the absolute value operator:

� 6 E
�

E
:::;A

t;´

;B
t;´

;:::

ˇ̌̌̌
ˇ̌ E
:::;a

t;´

;b
t;´

;:::
�0
✓
� enc

✓
: : : ;


At;´
at;´

�
;


Bt;´
bt;´

�
; : : :

◆◆

⇥
nY
tD1

Y
´2Z

t

DISJ

At;´
at;´

�ˇ̌̌̌ˇ̌ :
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Squaring both sides and applying the Cauchy-Schwarz inequality,

� 2 6 E
�

E
:::;A

t;´

;B
t;´

;:::

"(
E

:::;a
t;´

;b
t;´

;:::
�0
✓
� enc

✓
: : : ;


At;´
at;´

�
;


Bt;´
bt;´

�
; : : :

◆◆
⇥

nY
tD1

Y
´2Z

t

DISJ

At;´
at;´

�)2 #
D E
:::;

"
A

t;´

a

t;´

a

0
t;´

#
;

"
B

t;´

b

t;´

b

0
t;´

#
;:::

E
�

�0
✓
� enc

✓
: : : ;


At;´
at;´

�
;


Bt;´
bt;´

�
; : : :

◆◆
⇥

�0
✓
� enc

✓
: : : ;


At;´
a0t;´

�
;


Bt;´
b0t;´

�
; : : :

◆◆ nY
tD1

Y
´2Z

t

DISJ

At;´
at;´

�
DISJ


At;´
a0t;´

�
;

where the outer expectation is over matrix pairs drawn according to �k;m: Since the product
of two cylinder intersections is a cylinder intersection, we arrive at

� 2 6 E
:::;

"
A

t;´

a

t;´

a

0
t;´

#
;

"
B

t;´

b

t;´

b

0
t;´

#
;:::

E
�

�00

�
� enc

�
: : : ;

24At;´at;´
a0t;´

35 ;24Bt;´bt;´
b0t;´

35 ; : : :
��

⇥
nY
tD1

Y
´2Z

t

DISJ

At;´
at;´

�
DISJ


At;´
a0t;´

�
; (4.32)

where �00 is a .k � 1/-dimensional cylinder intersection with respect to the first k � 1 rows
for any fixed value of the kth and .k C 1/st rows. This completes the promised reduction
to the .k � 1/-dimensional case.

Theorem 4.12 states that

�k;m D �i1 C �i2 C �i3 .i D 0; 1/; (4.33)

where: �i1 is a conical combination of probability distributions ⌫i
k;P

1

;:::;P
8

2 G i
k;m;˛

for
which P1; P2; P4 do not contain an all-ones column; �i2 is a real function supported on
.k;m; ˛/-good matrix pairs; and furthermore

k�i1k1 6 1 .i D 0; 1/; (4.34)

k�i2k1 6

s
2k

cm
C 2k

2c˛2m
.i D 0; 1/; (4.35)

k�i3k1 6 2k

2c˛2m
.i D 0; 1/: (4.36)

Define

˚

�
: : : ;

24At;´at;´
a0t;´

35 ;24Bt;´bt;´
b0t;´

35 ; : : :
�
D E

�
�00

�
� enc

�
: : : ;

24At;´at;´
a0t;´

35 ;24Bt;´bt;´
b0t;´

35 ; : : :
��

⇥
nY
tD1

Y
´2Z

t

DISJ

At;´
at;´

�
DISJ


At;´
a0t;´

�
:
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CLAIM 4.16. Fix functions ◆t WZt ! f1; 2; 3g .t D 1; 2; : : : ; n/: Define it D j◆�1t .2/j and
jt D j◆�1t .3/j. Then

*
˚;

nO
tD1

O
´2Z

t

�
PARITY⇤.´/
◆
t

.´/

+
6
(
nY
tD1

 s
2k

cm
C 2k

2c˛2m

!i
t

 
2k

2c˛2m

!j
t

)
⇥ max

`0
1

>2maxf0;`
1

�i
1

�.dC1/j
1

g
:::

`0
n

>2maxf0;`
n

�i
n

�.dC1/j
n

g

�

✓
k � 1;

⇠
.1 � ˛/m

2

⇡
; d C 1; `01; : : : ; `0n

◆
:

Before settling the claim, we will finish the proof of the lemma:

� 2 6
*
˚;

nO
tD1

O
´2Z

t

�k;m

+
by (4.32)

D
*
˚;

nO
tD1

O
´2Z

t

⇣
�

PARITY⇤.´/
1 C �PARITY⇤.´/

2 C �PARITY⇤.´/
3

⌘+
by (4.33)

D
X

◆
1

;◆
2

;:::;◆
n

*
˚;

nO
tD1

O
´2Z

t

�
PARITY⇤.´/
◆
t

.´/

+
;

where the sum is over all possible functions ◆1; ◆2; : : : ; ◆n with domains Z1; Z2; : : : ; Zn,
respectively, and range f1; 2; 3g: Using the bound of Claim 4.16 for the inner products
in the final expression, one immediately arrives at the recurrence in the statement of the
lemma.

Proof of Claim 4.16. For t D 1; 2; : : : ; n; define Yt to be the collection of all ´ 2 ◆�1t .1/
for which f´0 2 Zt W j´ ˚ ´0j D 1g Z ◆�1t .3/ D ¿: This set Yt ✓ Zt has the following
intuitive interpretation. View Zt as an undirected graph in which two vertices ´; ´0 2 Zt
are connected by an edge if and only if they are neighbors in the ambient hypercube, i.e.,
j´˚ ´0j D 1: We will refer to the vertices in ◆�1t .1/; ◆�1t .2/; and ◆�1t .3/ as good, neutral,
and bad, respectively. In this terminology, Yt is simply the set of all good vertices that do
not have a bad neighbor. Since the degree of every vertex in the graph is at most d; we
obtain

jYt j > j◆�1t .1/j � d j◆�1t .3/j
D .jZt j � j◆�1t .2/j � j◆�1t .3/j/ � d j◆�1t .3/j
D `t � it � .d C 1/jt ; t D 1; 2; : : : ; n: (4.37)
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Now, consider the quantity

� D max

ˇ̌̌̌
ˇ̌̌̌
ˇ E
:::;

"
A

t;´

a

t;´

a

0
t;´

#
;

"
B

t;´

b

t;´

b

0
t;´

#
;:::

E
�

�00

�
� enc

�
: : : ;

24At;´at;´
a0t;´

35 ;24Bt;´bt;´
b0t;´

35 ; : : :
��

⇥
nY
tD1

Y
´2Z

t

DISJ

At;´
at;´

�
DISJ


At;´
a0t;´

�ˇ̌̌̌ˇ̌̌̌
ˇ ; (4.38)

where: the maximum is over all matrix pairs24At;´at;´
a0t;´

35 ;24Bt;´bt;´
b0t;´

35 ; t D 1; 2; : : : ; n; ´ 2 .◆�1t .1/ n Yt /Y ◆�1t .2/ (4.39)

that are .k;m; ˛/-good and over all possible matrix pairs24At;´at;´
a0t;´

35 ;24Bt;´bt;´
b0t;´

35 ; t D 1; 2; : : : ; n; ´ 2 ◆�1t .3/; (4.40)

and the outer expectation is over the remaining matrix pairs24At;´at;´
a0t;´

35 ;24Bt;´bt;´
b0t;´

35 ; t D 1; 2; : : : ; n; ´ 2 Yt (4.41)

which are distributed independently, each according to some distribution ⌫PARITY⇤.´/
k;P

1

;:::;P
8

2
G PARITY⇤.´/
k;m;˛

such that P1; P2; P4 do not contain an all-ones column. Since �PARITY⇤.´/
2 is

supported on .k;m; ˛/-good matrix pairs and since �PARITY⇤.´/
1 is a conical combination

of probability distributions ⌫PARITY⇤.´/
k;P

1

;:::;P
8

2 G PARITY⇤.´/
k;m;˛

such that P1; P2; P4 do not contain
an all-ones column, it follows by convexity that*

˚;

nO
tD1

O
´2Z

t

�
PARITY⇤.´/
◆
t

.´/

+
6 �

nY
tD1

Y
´2Z

t

����PARITY⇤.´/
◆
t

.´/

���
1

6 �

nY
tD1

 s
2k

cm
C 2k

2c˛2m

!i
t

 
2k

2c˛2m

!j
t

;

where the second step uses the estimates (4.34)–(4.36). As a result, the proof will be
complete once we show that

� 6 max
`0
1

>2maxf0;`
1

�i
1

�.dC1/j
1

g
:::

`0
n

>2maxf0;`
n

�i
n

�.dC1/j
n

g

� .k � 1;m0; d C 1; `01; : : : ; `0n/; (4.42)

where m0 D d.1� ˛/m=2e: In the remainder of the proof, we will fix an assignment to the
matrix pairs (4.39) and (4.40) for which the maximum is achieved in (4.38). The argument
involves three steps: splitting the input to �00 into tuples of smaller matrices, determining
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the individual probability distribution of each tuple, and recombining the results to charac-
terize the joint probability distribution of the input to �00.

Step I: partitioning into submatrices. Think of every matrixM on the encoded matrix
list in (4.38) as partitioned into four submatrices M 00;M 01;M 10;M 11 of the form266664

¨
0 0 � � � 0
0 0 � � � 0

377775 ;
266664

¨
0 0 � � � 0
1 1 � � � 1

377775 ;
266664

¨
1 1 � � � 1
0 0 � � � 0

377775 ;
266664

¨
1 1 � � � 1
1 1 � � � 1

377775 ;
respectively, with the relative ordering of columns in each submatrix inherited from the
original matrix M . A uniformly random column permutation of M can be realized as

�
⇥
�00M 00 �01M 01 �10M 10 �11M 11

⇤
;

where �00; : : : ; �11 are uniformly random column permutations of the four submatrices
and � is a uniformly random column permutation of the entire matrix. We will reveal �
completely to the cylinder intersection (this corresponds to allowing the cylinder intersec-
tion to depend on �) but keep �00; : : : ; �11 secret.

In more detail, define

A00t;´ D At;´ja
t;´

^a0
t;´

; B00t;´ D Bt;´jb
t;´

^b0
t;´

;

A01t;´ D At;´ja
t;´

^a0
t;´

; B01t;´ D Bt;´jb
t;´

^b0
t;´

;

A10t;´ D At;´ja
t;´

^a0
t;´

; B10t;´ D Bt;´jb
t;´

^b0
t;´

;

A11t;´ D At;´ja
t;´

^a0
t;´

; B11t;´ D Bt;´jb
t;´

^b0
t;´

;

where t D 1; 2; : : : ; n and ´ 2 Zt : Then by the argument of the previous paragraph,

� 6
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ˇ̌̌̌
ˇ E
:::;
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t;´

a

t;´

a

0
t;´

#
;

"
B

t;´

b

t;´

b

0
t;´

#
;:::

E
�

E
�00;:::;�11

nY
tD1

Y
´2Z

t

DISJ

At;´
at;´

�
DISJ


At;´
a0t;´

�
⇥

⇥�00�.�00 enc.: : : ; A00t;´; B
00
t;´; : : : /;

�01 enc.: : : ; A01t;´; B
01
t;´; : : : /;

�10 enc.: : : ; A10t;´; B
10
t;´; : : : /;

�11 enc.: : : ; A11t;´; B
11
t;´; : : : //

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌
;

where �00; �01; �10; �11 are permutation lists chosen independently and uniformly at ran-
dom, � is a joint column permutation from an appropriate probability distribution, and
each �00� is a .k � 1/-dimensional cylinder intersection. Note that the final property cru-
cially uses the fact that �00 is a .k�1/-dimensional cylinder intersection for any fixed value
of the bottom two rows. Taking the expectation with respect to � outside the absolute value
operator, we conclude that there is some .k�1/-dimensional cylinder intersection �000 such
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that

� 6

ˇ̌̌̌
ˇ̌̌̌
ˇ E
:::;

"
A

t;´

a

t;´

a

0
t;´

#
;

"
B

t;´

b

t;´

b

0
t;´

#
;:::

E
�00;�01;�10;�11

nY
tD1

Y
´2Z

t

DISJ

At;´
at;´

�
DISJ


At;´
a0t;´

�
⇥

⇥�000.�00 enc.: : : ; A00t;´; B
00
t;´; : : : /;

�01 enc.: : : ; A01t;´; B
01
t;´; : : : /;

�10 enc.: : : ; A10t;´; B
10
t;´; : : : /;

�11 enc.: : : ; A11t;´; B
11
t;´; : : : //

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌
: (4.43)

Step II: distribution of the induced matrix sequences. We will now take a closer
look at the matrix sequence .A00t;´; A01t;´; A10t;´; A11t;´; B00t;´; B01t;´; B10t;´; B11t;´/ and characterize
its distribution depending on t; ´: In what follows, the symbol ⇤ denotes a fixed Boolean
matrix, and the symbol ? denotes a fixed Boolean matrix without an all-ones column. We
will use ⇤ and ? to designate matrices whose entries are immaterial to the proof. It is
important to remember that ⇤ and ? are semantic shorthands rather than variables, i.e.,
every occurrence of ⇤ and ? may refer to a different matrix.

(a) Sequences with t D 1; 2; : : : ; n; ´ 2 .◆�1t .1/ n Yt / Y ◆�1t .2/: For such t; ´; the
matrices .At;´; Bt;´/ are fixed to some .k;m; ˛/-good matrix pairs, which by definition
forces

A00t;´ D˚
⇥⇤ Hk�1;2m0

⇤
; B00t;´ D˚

⇥⇤ Hk�1;m0
⇤
;

A01t;´ D˚
⇥⇤ H 0

k�1;2m0
⇤
; B01t;´ D˚

⇥⇤ Hk�1;m0
⇤
;

A10t;´ D˚
⇥⇤ H 0

k�1;2m0
⇤
; B10t;´ D˚

⇥⇤ Hk�1;m0
⇤
;

A11t;´ D˚
⇥⇤⇤ ; B11t;´ D˚

⇥⇤ Hk�1;m0
⇤
:

(b) Sequences with t D 1; 2; : : : ; n; ´ 2 ◆�1.3/: Each such sequence is fixed to some
unknown tuple of matrices over which we have no control:

A00t;´ D
⇥⇤⇤ ; B00t;´ D

⇥⇤⇤ ;
A01t;´ D

⇥⇤⇤ ; B01t;´ D
⇥⇤⇤ ;

A10t;´ D
⇥⇤⇤ ; B10t;´ D

⇥⇤⇤ ;
A11t;´ D

⇥⇤⇤ ; B11t;´ D
⇥⇤⇤ :

(c) Sequences with t D 1; 2; : : : ; n; ´ 2 Yt : Each such sequence is distributed inde-
pendently of the others. The exact distribution of a given sequence depends on the parity
of ´ and is given by the following table, where Mt;´0;Mt;´1 refer to independent random
variables distributed uniformly in fTk�1; Fk�1g:



54 ALEXANDER A. SHERSTOV

Distribution for jzj even Distribution for jzj odd

A00t;´
⇥⇤ Hk�1;2m0 Mt;´0 Mt;´1

⇤˚ ⇥⇤ Hk�1;2m0 Mt;´0 Mt;´1

⇤˚

A01t;´
⇥
? H 0

k�1;2m0 Mt;´0

⇤˚ ⇥
? H 0

k�1;2m0 Mt;´1

⇤˚

A10t;´
⇥
? H 0

k�1;2m0 Mt;´1

⇤˚ ⇥
? H 0

k�1;2m0 Mt;´0

⇤˚

A11t;´
⇥
?
⇤˚ ⇥

?
⇤˚

B00t;´
⇥⇤ Hk�1;m0 Mt;´0 Mt;´1

⇤˚ ⇥⇤ Hk�1;m0
⇤˚

B01t;´
⇥⇤ Hk�1;m0 Mt;´0

⇤˚ ⇥⇤ Hk�1;m0 Mt;´0

⇤˚

B10t;´
⇥⇤ Hk�1;m0 Mt;´1

⇤˚ ⇥⇤ Hk�1;m0 Mt;´1

⇤˚

B11t;´
⇥⇤ Hk�1;m0

⇤˚ ⇥⇤ Hk�1;m0 Mt;´0 Mt;´1

⇤˚

To verify, recall that each matrix pair in (4.41) is distributed independently according to
⌫

PARITY⇤.´/
k;P

1

;:::;P
8

2 G PARITY⇤.´/
k;m;˛

for some P1; : : : ; P8; where P1; P2; P4 do not contain an all-
ones column. The stated description is now immediate by letting

.M1;M2/ D
(
.Mt;´1;Mt;´0/ if j´j is even,
.Mt;´0;Mt;´1/ if j´j is odd

in Definition 4.6 and recalling that P1; : : : ; P8 have submatrix structure given by Proposi-
tion 4.7.

An important consequence of the newly obtained characterization is that

DISJ

At;´
at;´

�
DISJ


At;´
a0t;´

�
D DISJ

⇥
A10t;´ A11t;´

⇤
DISJ

⇥
A01t;´ A11t;´

⇤
D DISJ.Mt;´0/DISJ.Mt;´1/

for all ´ 2 Yt: Since for ´ … Yt the values At;´; at;´; a0t;´ are fixed, (4.43) simplifies to

� 6

ˇ̌̌̌
ˇ̌̌̌
ˇ E
:::;

"
A

t;´

a

t;´

a

0
t;´

#
;

"
B

t;´

b

t;´

b

0
t;´

#
;:::

E
�00;�01;�10;�11

nY
tD1

Y
´2Y

t

DISJ.Mt;´0/DISJ.Mt;´1/⇥

⇥�000.�00 enc.: : : ; A00t;´; B
00
t;´; : : : /;

�01 enc.: : : ; A01t;´; B
01
t;´; : : : /;

�10 enc.: : : ; A10t;´; B
10
t;´; : : : /;

�11 enc.: : : ; A11t;´; B
11
t;´; : : : //

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌ : (4.44)

Step III: recombining. Having examined the new submatrices, we are now in a position
to fully characterize the probability distribution of the input to �000 in (4.44). To start with,
�000 receives as input the matrices A00˚

t;´ ; A
01˚
t;´ ; A

10˚
t;´ ; A

11˚
t;´ : If ´ 2 Yt ; then by Step II (c)
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each of them is distributed according to one of the distributions⇥⇤ Hk�1;2m0 Mt;´0 Mt;´1

⇤˚; (4.45)⇥⇤ H 0
k�1;2m0 Mt;´0

⇤˚; (4.46)⇥⇤ H 0
k�1;2m0 Mt;´1

⇤˚; (4.47)⇥⇤⇤˚ : (4.48)

If ´ … Yt ; then each of the matrices in question is distributed according to (4.48). The only
other input to �000 is

ŒB"1"2t;´ B"1"2t;´0 ç
˚; ŒB"1"2t;´ B"1"2t;´0 ç

˚; (4.49)

where "1; "2 2 f0; 1g and the strings ´; ´0 2 Zt satisfy j´ ˚ ´0j D 1: If ´; ´0 2 Yt ; then
Step II (c) reveals that each of the matrices in (4.49) is distributed according to one of the
probability distributions⇥⇤ Hk�1;2m0 Mt;w Mt;w0

⇤˚; (4.50)⇥⇤ Hk�1;2m0 Mt;w Mt;w0
⇤˚; (4.51)⇥⇤ Hk�1;2m0 Mt;w Mt;w0
⇤˚; (4.52)

where w;w0 2 Yt ⇥ f0; 1g are some Boolean strings with jw˚w0j D 1: If ´ … Yt and ´0 …
Yt , then each of the matrices in (4.49) is distributed according to (4.48). In the remaining
case when ´ 2 Yt and ´0 … Yt , we have by definition of Yt that ´0 2 .◆�1t .1/nYt /Y ◆�1t .2/;
and therefore by Step II (a)(c) each of the matrices in (4.49) is distributed according to one
of the probability distributions⇥⇤⇤˚ ; (4.53)⇥⇤ Hk�1;2m0 Mt;´0 Mt;´1

⇤˚
; (4.54)⇥⇤ Hk�1;2m0 Mt;´0 Mt;´1

⇤˚
; (4.55)⇥⇤ Hk�1;2m0 Mt;´0

⇤˚
; (4.56)⇥⇤ Hk�1;2m0 Mt;´0

⇤˚
; (4.57)⇥⇤ Hk�1;2m0 Mt;´1

⇤˚
; (4.58)⇥⇤ Hk�1;2m0 Mt;´1

⇤˚
: (4.59)

In the terminology of Definition 4.13, each of the random variables (4.45)–(4.48),
(4.50)–(4.59) is derivable with no communication from⇥

Mt;w H 0
k�1;2m0

⇤˚
;⇥

Mt;w Hk�1;m0 Mt;w0 Hk�1;m0
⇤˚
;⇥

Mt;w Hk�1;m0 Mt;w0 Hk�1;m0
⇤˚
;

where t D 1; 2; : : : ; n andw;w0 range over all strings in Yt⇥f0; 1g at Hamming distance 1.
This follows easily from (4.6)–(4.10). As a result, the input to �000 in (4.44) is deriv-
able with no communication from � enc.: : : ; ŒMt;w H 0

k�1;2m0 ç; ŒMt;w Hk�1;m0 ç; : : : /;
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where t D 1; 2; : : : ; n; w 2 Yt ⇥ f0; 1g; and � is chosen uniformly at random. Then by
Proposition 4.14,

� 6 max
�

ˇ̌̌̌
ˇ̌ E
:::;M

t;w

;:::
E
�

nY
tD1

Y
w2Y

t

⇥f0;1g
DISJ.Mt;w/

⇥ �.� enc.: : : ; ŒMt;w H 0k�1;2m0 ç; ŒMt;w Hk�1;m0 ç; : : : //

ˇ̌̌̌
ˇ̌ ;

where the maximum is over .k � 1/-dimensional cylinder intersections �. The right-hand
side is by definition � .k � 1;m0; d C 1; Y1 ⇥ f0; 1g; : : : ; Yn ⇥ f0; 1g/: Recalling the lower
bound (4.37) on the size of Y1; : : : ; Yn; we arrive at the desired inequality (4.42).

This completes the proof of Lemma 4.15. To solve the newly obtained recurrence for
�; we prove a technical result.

LEMMA 4.17. Fix reals p1; p2; : : : > 0 and q1; q2; : : : > 0: Let AWZC ⇥ NnC1 ! Œ0; 1ç
be any function that satisfies

A.1; d; `1; `2; : : : ; `n/ D
(
0 if `1 C `2 C � � �C `n > 0;
1 otherwise,

and for k > 2;

A.k; d; `1; `2; : : : ; `n/
2 6

`
1X

i
1

;j
1

D0
� � �

`
nX

i
n

;j
n

D0

(
nY
tD1

 
`t

it

! 
`t � it
jt

!
pit
k
q
j
t

k

)
⇥ max

`0
1

>2maxf0;`
1

�i
1

�.dC1/j
1

g
:::

`0
n

>2maxf0;`
n

�i
n

�.dC1/j
n

g

A.k � 1; d C 1; `01; : : : ; `0n/:

Then

A.k; d; `1; `2; : : : ; `n/ 6
 

kX
iD1

pi C 8
kX
iD1

q
1=.dCk�iC1/
i

! `1C`
2

C���C`
n

2

: (4.60)

Proof. The proof is by induction on k: In the base case k D 1, the bound (4.60) follows
immediately from the definition ofA.1; d; `1; `2; : : : ; `n/: For the inductive step, fix k > 2
and define

a D
k�1X
iD1

pi C 8
k�1X
iD1

q
1=.dCk�iC1/
i :
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We may assume that a 6 1 since (4.60) is trivial otherwise. Then from the inductive
hypothesis,

A.k; d; `1; `2; : : : ; `n/
2

6
`
1X

i
1

;j
1

D0
� � �

`
nX

i
n

;j
n

D0

(
nY
tD1

 
`t

it

! 
`t � it
jt

!
pit
k
q
j
t

k

)
a
P
n

tD1 maxf0;`
t

�i
t

�.dC1/j
t

g

D
nY
tD1

˚
`
tX

i;jD0

 
`t

i

! 
`t � i
j

!
pikq

j

k
amaxf0;`

t

�i�.dC1/j g

 
: (4.61)

CLAIM. For any integers ` > 0 and D > 1 and a real number 0 < q 6 1,

X̀
jD0

 
`

j

!
qjamaxf0;`�Dj g 6 .aC 8q1=D/`:

Proof:

X̀
jD0

 
`

j

!
qjamaxf0;`�Dj g

D
X

j>b`=DcC1

 
`

j

!
qj C a`�Db`=Dc

b`=DcX
jD0

 
`

j

!
qj .aD/b`=Dc�j

6 2`q`=D C a`�Db`=Dc
b`=DcX
jD0

 
b`=Dc
j

!
.2eDq/j .aD/b`=Dc�j

D 2`q`=D C a`�Db`=Dc.aD C 2eDq/b`=Dc

6 2`q`=D C a`�Db`=Dc.aC .2eDq/1=D/Db`=Dc

6 2`q`=D C .aC .2eDq/1=D/`

6 .2q1=D C aC .2eDq/1=D/`

6 .aC 8q1=D/`:

We may assume that qk 6 1 since (4.60) is trivial otherwise. Invoking the above claim
with ` D `t � i; q D qk ; D D d C 1, we have from (4.61) that

A.k; d; `1; `2; : : : ; `n/
2 6

nY
tD1

(
`
tX

iD0

 
`t

i

!
pik

⇣
aC 8q1=.dC1/

k

⌘`
t

�i
)

D
nY
tD1

⇣
aC pk C 8q1=.dC1/k

⌘`
t

;

completing the inductive step.

Using the previous two lemmas, we will now obtain a closed-form upper bound on �:
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THEOREM 4.18. There exists an absolute constant C > 1 such that

� .k;m; d; `1; : : : ; `n/ 6

�
C

s
k22k

m
C C exp

⇢
� m

C2k.d C k/
��.`1C���C`n/=2

:

Proof. It follows from Proposition 4.14 that � is monotonically decreasing in the second
argument, a fact that we will use several times without further mention. Let m be an
arbitrary positive integer. Set ✏ D 3=4 and define

mk D
&

2km

.1 � ✏/.1 � ✏2/ � � � .1 � ✏k/

'
; k D 1; 2; 3; : : : ;

pk D
s

2k

cmk
C 2k

2c✏2kmk
; k D 1; 2; 3; : : : ;

qk D 2k

2c✏2kmk
; k D 1; 2; 3; : : : ;

where c > 0 is the absolute constant from Theorem 4.12. Consider the real function
AWZC ⇥ NnC1 ! Œ0; 1ç given by

A.k; d; `1; : : : ; `n/ D
(
� .k;mk ; d; `1; : : : ; `n/ if `1; : : : ; `n 2 f0; 1; : : : ; 2d g;
0 otherwise.

Taking ˛ D ✏k in Lemma 4.15 shows that A.k; d; `1; : : : ; `n/ obeys the recurrence in
Lemma 4.17. In particular, on the domain of � one has

� .k;mk ; d; `1; : : : ; `n/ D A.k; d; `1; : : : ; `n/

6
 

kX
iD1

pi C 8
kX
iD1

q
1=.dCk�iC1/
i

!.`
1

C���C`
n

/=2

(4.62)

by Lemma 4.17.
One easily verifies that pi 6 .cm/�1=2 C 2�cm.9=8/iCi and qi 6 2�cm.9=8/

iCi . Substi-
tuting these estimates in (4.62) gives

� .k;mk ; d; `1; : : : ; `n/ 6
✓

kp
cm
C c0 exp

⇢
� c00m
d C k

�◆.`
1

C���C`
n

/=2

for some absolute constants c0; c00 > 0: Since mk D ⇥.2km/; the proof is complete.

COROLLARY 4.19. For every n and every k-dimensional cylinder intersection �;ˇ̌̌̌
ˇ E
X
1

;:::;X
n

⇠⇡
k;m

"
�.X1; : : : ; Xn/

nY
iD1

DISJ.Xi /

#ˇ̌̌̌
ˇ 6

 
ck22k

m

!n=4
; (4.63)

where c > 0 is an absolute constant.

Proof. By Proposition 4.14, the left-hand side of (4.63) cannot decrease if we replace ⇡k;m
with ⇡k;m�1: As a result, we may assume that m is even (if not, replace ⇡k;m with ⇡k;m�1
in what follows). As we have already pointed out in (4.30), in this case the left-hand side
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of (4.63) does not exceed

�

 
k;
m

2
; 0; 1; 1; : : : ; 1̃

n

!
:

The claimed bound is now immediate from Theorem 4.18.

We have reached the main result of this section, an upper bound on the repeated dis-
crepancy of set disjointness.

THEOREM 4.20. For some absolute constant c > 0 and all positive integers k;m;

rdisc.UDISJk;m/ 6
 
ck2kp
m

!1=2
:

Proof. We will prove the equivalent bound

rdisc.UDISJk;M / 6
 
ck22k

m

!1=4
; (4.64)

where c > 0 is an absolute constant and M D m.2k � 1/ C 2k�1. We will work with
the probability distribution ⇡k;m, which is balanced on the domain of UDISJk;M . By the
definition of repeated discrepancy,

rdisc⇡
k;m

.UDISJk;M / D sup
n;r2ZC

max
�

ˇ̌̌̌
ˇ E
:::;X

i;j

;:::
�.: : : ; Xi;j ; : : :/

nY
iD1

DISJ.Xi;1/

ˇ̌̌̌
ˇ
1=n

; (4.65)

whereXi;j .i D 1; 2; : : : ; n; j D 1; 2; : : : ; r/ are chosen independently according to ⇡k;m
conditioned on DISJ.Xi;1/ D DISJ.Xi;2/ D � � � D DISJ.Xi;r / for all i: Recall that ⇡k;m is
a convex combination of ŒTk H 0

k;m
ç˚ and ŒFk H 0

k;m
ç˚. In particular,

Xi;2; Xi;3; : : : ; Xi;r ⇠ X˚
i;1

for each i: This means that the input to � in (4.65) is derivable with no communication
from .X1;1; X2;1; : : : ; Xn;1/: As a result, Proposition 4.14 implies that

rdisc⇡
k;m

.UDISJk;M / 6 sup
n2ZC

max
�

ˇ̌̌̌
ˇ E
X
1;1

;X
2;1

;:::;X
n;1

⇠⇡
k;m

�.X1;1; X2;1; : : : ; Xn;1/

nY
iD1

DISJ.Xi;1/

ˇ̌̌̌
ˇ
1=n

:

The claimed upper bound (4.64) is now immediate by Corollary 4.19.

5. RANDOMIZED COMMUNICATION

In the remainder of the paper, we will derive lower bounds for multiparty communi-
cation using the reduction to polynomials given by Theorems 4.2 and 4.20. The proofs
of these applications are similar to those in [48], the main difference being the use of the
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newly obtained passage from protocols to polynomials in place of the less efficient reduc-
tion in [48]. We start with randomized communication, which covers protocols with small
constant error as well as those with vanishing advantage over random guessing.

5.1. A master theorem. We will derive all our results on randomized communication
from a single “master” theorem, which we are about to prove. Following [48], we present
two proofs for it, one based on the primal view of the problem and the other, on the dual
view. The idea of the primal proof is to convert a communication protocol for f ıUDISJk;m
into a low-degree polynomial approximating f in the infinity norm. The dual proof pro-
ceeds in the opposite direction and manipulates explicit witness objects, in the sense of
Fact 2.3 and Theorem 2.10. The primal proof is probably more intuitive, whereas the dual
proof is more versatile. Each of the proofs will be used in later sections to obtain additional
results.

THEOREM 5.1. Let f be a .possibly partial/ Boolean function on f0; 1gn: For every (pos-
sibly partial) k-party communication problem G and all ✏; ı > 0;

R✏.f ıG/ > degı.f / log
✓

1

c rdisc.G/

◆
� log

1

ı � 2✏ ; (5.1)

where c > 0 is an absolute constant. In particular,

R✏.f ı UDISJk;m/ > degı.f /
2

log
✓ p

m

c2kk

◆
� log

1

ı � 2✏ (5.2)

for some absolute constant c > 0.

Primal proof of Theorem 5.1. Abbreviate F D f ı G: Let ⇡ be any balanced probability
distribution on the domain of G and define the linear operator L⇡;n as in Theorem 4.2, so
thatL⇡;nF D f on the domain of f: Corollary 2.7 gives an approximation to F by a linear
combination of cylinder intersections ˘ D P

� a�� with
P
� ja�j 6 2R✏.F /=.1 � ✏/; in

the sense that k˘k1 6 1=.1� ✏/ and jF �˘ j 6 ✏=.1� ✏/ on the domain of F: It follows
that kL⇡;n˘k1 6 1=.1 � ✏/ and jf � L⇡;n˘ j D jL⇡;n.F � ˘/j 6 ✏=.1 � ✏/ on the
domain of f; whence

E.f; d � 1/ 6 ✏

1 � ✏ CE.L⇡;n˘; d � 1/
for any positive integer d: By Theorem 4.2,

E.L⇡;n˘; d � 1/ 6
X
�

ja�jE.L⇡;n�; d � 1/ 6 2R✏.F /

1 � ✏ .c rdisc⇡.G//d

for some absolute constant c > 0, whence

E.f; d � 1/ 6 ✏

1 � ✏ C
2R✏.F /

1 � ✏ .c rdisc⇡.G//d :

For d D degı.f /; the left-hand side of this inequality must exceed ı; forcing (5.1). The
other lower bound (5.2) now follows immediately by Theorem 4.20.

We now present an alternate proof, which is based directly on the generalized discrep-
ancy method.



COMMUNICATION LOWER BOUNDS USING DIRECTIONAL DERIVATIVES 61

Dual proof of Theorem 5.1. Again, it suffices to prove (5.1). We closely follow the proof
in [48] except at the end. Let X DX1⇥X2⇥� � �⇥Xk be the input space ofG: Let ⇡ be an
arbitrary balanced probability distribution on the domain of G, and define d D degı.f /:
By Fact 2.3, there exists a function  W f0; 1gn ! R withX

x2domf

f .x/ .x/ �
X

x…domf

j .x/j > ı; (5.3)

k k1 D 1; (5.4)
O .S/ D 0; jS j < d: (5.5)

Define  WX n ! R by

 .X1; : : : ; Xn/ D 2n .G⇤.X1/; : : : ; G⇤.Xn//
nY
iD1

⇡.Xi /

and let F D f ıG. Since ⇡ is balanced on the domain of G;

k k1 D 2n E
x2f0;1gn

Œj .x/jç D 1 (5.6)

and analogouslyX
domF

F.X1; : : : ; Xn/ .X1; : : : ; Xn/ �
X

domF

j .X1; : : : ; Xn/j

D
X

x2domf

f .x/ .x/ �
X

x…domf

j .x/j

> ı; (5.7)

where the final step in the two derivations uses (5.3) and (5.4). It remains to bound the
inner product of  with a k-dimensional cylinder intersection �: We have

h ;�i D 2n E
X
1

;:::;X
n

⇠⇡
⇥
 .G⇤.X1/; : : : ; G⇤.Xn//�.X1; : : : ; Xn/

⇤
D

X
x2f0;1gn

 .x/ E
X
1

⇠⇡
x

1

� � � E
X
n

⇠⇡
x

n

�.X1; : : : ; Xn/

D h ;L⇡;n�i;
where ⇡0 and ⇡1 are the probability distributions induced by ⇡ onG�1.C1/ andG�1.�1/;
respectively, and L⇡;n is as defined in Theorem 4.2. Continuing,

jh ;�ij 6 k k1E.L⇡;n�; d � 1/ by (5.5)

6 .c rdisc⇡.G//d by (5.4) and Theorem 4.2, (5.8)

where c > 0 is an absolute constant. Now (5.1) is immediate by (5.6)–(5.8) and the
generalized discrepancy method (Theorem 2.10).

5.2. Bounded-error communication. Specializing the master theorem to bounded-error
communication gives the following lower bound for composed communication problems
in terms the 1=3-approximate degree.

THEOREM 5.2. There exists an absolute constant c > 0 such that for every (possibly
partial) Boolean function f on f0; 1gn;

R1=3.f ı UDISJk;c4kk2/ > deg1=3.f /:
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Proof. Take ✏ D 1=7; ı D 1=3; andm D c04kk2 in the lower bound (5.2) of Theorem 5.1,
where c0 > 0 is a sufficiently large integer constant.

As a consequence we obtain the main result of this paper, stated in the introduction as
Theorem 1.1.

COROLLARY 5.3.

R1=3.DISJk;n/ > R1=3.UDISJk;n/ D ˝
✓p

n

2kk

◆
:

Proof. Recall that UDISJk;nm D AANDn ı UDISJk;m for all integers n;m: Theorem 2.5
shows that deg1=3.AANDn/ D ˝.

p
n/: Thus, taking f D AANDn in Theorem 5.2 gives

R1=3.UDISJk;c4kk2n/ D ˝.
p
n/ for some absolute constant c > 0; which is equivalent to

the claimed bound.

REMARK 5.4. As shown by the dual proof of Theorem 5.1, we obtain the ˝.
p
n=2kk/

lower bound for set disjointness using the generalized discrepancy method. By the results
of [37, 14], the generalized discrepancy method applies to quantum multiparty protocols as
well. In particular, Corollary 5.3 in this paper gives a lower bound of˝.

p
n=2kk/�O.k4/

on the bounded-error k-party quantum communication complexity of set disjointness. This
lower bound nearly matches the well-known upper bound of d

p
n=2ke logO.1/ n due to

Buhrman, Cleve, and Wigderson [16]. For the reader’s convenience, we include a sketch of
the protocol. Let G be any k-party communication problem and f W f0; 1gn ! f�1;C1g a
given function. An elegant simulation in [16] shows that f ıG has bounded-error quantum
communication complexityO.Q1=3.f /D.G/k2 logn/; whereQ1=3.f / andD.G/ are the
bounded-error quantum query complexity of f and the deterministic classical communi-
cation complexity of G; respectively. Letting DISJk;n D ANDn=2k ı DISJk;2k , we have
Q1=3.ANDn=2k / D O.

p
n=2k/ by Grover’s search algorithm [28] and D.DISJk;2k / D

O.k2/ by Grolmusz’s result [27]. Therefore, set disjointness has bounded-error quantum
communication complexity at most d

p
n=2ke logO.1/ n.

Theorem 5.2 gives a lower bound on bounded-error communication complexity for
compositions f ı G; where G is a gadget whose size grows exponentially with the num-
ber of parties. Following [48], we will derive an alternate lower bound, in which the
gadget G is essentially as simple as possible and in particular depends on only 2k vari-
ables. The resulting lower bound will be in terms of the approximate degree as well as
two combinatorial complexity measures, defined next. The block sensitivity of a Boolean
function f W f0; 1gn ! f�1;C1g; denoted bs.f /; is the maximum number of nonempty
pairwise disjoint subsets S1; S2; S3; : : : ✓ f1; 2; : : : ; ng such that f .x/ ¤ f .x ˚ 1S

1

/ D
f .x˚1S

2

/ D f .x˚1S
3

/ D � � � for some string x 2 f0; 1gn: The decision tree complexity
of f; denoted dt.f /; is the minimum depth of a decision tree for f: We have:

THEOREM 5.5. For every f W f0; 1gn ! f�1;C1g;

R1=3.f ı .ORk _ ANDk//

> ˝

 p
bs.f /
2kk

!
> ˝

 
dt.f /1=6

2kk

!
> ˝

 
deg1=3.f /1=6

2kk

!
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and

maxfR1=3.f ı ORk/; R1=3.f ı ANDk/g

> ˝

 
bs.f /1=4

2kk

!
> ˝

 
dt.f /1=12

2kk

!
> ˝

 
deg1=3.f /1=12

2kk

!
:

Here ORk and ANDk refer to the k-party communication problems x 7! Wk
iD1 xi

and x 7!Vk
iD1 xi ; where the i th party sees all the bits except for xi : Analogously, ORk _

ANDk refers to the k-party communication problem x 7! x1_ � � �_xk_.xkC1^ � � �^x2k/
in which the i th party sees all the bits except for xi and xkCi : It is clear that the composed
communication problems f ı ORk , f ı ANDk , and f ı .ORk _ ANDk/ each have a
deterministic k-party communication protocol with cost 3 dt.f /: The above theorem shows
that this upper bound is reasonably close to tight, even for randomized protocols. Note that
it is impossible to go beyond Theorem 5.5 and bound R1=3.f ı ANDk/ from below in
terms of the approximate degree of f : taking f D ANDn shows that the gap between
R1=3.f ıANDk/ and deg1=3.f / can be as large as ⇥.1/ versus ⇥.

p
n/. Theorem 5.5 is a

quadratic improvement on the lower bounds in [48].

Proof of Theorem 5.5. Identical to the proofs of Theorems 5.3 and 5.4 in [48], with Corol-
lary 5.3 used instead of the earlier lower bound for set disjointness in [48].

5.3. Small-bias communication and discrepancy. We now specialize Theorem 5.1 to
the setting of small-bias communication, where the protocol is only required to produce
the correct output with probability vanishingly close to 1=2:

THEOREM 5.6. Let f be a .possibly partial/ Boolean function on f0; 1gn: For every (pos-
sibly partial) k-party communication problem G and all ✏; � > 0;

R
1

2

� ✏
2

.f ıG/ > deg1�� .f / log
✓

1

c rdisc.G/

◆
� log

1

✏ � � ; (5.9)

R
1

2

� ✏
2

.f ıG/ > deg˙.f / log
✓

1

c rdisc.G/

◆
� log

1

✏
; (5.10)

where c > 0 is an absolute constant. In particular,

R
1

2

� ✏
2

.f ı UDISJk;c4kk2/ > deg1�� .f / � log
1

✏ � � ; (5.11)

R
1

2

� ✏
2

.f ı UDISJk;c4kk2/ > deg˙.f / � log
1

✏
(5.12)

for an absolute constant c > 0:

Proof. One obtains (5.9) by taking ı D 1� � in (5.1). Letting � & 0 in (5.9) gives (5.10).
The remaining two lower bounds are now immediate in view of Theorem 4.20.

The method of Theorem 5.1 allows one to directly prove upper bounds on discrepancy,
a complexity measure of interest in its own right.
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THEOREM 5.7. For every (possibly partial) Boolean function f on f0; 1gn; every (possibly
partial) k-party communication problem G; and every � > 0; one has

disc.f ıG/ 6 .c rdisc.G//deg
1�� .f / C �; (5.13)

disc.f ıG/ 6 .c rdisc.G//deg˙.f /; (5.14)

where c > 0 is an absolute constant. In particular,

disc.f ı UDISJk;m/ 6
 
c2kkp
m

!deg
1�� .f /=2

C �; (5.15)

disc.f ı UDISJk;m/ 6
 
c2kkp
m

!deg˙.f /=2

(5.16)

for an absolute constant c > 0:

Proof. The proof is virtually identical to that in [48], with the difference that we use The-
orems 4.2 and 4.20 in place of the earlier passage from protocols to polynomials. For the
reader’s convenience, we include a complete proof.

Let X D X1 ⇥ X2 ⇥ � � � ⇥ Xk be the input space of G; and let ⇡ be an arbitrary
balanced probability distribution on the domain of G: Take ı D 1� �; d D degı.f /; and
define  WX n ! R as in the dual proof of Theorem 5.1. Then (5.6) shows that  is the
pointwise product  D H � P; where H is a sign tensor and P a probability distribution.
Abbreviating F D f ıG; we can restate (5.7) and (5.8) asX

domF

F.X/H.X/P.X/ � P.domF / > 1 � �; (5.17)

discP .H/ 6 .c rdisc⇡.G//d ; (5.18)

respectively, where c > 0 is an absolute constant. For every cylinder intersection �;ˇ̌̌̌
ˇ X
domF

F.X/P.X/�.X/

ˇ̌̌̌
ˇ

D
ˇ̌̌̌
ˇ̌hH � P;�i C X

domF

.F.X/ �H.X//P.X/�.X/ �
X

domF

H.X/P.X/�.X/

ˇ̌̌̌
ˇ̌

6 discP .H/C
X

domF

jF.X/ �H.X/jP.X/C P.domF /

D discP .H/C P.domF / �
X

domF

F.X/H.X/P.X/C P.domF /

< discP .H/C P.domF / � 1C �; (5.19)

where the last step uses (5.17). Therefore,

discP .f ıG/ D max
�

ˇ̌̌̌
ˇ X
domF

F.X/P.X/�.X/

ˇ̌̌̌
ˇC P.domF /

< discP .H/C �
6 .c rdisc⇡.G//d C �;
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where the second step uses (5.19) and the third uses (5.18). This completes the proof
of (5.13). Letting � & 0, one arrives at (5.14). The remaining two lower bounds (5.15)
and (5.16) are now immediate by Theorem 4.20.

COROLLARY 5.8. Consider the Boolean function

Fk;n.x/ D
n_
iD1

4kk2n2^
jD1

.xi;j;1 _ xi;j;2 _ � � � _ xi;j;k/;

viewed as a k-party communication problem in which the r th party .r D 1; 2; : : : ; k/ is
missing the bits xi;j;r for all i; j: Then

disc.Fk;n/ 6 2�˝.n/;

R
1

2

� �
2

.Fk;n/ > ˝.n/ � log
1

�
.� > 0/:

Proof. Let MPn be given by Theorem 2.4, so that deg˙.MPn/ D n: Let c > 0 be the
constant from (5.16). Since MPn ı DISJk;c24kC1k2 is a subfunction of Fk;d4cen.x/, Theo-
rem 5.7 yields the discrepancy bound. The communication lower bound follows by Theo-
rem 2.9.

Corollary 5.8 gives a hard k-party communication problem computable by an AC0 cir-
cuit family of depth 3: This depth is optimal because AC0 circuits of smaller depth have
multiparty discrepancy 1=nO.1/; regardless of how the bits are assigned to the parties.
Quantitatively, the corollary gives an upper bound of exp.�˝.n=4kk2/1=3/ on the dis-
crepancy of a size-nk circuit family in AC0; considerably improving on the previous best
bound of exp.�˝.n=4k/1=7/ in [48], itself preceded by exp.�˝.n=231k/1=29/ in [10].

Corollary 5.8 settles Theorem 1.4 from the introduction.

6. ADDITIONAL APPLICATIONS

We conclude this paper with several additional results in communication complexity. In
what follows, we give improved XOR lemmas and direct product theorems for composed
communication problems as well as a quadratically stronger lower bound on the nondeter-
ministic and Merlin-Arthur complexity of set disjointness. Lastly, we give applications of
our work to circuit complexity.

6.1. XOR lemmas. In Section 5, we proved an˝.
p
n=2kk/ communication lower bound

for solving the set disjointness problem DISJk;n with probability of correctness 2=3: In this
section, we consider the communication problem DISJk;n˝`. As one would expect, we
show that its randomized communication complexity is `�˝.pn=2kk/:More interestingly,
we show that the same lower bound remains valid even for probability of correctness 1

2
�

2�˝.`/; a statement known as an XOR lemma. We prove an analogous result for the unique
set disjointness problem and more generally for composed problems f ı G, where G has
small repeated discrepancy. Our proofs are nearly identical to those in [48], the main
difference being that we use Theorems 4.2 and 4.20 in place of the earlier and less efficient
passage from protocols to polynomials.

We first recall an XOR lemma for polynomial approximation, proved in [49, Cor. 5.2].
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THEOREM 6.1 (Sherstov). Let f be a .possibly partial/ Boolean function on f0; 1gn: Then
for some absolute constant c > 0 and every `;

deg1�2�`�1.f ˝`/ > c` deg1=3.f /:

Using the small-bias version of the master theorem (Theorem 5.6), we are able to im-
mediately translate this result to communication.

THEOREM 6.2. For every (possibly partial) Boolean function f on f0; 1gn and every (pos-
sibly partial) k-party communication problem G;

R
1

2

�. 1
2

/
`C1..f ıG/˝`/ > c` deg1=3.f / � log

c

rdisc.G/
; (6.1)

where c > 0 is an absolute constant. In particular,

R
1

2

�. 1
2

/
`C1..f ı UDISJk;c4kk2/

˝`/ > ` deg1=3.f / (6.2)

for an absolute constant c > 0:

Proof. Theorem 6.1 provides an absolute constant c1 > 0 such that deg1�2�`�1.f ˝`/ >
c1` deg1=3.f /: Applying Theorem 5.6 to f ˝` ıG D .f ıG/˝` with parameters ✏ D 2�`
and � D 2�`�1; one arrives at

R1=2�1=2`C1..f ıG/˝`/ > c1` deg1=3.f / � log
✓

1

c2 rdisc.G/

◆
� ` � 1

for some absolute constant c2 > 0: This conclusion is logically equivalent to (6.1). In view
of Theorem 4.20, the other lower bound (6.2) is immediate from (6.1).

COROLLARY 6.3.

R
1

2

�. 1
2

/
`C1.UDISJk;n˝`/ > ` �˝

✓p
n

2kk

◆
:

Proof. Theorem 2.5 shows that deg1=3.AANDn/ > ˝.
p
n/: Thus, letting f D AANDn in

(6.2) gives R1=2�1=2`C1.UDISJk;c4kk2n
˝`/ > ` � ˝.pn/ for a constant c > 0; which is

equivalent to the claimed bound.

The above corollary settles Theorem 1.2(i) from the introduction. It is a quadratic
improvement on the previous best XOR lemma for multiparty set disjointness [48]. As
a consequence, we obtain stronger XOR lemmas for arbitrary compositions of the form
f ı .ORk _ ANDk/, improving quadratically on the work in [48].

THEOREM 6.4. Let f W f0; 1gn ! f�1;C1g be given. Then the k-party communication
problem F D f ı .ORk _ ANDk/ obeys

R
1

2

�. 1
2

/
`C1.F˝`/ > ` �˝

 p
bs.f /
2kk

!
> ` �˝

 
dt.f /1=6

2kk

!

> ` �˝
 

deg1=3.f /1=6

2kk

!
:
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Proof. The argument is identical to that in [48, Theorem 5.3]. As argued there, any com-
munication protocol for f ı .ORk _ ANDk/ also solves UDISJk;bs.f /; so that the first
inequality is immediate from the newly obtained XOR lemma for unique set disjointness.
The other two inequalities follow from general relationships among bs.f /; dt.f /; and
deg1=3.f /; see [48, Theorem 5.3].

6.2. Direct product theorems. Given a (possibly partial) k-party communication prob-
lemF on X DX1⇥X2⇥� � �⇥Xk , consider the task of simultaneously solving ` instances
of F: More formally, the communication protocol now receives ` inputs X1; : : : ; X` 2X
and outputs a string f�1;C1g`; representing a guess at .F.X1/; : : : ; F .X`//: An ✏-error
protocol is one whose output differs from the correct answer with probability no greater
than ✏ on any given input X1; : : : ; X` 2 domF: We let R✏.F; F; : : : ; F / denote the least
cost of such a protocol for solving ` instances of F , where the number of instances will
always be specified with an underbrace.

It is also meaningful to consider communication protocols that solve almost all ` in-
stances. In other words, the protocol receives instances X1; : : : ; X` and is required to
output, with probability at least 1� ✏; a vector ´ 2 f�1;C1g` such that ´i D F.Xi / for at
least ` �m indices i: We let

R✏;m.F; F; : : : ; F™
`

/

stand for the least cost of such a protocol. When referring to this formalism, we will
write that a protocol “solves with probability 1 � ✏ at least ` � m of the ` instances.”
The parameter m; for “mistake,” should be thought of as a small constant fraction of `:
This regime corresponds to threshold direct product theorems, as opposed to the more
restricted notion of strong direct product theorems for which m D 0: All of our results
belong to the former category. The following definition from [49] analytically formalizes
the simultaneous solution of ` instances.

DEFINITION 6.5 (Sherstov). Let f be a .possibly partial/ Boolean function on a finite
set X : A .�; m; `/-approximant for f is any system f�´g of functions �´WX ` ! R;
´ 2 f�1;C1g`; such thatX

´2f�1;C1g`
j�´.x1; : : : ; x`/j 6 1; x1; : : : ; x` 2X ;

X
´2f�1;C1g`
jfi W´

i

D�1gj6m

�.´
1

f .x
1

/;:::;´
`

f .x
`

//.x1; : : : ; x`/ > �; x1; : : : ; x` 2 domf:

The following result [49, Corollary 5.7] on polynomial approximation can be thought
of as a threshold direct product theorem in that model of computation.

THEOREM 6.6 (Sherstov). There exists an absolute constant ˛ > 0 such that for every
.possibly partial/ Boolean function f on f0; 1gn and every .2�˛`; ˛`; `/-approximant f�´g
for f;

max
´2f�1;C1g`

fdeg�´g > ˛` deg1=3.f /:

We will now translate this result to multiparty communication complexity. Our proof
is closely analogous to that in [48, Theorem 6.7], the main difference being our use of
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Theorems 4.2 and 4.20 in place of the earlier and less efficient passage from protocols to
polynomials.

THEOREM 6.7. There is an absolute constant 0 < c < 1 such that for every (possibly
partial) Boolean function f on f0; 1gn and every (possibly partial) k-party communication
problem G;

R1�2�c`;c` .f ıG; : : : ; f ıGœ
`

/ > c` deg1=3.f / � log
c

rdisc.G/
: (6.3)

In particular,

R1�2�c`;c`

✓
f ı UDISJ

k;
l
4

k

k

2

c

m : : : ; f ı UDISJ
k;
l
4

k

k

2

c

m
•

`

◆
> ` deg1=3.f /

for some absolute constant 0 < c < 1:

Proof. Let X DX1 ⇥X2 ⇥ � � � ⇥Xk be the input space of G: Let ˛ > 0 be the absolute
constant from Theorem 6.6, and let c 2 .0; ˛/ be a sufficiently small absolute constant to
be named later. Consider any randomized protocol ˘ which solves with probability 2�c`
at least .1�c/` from among ` instances of f ıG; and let r denote the cost of this protocol.
For ´ 2 f�1;C1g`; let ˘´ denote the protocol with Boolean output which on input from
.X n/` runs ˘ and outputs �1 if and only if ˘ outputs ´: Let �´W .X n/` ! Œ0; 1ç be the
acceptance probability function for ˘´: Then �´ D P

a�� by Corollary 2.8, where the
sum is over k-dimensional cylinder intersections and

P ja�j 6 2r :
Now let ⇡ be any balanced probability distribution on the domain of G and define

the linear operator L⇡;`nWR.X n/` ! R.f0;1gn/` as in Theorem 4.2. By Theorem 4.2 and
linearity,

E.L⇡;`n �´;D � 1/ 6 2r
✓

rdisc⇡.G/
c0

◆D
for every ´ and every positive integer D; where c0 > 0 is an absolute constant. Abbreviate
d D deg1=3.f / in what follows. Letting D D d˛`de, we arrive at

E.L⇡;`n �´; d˛`de � 1/ 6 2r
✓

rdisc⇡.G/
c0

◆d˛`de
(6.4)

for every ´: On the other hand, we claim that

E.L⇡;`n �´; d˛`de � 1/ > 2�c` � 2�˛`
2`.1C 2�˛`/ (6.5)

for at least one value of ´: To see this, observe that f�´g is a .2�c`; ˛`; `/-approximant for
f ı G; and analogously fL⇡;`n �´g is a .2�c`; ˛`; `/-approximant for f: As a result, if
every function L⇡;`n �´ can be approximated within ✏ by a polynomial of degree less than
˛`d; one obtains a ..2�c` � 2`✏/=.1 C 2`✏/; ˛`; `/-approximant for f with degree less
than ˛`d: The inequality (6.5) now follows from Theorem 6.6, which states that f does
not admit a .2�˛`; ˛`; `/-approximant of degree less than ˛`d:

Comparing (6.4) and (6.5) yields for claimed lower bound (6.3) on r; provided that
c D c.c0; ˛/ > 0 is small enough. The other lower bound in the theorem statement follows
from (6.3) by Theorem 4.20.
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Theorem 6.7 readily generalizes to compositions of the form f ı .ORk _ ANDk/; as
illustrated above for XOR lemmas.

COROLLARY 6.8. For some absolute constant 0 < c < 1 and every `;

R1�2�c`;c`.UDISJk;n; : : : ;UDISJk;nû
`

/ > ` �˝
✓p

n

2kk

◆
:

Proof. Theorem 2.5 shows that deg1=3.AANDn/ > ˝.
p
n/: As a result, Theorem 6.7 for

f DAANDn gives

R1�2�c`;c`

✓
UDISJ

k;n
l
4

k

k

2

c

m; : : : ;UDISJ
k;n

l
4

k

k

2

c

m
’

`

◆
D ` �˝.pn/;

which is equivalent to the claimed bound.

This settles Theorem 1.2(ii) from the introduction.

6.3. Nondeterministic and Merlin-Arthur communication. We now turn to the non-
deterministic and Merlin-Arthur communication complexity of set disjointness. The best
lower bounds [48] prior to this paper were ˝.n=4k/1=4 for nondeterministic protocols and
˝.n=4k/1=8 for Merlin-Arthur protocols, both of which are tight up to a polynomial. In
what follows, we prove quadratically stronger lower bounds in both models. The proof in
this paper is nearly identical to those in [23, 48], the only difference being the passage from
communication protocols to polynomials. We use Theorems 4.2 and 4.20 for this purpose,
in place of the less efficient passage in previous works.

THEOREM 6.9. There exists an absolute constant c > 0 such that for every (possibly
partial) k-party communication problem G;

N.ANDn ıG/ > ˝

✓p
n log

1

c rdisc.G/

◆
; (6.6)

MA1=3.ANDn ıG/ > ˝

✓p
n log

1

c rdisc.G/

◆1=2
: (6.7)

In particular,

N.DISJk;n/ > ˝

✓p
n

2kk

◆
;

MA1=3.DISJk;n/ > ˝

✓p
n

2kk

◆1=2
:

Proof. Define f D ANDn, F D f ı G, and d D deg1=3.ANDn/. As shown in [23]
and [48, Theorem 7.2], there exists a function  W f0; 1gn ! R that obeys (5.4), (5.5), and

 .1; 1; : : : ; 1/ < �1
6
: (6.8)
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Now fix an arbitrary balanced probability distribution ⇡ on the domain of G and define

 .X1; : : : ; Xn/ D 2n .G⇤.X1/; : : : ; G⇤.Xn//
nY
iD1

⇡.Xi /;

as in the dual proof of Theorem 5.1. Then (5.6) shows that  is the pointwise product
 D H � P for some sign tensor H and probability distribution P: In particular, (5.8)
asserts that

discP .H/ 6 .c rdisc⇡.G//d (6.9)

for an absolute constant c > 0: By (6.8), we have  .x/ < 0 whenever f .x/ D �1; so that

P.F �1.�1/ZH�1.C1// D 0: (6.10)

Also,

P.F �1.�1/ZH�1.�1// D P.F �1.�1// D j .1; 1; : : : ; 1/j > 1

6
; (6.11)

where the first step uses (6.10), the second step uses the fact that ⇡ is balanced on the
domain of G; and the final inequality uses (6.8). By Theorem 2.5,

d D ˝.pn/: (6.12)

Now (6.6) and (6.7) are immediate from (6.9)–(6.12) and Theorem 2.11.
Taking G D DISJk;c04kk2 in (6.6) for a sufficiently large integer constant c0 > 1 gives

N.DISJk;c04kk2n/ > ˝

 
p
n log

1

c rdisc.DISJk;c04kk2/

!
> ˝.

p
n/;

where the second inequality uses Theorem 4.20. Analogously MA1=3.DISJk;c04kk2n/ >
˝.n1=4/: These lower bounds on the nondeterministic and Merlin-Arthur complexity of
set disjointness are equivalent to those in the theorem statement.

This settles Theorem 1.3 from the introduction.

6.4. Circuit complexity. Circuits of majority gates are a biologically inspired computa-
tional model whose study spans several decades and several disciplines. Research has
shown that majority circuits of depth 3 already are surprisingly powerful. In particular,
Allender [2] proved that depth-3 majority circuits of quasipolynomial size can simulate
all of AC0; the class of f^;_;:g-circuits of constant depth and polynomial size. Allen-
der’s result prompted a study of the computational limitations of depth-2 majority circuits
and more generally of depth-3 majority circuits with restricted bottom fan-in. Most of the
results in this line of work exploit the following reduction to multiparty communication
complexity, where the shorthand MAJıSYMMıANY refers to the family of circuits with
a majority gate at the top, arbitrary symmetric gates at the middle level, and arbitrary gates
at the bottom.

PROPOSITION 6.10 (Håstad and Goldmann). Let f be a Boolean function computable
by a MAJ ı SYMM ı ANY circuit, where the top gate has fan-in m; the middle gates
have fan-in at most s; and the bottom gates have fan-in at most k � 1: Then the k-party
number-on-the-forehead communication complexity of f obeys

R
1

2

� 1

2.mC1/
.f / 6 kdlog.s C 1/e;

regardless of how the bits are assigned to the parties.
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Depth Circuit lower bound Reference

3 expf˝.n1=3/g, k D 2 Buhrman, Vereshchagin, and de Wolf [17]
Sherstov [46, 47]

3 exp
⇢
˝
⇣ n
4k

⌘1=.6k2k/�
Chattopadhyay [19]

6 exp
⇢
1

k
�˝

⇣ n

231k

⌘1=29�
Beame and Huynh-Ngoc [10]

3 exp
⇢
1

k
�˝

⇣ n
4k

⌘1=7�
Sherstov [48]

3 exp
⇢
1

k
�˝

⇣ n

4kk2

⌘1=3�
This paper

TABLE 3. Lower bounds for computing functions in AC0 by circuits of
type MAJ ı SYMM ı ANY with bottom fan-in k � 1: All functions are
on nk bits.

Using Håstad and Goldmann’s observation, a series of papers [17, 46, 47, 19, 10, 48]
have studied the circuit complexity of AC0 functions, culminating in a proof [48] that
MAJ ı SYMM ıANY circuits with bottom fan-in .1

2
� ✏/ logn require exponential size to

simulate AC0 functions, for any ✏ > 0. This circuit lower bound comes close to matching
Allender’s simulation of AC0 by quasipolynomial-size depth-3majority circuits, where the
bottom fan-in is logO.1/ n: Table 3 gives a quantitative summary of this line of research.
We are able to contribute the following sharper lower bound.

THEOREM 6.11. There is an (explicitly given) read-once f^;_g-formulaHk;nW f0; 1gnk !
f�1;C1g of depth 3 such that any circuit of type MAJ ı SYMM ıANY with bottom fan-in
at most k � 1 computing Hk;n has size

exp
⇢
1

k
�˝

⇣ n

4kk2

⌘1=3�
:

Proof. Define

Fk;n.x/ D
n_
iD1

4kk2n2^
jD1

.xi;j;1 _ xi;j;2 _ � � � _ xi;j;k/:

We interpret Fk;n as the k-party communication problem in Corollary 5.8. Let C be a
circuit of type MAJ ı SYMM ıANY that computes Fk;n, where the bottom fan-in of C is
at most k � 1: Let s denote the size of C: The proof will be complete once we show that
s > 2˝.n=k/:
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Since C has size s; the fan-in of the gates at the top and middle levels is bounded by s;
which in view of Proposition 6.10 gives

R
1

2

� 1

2.sC1/
.Fk;n/ 6 kdlog.s C 1/e:

By Corollary 5.8, this leads to the desired lower bound: s > 2˝.n=k/:
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