
Pebbling, Entropy and Branching Program Size Lower
Bounds

Balagopal Komarath∗ and Jayalal Sarma M.N.
Department of Computer Science & Engineering

IIT Madras, Chennai, India
Email : {baluks,jayalal}@cse.iitm.ac.in

January 8, 2013

Abstract

We contribute to the program of proving lower bounds on the size of branching
programs solving the Tree Evaluation Problem introduced in [4]. Proving an exponen-
tial lower bound for the size of the non-deterministic thrifty branching programs would
separate NL from P under the thrifty hypothesis. In this context, we consider a re-
striction of non-deterministic thrifty branching programs called bitwise-independence.
We show that any bitwise-independent non-deterministic thrifty branching program
solving BT2(h, k) must have at least 1

2k
h/2 states. Prior to this work, lower bounds

were known for general branching programs only for fixed heights h = 2, 3, 4 [4]. Our
lower bounds are also tight (up to a factor of k), since the known[4] non-deterministic
thrifty branching programs for this problem of size O(kh/2+1) are bitwise-independent.
We prove our results by associating a fractional pebbling strategy with any bitwise-
independent non-deterministic thrifty branching program solving the Tree Evaluation
Problem. Such a connection was not known previously even for fixed heights.

Our main technique is the entropy method introduced by Jukna and Zak[6] orig-
inally in the context of proving lower bounds for read-once branching programs. We
also show that the previous lower bounds known[4] for deterministic branching pro-
grams for Tree Evaluation Problem can be obtained using this approach. Using this
method, we also show tight lower bounds for any k-way deterministic branching pro-
gram solving Tree Evaluation Problem when the instances are restricted to have the
same group operation in all internal nodes.

1 Introduction

The question whether L is a proper subset of P is one of the central problems in complexity
theory. One of the approaches to the problem was proposed as a program by Cook [3]

∗Supported by the TCS Research Fellowship.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 6 (2013)

by introducing a suitable computational problem, namely the solvable path systems. The
program suggests to prove lower bounds for increasingly stronger models of computation
solving the solvable path systems problem. Indeed, for the specific problem, the attempt
is to discover the structure of that restricted variant of the underlying computation process
that captures the most natural, and if possible the most general, algorithmic strategies for
solving the problem. Cook [3] also proved super-logarithmic space lower bounds for marking
machines solving the solvable path systems problem. Marking machines capture pebbling
algorithms (which is a class of “natural” algorithms) solving this problem.

Barrington and Mckenzie [2] took a similar approach by considering the problem GEN
and attempted to prove (upper and lower bounds) for increasingly stronger models of compu-
tation for solving GEN. Specifically, Barrington [2] considered “oracle” branching programs
where each state of the branching program is allowed to ask a question about the input.
For example, a general BP can ask queries of the form “What is the ith bit of the input?”
(This is called a branching program with BIT oracle.). Barrington [2] proved exponential
size lower bounds for branching programs equipped only with certain “weak” oracles. Gal et
al [5] considered incremental branching programs for solving GEN which can be thought of as
branching programs trying to solve the GEN problem by incrementally finding the elements
of the closure.

Cook et al [4] proposed the tree-evaluation problem for separating L and P and introduced
thrifty branching programs as a model that captures “natural” algorithms solving the tree-
evaluation problem. It is shown in [4] that deterministic thrifty branching programs exactly
correspond to algorithms that implement black-pebbling. They also introduced the con-
cept of fractional black-white pebbling and showed that non-deterministic thrifty branching
programs can implement fractional black-white pebbling. It is also known that exponential
size lower-bounds for deterministic semantic incremental branching programs solving the
GEN problem follows from exponential size lower-bounds for deterministic thrifty branch-
ing programs solving a generalization of tree-evaluation problem called the DAG-evaluation
problem [10].
Tree Evaluation Problem: We now briefly describe the tree-evaluation problem (see
section 2 for a formal definition). An instance of the tree evaluation problem, FTd(h, k),
is a complete d-ary tree where each leaf is associated with an element from [k] (which we
think of as the value of the leaf node) and the ith internal node is associated with a function
fi : [k]d 7→ [k]. The value of an internal node is obtained by applying this function to the
values of its children. The output is the value of the root node. The corresponding Boolean
version, BTd(h, k), differs from FTd(h, k) in that the function at the root node maps a value
in [k]d to a value in {0, 1}. An instance of BTd(h, k) is called a “yes” instance if and only
if the value of the root node is 1. Another variant of the tree-evaluation problem is the
single function variant F̂Td(h, k) where the functions at all internal nodes are the same. A
natural computational model for tree-evaluation problem is k-way branching program where
each node queries the value of a single k-ary variable (i.e., the query is either i, where i
is a leaf node, or fj(r, s), where j is an internal node and r, s ∈ [k].). As observed in [4],
any size lower bound of the form Ω(kr(h)) for k-way branching programs, where r(h) is an

2

unbounded function, would prove that L 6= P. We only consider k-way branching programs
in this paper. Here we think of the parameter d as fixed and are interested in how the size
of the branching programs solving FTd(h, k) increases with h and k.

A natural algorithm to solve FTd(h, k) is to evaluate the tree in a bottom-up fashion.
This can be captured by the concept of black pebbling Th

d (The complete d-ary tree of height
h.). A black pebble on a node indicates that the value of the node is known. A black pebble
can be placed on an internal node only if both its children are black pebbled. As a special
case, a black pebble can be freely placed on any leaf node. It can be shown that h pebbles
are necessary and sufficient for black pebbling Th

2. Since a value in [k] can be represented
using log k bits. This corresponds to a size bound of Θ(kh) for branching programs. Simi-
larly, fractional black-white pebbling captures natural non-deterministic algorithms solving
FTd(h, k). A white pebble can be freely placed on any node and corresponds to guessing
the value of that node. However, to remove a white pebble from a node (this corresponds
to verifying the guessed value) both its children have to be pebbled. Moreover, a branching
program may compute or guess a fraction of bits of the values of nodes and this results in
fractional black and white pebbles respectively.

A deterministic thrifty branching program is one in which the branching program is only
allowed to query fj(r, s) when r and s are the values of the children of node j. Cook et al. [4]
showed that deterministic thrifty branching programs solving BT2(h, k) require Ω(kh) states
by showing that such branching programs implement exactly a black pebbling strategy. Cook
et al. [4] also proved tight lower bounds for non-deterministic thrifty branching programs
for h = 2, 3, 4. They also show an upper-bound of O(kh/2+1) for non-deterministic thrifty
branching programs solving FT2(h, k). This shows that the non-deterministic variant is more
powerful.
Our Results: In this paper, we show that computation of non-deterministic thrifty branch-
ing programs with an additional restriction that we call bitwise-independence can be associ-
ated with a fractional black-white pebbling sequence and therefore requires exponential size.
The additional restriction of bitwise-independence is not too severe since all known upper-
bounds using non-deterministic thrifty branching programs can be achieved using those with
bitwise-independence property. In particular, the branching program described in [4] that
achieve O(kh/2+1) upper-bound satisfy bitwise-independence. Our main result is the first
exponential lower bound for the above restriction of non-deterministic thrifty branching
programs.

Theorem 1 (Main Theorem) If B is a bitwise-independent non-deterministic thrifty branch-
ing program solving BT2(h, k), then B has at least 1

2
kh/2 states.

We associate these branching programs with fractional pebbling. Cook et al. [4] showed
that if the tree Th

d can be fractionally pebbled using p pebbles, then the corresponding
(binary) Tree evaluation problem can be solved by a non-deterministic thrifty branch-
ing program of size O(kp). However, the converse direction is far from clear. We make
progress in this direction and prove our lower bound by connecting bitwise-independent
non-deterministic thrifty branching programs to fractional black-white pebbling sequences.
We use the known result[8] (see also [4]) that h/2 + 1 pebbles are necessary and sufficient

3

to pebble Th
2 using fractional black-white pebbling, to derive our lower bounds. We note

that the lower bounds for h = 2, 3, 4 in [4] were not shown by associating it with fractional
black-white pebbling.

Our main technique is a method proposed by Jukna and Zak [6] for proving size lower
bounds for branching programs which they call the entropy method. Briefly, the method is
to distribute a large set of inputs among the states of the branching program such that only
a small number of inputs get mapped to any particular state. To achieve this, Jukna and
Zak[6] proposed to consider the set F of inputs reaching that state and show that we can
uniquely determine an input in F by a decision tree of low average depth (equivalently, the
set F has low entropy.). It follows that there are a large number of states.

As our next contribution, we show that the lower bound proofs in [4] for k-way branching
programs solving FT3

2(k), Children42(k) and thrifty branching programs solving BT2(h, k) can
be obtained using this framework. Thus we get new simplified and unified views of the proofs
for the following theorems.

Theorem 2 • Any deterministic k-way branching program solving FT3
2(k) must have at

least k3 states.

• Any deterministic k-way branching program solving Children42(k) must have at least k4

states.

We then apply our method in a restricted setting where the functions at all internal nodes
are given to be the same.

Theorem 3 Any deterministic k way branching program solving F̂T2(h, k) with the functions
at internal nodes restricted to a group operation must have at least 2h−2k states.

We observe that the above lower bound is tight. Indeed, when the internal operation is
that of a group, the associativity property can be used to design branching programs of size
O(2hk), when the function at the internal nodes is fixed. When the function at the internal
nodes is also a part of the input, the upper bound is off by a factor of k, namely O(2hk2).

The rest of the paper is organized as follows: In Section 2 we introduce the preliminaries
needed for the paper. We prove the main result in section 3. Further applications of the
entropy method are described in Section 4.

2 Preliminaries

For definitions of basic notions in complexity theory, we refer the reader to a standard
textbook [1, 9]. We give the formal definition of the Tree Evaluation Problem first. In the
following discussion, we label the nodes of the tree using usual heap numbering. The root
node is labelled 1 and for each internal node i, its children are labelled d(i−1)+2, . . . , di+1.
We use vi to denote the value of the ith node in the input tree. When we are talking about
a specific input I, we use vIi to denote the value of node i of the input I.

We now define the function and Boolean versions of the tree-evaluation problem.

4

Definition 4 (Tree Evaluation Problems [4]) Input: The tree Th
d where each leaf node

is associated with a value from [k] and each internal node i is associated with a function
fi : [k]d 7→ [k], where d, h, k ≥ 2

Output for FTd(h, k): The value v1 ∈ [k] of the root node, where in general vi = a if i
is a leaf and a is the value associated with ith node in the input and vi = fi(vj1 , . . . , vjd)
if i is a non-leaf node with nodes j1, . . . , jd as children.

Output for BTd(h, k): The value v1 ∈ {0, 1} of the root node. The evaluation rules
are the same as for FTd(h, k).

It is known that tree-evaluation problems are in LOGDCFL [4] (For definition of LOGDCFL
see [7].). Since we think of the parameter d as a constant, the input size is O(dhk2 log k).
Since all the values in the definition of tree-evaluation problems are k-ary, a general model
to solve tree-evaluation problem is a branching program that queries k-ary variables. Such
branching programs are called k-way branching programs, since each query has k possible
outcomes (depending on the value of the queried variable.). We define these models formally
now. Throughout the technical sections of this paper, we use BP as short form for branching
program.

Definition 5 (k-way BPs[4]) A non-deterministic k-way BP B for FTd(h, k) is a directed
rooted multigraph. It consists of k final states labelled 1, . . . , k. All other states of the BP are
query states. A query state is labelled either i where i is a leaf node or labelled fi(x1, . . . , xd)
where i is an internal node, x1, . . . , xd ∈ [k], and each outgoing edge is labelled by an element
from [k]. A computation path on input x is a directed path from the root (the start state)
and each edge in the path is consistent with x. At least one such computation must end in a
final state. The BP B is deterministic if and only if each query state has exactly k outgoing
edges labelled 1, . . . , k.

A non-deterministic k-way BP B for BTd(h, k) is defined similarly except that each query
state labelled f1(x1, . . . , xd) where x1, . . . , xd ∈ [k] has all of its outgoing edges labelled by
either 0 or 1. There are two final states labelled 0 and 1. The BP B is deterministic if and
only if each query state labelled f1(x1, . . . , xd) has exactly two outgoing edges labelled 0 and 1
and every other query state has exactly k outgoing edges labelled 1, . . . , k. The BP B solves
BTd(h, k) if and only if for every “yes” instance has at least one accepting computation path
and every “no” instance has no accepting computation path.

By a sub-BP B′ of B obtained by restricting input set E to E ′, we refer to the BP
obtained from B by removing edges not used by inputs in E ′ and by shortcutting states for
which only one outgoing edge can be active when we consider computation on instances in
E ′.

The size of binary binary for solving tree-evaluation problems differ from the size of k-way
BPs by a factor of at most k. Therefore, a size lower bound of Ω(kr(h)) for k-way branching
programs, where r(h) is an unbounded function, would separate L from LOGDCFL.

5

Definition 6 (Thrifty BPs [4]) A non-deterministic BP solving BTd(h, k) is called thrifty
if and only if for any accepting computation path on instance I any query state labelled
fi(xd(i−1)+2, . . . , xdi+1) satisfies xj = vIj for d(i− 1) + 2 ≤ j ≤ di+ 1 (i.e., the internal nodes
are queried only at the correct values of its children.).

2.1 Pebbling

Pebbling sequences capture “natural” algorithms that solve the tree-evaluation problems
that evaluate the values at nodes of the tree in a bottom-up fashion. A black pebble value at
a node indicates the fraction of the value at the node that is known to the BP. Similarly, a
white pebble indicates the fraction of the value at the node guessed by the BP (respectively,
the fraction of value at the node that needs to be verified by the BP). For example, a black
pebble value of 1 indicates that value is completely known and a white pebble value of 1
indicates that the value was guessed from [k]. In order to compute or guess (a fraction of)
the value at any node, the BP must completely figure out (by computing or guessing) the
values of its children.

Definition 7 (Fractional Black-White Pebbling [4]) A fractional pebbling configura-
tion on a rooted d-ary tree T is an assignment of a pair of real numbers (b(i), w(i)) to
each node i of the tree. The values b(i) and w(i) are called the black and white pebble values,
respectively, of node i. We have for every i

b(i) + w(i) ≤ 1

0 ≤ b(i), w(i) ≤ 1 (1)

The legal pebble moves are as follows.

1. For any node i, decrease b(i) arbitrarily.

2. For any node i, increase w(i) arbitrarily.

3. For any node i, if each child of i has pebble value 1, then decrease w(i) to 0.

4. For any node i, if each child of i has pebble value 1, then increase b(i) arbitrarily and
simultaneously decrease the black pebble value of children of i.

The number of pebbles in a configuration is the sum over all nodes i of b(i) + w(i). A
fractional pebbling of T using p pebbles is a sequence of (legal) fractional pebbling moves on
nodes of T which starts and ends with each node having pebble value 0 and at some point the
root node has black pebble value 1, and no configuration has more than p pebbles.

A black pebbling is a fractional black-white pebbling such that for all i the black pebble
value b(i) always takes values from {0, 1} and w(i) = 0.

It is known that h/2+1 pebbles are necessary and sufficient to pebble Th
2 using fractional

black-white pebbling [8].

6

2.2 Entropy Method

We now formally describe the entropy method introduced in [6]. We specialize the definition
slightly to suit our application of the method. Let B be a BP computing the characteristic
function of language L. Let A be a particular set of inputs. Define a “distribution” function
g : A 7→ States(B). Now consider an arbitrary state s in the range of g and let F = g−1(s).
Define a decision tree D such that each a ∈ F reaches a unique leaf in D. Such a decision tree
is called a ‘splitting tree’ for F in [6]. The next step is to prove that D has low depth which
will imply that the entropy of F , h(F) = log |F |, is small. Then we have Size(B) ≥ 2|A|−h(F).
In defining A and g, we may use properties of L and any restrictions imposed on the structure
of B. The goal is to minimize the maximum value of h(F) over all choices of F by using an
A that is as large as possible.

For the rest of our discussion, we fix d = 2. However all our arguments can be easily
generalized to arbitrary constant d.

2.3 Bitwise-independent Non-deterministic Thrifty BPs

We use N to denote the total number of non-root nodes in Th
2. Let B be a non-deterministic

thrifty BP for BT2(h, k). Let s be a state of B. We define

Fs = {(vI2 , . . . , vIN+1) : ∃I and a computation path C(I) such that s ∈ C(I)}
As = {(vI2 , . . . , vIN+1) : ∃I and an accepting computation path C(I) such that s ∈ C(I)}

We use π(S, i) to denote the set of all ith component of the tuples in S (typically, S is
either Fs or As for some s.). That is, the set formed by projecting the ith component of all
tuples in S. For any encoding function φ : [k] 7→ {0, 1}dlog ke, we use (r)i to denote the ith

bit of r ∈ [k] when r is encoded using φ.

Definition 8 (Bitwise-independent Non-deterministic Thrifty BPs) Let k = 2` and
let B be a non-deterministic thrifty BP solving BT2(h, k). Then B is bitwise-independent if
and only if there exists an encoding function φ : [k] 7→ {0, 1}` such that for every state s in
B the following two conditions are satisfied.

Fs =
N+1
×
i=2

φ−1
(

`
×
j=1

(π(Fs, i))j

)
As =

N+1
×
i=2

φ−1
(

`
×
j=1

(π(As, i))j

)
Where we think of the first × as the normal Cartesian product and the second one (over

all the bits) as concatenating all the bits after forming the Cartesian product. When k is not
a power of two, we consider the largest power of two smaller than k. Let this be 2`. Then
B is bitwise-independent if and only if the above two conditions are satisfied with equality
replaced by superset.

7

The intuition is that at any state the bits of values of non-root nodes can be partitioned
into “fixed” bits and “unfixed” bits and the sets Fs and As are such that all possible com-
binations of unfixed bits are in the set. i.e., the BP cannot store implicit information about
bits (such as, the second bit is the complement of the first bit).

If we only consider minimal bitwise-independent non-deterministic thrifty BPs, then we
have |Fs|, |As| ≥ 1 for any query state s. This is because any query state s that does not
have any accepting computation path passing through it can be merged with the reject state.
Also note that by the definition of bitwise independence, for any i and s, we have π(Fs, i)
and π(As, i) are always powers of two when k is a power of two.

We now define the pebbling values assigned to a non-root node i at state s of the BP.
These pebbling values are referred to as “actual” pebble values.

b(i, s) = 1− logk |π(Fs, i)|

w(i, s) = logk
|π(Fs, i)|
|π(As, i)|

(2)

3 Lower Bounds for Bitwise-independent Non-deterministic

Thrifty BPs

In this section, we prove exponential size lower bounds for bitwise-independent non-deterministic
thrifty BPs. The proof uses the entropy method. We consider the input set E for the prob-
lem BT2(h, k), where each leaf node is allowed to take values from [k] and for each instance
I and each internal node i, we allow fi(v

I
2i, v

I
2i+1) to take any value from [k] and restrict it

to 1 elsewhere. We also fix f1(v
I
2 , v

I
3) = 1 and 0 elsewhere so that |E| = kN . Note that all

instance I ∈ E are “yes” instances. The idea is to map an accepting computation path on
I ∈ E into a valid fractional black-white pebbling sequence. To this end, we define a set of
critical states for each node on an accepting computation path of I ∈ E. The distribution
function then maps each input to the state where the pebble value is maximum (which will
imply that the number of inputs is small).

We now show that our definition of pebble values satisfy the restrictions imposed on
pebble values by (1).

Claim 9 For any non-root node i and state s, 0 ≤ b(i, s), w(i, s) ≤ 1.

Claim 10 For any non-root node i and state s, b(i, s) + w(i, s) ≤ 1.

The following claim establishes the fact that if the total pebble value of the tree (in non-
root nodes) is high at a state, then there are only a few inputs on an accepting computation
path reaching that state. In other words, if the pebble value at a point of the computation
is high, then the entropy at that point is low.

Claim 11 If the total pebble value of the non-root nodes of the tree at a state s is p, then
the number of “yes” instances reaching s on an accepting computation path is kN−p.

8

Proof: Consider a particular non-root node i. Assume that the total pebble value at i is
pi. From this we have 1 − logk |π(Fs, i)| + logk

|π(Fs,i)|
|π(As,i)| = pi. Therefore |π(As, i)| = k1−pi .

Now by simple counting the total number of inputs on an accepting computation path is
k
∑N+1

i=2 (1−pi) = kN−p.

Consider an input I ∈ E and an accepting computation path C(I) for I. Our aim is
to define a sequence of critical states (γ0 =)s0, s1, . . . , st+1(= acc) (s0 and st+1 are always
start and final states of the BP) and associate a fractional pebbling configuration with each
critical state. The sequence thus obtained will be a valid fractional pebbling sequence and
it will be defined such that the pebbling values at each node will underestimate the actual
pebbling values defined by (2).

Critical States We now define the sequence of critical states on the accepting computation
path C(I). The critical state for the root node is the last state querying the root node. Every
non-root node j may have multiple critical states. Let s denote a critical state of parent
of j. If b(j, s) > 0, then the last node querying node j before s is a critical state for j. If
w(j, s) > 0, then the first node querying node j after s is a critical state for j.

Pebble Configurations We now define the sequence of pebble configurations associated
with critical states on an accepting computation path of input I. The black pebble value
of the root node becomes 1 immediately after its critical state and remains so until the end
of the computation where it becomes 0. Now we define the pebble values of an arbitrary
non-root node j. Let s′ be a critical state for j′, the parent of j. If b = b(j, s′) > 0, then
this black pebble value must have increased from 0 to b at some point of computation. Now
consider the critical state s for j before s′ as defined before. The black pebble value of
node j is increased from 0 to b at the critical state immediately following s. Similarly, if
w = w(j, s′) > 0, then this white pebble value must decrease from w to 0 at some point of
computation. Now consider the critical state s for j after s′ as defined before. The white
pebble value is reduced from w to 0 from the critical state immediately following s.

The following claims about the validity of the starting and ending pebbling configurations
are easily proved.

Claim 12 The start state has an empty pebbling configuration.

Claim 13 The accepting state has an empty pebbling configuration.

The following lemmas establish the fact that the pebbling sequence defined above is a
valid pebbling sequence.

Lemma 14 Let s be a critical state for node j, then both of j’s children are fully pebbled at
s.

9

Proof: Let s query fj(u, v). We have π(As, 2j) = {u} (and π(As, 2j + 1) = {v}) by the

thrifty property. Then b(2j, s) + w(2j, s) = 1 − logk |π(Fs, 2j)| + logk
|π(Fs,2j)|
|π(As,2j)| = 1 (and

similarly for 2j + 1).

Lemma 15 If the black pebble value of node j is increased or the white pebble value of node j
is decreased at state s, then both its children are fully pebbled at the critical state immediately
before s.

Proof: For a node j, the black pebble value is increased or the white pebble value is decreased
only at the critical state immediately following a critical state for j. By Lemma 14 both
children of node j are fully pebbled at this critical state.

The following is our key technical lemma and establishes the fact that the pebbling values
defined for the critical states never overestimate the actual pebbling values of nodes.

Lemma 16 Let b and w be the pebble values defined at state s for an arbitrary non-root
node 2j, then b ≤ b(2j, s) and w ≤ w(2j, s).

Proof: The proof is divided into two parts. First, we show that the black pebble values are
never overestimated. Then we show that white pebble values are never overestimated.

We consider an arbitrary state s at which the black pebble value of node 2j is defined
as b > 0. Note that the black pebble value of a non-root node 2j is non-zero if and only
if there exists a critical state for the parent of 2j at which the actual pebble value of 2j is
b. Therefore, there exists a state s2j that is a critical state for 2j before s and sj that is a
critical state for j, the parent of 2j, after s (with s = sj possibly.). Now suppose that the
actual black pebble value for node 2j at state s is b(2j, s) and that b(2j, s) < b.

1− logk |π(Fs, 2j)| < b

=⇒ |π(Fs, 2j)| > k1−b

Now by the independence assumption we may conclude that there are more than k1−b

inputs that differ only at the value of node 2j. By the definition of critical states, there does
not exist any node querying 2j in C(I) from s to sj. All these inputs can follow the same path
to the critical state sj. Therefore, the black pebble value is b(2j, sj) < b, a contradiction.

It remains to prove that white pebble values are never overestimated. We will prove that
the white pebble value of a node 2j is at least the estimated value w between all states from
sj to s2j (both inclusive). Here sj is a critical state for j at which node 2j acquired a white
pebble value of w and s2j is the critical state for 2j after which this pebble value is removed.

In order to prove this, it is sufficient to prove that the ratio f ′

a′
=
|π(Fs′ ,2j)|
|π(As′ ,2j)|

for any state s′ is

greater than the corresponding ratio f
a

at state sj, where s′ is a state on C(I) in the segment
from sj to s2j. By the independence argument, we have f ′ ≥ f by taking projections of all

10

f inputs that differ from I only at node 2j. We will show that if a′ > a, then f ′ > f by an
appropriate amount so that the ratio is not reduced.

Since the white pebble value is acquired at state sj, we have w(2j, sj) = w. Now consider
a state s′ (Possibly equal to s2j) on the segment of the computation path C(I) between sj
and s2j. Our aim is to prove that w ≤ w(2j, s′). Let f = |π(Fsj , 2j)|, f ′ = |π(Fs′ , 2j)|,
a = |π(Asj , 2j)| and a′ = |π(As′ , 2j)|. First of all note that f ′ ≥ f since there are no nodes
querying 2j from sj to s2j and the independence property guarantees f inputs that differ
from I only at node 2j will reach s′. Now we will show that whenever a′ > a , f ′ is greater
than f by the same multiplicative factor. Note that both f and a are powers of two. By
the assumption of bit-wise independence, we can partition bits of node 2j into “fixed” bits
and “unfixed” bits for any Fs (and As). The only way to add elements to these sets are
by unfixing bits. Let us assume that exactly one more bit became unfixed in π(As′ , 2j). So
a′ = 2a.

Let r′ be a value in π(As′ , 2j) \ π(Asj , 2j). We claim that r′ /∈ π(Fsj , 2j). We will prove
this by contradiction. Suppose r′ ∈ π(Fsj , 2j), then by the independence property there
is an input J which is the same as I except that vJ2j = r′ reaches s′ through sj. Since
r′ ∈ π(As′ , 2j), there is an accepting path for J through sj. This accepting path is obtained
by using the independence property of As′ and the fact that an accepting computation for I
passes through s′. But this path makes a non-thrifty query at sj. Therefore r′ /∈ π(Fsj , 2j)
as claimed. Since r′ ∈ π(Fs′ , 2j), at least one bit must have become unfixed. But this implies
f ′ ≥ 2f . This proof can be easily extended to the case where a′ = 2ma for any m.

We now prove our main result by associating an accepting computation on input I ∈ E
to a valid fractional black-white pebbling sequence.

Theorem 17 If B is a bitwise-independent non-deterministic thrifty BP solving BT2(h, k),
then B has at least 1

2
kh/2 states.

Proof: Assume that k is a power of two. We now apply the entropy method described
in subsection 2.2. Our input set is the set E described previously. We now describe our
distribution function h. Recall that each instance I in E is a “yes” instance and therefore
guaranteed to have an accepting computation path C(I) in B. As we have already seen,
we can identify a sequence of critical states in C(I) and associate a fractional black-white
pebbling configuration with each critical state such that the sequence of fractional black-
white pebbling configurations form a valid fractional pebbling of Th

2 (See Claims 9, 10, 12,
13, 14, and 15). But we know that any valid fractional black-white pebbling of Th

2 must have
a configuration with at least h/2 pebbles on non-root nodes [8]. Let s be the critical state in
C(I) that corresponds to this configuration. Our distribution function h maps I to s. Now
consider an arbitrary state s in range(h) and consider the set Gs = h−1(s). By Claim 11,
we have |Gs| ≤ kN−h/2. It follows that B has at least kh/2 states. (Intuitively, if we consider
the splitting tree for Gs, we can determine the input by querying only those bits that are
“unfixed” at s.)

When k is not a power of two, we consider the highest power of two (2`) smaller than k.
Consider the sub-BP of B that solves BT2(h, k) when the values are from the set [2`]. By

11

definition of bitwise-independence and the lower bound when k is a power of two, we have
that this sub-BP of B has at least 2`

h/2
> 1

2
kh/2 states.

Remark 18 We note that the lower-bound proof in [4] for deterministic thrifty BPs can be
obtained by specializing our argument to deterministic thrifty BPs. Specifically, we define
the black pebble value of a node as 1 if and only if its value is known. The critical state
for the root node is the last state querying root and critical state for other nodes j are those
states which query j and immediately precedes the critical state for j’s parent. The fact
that the computation follows a valid black pebbling can be argued using thriftiness (bitwise-
independence is not required.). We then map each input to the state that has h or more
pebbles. The lower bound follows.

4 Lower Bounds for Deterministic BPs Using Entropy

Method

In this section, we show that many lower-bound proofs in [4] can be derived using the entropy
method and derive some new applications of the method. We believe that reformulating it
in terms of the entropy method makes the connection more explicit.

Theorem 19 ([4]) Any deterministic k-way BP solving FT3
2(k) has at least k3 states.

Proof: First, we will consider a k-way BP that takes two inputs u, v ∈ [k] and computes
u +k v where +k is addition modulo k (appropriately defined on [k].). We will prove a size
lower-bound of k states for this problem. Then we will use this result to prove the theorem.

Let B be a k-way BP solving the above problem. We apply the entropy method to
prove the required size lower-bound. Our input set A consists of k2 inputs (all inputs). Our
distribution function maps each input in A to the last edge in the k-way BP B solving this
problem. Now consider an arbitrary edge e labelled r and connecting a state labelled (w.l.g.)
u to the output state s. Now consider the set of inputs Fe reaching this edge. The only
possible inputs are those with u = r and u +k v = s. But this implies that v = s −k r.
Therefore Fe = {(r, s−k r)} has cardinality one. Since the choice of e was arbitrary, we have
Edges(B) ≥ k2/1 = k2. Since we are considering k-way BPs where each state has exactly k
outgoing edges States(B) ≥ k.

Consider the sub-problem of FT3
2(k) where f1 = +k, leaves are allowed to take arbitrary

values, and for any input I, we allow f Ij (vI2j, v
I
2j+1) for j = 2, 3 to take arbitrary values and

restrict it to 1 elsewhere. Consider a k-way BP B solving this problem. Now consider the
sub-BP b′ obtained from B by fixing (v4, v5) = (v6, v7) = (r, s) for some r, s ∈ [k]. Note that
the sub-BP B′ computes u+k v for u = f2(r, s) and v = f3(r, s) and therefore must have at
least k states. Now the set of all states querying f2 or f3 in B is the disjoint union of all
states querying f2(r, s) and f3(r, s) for k2 (r, s) pairs. Therefore States(B) ≥ k3 as claimed.

12

The Children42(k) problem is the same as FT4
2(k) problem except that the tree has no root

node and the values at nodes 2 and 3 together is defined as the output.

Theorem 20 ([4]) Any deterministic k-way BP solving Children42(k) has at least k4 states.

Proof: Consider a k-way BP that takes four inputs u, v, w, x and computes the tuple (u+k

v, w+k x). We will prove a size lower-bound of k2 states for this problem and argue that the
theorem follows from this result.

Let B be a deterministic k-way BP solving this problem. We now apply the entropy
method. Our input set A is the set of all inputs and therefore |A| = k4. Our distribution
function will map each input in A to the last edge in its computation path on B. Consider
an arbitrary edge e labelled r that connects a query state labelled u to the output state (s, t).
Now consider the set of inputs Fe that get mapped to e. We have u = r, v = s −k r, and
w+k x = t. Since there are exactly k inputs that satisfy these conditions |Fe| ≤ k. Therefore
Edges(B) ≥ k4/k = k3 and it follows that States(B) ≥ k2.

Consider the sub-problem of Children42(k) where f2 = f3 = +k, leaves are allowed to take
arbitrary values, and for any input I, we allow f Ij (vI2j, v

I
2j+1) for j = 4, 5, 6, 7 to take arbitrary

values and restrict it to 1 elsewhere. Consider a k-way BP B solving this problem. Now
consider the sub-BP B′ obtained from B by fixing values of sibling leaves to (r, s). Note that
the sub-BP B′ solves the problem discussed in the previous paragraph and hence requires k2

states. As before, since the level 2 query states of B are the disjoint union of query states
for k2 distinct (r, s) pairs, we have States(B) ≥ k4.

We now present a new lower-bound of Ω(2hk) for F̂T2(h, k) problem when the function at
internal nodes are restricted to a group operation. This forms a special case of the general
problem.

Theorem 21 Any deterministic k way BP solving F̂T2(h, k) with the functions at internal
nodes restricted to a group operation has at least 2h−2k states.

Proof: Assume without loss of generality that the functions at internal nodes are +k. The
leaf nodes are labelled x1 = 2h−1, . . . , x2h−1 = 2h − 1. Let B be a deterministic k-way BP
solving this problem. Now consider the sub-BP B′ obtained from B by fixing x3, . . . , x2h−1 to
1. The sub-BP B′ computes x1 +k x2 and therefore has at least k states. A similar argument
can be applied to each pair of leaves. Since there are 2h−2 disjoint pairs of leaves, the BP B
must have at least 2h−2k states.

Upper Bounds: We observe upper bounds for the size of branching programs computing
F̂T2(h, k) problem when the function at internal nodes are restricted to a group operation.
The associativity of the group operation implies upper bounds. We now briefly describe a
BP for this problem. The BP is a layered BP of width k. The BP evaluates the group
product in a left-associative fashion. In order to do this, the BP only has to remember the
value of the product v1 . . . vi−1 in the ith layer. This value is in [k] and can be remembered
using width k. Then, in the ith layer, the BP reads vi and moves to i + 1st layer updating

13

the remembered value as required. There are two variations possible in this setting. In the
first one, the function at the internal nodes is fixed. In this case the branching program
described will be of size 2hk and hence Theorem 21 is tight. In the second version, when the
function at the internal node is also a part of the input, the described method will give an
upper bound of 2hk2 (since we also have to query the function values).

References

[1] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, 2009.

[2] David A.Mix Barrington and Pierre McKenzie. Oracle Branching Programs and
Logspace versus P. Information and Computation, 95(1):96 – 115, 1991.

[3] Stephen A. Cook. An observation on time-storage trade off. Journal of Computer and
System Sciences, 9(3):308–316, 1974.

[4] Stephen A. Cook, Pierre McKenzie, Dustin Wehr, Mark Braverman, and Rahul San-
thanam. Pebbles and Branching Programs for Tree Evaluation. ACM Transactions on
Computation Theory (TOCT), 3(2):4:1–4:43, 2012.

[5] Anna Gal, Michal Koucky, and Pierre McKenzie. Incremental Branching Programs.
Theory of Computing Systems, 43(2):159–184, April 2008.

[6] S. Jukna and S. Žák. On Uncertainty versus Size in Branching Programs. Theoretical
Computer Science, 290(3):1851–1867, January 2003.

[7] I. H. Sudborough. On the Tape Complexity of Deterministic Context-free Languages.
Journal of ACM, 25(3):405–414, July 1978.

[8] Frank Vanderzwet. Fractional Pebbling Game Lower Bounds, December 2011.
http://www.cs.toronto.edu/ fvan/mt11.pdf.

[9] H. Vollmer. Introduction to Circuit Complexity: A Uniform Approach. Springer New
York Inc., 1999.

[10] Dustin Wehr. Lower bound for Deterministic Semantic-incremental Branching Programs
Solving GEN. CoRR, abs/1101.2705, 2011.

14

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

