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Short lists with short programs in short time
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Abstract

Given a machin&l, ac-short program fok is a stringp such that) (p) = x and the length op
is bounded by + (the length of a shortest program $gr We show that for any universal machine,
it is possible to compute in polynomial time on inpug list of polynomial size guaranteed to
contain aO(log|x|)-short program fox. We also show that there exist computable functions that
map everyx to a list of sizeO(|x|2) containing aO(1)-short program fox and this is essentially
optimal because we prove that such a list must have@iz€?). Finally we show that for some
machines, computable lists containing a shortest prograst have lengti®(2/).
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1 Introduction

The Kolmogorov complexity of a stringjis the length of the shortest program computing it. Determin-
ing the Kolmogorov complexity of a string is a canonical example of a functiarnigheot computable.
Closely related is the problem of actually producing a shortest program fdhis problem is also
not algorithmically solvable. When faced with a function that is not computabig,niatural to ask
whether it can be effectively approximated in a meaningful way. Thistogurelsas been investigated for
Kolmogorov complexity in various ways. First of all, it is well-known that thdridogorov complexity
can be effectively approximated from above. A different type of apipnation is given by what is typ-
ically calledlist computabilityin algorithms and complexity theory arichceabilityin computability
theory. For this type of approximation, one would like to compute a list of ‘scis{) for the result of
the function with the guarantee that the actual result is in the list. Of couesshtirter the list is, the
better is the approximation.

The list approximability of the Kolmogorov complexitZ(x), has been studied by Beigel et
al. [BBF06]. They observe tha&(x) can be approximated by a list of size— a) for every constant
a, wheren = |x|. On the other hand, they show that, for every universal madbirtbere is a constant
¢ such that for infinitely many strings (in fact for at least one& at each sufficiently large length,
any computable list containin@, (x) must have size larger thawic.

In this paper we study list approximability for the problem of producing spargrams. In order
to describe our results, we need several formal definitions.

*LIRMM CNRS & University 2 of Montpellier. Supported by NAFIT ANR-OBMER-008-01 project;
http://www.bcomp.be

TMoscow State University. The work was in part supported by the RFBfRtgt2-01-00864 and the ANR grant
ProjetANR-08-EMER-008

*E-mail: amakhlin@bk.ru

SE-mail: ver@mccme.ru, WWW home page: http://lpcs.math.mstven/

Department of Computer and Information Sciences, Towson UrliiyeBaltimore, MD.; email: mzimand@towson.edu;
http://triton.towson.edu/"mzimand. The author is supported in part by N&# §CF 1016158.

ISSN 1433-8092



A machineU is optimalif Cy (x]y) < Cy(x]y) + O(1) for all machined/ (where the constar@®(1)
may depend o). An optimal machindJ is standard, if for every machine/ there is a total com-
putable functiort such that for allp,y: U (t(p),y) =V (p,y) and|t(p)| = |p| + O(1). For results that
hold in polynomial time, we additionally assume these functionsh in time polynomial inp|. Let
U (p) stand forJ (p,the empty stringandCy (x) for Cy (x|the empty stringg A c-short progranfor x
with respect tdJ is a stringp that satisfiet) (p) = x and|p| < Cy (X) +c.

Given an optimal machind, alist-approximatorfor c-short programs is a functiohthat on every
inputx outputs a finite list of strings such that at least one of the elements in the listsiBat program
for xonU. Let|f(x)| denote the number of elements in the ligk). Obviously, for every optimdl,
there is a (trivial) computable list-approximatbsuch that f (x)| < 2X+01),

The question we study is how small cr{x)| be for computable list-approximatofsfor c-short
programs, where is a constant 0O(log|x|). At first glance it seems that in both casé&x)| must be
exponential inx|. Surprisingly, this is not the case. We prove that there is a computablexampiator
with list of size O(|x|?) for c-short programs for some constantepending on the choice of the
standard maching. And we show that this bound is tight. We show also that therepslgnomial
time computabl@approximator with list of size polyx|) for c-short programs foc = O(|log|x]).

We start with the positive results, i.e., the upper bounds. We show foy st@ndard machine,
there exists a list-approximator f@(1)-short programs, with lists afuadraticsize.

Theorem 1.1. For every standard machine U there exists a computable function f thatnfprxa
produces a list with @x|?) many elements containing a program p for x of length= Cy (x) + O(1).

If we allow O(log |x|)-short programs we can construct lists of polynomial sizealynomial time

Theorem 1.2. For every standard machine U, there exists a polynomial-time computabd&tida
f that for any x produces a list with pdl)x|) many elements containing a program for x of length
Cu (X) + O(log|x]) 2

Now we move to the lower bounds. We show that the quadratic lower bountlénrém 1.1 is
optimal: it is not possible to compute lists of subquadratic size that contai gshort program.

Theorem 1.3. For all ¢ > O, for every optimal U, for every computable f that is a list-approximator
for c-short programs,

f(x)| > Q(Ix?/¢?),
for infinitely many x. (The constant hiddentnotation depends on the function f and machine U.)

A weaker linear lower bound can be easily derived from a result ofndag [Baul2], improving
a theorem of @cs [Gac74]. The result states th@l, (Cy (x) | X) is greater than logx| — O(1) for
infinitely manyx. Thus, for infinitely many,

log|x| — O(1) < Cu(Cu(X) |X) < log|f(x)| +2loge + O(1),

and thereforéf (x)| > Q(|x|/c?).
The next theorem shows that, at least for some standard mddhiwe can not compute lists of
subexponential size containing a program of length exa&zth).

1This notion was introduced by Schnorr [Sch75], and he called suchimespptimal Gddel numberinggof the family
of all computable functions from strings to strings). We use a differemt te distinguish between optimal functions in
Kolmogorov’s sense and Schnorr’s sense

2Recently Jason Teutsch [T11] improved this result repla€ifigg|x|) by O(1).
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Theorem 1.4. There exists a standatdnachine U such that for every computable f that is a list-
approximator for0-short programs,
1f(x)| > 2IXI-0(1)

for infinitely many x. (The constant hidden in O-notation depends on thédanic)*

The construction ol can be easily adapted to show that for evethere is a standard machine
U. satisfying the theorem for-short programs. This exponential lower bound does not hold for all
standard machines (see Remark 1 below).

In the proofs of upper bounds we use non-explicit and explicit bipantéplgs of small degree that
have expander-like properties and hence have good matching abilitiesowér bounds are based on
lower bounds for degree of such graphs. This connection is studieztiios 2. The upper bounds, i.e.,
Theorem 1.1 and Theorem 1.2, are proved in Section 3. The lower bpousad Theorem 1.3 and Theo-
rem 1.4, are proved in Section 4. In Section 5, we observe that outraotign can be used to improve
Muchnik’s Theorem [Muc02, MRS11], and a result concerning dististging complexity [BFLO1].

2 List approximatorsfor short programsand on-line matching

We will show that the problem of constructing approximators for shorjams is equivalent to con-
structing families of bipartite graphs of certain type. Let a bipartite gfapR,E C L x R) be given,
where the seL of left nodes and the s& of right nodes consist of binary strings. Assume that we
receive “requests for matching” in the graph, each request havinfptire(a binary stringx € L, a
natural numbek). Such request means that we have to provide to the left n@d®atch of length at
mostk or slightly more. It might happen that we receive a reqedt) and later a requesk, k') with

the samex and anothek’ < k. In this case we are allowed to mateho the second right node, thus
X becomes two matching right nodes. Assignments cannot be changed faneindifight nodes must
have different matches (however any left nodmay have different matches). We will sometimes call
right nodeshash-values

Definition2.1 Let c(n) be a function oh with natural values. A bipartite graph whose left and right
nodes are binary stringms matching with overheadr) if the following holds. For every s&of pairs
(x € L,k) having at most ®2pairs with the second componeatfor all k) one can choose for every pair
(x,k) in Sa neighbomp(x, k) of x so that p(x, k)| < k+c(|x|) andp(x1,ky) # p(x2, ko) whenevex; # Xo.
If this is done, we will say thap(x, k) matches x

A bipartite grapthas on-line matching with overhea¢hg if this can be done in the on-line fashion:
requests for matchingx,k) appear one by one and we have to fipck, k) before the next request
appears. All the made assignments cannot be changed.

A bipartite graph igpolynomial time) computablé given a left nodex we can compute (in poly-
nomial time) the list of all its neighbors.

Theorem 2.2. Assume there is a computable graph witk-{0,1}* where the left node x has degree
D(x) and which has on-line matching with overhedga)c Assume further that the matching strategy
is computable. Then for every standard machine U there exists a contgfuabtion f that for any x
produces a list with x) many elements containing a program p for x of length= Cy (x) + ¢(|x|) +

3The construction implies the existence of suthvith a stronger universality property: for every machinéhere exists
a stringwy such thaty (wy p|z) =V (p|z) for all p,z
4Independently, this result was obtained by Frank Stephan (persomahenication).



O(1). If the graph is polynomial time computable then the function f is polynomialdonegutable,
too.

Proof. Run the optimal machine (q) in parallel for all stringgy. OnceU (q) halts with the resulk we
pass the requesk, |q|) to the matching algorithm in the graph and find a hash valaglength at most
lg| +c(|x|) for x.

By construction, every stringis matched to a string of length at mos€y (x) + c(|x|). Each right
node is matched to at most one node in the graph. Hence there is a méchind thatv (p) = X
wheneverp is matched tx. Thus for every string there is a neighbap of x with |p| < Cy (x) 4 ¢(|x|)
andV(p) = x. AsU is a standard machine, there is a (polynomial time) computable furictiotin
U(t(p)) =V (p) andjt(p)| < |p|+O(1). Let f(x) be the list consisting df( p) for all the neighborg
of xin the graph. By constructioff (x)| = D(x) and we are done. O

Remarkl. If c(n) = cis a constant function, then we can construct a standard madhiwgich has a
computable approximator for 0-short programs with lists of §ize). To this end letU;(0p) =V (p)
andU; (1¢"?p) = U (p) and lett(p) = Op in the construction of in the proof of the above theorem. By
Theorem 2.4 below there is a graph having on-line matching with constaniteaeand degre@(|x|?).
Thus there is a standard machldgwhich has a computable approximator for 0-short programs with
lists of sizeO(|x|?).

There is also a reduction in the other direction.

Theorem 2.3. Assume that (@) is computable function and there are an optimal machine U and a
computable function f that for any x produces a finite list containing a progmfor x of length

Ip| < Cu(x)+c(|x]). Consider the bipartite graph G with & {0,1}* where the neighbors of node x
are all strings from fx). Then G has on-line matching with overhedtk + O(1).

Proof. For eachn let G, be the subgraph o with L = {0,1}=". W.l.0.g. we assume that all strings
in f(x) have length at mosk| + O(1) and hence the graph, is finite. We claim thaG, has on-line
matching with overhead(|x|) + O(1) for all n, (where theD(1) constant does not depend on

We first show that this implies the theorem. SupposefhaMs,, ... are on-line matching strategies
for graphsGs, G, ... It suffices to convert them to strategi®lg, M5, ... for G1, Gy, ... such that for
alli, j > i strategyM; is an extension ok, i.e. on a series of requests only containing nodes from
Gi, strategyMj behaves exactly ad/. Because eacB finite, there are only finitely many different
matching strategies faB,. Hence, there is a stratedy; that equals the restriction ®fl, to G; for
infinitely many n. Therefore there is also a stratelyl; that is an extension df1; and equals the
restriction ofM,, to G infinitely often, and so on.

It remains to show the claim. For the sake of contradiction assume that figr @vestant there
is n such thatG,, has not on-line matching with overhea(x|) +i, (and f is a list-approximator for
c(|x|)-short programs obl). Becausé&s, is finite, for alln andc one can find algorithmically (using an
exhaustive search) wheth@p has on-line matching with overhea@x|) +i or not. One can also find
a winning strategy for that player who wins (“Matcher” or “Requestefherefore for every we can
algorithmically find the firsh such that the grap8, has not on-line matching with overheedx|) + i
and the corresponding winning strategy for RequesteGfor

Let that strategy play against the following “blind” strategy of Matchercédéng a requestx, k)
the Matcher run& (p) for all p € f(x), |p| < k+c(|x|) +1i, in parallel. If for somep, U (p) halts with
the resultx, he matches the first sughto x and proceeds to the next request. Otherwise the request
remains not fulfilled.



Consider the following maching. On input(q,i) with |g| = k it finds the firstG, such that the
graphGy, has not on-line matching with overheadx|) +i and a winning strategy for Requester, and
runs it against the blind strategy of Matcher. Then it retiemghere(x, k) is theqth request with the
second componeiit As Requester wins, there is a requiesk) that was not fulfilled. We have

Cu(X) < Gy (X)+0(1) < k+2logi +O(1) < k-+i @)

(the last inequality holds for all large enouphAs the requestx, k) was not fulfilled, there is n@ in
f(x) with |p| <k+i+c(|x]). Due to (1),f(x) has noc(|x|)-short program fox, a contradiction. [J

From the technical point of view, our main contributions are the followingrin®s.

Theorem 2.4 (Combinatorial version of Theorem 1.1)here is a computable graph with= {0,1}*
with left degree x) = O(|x|?) which has on-line matching with overhead .

Theorem 2.5 (Combinatorial version of Theorem 1.ZJhere is a polynomial time computable graph
with L= {0,1}* with left degree [Dx) = poly(|x|) which has on-line matching with overheadl@y|x|).

Theorem 2.6 (Combinatorial version of Theorem 1.3)n every graph G with l= {0,1}" that has
off-line matching with overhead c, the maximal degree of left nod@grié/(c+ O(1))?).

Theorems 2.4, 2.5 and 2.6 imply Theorems 1.1, 1.2 and 1.3, respectivelyoloy our on-line
matching strategy used in the proofs of Theorems 2.4 and 2.5 are very sieq@e/ing a new request
of the form(x, k) we just find the maximal < k+ c such that there is a free hash-value of lerigihd
matchx with the first neighbor ok, in some order, which is not used so far.

3 Theupper bounds

In this section we prove Theorems 2.4 and 2.5. We will need the notion ofn gvéh on-line
matching, introduced in [MRS11].

Definition 3.1 Say that a bipartite graph hasatching up to K with at most M rejectioni$ for any
set of left nodes of size at moktwe can drop at mod¥l its elements so that there is a matching in
the graph for the set of remaining nodes. A graph hasratine matching up to K with at most M
rejectionsif we can do this in on-line fashion. Fdi = 0 we say that the graph hasatching up to
K. A bipartite graph is called &,K’)-expander if every set ofK left nodes has at leakt’ distinct
neighbors.

Graphs that have matching up o are closely related toK,K)-expanders. Indeed, any graph
having off-line matching up t& is obviously a(K’,K’)-expander for alk’ < K. Conversely, by Hall’'s
theorem [Hal35] any graph which is(&’,K’)-expander for alk’ < K has off-line matching up t&.

In [MRS11] it was shown that a reduction from expandersmeline matching is also possible.
More specifically, every family of2', 2')-expanders, one for each k, sharing the same sktof left
nodes can be converted into a graph with the samk séteft nodes that has on-line matching up to
2% at the expense of multiplying the degreekognd increasing hash-values by 1. (We will present the
construction in the proof of Theorem 3.3.)

The connection between graphs with matching uld tand graphs with matching with overhead
is the following. If a graphG has (on-line) matching with overheadhen removing fronG all left
nodes of length different from and all right nodes of length more th&nr- c(n) we obtain a graph



with (on-line) matching up t0'2 On the other hand, assume that for samfer all k < n we have a
graphGp  with L = {0,1}" andR = {0, 1}¥+°( which has (on-line) matching up t$.2Then the union
Gn of Gp over allk < n has (on-line) matching with overhead provided all requestéx, k) satisfy
k < |x|. At the expense of increasing the degree abgl 1, the graplt, can be easily modified to have
(on-line) matching with overheadlunconditionally: append 0 to all right nodes @f and for every
x € {0,1}" add a new right nodel connected ta only.

In [MRS11] it is observed that every2k-1, 2<-1)-expander has on-line matching up towgith at
most X1 rejections. We need a slight generalization if this fact.

Lemma 3.2. Every(2<¢ 2k — 2k-0)_expander has on-line matching up2bwith at most2*~* rejec-
tions.

Proof. Use the following greedy strategy for on-line matching: each time a left véstesceived,
check if it has a neighbor that was not used yet. If yes, any such lb@igh selected as the match for
that node. Otherwise, the node is rejected.

For the sake of contradiction, assume that the number of rejected nodeseithao # ‘. Choose
from them exactly 2 rejected nodes. By expansion property, they have at |&as2® neighbors
and all those neighbors are used by the greedy strategy (otherwisedhdaving a non-used neighbor
would not be rejected). Thus we have at le&st 2~ matched left nodes and more thaft2rejected
nodes. Thus we have received more th&nezjuests. O]

In particular, every(2¥, 2¢)-expander has on-line matching up t62with at most # rejections.
For Theorem 2.4 we will use non-explicit such graphs, for Theoremn2.5vill need explicit such
graphs, which we obtain from the disperser of [TSUZ07].

Assume that for every andk < n we are given g2, 2)-expandeiG,x with L = {0,1}", R=
{0,1}k+¢ and the degree of all left nodes is at mbgn). Assume further that given k and a left
nodex in Gy we can algorithmically find the list of all neighborsxin Gy, .

Theorem 3.3. Given a family of expanders as above we can construct a computalpé @avith

L = {0,1}* that has on-line matching with overheathg¢+ O(logn) and the degree of each left node
is O(D(n)n). The matching strategy for G is computable. Moreover, if givédnamd a left node x in
Gnk we can find the list of all neighbors of x in time poly then G is polynomial time computable.

Proof. The main tool is borrowed from [MRS11]: all the grapBg« share the same set of left nodes
while their sets of right nodes are disjoint. Lidtx denote the union oGy over alli < k. ThenHp
has on-line matching up toqwithout rejections). Indeed, each input left node is first given to the
matching algorithm foGy, 1 (that has on-line matching up t§ Qith at most 1 rejections) and, if
rejected is given to the matching algorithm &k x_» and so on.

Using this construction we can prove the theorem with slightly worse parasreterlaimed. To
this end identify right nodes of the graphk with strings of lengthk 4 c(n) + 1 (the number of right
nodes ofHn does not exceed the sum of geometrical serf&&® + 2ktc -1 ...~ oktc(M+1) The
degree oHpk is D(n)k.

Recall the connection between matching up't@@d matching with overhead (the third paragraph
after Definition 3.1). We see that the famijy can be converted into a graph, with L = {0,1}"
and degre®(n)n(n— 1)/2+ 1 having on-line matching with overheath) + 2. Finally, prepend each
right nodes oH,, by aO(logn)-bit prefix code of the numberand consider the union of af,. The
resulting graph has on-line matching with overheéa) + O(logn), its set of left nodes i$0,1}* and
the degree of every left node of lengilis O(D(n)n?).



Now we will explain how to reduce the degree@D(n)n). Consider four copies dbn k-1 With
the same sdt of left nodes and disjoint sets of right nodes (say append 00 to eiggryrnode to get
the first copy, 01 to get the second copy and so on). Their uniorid§ 4, 2<*1)-expander, and hence
has matching up to¥2? with at most 21 rejections.® Its left degree is B(n) and the length of right
nodes ik+c(n) + 2. Replace in the above constructiontf the graphH, k by this graph. Thus the
left degree oH,, become<O(D(n)n) in place ofO(D(n)n?). It remains to show that (the union of all
graphs)H, has still on-line matching with overheath) + O(logn)

Again the matching strategy is greedy. Once we receive a requéstwith |x| = n, we matchx
to Ix if k> n. Otherwise we passto the matching algorithm ik, . If the algorithm rejectx, we
passx to the matching algorithm iRl, k1 and so on. We claim that we eventually find a match in one
of the graphsH,; for i <k. To prove the claim it suffices to show that the matching algorithnifor
receives at most<21 input strings. This is proved by a downward inductionkdfior any fixedn). For
k= n— 1 this is obvious: we try to match ifnn_1 up to 21 strings. The induction step: by induction
hypothesis the matching algorithm fdp 1 receives at most22 input strings an thus rejects at most
2 of them. The matching algorithm fo, i thus receives at most 2ejected strings and at most 2
new ones, coming from requests of the fapxnk). O

3.1 Proof of Theorem 2.4

A weaker form of Theorem 2.4 can be derived from Theorem 3.3 aedfaolowing lemma
from [Muc02].

Lemma 3.4. For all n and k< n, there exists 42, 2¢)-expander with L= {0,1}", R= {0, 1}¥*2 and
all left nodes have degree at mostn.%

Proof. We use the probabilistic method, and for each left node we choosetifs neighbors at ran-
dom: all neighbors of each node are selected independently amorigatight nodes with uniform
distribution, and the choices for different left nodes are indeperiddeniVe show that expansion prop-
erty is satisfied with positive probability. Hence there exists at least orteggaph. To estimate the
probability that the property is not satisfied, consider a pair of SeamdR’ of left and right nodes,
respectively, of sizesk22k — 1. The probability that the neighbors of all noded.inbelong toR is
upper-bounded by1/4¢)(1/0(+02° — (1/4)(+¢2 The total probability that expansion condition is
not satisfied, is obtained by summing over all sUEIR, i.e.

1 (n+1)2¢ p ‘ onok+2 2 onon+1 P 1 2
(a) eren= () <(Gr) -(3) <+ o

Remark2. By the very same construction we can obtain a graph wita {0,1}", R = {0,112,

D = n+1 that is a(t,t)-expandeffor all t < 2. Indeed, the probability that a random graph is not
(t,t)-expander is at mos(t%)t (we may replace2by t in the above formulas). By union bound, the
probability that it happens for sonte< 2¥ is at most the sum of geometric ser'@él (%)t < 1. By
Hall's theorem, this graph has off-line matching up fo2&n interesting open question is whether there
is a graph with the same parameters, Le= {0,1}", R= {0,1}**°% D = O(n), that hason-line
matching up to ®

5One can also consider the union@f_1 andGp, which also has matching up t§2 with at most - rejections.
6This older lemma improves a technical result in [MRS11] by repla&ingd(logn) to k+ 2. Jason Teutsch suggested
this improvement could turn list-approximators @flogn)-short programs to list-approximators 0f1)-short programs in
a length-conditional setting.



From this lemma and Theorem 3.3 we obtain a computable graph with on-line mateiing
overheadO(logn), degreeO(|x|?) andL = {0,1}* We now need to replace ti@(logn) overhead by
O(1). Recall theO(logn) appeared from the prefix code nfadded to hash values. To get rid of it
we need a computable grajp in place of previously use@,x with the same parameters but with
L = {0,1}>%, and notL = {0,1}". Such a graph is constructed in the following

Lemma 3.5. For every k there is a computable bipartite graphvith L = {0,1}=%, R= {0, 1}**3 that
is a (2¢, 24)-expander and the degree of every left node x(iQ

Proof. We first build such a graph with left nodes being all strings of length betkemdK = 243,
This is again done by probabilistic method: we chopée 3 neighbors of every nodeindependently.
Let L; stand for all left nodes of length For anyi € k,...,K, the probability that all elements of a

fixed L’ C L; are mapped to a fixed set of size at mdst-2 at the right is at mos{[2—13)(i+3)|m. The
probability that somé; elements irL; are mapped into a fixed set of 2 1 elements at the right is
bounded by

2iti i (i+3)t; B i itj i 3t _ i (i+3)ti+t _ i (k+3)ti -+t B l 2t } 2t
23 -\ 22 23 —\22 —\ 22 - \K 2 '

If giK:kti =t with t = 2, the probability that the union of neighborstplements irLy, t, 1 elements
in Liy1, ..., andtx elements inLx are mapped to a fixed set of size at mdst-2L is bounded by
M (i)zﬁ = (i)2t Multiplying by the numbek2~1 < K! of different right sets of siz& — 1, and
multiplying by the numbeK! of different solutions to the equatiqf:kti =K, we find

1\?% 1\"
— ) K'K'< (= 1

Hence, the total probability to randomly generate a graph that is not andsipis strictly less than 1.
Therefore, a graph satisfying the conditions must exist, and can bd fpuexhaustive search.

On the left side, we now need to add the strings of length largerkhar2“+3. These nodes are
connected to all the nodes on the right side. Thus the degree of ewtpsdexis 2 < |x| /2% < O(|x|)
and we are done. m

Remark3. By the very same construction we can obtain a graph with {0,1}2K, R= {0, 1}%*3,

D = O(n) that is a(t,t)-expandefor all t < 2 and thus has off-line matching up t6 @se the union
bound over alt € {k,...,K}). An interesting open question is whether there is a graph with the same
parameters that has-linematching up to 2

Now we can finish the proof of Theorem 2.4. Appending all 2-bit stringalltthe right nodes of
the graphR_; (and thus increasing the degree 4 times) we obtaigial, 2¢+1)-expandeH,. The
union of Hy over allk is a computable graph, whose left degre®i$x|?), and the set of left nodes is
{0,1}*. It has on-line matching with constant overhead. This is proved by thewdavd induction, as
in Theorem 3.3. Indeed, by stgpn the matching, there are only finitely many requests for matching.
By a downward induction ok we can again prove that the number of matching requedtk is at
most 1. Now the base of induction is the maxirafor which there has been at least one request
for matching inHk up to steps. We conclude that the request made at stegsatisfied and, since this
holds for everys, we are done.



3.2 Proof of Theorem 2.5

By Theorem 3.3 we have to construct for eviry nan explicit(2¥, 2¢)-expander of left degree pdiy),
with 2" left nodes and polgn)2X right nodes. A graph isxplicit if there is an algorithm that on input
x € {0,1}" = L lists in poly(n) time all the neighbors of.

The proof relies on the explicit disperser graphs of Ta-Shma, Umad<Zackerman from Theo-
rem 3.7 below.
Definition3.6. A bipartite graphG = (L,R E) is a(K, d)-disperserif every subseB C L with |B| > K
has at leastl — )|R| distinct neighbors.

Theorem 3.7. [Ta-Shma, Umans, Zuckerman [TSUZO07]] For everynkand constan®, there exists
explicit (K, d)-dispersers G= (L = {0,1}",R= {0,1}™ E C L x R) in which every node in L has
degree D= poly(n) and|R| = 2P, for some constant.

Givenn andk we apply this theorem ti = 2¢ andd = 1/2. We obtain g2¥, 0’22—nk3'3)-expander with
degreeD = poly(n), L = {0,1}" and |R| = 9KP. Considert = max{1,[2>1} disjoint copies of this
graph and identify left nodes of the resulting graphs (keeping their satghd nodes disjoint). We get
an explicit(2%, 2K)-expander with 2left and Zpoly(n) right nodes and degree pohjt = poly(n).

4 Thelower bounds

4.1 Proof of Theorem 2.6

Assume thaG has off-line matching with overhead Let G[/,k] denote the induced graph that is
obtained fronG by removing all right nodes of length more thiaor less tharf. The graphG|0,k+-c]
is obviously a2, 24)-expander for everi. As there are less thalf 2 strings of length less thao- 1,
it follows that the graplG[k — 1,k +c] is a (2%, 21 + 1)-expander.

The next lemma inspired by [KST54] (see [RTS00, Theorem 1.5]) shbatsany such expander
must have large degree.

Lemma 4.1. Assume that a bipartite graph wii left nodes an@* right nodes is g2, 21 4+ 1)-
expander. Then there is a left node in the graph with degree more thamin{ 22 (¢ —k)/(c+2)}.

Proof. For the sake of contradiction assume that all left nodes have degreestDrand w.l.0.g. we
may assume that all degrees are exaBlly We need to find a set of right nodBsof size %1 and

2 left nodes all of whose neighbors lie B1 The seB is constructed via a probabilistic construction.
Namely, choos® at random (al(g;i) sets have equal probabilities). The probability that all neighbors
of a fixed left node are iB is equal to

k+c__
(gkjl_g) C kRl ). (21 D41
(zm) = kte(ktC 1) ... (2kte D+ 1)

k-1

Both products in the numerator and denominator Havactors and the ratio of corresponding factors
is at least

2'<*1—D+1>2_C_2

2k _D41

(the last inequality is due to the assumptidrc 2K-2). Thus the probability that all neighbors of a fixed
left node are iBis at least 2P(¢+2), Hence the average number of left nodes having this property is at
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least 2-P(¢+2) which is greater than or equal t§ By the choice oD. Hence there i8 that includes
neighborhoods of at least ®ft nodes, a contradiction. O]

This lemma states that at least one left node has large degree. Howeéngalies more: if the
number of left nodes is much larger thah then almost all left nodes must have large degree. Indeed,
assume that a bipartite graph with"2 right nodes is d2,2<-1 + 1)-expander. Choosé 2eft nodes
with smallest degree and apply the lemma to the resulting induced graph (whist & 2, 21 + 1)-
expander). By the lemma, in the original graph all except for less thandes have degree more than
D =min{22 (/—Kk)/(c+2)}.

Choosen/4 < k < n/2. As noticed, the grapB[k — 1,k +c] is a (2%, 21 4-1)-expander and has
less than 2+¢+1 right nodes. By Lemma 4.1 (appliedte= 3n/4, k, c+ 1), all except for at most®/*
left nodes ofG[k — 1,k+ c] have degree at leasf4(c+ 3).

Pick now/ differentk’s that arec+ 2 apart of each other, whefas aboutn/(4(c+ 2)). For most
left nodes for all pickedk there aren/4(c+ 3) edges from those nodes@jk — 1,k+c]. As all picked
k's arec+ 2 apart of each other, the degree of all those nodesié/(c+ 3)?).

4.2 Proof of Theorem 1.4.

The size of list-approximators is closely related to total conditional Kolmogoomplexity, which
was first introduced by A. Muchnik and was used in [Ver09, Baull@ftal conditional Kolmogorov
complexitywith respect tdJ is defined as:

CTy(ulv) = min{|q| :U(q,v) =unvz[U(q,2) ||},

whereU (q,z) | means tha) (q,z) halts. IfU is a standard machine th&@Ty (ulv) < CTy (u|v) + oy
for every machin&/. The connection to list-approximators is the following:

Lemma 4.2. If f is computable function that maps every string to a finite list of strings then
CTu(plx) < log|f(x)| +O(1) for any standard machine U and every p ifixf. The constant in
O-notation depends on f and U.

Proof. LetV(]j,x) stand for thejth entry of the listf (x), if j <|f(x)|, and for the empty string (say)
otherwise. Obvious\CTy (p|x) < log|f(x)| for all pin f(x). HenceCTy (p|x) < log|f(x)| + O(1).
[

Thus to prove the theorem it suffices to construct a standard madgisach that for infinitely
manyXx every 0-shortp for x with respect tdJy satisfiesCTy (p|x) > [x| — O(1). To this end we fix
any standard maching and construct another machivesuch that for some constathiand for every
integerk there are stringg, x such that:

(a) pis the unique 0-short program fawith respect td/,
(b)Cu(x) >k

(©) x| = [pl = k+d,

(d) CTy(0p|x) > k.

Once suchk/ has been constructed, we W(0q|z) = V (q|z) andUp(192q|z) = U(q|2). The latter
equality guarantees thé is a standard machine. And both equalities together with items (a), (b) and
(c) imply that @ is the unique O-short program farwith respect tdJo. Finally, item (d) guarantees
that its total complexity conditional tois at leastx| —d — 1.
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The construction of/ can be described in game terms. (The game-based technique in recursion
theory was introduced by Lachlan [Lac70] and further developed.Mughnik and others [MMSV10,
Ver08, MSV12].)

Description of the game. The game has integer parameterd and is played on a rectangular grid
with 249 rows and #t9 columns. The rows and columns are identified with strings of lekgtf.
Two players, Black and White, play in turn. In her turn White can either pagait a pawn on the
board. White can place at most one pawn in each row and at most onepaach column. Once a
pawn is placed, it can not be moved nor removed. In his turn Black carm p#lss, or choose a column
anddisableall its cells, or choose at most one cell in every column disdbleall of them. If a player
does not pass, we say that shefinekes a moveBlack is allowed to make less thdt2 moves. The
game is played for an infinite time and White looses if at some point after heallhgr pawns are in
disabled cells.

We will show that, ford = 3, for everyk, White wins this game. More specifically, there is a
winning strategy for White that is uniformly computable givien Assume that this is done. Then
consider the following “blind” strategy for Black: start enumeration of &lings x with Cy (x) < k
and all stringgy of length less thak such thatU(q,x) | for all x of lengthk+ d. That enumeration
can be done uniformly ik. In histth turn Black: disables all cells in theth column, if on step
t in this enumeration a new of lengthk + d with Cy (x) < k appears; disables all celip,x) with
x| = |p| = k+d, U(qg,x) = Op, if on stept a new stringg of length less thartk appears such that
U(q,x) | for all x of lengthk 4 d; and passes if none of these events occurs. Note that the total number
of Black’s moves is less thak2- 2k = 2«+1, as required.

Now consider the following maching(p): letk = |p| — d and let the White’s computable winning
strategy play against Black’s blind strategy. Watch the play waiting until Whéees a pawn on a
cell (p,x) in pth row. Then outpuk and halt. Note that suchis unique (if exists), as White places at
most one pawn in each row. And that cgll x) satisfies all the requirements (a)—(d). Thus it suffices
to design a computable winning strategy for White.

A winning White's strategy. The strategy is a greedy one. In the first round White places a pawn
in any cell. Then she waits until that cell becomes disabled. Then she pleesgcond pawn in
any enabled cell that lies in another row and another column and again waitthat cell becomes
disabled. At any time she chooses any enabled cell that lies in a row ahghancthhat both are free of
pawns. In order to show that White wins, we just need to prove that theteiscell. Indeed, Black
makes less thark2! moves, thus White makes at mo&t2moves. On each of Black’s moves at most
24+ cells become disabled. On each of White’s moves at mgst2 cells becomes non-free because
either their column or row already has a pawn. Thus if the total number ofiselisre than

2k+12k+d + 2k+12k+d+1 —6. 22k2d

we are done. The total number of cells fg%2ktd — 2%22d - Ag 22d grows faster that 629, for large
enoughd (actually ford = 3) the total number of cells is larger than the number of disabled or non-free
cells. The theorem is proved.

Note that changing the construction a little bit we can prove the same statemergHort pro-
grams for everyc. To this end we just need to Ik (1°792q) = U (q) instead olUg(19+2q) = U(q).
The optimal machin&Jy constructed in this way depends on the choice,offhich is inevitable by
Theorem 1.1.
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5 Other applications of explicit graphswith on-line matching

The two first applications are related with the resource bounded Kolmeogummplexity. Recall a
machineU is called standard if for any machinéthere is a total computable functidnsuch that
U(t(p),z) =V (p,z) and|t(p)| < |p| +O(1) for all p,z In this section we assume thas polynomial
time computable and that running timeft(p),z) is bounded by a polynomial of the computation
time ofV(p, ). By C}(x|z) we denote the minimal length @fsuch that) (p,z) = xin at mostT steps.

Muchnik’s Theorem [Muc02, MRSL11]. Let a andb be strings such thaa| = nandC(a| b) = k.
Then there exists a stringsuch that (1) p| = k+ O(logn), (2) C(p | a) = O(logn), (3)C(a| p,b) =
O(logn).

In our improved version, we replace (2) by (2" (p | a) = O(logn), whereq is a polynomial.

Proof. Fix an explicit graph withL = {0,1}*, polynomial degree, and that has computable on-line
matching with logarithmic overhead. Given a stribgun the optimal machin& (qg,b) in parallel
for all g and once for somg, U(q,b) halts with the resulk pass the requesk, |q|) to the matching
algorithm in the graph. It will return a neighbgr of length at mostq| + O(logn) of x. At some
moment a shortest progragrfor a conditional tob will halt and we get the soughtt

As the graph is explicit and has polynomial degree, we 22" (p | a) = O(logn) (requirement
(2)). Requirement (1) holds by construction. Finallya | p,b) = O(logn) as givenp andb we may
identify a by running the above algorithmic process (it is important ghiatthe unique string that was
matched tq). O]

Distinguishing complexity [BFL01].

LetV be a machinex a string andr a natural number. Theistinguishing complexity CJYx) with
respect to Vis defined as the minimal length @fsuch thatJ (p,x) = 1 (p “accepts”x) in at most
T steps, andJ (p,X') = 0 for all X # x (p "rejects” all other strings). From our assumption for the
standard machind it follows that for every machin¥ there is a polynomiaf and a constart such
thatCDLfJ(T)(x) < CD/(x) +c. Indeed, letp is a shortest distinguishing program foworking in T
steps with respect td. Thent(p) is a program fotJ that acceptx in poly(T) steps and rejects alll
other strings.

For a sefA of binary strings l[eA=" stand for the set of all strings of lengthin A.

Theorem 5.1 ([BFLO1]). For every functiore(n) (mapping natural numbers to numbers of the form
1/natural) computable in time polg) there is a polynomial f such that for every set A, for afl A="

except for a fractiorg(n), CDE,(”)’A(X) <log|A="| + polylog(n/&(n)).

We mean here that the sikis given to the standard machibeas an oracle (so we assume that the
standard machine is an oracle machine and all the requirements hold fpoeaele.)
In our improved version, we obta®D' (W A(x) < log|A="| + O(log(n/&(n))).

Proof. For our improvement we need for evaryk < nande a bipartite grapl@, x ¢ with L = {0,1}",
R = {0,1}*+0logn/¢) and degree poly/¢) that has the following property:

for every subse®of at most Z left nodes for every nodein Sexcept for a fractior there
is a right neighbop of x such thatp has no other neighbors B

Assume that we have such an explicit family of grafhs . Explicit means that given, k, ¢, a
left nodex andi we can in polynomial time find thigh neighbor ofx in G,k .. Then we can construct
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a machiné/ that given a tuplép,i,n, k), a stringx andA as oracle verifies thatis in A=" and thatx is
thei-th neighbor ofp in Gy x ¢(n)- If this is the case it accepts and rejects otherwise. By the property
of the graph, applied t8 = A=" andk = [log|S] we see that

ey "A(x) < |(p.i,n.k)| < log|A™"| + O(logn/e(n))

for some polynomialff (n) for all but a fractione(n) for x € A=". By the assumptions dd the same
inequality holds folJ.

The graphGp ¢ is again obtained from the disperser of [TSUZ07]. Giverk ande we apply
Theorem 3.7 tK = 2“¢ and & = 1/2. We obtain a(K, 2X2)-expander with degre® = poly(n),
L={0,1}"and|R| = “r*f—?. Considett = max{1, [i—’gl} disjoint copies of this graph and identify left
nodes of the resulting graphs (keeping their sets of right nodes disjdiatljet an explicit 2¢, 2X¢)-
expander with 2left and Zpoly(n)/¢ right nodes and degré2 = poly(n)t/e = poly(n)/«.

This graph, called, x ¢, has the following “low-congestion propertyfor every set 0P left nodes
S for every node x in S except for a fractiothere is a right neighbor p of x such that p has at most
D/€ neighbors in S.

Indeed, the total number of edges in the graph originating ism at most|S|D. Thus less than
|SID/(D/€) = |Se right nodes are “fat” in the sense that they have more Byanneighbors landing in
S By the expander property &f, i  there are less thag}S left nodes inSthat have only fat neighbors.

It remains to “split” right nodes dfi, k ¢ so thatD /e becomes 1. This is done exactly as in [BFLO1].
Using the Prime Number Theorem, it is not hard to show (Lemma 3 in [BFLO1{¥thavery seW
of d strings of lengtm the following holds:for every xc W there is a prime number ¢ 4dr? such
that x£ X' (mod q) for all X'’ € W different from Xwe identify here natural numbers and their binary
expansions).

We apply this lemma tal = D/e. To every right nodep in H, k. we add a prefix code of two
natural numbers, g, both at most dr?, and connect a left nodeto (p,a,q) if x is connected tq
in Hhke andx = a (modq). We obtain the grapks, ks we were looking for. Indeed, for evel§
of 2¢ left nodes for allx € S but a fraction ofe there is a neighbop of x in Hnke that has at most
d = D/e = poly(n) /& neighbors inS. Besides there is a pringe< 4n’d = poly(n) /e such thaix # x’
(mod q) for all neighbors<’ of p different fromx. Thus the neighbofp,q,x modq) of xin Gp ¢ has
no other neighbors i6.

The degree 06y is D x (4n?D/€)? = poly(n)/€2. The number of right nodes is

(poly(n)2"/&)(4n’D/€)? = 2poly(n) /€.
Thus right nodes can be identified with strings of lenigthO(logn/¢) and we are done. OJ
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