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Abstract

Pǎtraşcu (STOC ’10) reduces the 3SUM problem to listing triangles in a graph.
In the other direction, we show that if one can solve 3SUM on a set of size n in time
n1+ε then one can list t triangles in a graph with m edges in time Õ(m1+εt1/3−ε/3).
Our result builds on and extends works by the Paghs (PODS ’06) and by Vassilevska
and Williams (FOCS ’10). We make our reductions deterministic using tools from
pseudorandomness.

We then re-execute both Pǎtraşcu’s reduction and ours for the variant 3XOR of
3SUM where integer summation is replaced by bit-wise xor. As a corollary we obtain
that if 3XOR is solvable in linear time but 3SUM requires quadratic randomized time,
or vice versa, then the randomized time complexity of listing m triangles in a graph
with m edges is m4/3 up to a factor mα for any α > 0.
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1 Introduction

The 3SUM problem asks if there are three integers a, b, c summing to 0 in a given set of n
integers of magnitude poly(n). This problem can be easily solved in time Õ(n2). (Through-
out, Õ and Ω̃ hide logarithmic factors.) It seems natural to believe that this problem also
requires time Ω̃(n2), and this has been confirmed in some restricted models.[Eri99, AC05]
The importance of this belief was brought to the forefront by Gajentaan and Overmars
who show that the belief implies lower bounds for a number of problems in computational
geometry;[GO95] and the list of such reductions has grown ever since. Recently, a series of
exciting papers by Baran, Demaine, Pǎtraşcu, Vassilevska, and Williams set the stage for,
and establish, reductions from 3SUM to new types of problems which are not defined in
terms of summation.[BDP08, VW09, PW10, Pǎt10] In particular, Pǎtraşcu shows that if we
can list m triangles in a graph with m edges given as adjacency list in time m1.33̄−Ω(1) then
we can solve 3SUM in time n2−Ω(1).[Pǎt10]

To put this outstanding result in context we briefly review the state-of-the-art on triangle
detection and listing algorithms. All the graphs in this paper are undirected and simple.
Given the adjacency list of a graph with m edges, Alon, Yuster, and Zwick show in [AYZ97]
how to determine if it contains a triangle in time O(m2ω/(ω+1)) where ω < 2.376 is the
exponent of matrix multiplication. If ω = 2 then the bound is O(m1.33̄). For listing all
triangles in a graph the best we can hope for is time Õ(m1.5), since the maximum number of
triangles in graphs with m edges is Θ(m1.5). There are algorithms that achieve time Õ(m1.5).
(For example, we can first list the ≤ O(m

√
m) triangles going through some node of degree

≤
√
m, and then the ≤ O(m/

√
m)3 = O(m1.5) triangles using nodes of degree >

√
m only.)

However, to list only m triangles conceivably time Õ(m) suffices. In fact, Pagh (personal
communication 2011) points out an algorithm for this problem achieving time Õ(m1.5−Ω(1))
and, assuming that the exponent of matrix multiplication is 2, time Õ(m1.4).

1.1 Our results

We give a reduction that goes in the opposite direction of Pǎtraşcu’s aforementioned reduc-
tion from 3SUM to listing triangles:

Corollary 1. [Reducing listing triangles to 3SUM or 3XOR] Suppose that one can solve
3SUM or 3XOR on a set of size n in time n1+ε for ε > 0. Then, given the adjacency list of
a graph G with m edges, n = O(m) nodes and z triangles, and a positive integer t, one can
list min{t, z} triangles in G in time Õ(m1+εt1/3−ε/3).

Note that just like Pǎtraşcu’s result does not show that any polynomial improvement to
triangle-listing algorithms would improve 3SUM algorithms, but only that a certain improve-
ment in the exponent will do, our Corollary 1 does not say that any polynomial improvement
to 3SUM would improve triangle-listing algorithms, but only that a certain improvement in
the exponent will do. Specifically, we obtain that solving 3SUM in time Õ(n1+α) for some
α < 1/15 would improve the aforementioned Pagh’s triangle-listing algorithm. (Recall the
latter has complexity Õ(m1.4) assuming ω = 2.)
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Corollary 1 follows from the combination of two lemmas. Before stating these, we provide
some motivation (in addition to the obvious one of filling the landscape of reductions).

The motivation comes from the study of variants of 3SUM over other domains such as
finite groups. Building on [PW10], the paper [BIWX11] links such variants to the Expo-
nential Time Hypothesis [IPZ01] when the number of summands is “large,” in particular,
bigger than 3. By contrast, we focus on the problem which we call 3XOR and which is like
3SUM except that integer summation is replaced with bit-wise xor. So one can think of
3XOR as asking if a given n × O(lg n) matrix over the field with two elements has a linear
combination of length 3. This problem is likely less relevant to computational geometry, but
is otherwise quite natural. Similarly to 3SUM, 3XOR can be solved in time Õ(n2), and it
seems natural to conjecture that 3XOR requires time Ω̃(n2). But it is interesting to note
that if we ask for any number (as opposed to 3) of elements that sums to 0 the difference
in domains translates in a significant difference in complexity: SUBSET-SUM is NP-hard,
whereas SUBSET-XOR can be solved efficiently via Gaussian elimination. On the other
hand, SUBSET-XOR remains NP-hard if the number of elements that need to sum to 0 is
given as part of the input.[Var97]

In light of this, it would be interesting to relate the complexities of 3SUM and 3XOR.
For example, it would be interesting to show that one problem is solvable in time n2−Ω(1) if
and only if the other is. Less ambitiously, the weakest possible link would be to exclude a
scenario where, say, 3SUM requires time Ω̃(n2) while 3XOR is solvable in time Õ(n). We
are not even able to exclude this scenario, and we raise it as an open problem.

However we manage to spin a web of reductions around 3SUM, 3XOR, and various
problems related to triangles, a web that extends and complements the pre-existing web.
One consequence is that the only way in which the aforementioned scenario is possible is
that listing m triangles requires exactly m1.33̄ up to lower-order factors.

Corollary 2. Suppose that 3SUM requires randomized time Ω̃(n2) and 3XOR is solvable
in time Õ(n), or vice versa. Then, given the adjacency list of a graph with m edges and z
triangles (and O(m) nodes), the randomized time complexity of listing min{z,m} triangles
is m1.33̄ up to a factor mα for any α > 0.

We now overview the lemmas behind our reductions. First we build on and extend a
remarkable reduction [WW10] by Vassilevska and Williams from listing triangles to detecting
triangles. Their reduction worked on adjacency matrixes, and a main technical contribution
of this work is an extension to adjacency lists which is needed in our subquadratic context.

Lemma 3. Suppose given the adjacency list of a graph with m edges and n = O(m) nodes,
one can decide if it is triangle-free in time m1+ε for ε > 0. Then, given the adjacency list of
a graph G with m edges, n = O(m) nodes and z triangles and a positive integer t one can
list min{t, z} triangles in G, in time Õ(m1+εt1/3−ε/3).

For context, Pagh shows a reduction from finding the set of edges involved in some
triangle to listing triangles, see [Amo11, §6].

Next we move to reductions between 3SUM and detecting triangles. The Paghs [PP06,
§6] give an algorithm to “compute the join of three relations [...] where any pair has a
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common attribute not shared by the third relation.” One component of their algorithm
can be phrased as a randomized reduction from detecting (tripartite, directed) triangles to
3SUM. The same reduction works for 3XOR. Here our main technical contribution is to
exhibit a deterministic reduction.

Lemma 4. Suppose that one can solve 3SUM or 3XOR on a set of size n in time Õ(n1+ε)
for ε ≥ 0. Then, given the adjacency list of a graph with m edges, n = O(m) nodes, one can
decide if it is triangle-free in time Õ(m1+ε).

In particular, this shows that solving either 3SUM or 3XOR in time O(m2ω/(ω+1)−Ω(1)),
where ω is the exponent of matrix multiplication, would improve the aforementioned triangle-
detection algorithm in [AYZ97].

The combination of the previous two lemmas yields Corollary 1.
Finally, we re-execute Pǎtraşcu’s reduction for 3XOR instead of 3SUM. Our execu-

tion also avoids some technical difficulties and so is a bit simpler; it appeared first in the
manuscript [Vio11].

Theorem 5. Suppose that given the adjacency list of a graph with m edges and z triangles
(and O(m) nodes) one can list min{z,m} triangles in time m1.33̄−ε for a constant ε > 0.
Then one can solve 3XOR on a set of size n in time n2−ε′ with error 1% for a constant ε′ > 0.

1.2 Techniques

In this section we explain the techniques behind our two main reductions.

How we reduce listing t triangles in a graph to detecting triangles (Lemma 3).
First we recall the strategy [WW10] by Vassilevska and Williams that works in the setting
of adjacency matrixes, as opposed to lists.

Without loss of generality, we work with a tripartite graph with n nodes per part. Their
recursive algorithm proceeds as follows. First, divide each part in two halves of n/2 nodes,
then recurse on each of the 8 subgraphs consisting of triples of halves. Note edges are
duplicated, but triangles are not. One uses the triangle-detection algorithm to avoid recurs-
ing on subproblems that do not contain triangles. The most important feature is that one
keeps track, throughout the execution of the algorithm, of how many subproblems have been
produced, and if this number reaches t one stops introducing new subproblems.

We next explain how to extend this idea to adjacency lists. At a high level we use the same
recursive approach based on partitions and keeping track of the total number of subproblems.
However in our setting partitioning is more difficult, and we resort to random partitioning.
Each part of the graph at hand is partitioned in 2 subsets by flipping an unbiased coin for
each node. If we start with a graph with m edges, each of the 8 subgraphs (induced by the
8 triples of subsets) expects m/4 edges. We would like to guarantee this result with high
probability simultaneously for each of the 8 subgraphs. For this goal we would like to show
that the size of each of the 8 subgraphs is concentrated around its expectation. Specifically,
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fix a subgraph and let Xe be the indicator random variable for edge e being in the subgraph.
We would like to show

Pr

[∑
e

Xe > m/4 + γm

]
< 1/8 (?)

for some small γ. By a union bound we can then argue about all the 8 subgraphs simulta-
neously.

Assuming (?) we conclude the proof similarly to [WW10] as follows, setting for simplicity
γ = 0. Each recursive step reduces the problem size by a factor 4. Let si be the number of
subproblems at level i of the recursion. The running time of the algorithm is of the order of∑

i≤lg4m

siT (m/4i) <
∑

sim
1+ε/4i,

where T (x) = x1+ε is the time of the triangle detection algorithm. Since we recurse on ≤ 8
subproblems we have si ≤ 8i; since we make sure to never have more than t subproblems we
have si ≤ t. Picking a breaking-point ` we can write the order of the time as

m1+ε

(∑
i≤`

8i/4i +

lg4m∑
i>`

t/4`

)
= m1+εÕ(2` + t/4`)

which is minimized to Õ(m1+εt1/3) for ` = lg t1/3.
We now discuss how we guarantee (?). The obstacle is that the variables Xe are not even

pairwise independent; consider for example two edges sharing a node. We overcome this
obstacle by introducing a first stage in the algorithm in which we list all triangles involving
at least one node of high degree (> δm), which only costs time Õ(m). We then remove these
high-degree nodes. What we have gained is that now most pairs of variables Xe, Xe′ are
pairwise independent. This lets us carry through an argument like Chebychev’s inequality
and in turn argue about concentration around the expectation m/4.

To obtain a deterministic reduction we choose the partition from an almost 4-wise inde-
pendent sample space [NN93, AGHP92].

How we deterministically reduce detecting triangles to 3SUM (Lemma 4). The
reduction simply proceeds by assigning a number to each node, and constructing a set which
for every edge in the graph contains the difference of the numbers assigned to the endpoints.
This set is the 3SUM instance.

For the analysis, the numbers assigned to each node must come from a set that avoids
solutions to the equation

x1 + x2 + x3 = x4 + x5 + x6. (1)

A substantial number of papers in additive combinatorics is devoted to the study of such
sets, see e.g. [O’B08] for a recent account. However, the additive combinatorics literature
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devoted to the construction of such sets has focused on quantitative bounds, not on the
explicitness of these sets. By contrast, for our application tight quantitative bounds are not
essential, but it is critical that a set of size m can be constructed in quasi-linear time Õ(m).
We are unaware of previous constructions achieving this. For example, we do not see how to
implement Ruzsa’s greedy construction [Ruz93] in time Õ(m), or how to derandomize the
probabilistic arguments in other constructions (cf. [Elk08]) within time Õ(m).

Our construction relies on combinatorial designs, family of m subsets of a small universe
with small pairwise intersections. Specifically we need the size of the sets to be linear in the
universe size, and the bound on the intersection a constant fraction of the set size. It is easy
to see that when the latter constant is small enough, if we interpret the characteristic vector
of each set as the binary expansion of a number, the corresponding set of numbers does not
contain solutions to Equation (1).

Design parameters such as above were achieved by Nisan and Wigderson in [NW94] but
again with a construction running in time exponential in m. We use the different construction
computable in time Õ(m) by Gutfreund and Viola [GV04].

Finally, our construction is immediately applicable to other groups such as {0, 1}t with
bit-wise xor, an extension that is needed for the application to 3XOR.

Organization. In §2 we reduce detecting triangles to 3SUM and 3XOR. In §3 we give the
reduction from listing to detecting triangles in a graph. In the appendix, §A through §A.3,
we give the reduction from 3XOR to listing triangles. In another section of the appendix,
§B, we show how to reduce 4-clique to 6SUM over the the group Zt

3 – thus hinting at a richer
web of reductions.

Note that Corollary 2 follows immediately from the combination of: Pǎtraşcu’s reduction
from 3SUM to listing triangles [Pǎt10], our reduction in the other direction (Corollary 1),
and our re-execution for 3XOR (Theorem 5).

2 Reducing detecting triangles to 3SUM and 3XOR

In this section we prove Lemma 4, restated next.

Lemma 4. Suppose that one can solve 3SUM or 3XOR on a set of size n in time Õ(n1+ε)
for ε ≥ 0. Then, given the adjacency list of a graph with m edges, n = O(m) nodes, one can
decide if it is triangle-free in time Õ(m1+ε).

Recall that all graphs in this paper are undirected (and simple). Still, we use ordered-pair
notation for edges. A triangle is a set of 3 distinct edges where each node appears twice,
such as (a, b), (c, b), (a, c).

Lemma 6. [GV04] For every constant c > 1 and large enough m there is a family of m sets
Si, i = 1, . . . ,m such that:

1) |Si| = c2 lgm,
2) |Si ∩ Sj| ≤ 2c lgm for i 6= j,
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3) Si ⊆ [50 · c3 lgm],
4) the family may be constructed in time Õ(m).

Note that by increasing c in Lemma 6 we can have the bound on the intersection size be
an arbitrarily small constant fraction of the set size.

Proof: We show how to reduce detecting directed triangles to 3SUM. The same approach
reduces detecting un-directed triangles to 3XOR (except that the numbers below would be
considered in base 2 instead of 10). To reduce detecting un-directed triangles to 3SUM, we
can simply make our graphs directed by repeating each edge with direction swapped.

We first review the randomized reduction, then we make it deterministic. Given the
adjacency list of graph G = (V,E), assign an `-bit number, uniformly and independently to
each node in the graph G, ` to be determined, i.e. ∀a ∈ V, Xa ∈U {0, 1}`. For each edge
e = (a, b) let Y(a,b) := (Xa−Xb). Return the output of 3SUM on the set Y := {Y(a,b)|(a, b) ∈
E}. If there is a triangle there are always 3 elements in Y summing to 0. Otherwise, by a
union bound the probability that there are such 3 elements is ≤ 1/2 for ` = 3 lgm.

To make the reduction deterministic, consider the family Si of O(m) sets from Lemma
6, with intersection size less than 1/5 of the set size. Assign to node a the number xa whose
decimal representation has 1 in the digits that belong to Sa, and 0 otherwise.

As before, we need to show that if there are 3 numbers (xa−xa′), (xb−xb′) and (xc−xc′)
in Y that sum to 0 then there is a triangle in the graph. Since the graph has no self
loops, note that the existence of a triangle is implied by the fact that in the expression
(xa−xa′) + (xb−xb′) + (xc−xc′) each of xa, xb, xc appears exactly once with each of the two
signs. We will show the latter. First, we claim that each of xa, xb, xc appears the same number
of times with each sign. Indeed, otherwise write the equation xa+xb+xc = xa′ +xb′ +xc′ and
simplify equal terms. We are left with a number on one side of the equation that is non-zero
in a set of digits that cannot be covered by the other 5, by the properties of the design.
Hence the equation cannot hold. Note that when performing the sums in this equation there
is no carry among decimal digits. Finally, we claim that no number can appear twice with
the same sign. For else it is easy to see that there would be a self loop. �

3 Reducing listing to detecting triangles

In this section we prove Lemma 3, restated next.

Lemma 3. Suppose given the adjacency list of a graph with m edges and n = O(m) nodes,
one can decide if it is triangle-free in time m1+ε for ε > 0. Then, given the adjacency list of
a graph G with m edges, n = O(m) nodes and z triangles and a positive integer t one can
list min{t, z} triangles in G, in time Õ(m1+εt1/3−ε/3).

Proof: Let A denote the triangle-detection algorithm. The triangle-listing algorithm is
called B and has three stages. In stage one, we list triangles in G involving at least one
high degree node. In this part we do not use algorithm A. In the second stage, we create
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a new graph G′ which is tripartite, and has the property that for each triangle in G there
uniquely correspond 6 triangles in G′. In the final stage we run a recursive algorithm on G′

and list min{6t, 6z} triangles in G′ which would correspond to min{t, z} triangles in G. This
recursive algorithm will make use of algorithm A.

Stage One. We consider a node to be high degree if its degree is > δm, for a parameter
δ to be set later. We can list triangles involving a high degree node, if any exists, in time
Õ(m/δ). To see this, note that we can sort the adjacency list and also make a list of high
degree nodes in time Õ(m). Also note that the number of nodes with high degree is O(1/δ),
because the sum of all degrees is 2m. For any high degree node h, for each edge (a, b) ∈ E
we search for two edges (a, h) and (b, h) in the adjacency list. Since the adjacency list is
sorted, the search for each edge will take Õ(lgm) and for each high degree nodes we do this
search 2m times so the running time of Stage One is TB1(m) = Õ(m/δ). Obviously at any
point of this process, if the number of listed triangles reaches t we stop. If not, we remove
the high degree nodes from G and move to the next stage.

Stage Two. We convert G into a tripartite graph G′ = (V ′, E ′) where V ′ := I1 ∪ I2 ∪ I3

and each part of V ′ is a copy of V . For each edge (a, b) in E place in E ′ edge (ai, bj) for any
i, j ∈ {1, 2, 3}, i 6= j.

A triangle in G yields 6 in G′ by any choice of the indices i and j. A triangle in G′ yields
one in G by removing the indices, using that the graph is simple. This stage takes time
TB2(m) = Õ(m). In the next stage we look for t′ = 6t triangles in G′. Note that |E ′| = 6|E|.

Stage Three. We partition each of I1, I2 and I3 of V ′ randomly into two subsets, in a way
specified below. Now we have 8 subgraphs, where each subgraph is obtained by choosing
one subsets from each of I1, I2 and I3. For each of the subgraphs, we use A to check if the
subgraph contains a triangle. If it does, we recurse on the subgraph. We recurse till the
number of edges in the subgraph is smaller than a constant C, at which point by brute force
in time Õ(C3) we return all the triangles in the subgraph. Note that each triangle reported
is unique since it only appears in one subproblem. We only need to list t′ triangles in the
graph, so when the number of subproblems that are detected to have at least one triangle
reaches t′, we do not need to introduce more.

To bound the running time, we need to bound the size of the input for each subproblem.
If the random partition above is selected by deciding uniformly and independently for each
node which subset it would be in, the expected number of edges in each subgraph is m/4.
We introduce another parameter γ and consider the probability that all the 8 subproblems
are of size smaller than m/4 +mγ. We call these subproblems roughly balanced.

To make the reduction deterministic we choose the partition by an almost 4-wise inde-
pendent space [NN93, AGHP92].

Lemma 7 ([NN93, AGHP92]). There is an algorithm that maps a seed of O(lg lg n + k +
lg 1/α) bits into n bits in time Õ(n) such that the induced distribution on any k bits is
α-close to uniform in statistical distance.
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Claim 8. Let 0 < γ < 1/4. There are δ and α such that for all sufficiently large m, if
we partitioning each of I1, I2 and I3 into two subsets using an α-almost 4-wise independent
generator, with probability > 0 all the 8 subgraphs induced by triples of subsets have less
than m(1/4 + γ) edges.

We later give the proof of this claim. To make sure that all the subproblems generated
during the execution of the entire algorithm are roughly balanced, each time we partition we
enumerate all seeds for the almost 4-wise independent generator, and pick the first yielding
the conclusion of Claim 8. This only costs Õ(m) time.

To analyze the running time of Stage Three, let si denote the number of subprob-
lems at level i of the recursion. At the ith level, we run algorithm A si times on an in-
put of size ≤ 6m (1/4 + γ)i, so the running time of the recursive algorithm at level i is

Õ
(
si · TA

(
6m (1/4 + γ)i

))
, where TA(m) = m1+ε is the running time of algorithm A.

Note that si ≤ 8i by definition and si ≤ t′ because at any level we keep at most t′

subproblems. Pick ` := lg t1/3. The running time of this stage is

TB3(6m, 6t) = Õ

(
`−1∑
i=0

8iTA

(
6m (1/4 + γ)i

)
+

lg 6m∑
i=`

6t · TA
(

6m (1/4 + γ)i
)

+ 6tC3

)

= Õ

(
`−1∑
i=0

8i
(
m (1/4 + γ)i

)1+ε

+

lg 6m∑
i=`

t ·
(
m (1/4 + γ)i

)1+ε
)
.

The asymptotic growth of each sum is dominated by their value for i = `.

TB3(6m, 6t) = Õ
(
8` ·m1+ε · (1/4 + γ)`(1+ε) + t ·m1+ε · (1/4 + γ)`(1+ε)

)
= Õ

(
m1+ε · t(1/3) lg2(1/4+γ)(1+ε)+1

)
.

Let lg2(1/4 + γ) = −2 + β.

TB3(6m, 6t) = Õ
(
m1+ε · t(1/3)(−2+β)(1+ε)+1

)
= Õ

(
m1+εt(1/3)(1−2ε+βε+β)

)
.

For small enough γ, 1− 2ε+ βε+ β < 1− ε, hence:

TB3(6m, 6t) = Õ
(
m1+εt(1/3)(1−ε)) .
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Finally the running time of algorithm B is

TB(m, t) = TB1 (m) + TB2 (m) + TB3 (6m, 6t) = Õ
(
m1+εt1/3−ε/3)

)
.

�

Claim 8. Let 0 < γ < 1/4. There are δ and α such that for all sufficiently large m, if
we partitioning each of I1, I2 and I3 into two subsets using an α-almost 4-wise independent
generator, with probability > 0 all the 8 subgraphs induced by triples of subsets have less
than m(1/4 + γ) edges.

Proof:[of claim 8] Let us fix one of the subgraphs and call it S and define the following
random variables,

∀0 ≤ i ≤ m, Xi =

{
1 if ei ∈ S,
0 if ei /∈ S.

We have |E[Xi]− 1/4| ≤ α and |E[
∑

iXi]−m/4| ≤ αm. To prove the claim, we show that
the probability that S has more than m(1/4 + γ) edges is less than 1/16; and by a union
bound we conclude. In other words we need to show:

PS := Pr

[∑
i

Xi −m/4 ≥ mγ

]
≤ 1/16.

By a Markov bound we have,

PS ≤ Pr

(∑
i

Xi −m/4

)2

≥ (mγ)2

 ≤ E

(∑
i

Xi −m/4

)2
 / (mγ)2 .

Later we bound E
[
(
∑

iXi −m/4)2] = O((α + δ)m2) from which the claim follows.

Now we get the bound for E
[
(
∑

iXi −m/4)2].
E

(∑
i

Xi −m/4

)2
 = E

(∑
i

Xi

)2

+ (m/4)2 −

(
m
∑
i

Xi

)
/2


≤ E

[∑
i 6=j

XiXj

]
+ E

[∑
i

X2
i

]
+
m2

16
− m

2
m

(
1

4
− α

)

≤ E

[∑
i 6=j

XiXj

]
+
m

4
+ αm− m2

16
+m2α/2

= E

[∑
i 6=j

XiXj

]
+O(αm2)− m2

16
.
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E [XiXj] is the probability that two edges ei and ej are both in S. If our distribution were
uniform the probability would be 1/16 for the pairs of edges that do not share a node, and
1/8 for the pairs of edges that do share a node. Let ρ be the number of unordered pairs of
edges that share a node. We have:

E

[∑
i 6=j

XiXj

]
=
∑
i 6=j

E [XiXj] ≤ 2ρ(1/8 + α) + 2

((
m

2

)
− ρ
)

(1/16 + α)

≤ m2/16 + ρ/8 + 4ρα + αm2 ≤ m2/16 + ρ/8 +O(αm2).

Note

ρ =
∑
a∈V

(
degree(a)

2

)
≤
∑
a∈V

degree(a)2/2 ≤ δm
∑
a∈V

degree(a)/2 ≤ δm2,

since after stage one of the algorithm there are no nodes with degree more than δm.
Hence we obtain

E

(∑
i

Xi −m/4

)2
 ≤ m

4
+O(α + δ)m2 = O(α + δ)m2,

as desired. �
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A Reducing 3XOR to listing triangles

In this section we prove theorem 5.

Theorem 5. Suppose that given the adjacency list of a graph with m edges and z triangles
(and O(m) nodes) one can list min{z,m} triangles in time m1.33̄−ε for a constant ε > 0.
Then one can solve 3XOR on a set of size n in time n2−ε′ with error 1% for a constant ε′ > 0.

The proof of Theorem 5 follows the one in [Pǎt10] for 3SUM, which builds on results in
[BDP08]. However the proof of Theorem 5 is a bit simpler. This is because it avoids some
steps in [BDP08, Pǎt10] which are mysterious to us. And because in our context we have
at our disposal hash functions that are linear, while over the integers one has to work with
“almost-linearity,” cf. [BDP08, Pǎt10].

The remainder of this section is organized as follows. In §A.1 we cover some preliminaries
and prove a hashing lemma by [BDP08] that will be used later.1 The proof of the reduction
in Theorem 5 is broken up in two stages. First, in §A.2 we reduce 3XOR to the problem
C3XOR which is a “convolution” version of 3XOR. Then in §A.3 we reduce C3XOR to
listing triangles.

A.1 Hashing and preliminaries

We define next the standard hash function we will use.

Definition 9. For input length ` and output length r, the hash function h uses r `-bit keys
a := (a1, . . . , ar) and is defined as hā(x) := (〈a1, x〉, . . . , 〈ar, x〉), where 〈., .〉 denotes inner
product modulo 2.

We note that this hash function is linear: hā(x)+hā(y) = hā(x+y) for any x 6= y ∈ {0, 1}`,
where addition is bit-wise xor. Also, hā(0) = 0 for any ā, and Prā[hā(x) = hā(y)] ≤ 2−r for
any x 6= y.

Before discussing the reductions, we make some remarks on the problem 3XOR. First,
for simplicity we are going to assume that the input vectors are unique. It is easy to deal
separately with solutions involving repeated vectors. Next we argue that for our purposes the
length ` of the vectors in instances of 3XOR can be assumed to be (2−o(1)) lg n ≤ ` ≤ 3 lg n.
Indeed, if ` ≤ (2 − Ω(1)) lg n one can use the fast Walsh-Hadamard transform to solve
3XOR efficiently, just like one can use fast Fourier transform for 3SUM, cf. [CLRS01, Exercise
30.1-7]. For 3XOR one gets a running time of 2``O(1) + Õ(n`), where the first term comes
from the fast algorithms to compute the transform, see e.g. [MR97, §2.1]. (The second term
accounts for preprocessing the input.) When ` ≤ (2−Ω(1)) lg n, the running time is n2−Ω(1),
i.e., subquadratic.

1In [BDP08, Pǎt10] they appear to use this lemma with a hash function that is not known to satisfy
the hypothesis of the lemma. However probably one can use instead similar hash functions such as one in
[Die96] that does satisfy the hypothesis. We thank Martin Dietzfelbinger for a discussion on hash functions.
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Also, the length can be reduced to 3 lg n via hashing. Specifically, an instance v1, . . . , vn ∈
{0, 1}` of 3XOR is reduced to h(v1), . . . , h(vn) where h = ha is the hash function with
range of r = 3 lg n bits for a randomly chosen ā. Correctness follows because on the one
hand if vi + vj + vk = 0 then h(vi) + h(vj) + h(vk) = h(vi + vj + vk) = h(0) = 0 by
linearity of h and the fact that h(0) = 0 always; on the other hand if vi + vj + vk 6= 0 then
Pr[h(vi + vj + vk) = 0] = 1/2r since h maps uniformly in {0, 1}r any non-zero input. Hence
by a union bound over all ≤

(
n
3

)
choices for vectors such that vi+vj +vk 6= 0, the probability

of a false positive is
(
n
3

)
/n3 < 1/6.

For the proof we need to bound the number of elements x whose buckets Bh(x) := {y ∈
S : h(x) = h(y)} have unusually large load. If our hash function was 3-wise independent
the desired bound would follow from Chebyshev’s inequality. But our hash function is only
pairwise independent, and we do not see a better way than using a hashing lemma from
[BDP08] that in fact relies on a weaker property, cf. the discussion in [BDP08].

When hashing n elements to [R] = {1, 2, . . . , R}, the expected load of each bucket is
n/R. The lemma guarantees that the expected number of elements hashing to buckets with
a load ≥ 2n/R + k is ≤ n/k.

Lemma 10 ([BDP08]). Let h be a random function h : U → [R] such that for any x 6= y,
Prh[h(x) = h(y)] ≤ 1/R. Let S be a set of n elements, and denote Bh(x) = {y ∈ S : h(x) =
h(y)}. We have

Pr
h,x

[|Bh(x)| ≥ 2n/R + k] ≤ 1/k.

In particular, the expected number of elements from S with |Bh(x)| ≥ 2n/R + k is ≤ n/k.

The proof of the lemma uses the following fact, whose proof is an easy application of the
Cauchy-Schwarz inequality.

Fact 11. Let f : D → [R] be a function. Pick x, y independently and uniformly in D. Then
Prx,y[f(x) = f(y)] ≥ 1/R.

Proof:[of Lemma 10] Pick x, y uniformly and independently in S (x = y possible). For given
h, let

ph := Pr
x

[|B(x)| ≥ 2n/R + k],

qh := Pr
x,y

[h(x) = h(y)].

Note we aim to bound E[ph] ≤ 1/k, while by assumption

E[qh] = Pr
h,x,y

[h(x) = h(y)] ≤ 1/R + 1/n. (2)

Now let Lh := {x : |Bh(x)| < 2n/R + k}, and note |Lh| = (1− ph)n. Let us write

qh = Pr
x,y

[h(x) = h(y)|x ∈ Lh] Pr[x ∈ Lh] + Pr
x,y

[h(x) = h(y)|x 6∈ Lh] Pr[x 6∈ Lh].
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The latter summand is ≥ ((2n/R + k)/n)ph = (2/R + k/n)ph.
For the first summand, note

Pr
x,y

[h(x) = h(y)|x ∈ Lh] Pr[x ∈ Lh] = Pr
x,y

[h(x) = h(y)|x ∧ y ∈ Lh] Pr[x ∧ y ∈ Lh]

because if y 6∈ Lh then there cannot be a collision with x ∈ Lh. The term Prx,y[h(x) =
h(y)|x ∧ y ∈ Lh] is ≥ 1/R by Fact 11. The term Pr[x ∧ y ∈ Lh] is (1− ph)2 ≥ 1− 2ph.

Overall,

qh ≥
1

R
(1− 2ph) + (2/R + k/n)ph = phk/n+ 1/R.

Taking expectations and recalling (2),

E[ph]k/n+ 1/R ≤ 1/R + 1/n,

as desired. �

A.2 Convolution 3XOR

Define the problem convolution 3XOR, denoted C3XOR, as: Given array A of n strings of
O(lg n) bits, determine if ∃i, j ≤ n : A[i] + A[j] = A[i+ j]. Again, sum is bit-wise xor.

Lemma 12. If C3XOR can be solved with error 1% in time t ≤ n2−Ω(1), then so can 3XOR.

Intuition. We are given an instance of 3XOR consisting of a set S of n vectors. Suppose
for any x ∈ S we define A[x] := x, and untouched elements of A[x] are set randomly so as
to never participate in a solution.

Now if x + y = z then A[x] + A[y] = A[z] = A[x + y]. Using again x + y = z we get
A[x]+A[y] = A[x+y]. Hence this solution will be found in C3XOR. Conversely a solution to
C3XOR corresponds to a 3XOR solution, since A is filled with elements with S (and random
otherwise).

This reduction is correct. But it is too slow because the size of A may be too large.
In our second attempt we try to do as above, but make sure the vector A is small.

Suppose we had a hash function h : S → [n] that was both 1-1 and linear.
Then we could let again A[h(x)] := x.
If x + y = z then A[h(x)] + A[h(y)] = A[h(z)] by definition. And using again x + y = z

and linearity, we get h(x + y) = h(x) + h(y) = h(z), and so we get A[h(x)] + A[h(y)] =
A[h(x) + h(y)] as desired.

But the problem is that there is no such hash function. (Using linear algebra one sees
that there is no hash function that shrinks and is both linear and 1-1.)

The solution is to implement the hash-function based solution, and handle the few colli-
sions separately.

Proof: Use the hash function h from Definition 9 mapping input elements of ` = O(lg n)
bits to r := (1 − α) lg n bits, for a constant α to be determined. So the range has size
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R = 2r = n1−α. By Lemma 10, the expected number of elements falling into buckets with
more than t := 3n/R elements is ≤ R. For each of these elements, we can easily determine
in time Õ(n) if it participates to a solution. The time for this part is Õ(Rn) with high
probability, by a Markov bound.

It remains to look for solutions x+y+z = 0 where the three elements all are hashed to not-
overloaded buckets. For each i, j, k ∈ [t], we look for a solution where x, y, z are respectively
at positions i, j, k of their buckets. Specifically, fill an array A of size O(R) as follows: put the
ith (jth, kth) element x of bucket h(x) at position A[h(x)01] (A[h(x)10], A[h(x)11]), where
h(x)01 denotes the concatenation of the bit-strings h(x) and 01. The untouched elements of
A are set to a value large enough that it can be easily shown they cannot participate in a
solution. Run the algorithm for C3XOR on A.

If there is a solution x+ y+ z = 0, suppose x, y, z are the ith (jth, kth) elements of their
buckets. Then for that choice of i, j, k we have A[h(x)01] = x,A[h(y)10] = y, A[h(z)11] = z,
and so A[h(x)01] + A[h(y)10] = A[h(z)11]. By linearity of h, and the choice of the vectors
01, 10, 11, we get h(z)11 = h(x)01 + h(y)10. So this solution will be found.

Conversely, any solution found will be a valid solution for 3XOR, by construction of A.
The time for this part is as follows. We run over t3 = O(n3/R3) choices for the indices. For

each choice we run the C3XOR algorithm on an array of size O(R). If the time for the latter is
R2−ε, we can pick R = n1−α for a small enough α so that the time is Õ(n3αn(2−ε)(1−α)) = n2−ε′ .
(Here we first amplify the error of the C3XOR algorithm to 1/n3 by running it O(lg n) times
and taking majority.)

The first part only takes time O(Rn) = O(n2−α), so overall the time is n2−ε′′ . �

It is worth mentioning that although Lemma 12 shows that C3XOR is at least as hard
as 3XOR, we can easily prove that is not any harder than 3XOR either.

Lemma 13. If 3XOR can be solved in time t ≤ n2−Ω(1), then so can C3XOR.

Proof: Let array A of n elements be the input to C3XOR, create set S := { A[i]i | ∀i ∈ [n]}
where A[i]i denotes the concatenation of bit-strings of i and A[i]. Run 3XOR on the set S.
It is easy to see that if

∃ a, b, c ∈ S such that a+ b+ c = 0 ⇐⇒ ∃ i, j ∈ [n] such that A[i] + A[j] = A[i+ j].

�

A similar method can be applied to reduce C3SUM to 3SUM. The only difference is in
creating the elements of S, S := { A[i]0i | ∀i ∈ [n]}. The 0-bit in between A[i] and i is to
ensure that the (possible) final carry of the sum of the indices is not added to the sum of
the elements of A.

A.3 Reducing C3XOR to listing triangles

Lemma 14. Suppose that given the adjacency list of a graph with m edges and z triangles
(and O(m) nodes) one can list min{z,m} triangles in time m1.33̄−ε for a constant ε > 0.
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Then one can solve C3XOR on a set of size n with error 1% in time n2−ε′ for a constant
ε′ > 0.

In fact, the hard graph instances will have n = m1−Ω(1) nodes.

Proof: We are given an array A and want to know if ∃a, b ≤ n : A[a] + A[b] = A[a + b].
It is convenient to work with the equivalent question of the existence of a, b such that
A[a+ bh] + A[a+ b`] = A[b], where bh, b` are each half the lg n bits of b.

We use again the linear hash function h. To prove Lemma 12 we hashed to R = n1−ε

elements. Now we pick R :=
√
n. By the paragraph after Definition 9, among the ≤ n2 pairs

a, b that do not constitute a solution (i.e., A[a + bh] + A[a + b`] 6= A[b]), we expect ≤ n2/R
of them to satisfy

h(A[a+ bh]) + h(A[a+ b`]) = h(A[b]) (?).

By a Markov argument, with constant probability there are ≤ 2n2/R = 2n1.5 pairs a, b
that do not constitute a solution but satisfy (?). The reduction works in that case. (One
can amplify the success probability by repetition.)

We set up a graph with m := 3n1.5 edges where triangles are in an easily-computable
1 − 1 correspondence with pairs a, b satisfying (?). We then run the algorithm for listing
triangles. For each triangle in the list, we check if it corresponds to a solution for C3XOR.
This works because if the triangle-listing algorithm returns as many as m triangles then, by
above, at least one triangle corresponds to a correct solution. Hence, if listing can be done
in time m4/3−ε then C3XOR can be solved in time (3n1.5)4/3−ε = n2−ε′ .

We now describe the graph. The graph is tripartite. One part has
√
n × R nodes of

the form (bh, x); another has
√
n × R nodes of the form (b`, y); and the last part has n

nodes of the form (a). Node (a) is connected to (bh, x) if h(A[a + bh]) = x, and to (b`, y) if
h(A[a+b`]) = y). Nodes (bh, x) and (b`, y) are connected if, letting b = bh+b`, h(A[b]) = x+y.

We now count the number of edges of the graph. Edges of the form (a) − (bh, x) (or
(a)− (b`, y)) number n1.5, since a, bh determine x. Edges (bh, x)− (b`, y) number again n1.5,
since for each b = bh + b` and x there is exactly one y yielding an edge.

The aforementioned 1-1 correspondence between solutions to C3XOR and triangles is
present by construction. �

B Reducing 4Clique to 6SUM

In this section we prove the following connection between solving 4Clique and 6SUM over
the group Zt

3. Although the next lemma is a simple extension of Lemma 4, the fact that the
sum is over Zt

3 plays a crucial role in our proof. We do not see a simple way to carry through
the same reduction over Z or Zt

2.

Lemma 15. Suppose that one can solve 6SUM on a set of n elements over Zt
3 in time

Õ(n1+ε) for ε ≥ 0 and t = O(lg n). Then, given the adjacency list of a graph with m edges,
n = O(m) nodes, one can decide if it contains a 4Clique in time Õ(m1+ε).
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Proof: Similar to the proof of Lemma 4, consider the family Si of O(m) sets from Lemma
6, with intersection size less than 1/11 of the set size. Assign to node a the number xa
whose decimal representation has 1 in the digits that belong to Sa, and 0 otherwise. We
look at xa as an element in Zt

3. For each edge e = (a, b) let Y(a,b) := (xa + xb). Return the
output of 6SUM on the set Y := {Y(a,b)|(a, b) ∈ E}. If there is a 4Clique in the graph, there
are 4 nodes, with an edge between any 2 of them, i.e.,

(
4
2

)
= 6 edges. The elements in Y

corresponding to these 6 edges will sum to 0. This is because every node is connected to 3
other nodes and the sum is over Zt

3.
On the other hand, if there are 6 elements (xa+xa′), (xb+xb′), (xc+xc′), (xe+xe′), (xf+xf ′)

and (xg + xg′) in Y that sum to 0, then each element xi has to appear a multiple of 3 times.
To see this, note that smaller than 1/11 intersection between any two subsets in Si assures
that no sum of less than 13 xi can sum to 0 unless each element appears a multiple of 3
times. If each xi appears exactly 3 times in the sum of 12 elements, it means we have 4
nodes each one connected to the other 3 i.e., we have a 4Clique in the graph. Notice if there
is an element xa that appears 6 times, since the graph does not have self-loops or multiple
edges, we can conclude that all the other elements are distinct and appear only once. We
know that the sum of 6 distinct elements over Zt

3 cannot be zero (due to the properties of
Si). �
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