

A Simple Algorithm for Undirected Hamiltonicity

Hasan Abasi Nader H. Bshouty
Department of Computer Science
Technion,32000

January 16, 2013

Abstract

We develop a new algebraic technique that gives a simple randomized algorithm for the simple k-path problem with the same complexity $O^*(1.657^k)$ as in [1] and [3].

1 Introduction

Given an undirected graph G on n vertices, the k-path problem asks whether G contains a simple path of length k. For k = n - 1 the problem is the Hamiltonian path problem in undirected graph.

Björklund proved in [1]

Theorem 1. The undirected Hamiltonian path problem can be solved in time $O^*(1.657^n)$ by a randomized algorithm with constant, one sided error.

Björklund et. al. proved in [3]

Theorem 2. The undirected k-path problem can be solved in time $O^*(1.657^k)$ by a randomized algorithm with constant, one sided error.

In this paper we give a simple algorithm for the above problems with same complexity as above.

2 Preliminary Results

In this section we give some preliminary results

Let G(V, E) be an undirected graph with n = |V| vertices. A k-path is v_0, v_1, \ldots, v_k such that $\{v_i, v_{i+1}\} \in E$ for every $i = 0, \ldots, k-1$. A k-path v_0, v_1, \ldots, v_k is called *simple* if the vertices in the path are distinct.

Let $V = V_1 \cup V_2$ be a partition of V. Let $E_1 = E(V_1)$ and $E_2 = E(V_2)$ be the set of edges with both ends in V_1 and V_2 , respectively. Our goal is to find a simple k-path that starts from some fixed vertex. For a path $p = v_0, v_1, \ldots, v_k$ we define the multiset of vertices in p as $V(p) = \{v_0, \ldots, v_k\}$ and the (undirected) edges in p as the multiset

 $E(p) = \{\{v_0, v_1\}, \dots, \{v_{k-1}, v_k\}\}$. When we write $V(p) \cap V_1$ (or $E(p) \cap E_2$) we mean the multiset that contains the elements in V(p) that are also in V_1 .

Define for every edge $e \in E$ a variable x_e , for every vertex $v \in V_1$ a variable y_v and for every edge $e \in E_2$ a variable z_e . Let $x = (x_e)_{e \in E}$ $y = (y_v)_{v \in V_1}$ and $z = (z_e)_{e \in E_2}$. For every k-path $p = v_0, v_1, \ldots, v_k$ we define a monomial over any field of characteristic 2 $M_p = X_p Y_p Z_p$ where

$$X_p = \left(\prod_{e \in E(p)} x_e\right), Y_p = \left(\prod_{v \in V(p) \cap V_1} y_v\right) \text{ and } Z_p = \left(\prod_{e \in E(p) \cap E_2} z_e\right).$$

Note here that if e appears twice in E(p) then x_e appears twice in X_p .

A path $p = v_0, v_1, \ldots, v_k$ is called (r, s)-legitimate k-path with the partition $V = V_1 \cup V_2$ if $|V(p) \cap V_1| = r$, $|E(p) \cap E_2| = s$ and it contains no three consecutive vertices v_i, v_{i+1}, v_{i+2} where $v_{i+2} = v_i, v_i \in V_2$ and $v_{i+1} \in V_1$. Fix a vertex $v_0 \in V_1$. We denote by $\mathcal{L}_{k,r,s}(v_0, V_1, V_2)$ the set of all (r, s)-legitimate k-paths in G with the partition $V_1 \cup V_2 = V$ that starts from $v_0 \in V_1$. Define

$$F_{k,r,s}^{v_0,V_1,V_2}(x,y,z) = \sum_{p \in \mathcal{L}_{k,r,s}(v_0,V_1,V_2)} M_p.$$

We now prove the following results.

Lemma 1. Given an undirected graph G = (V, E), a partition $V = V_1 \cup V_2$, $v_0 \in V_1$ and two integers s and r. There is a deterministic polynomial time algorithm that construct a polynomial size circuit for the function $F_{k,r,s}^{v_0,V_1,V_2}(x,y,z)$.

Lemma 2. $M_p = X_p Y_p Z_p$ is a monomial in $F_{k,r,s}^{v_0,V_1,V_2}(x,y,z)$ and $Y_p Z_p$ is multilinear if and only if p is a (r,s)-legitimate simple k-path with the partition $V_1 \cup V_2 = V$ that starts from v_0 .

Lemma 3. There is a randomized algorithm with constant, one sided error, that runs in time $O^*(2^{r+s})$ for the following decision problem: Given a black box for the multivariate polynomial $f(x, y, z) := F_{k,r,s}^{v_0, V_1, V_2}(x, y, z)$ over a field of characteristic 2. Decides whether f contains a monomial $M_p = X_p Y_p Z_p$ where $Y_p Z_p$ is multilinear.

Proof of Lemma 1. For any two vertices $u_1, u_2 \in V$ we define $\mathcal{L}_{k,r,s}(v_0, V_1, V_2, u_1, u_2)$ the set of all (r, s)-legitimate k-paths that start with v_0 and end with u_1, u_2 . Define

$$F_{k,r,s}^{v_0,V_1,V_2,u_1,u_2} = \sum_{p \in \mathcal{L}_{k,r,s}(v_0,V_1,V_2,u_1,u_2)} M_p.$$

Then

$$F_{k,r,s}^{v_0,V_1,V_2}(x,y,z) = \sum_{u_1,u_2 \in V} F_{k,r,s}^{v_0,V_1,V_2,u_1,u_2}.$$

We now show, using dynamic programming, that $F_{k,r,s}^{v_0,V_1,V_2,u_1,u_2}$ can be computed in polynomial time. For a vertex v let N(v) be the neighbor vertices of v. For a predicate A we define [A] = 1 if A is true and 0 otherwise. Now it is easy to verify the following recurrence formula

1. If $k \ge 2$, $r \le k + 1$, $s \le k$ and $\{u_1, u_2\} \in E$ then

$$\begin{split} F_{k,r,s}^{v_0,V_1,V_2,u_1,u_2} &= [u_2 \in V_1] \cdot x_{\{u_1,u_2\}} y_{u_2} \sum_{w \in N(u_1)} F_{k-1,r-1,s}^{v_0,V_1,V_2,w,u_1} \\ &+ [u_2 \in V_2 \wedge u_1 \in V_2] \cdot x_{\{u_1,u_2\}} z_{\{u_1,u_2\}} \sum_{w \in N(u_1)} F_{k-1,r,s-1}^{v_0,V_1,V_2,w,u_1} \\ &+ [u_2 \in V_2 \wedge u_1 \in V_1] \cdot x_{\{u_1,u_2\}} \sum_{w \in N(u_1) \backslash \{u_2\}} F_{k-1,r,s}^{v_0,V_1,V_2,w,u_1} \end{split}$$

- 2. If k = 1, $u_1 = v_0$, $u_2 \in V_2$, r = 1 and s = 0 then $F_{k,r,s}^{v_0,V_1,V_2,u_1,u_2} = x_{\{v_0,u_2\}}y_{v_0}$.
- 3. If k = 1, $u_1 = v_0$, $u_2 \in V_1$, r = 2 and s = 0 then $F_{k,r,s}^{v_0,V_1,V_2,u_1,u_2} = x_{\{v_0,u_2\}}y_{v_0}y_{u_2}$.
- 4. Otherwise $F_{k,r,s}^{v_0,V_1,V_2,u_1,u_2} = 0$.

Since u_1, u_2, k, r, s can take at most $k^2(k+1)n^2$ different values the above recurrence can be computed in polynomial time.

Proof of Lemma 2. (\Leftarrow) Let $p = v_0, v_1, \ldots, v_k$ be any (r, s)-legitimate simple k-path with the partition $V_1 \cup V_2 = V$. Then $p \in \mathcal{L}_{k,r,s}(v_0, V_1, V_2)$. Since p is simple Y_pZ_p is multilinear. We now need to show that no other path p' satisfies $M_{p'} = M_p$. If $M_p = M_{p'}$ then $X_p = X_{p'}$ and since p is simple and starts from v_0 by induction on the path $p \equiv p'$. Therefore M_p is a multilinear monomial in $F_{k,r,s}^{v_0,V_1,V_2}(x,y,z)$

 (\Rightarrow) We now show that all the monomials that correspond to (r, s)-legitimate non-simple k-path $p = v_0, v_1, \ldots, v_k$ with the partition $V_1 \cup V_2 = V$ either vanish (because the field is of characteristic 2) or are not multilinear.

Consider a (r, s)-legitimate non-simple k-path with the partition $V_1 \cup V_2 = V$. Consider the first circuit C in this path. If $C = v_i, v_{i+1}, v_i$ then either $v_i \in V_1$ and then Y_p contains $y_{v_i}^2$ or $v_i, v_{i+1} \in V_2$ and then Z_p contains $z_{\{v_i, v_{i+1}\}}^2$. Notice that p is legitimate and therefore the case $v_i \in V_2$ and $v_{i+1} \in V_1$ cannot happen.

Now suppose |C| > 2, $C = v_i, v_{i+1}, \ldots, v_j, v_{j+1} (= v_i)$. Define $p_1 = v_1, \ldots, v_{i-1}$ and $p_2 = v_{j+2}, \ldots, v_k$. Then $p = p_1 C p_2$. If $v_i \in V_1$ then Y_p contains $y_{v_i} y_{v_{j+1}} = y_{v_i}^2$. Therefore we may assume that $v_i \in V_2$. Define the path

$$\rho(p) := p_1 C' p_2 = \underline{v_0, v_1, \dots, v_{i-1}, v_i, v_j, v_{j-1}, \dots, v_{i+1}, v_i, \underline{v_{j+2}, v_{j+3}, \dots, v_k}.$$

We now show that

- 1. $\rho(\rho(p)) = p$.
- 2. $\rho(p)$ is (r, s)-legitimate non-simple k-path with the partition $V_1 \cup V_2 = V$ that starts with v_0 .
- 3. $\rho(p) \neq p$ and $M_p = M_{\rho(p)}$.

This implies that M_p vanishes from $F_{k,r,s}^{v_0,V_1,V_2}(x,y,z)$ because the characteristic of the field is 2. Let $p'=\rho(p)$. Since C is the first circuit in p we have v_0,v_1,\ldots,v_j are distinct and $v_{j+1}=v_i$. This implies that C' is the first circuit in p' and therefore $\rho(\rho(p))=\rho(p')=p$. This implies 1.

Obviously, $|V(p') \cap V_1| = |V(p) \cap V_1| = r$ and $|E(p') \cap E_2| = |E(p) \cap E_2| = s$. Suppose p' contains three consecutive vertices u, w, u such that $w \in V_1$ and $u \in V_2$. Then since p is (r, s)-legitimate path and $v_i \in V_2$ we have three cases

Case I. u, w, u is in C'. Then u, w, u is in C which contradict the fact that p is legitimate. Case II. $u = v_{i-2} \in V_2, w = v_{i-1} \in V_1$ and $v_{i-2} = v_i$. In this case $C'' = v_{i-2}, v_{i-1}, v_i$ is a circuit in p and then p is not legitimate. A contradiction.

Case III. $u = v_i \in V_2, w = v_{j+2} \in V_1$ and $v_{j+3} = v_i$. In this case, $C'' = v_i v_{j+2} v_{j+3}$ is a circuit in p and then p is not legitimate. A contradiction.

This proves 2.

If p = p' then C = C' and since |C| > 2 we get a contradiction. Therefore $p \neq p'$. Since E(p) = E(p'), $V(p') \cap V_1 = V(p) \cap V_1$ and $E(p') \cap E_2 = E(p) \cap E_2$ we also have $M_p = M_{p'}$. This proves 3.

Proof of Lemma 3. Consider the new indeterminates $y^{(i)} = (y_{i,v})_{v \in V_1}$, $i \in [r]$ and $z^{(j)} = (z_{j,e})_{e \in E_2}$, $j \in [s]$ where $[r] = \{1, 2, ..., r\}$. Consider the operator

$$\Phi(f) = \sum_{S \subseteq [s]} \sum_{R \subseteq [r]} f\left(x, \sum_{i \in R} y^{(i)}, \sum_{j \in S} z^{(j)}\right).$$

If $f(x,y,z) = \sum_{p \in P} X_p Y_p Z_p$ then $\Phi(f) = \sum_{p \in P} X_p \Phi(Y_p Z_p)$. If $Y_p = y_{v_1} \cdots y_{v_r}$ and $Z_p = z_{e_1} \cdots z_{e_s}$ then, by Ryser formula for permanent and since permanent in field of characteristic 2 is equal to determinant we have

$$\Phi(Y_p Z_p) = \sum_{S \subseteq [s]} \sum_{R \subseteq [r]} \left(\prod_{i_1=1}^r \sum_{i_2 \in R} y_{i_2, v_{i_1}} \prod_{j_1=1}^s \sum_{j_2 \in S} z_{j_2, e_{j_1}} \right) \\
= \left(\sum_{R \subseteq [r]} \prod_{i_1=1}^r \sum_{i_2 \in R} y_{i_2, v_{i_1}} \right) \left(\sum_{S \subseteq [s]} \prod_{j_1=1}^s \sum_{j_2 \in S} z_{j_2, e_{j_1}} \right) \\
= \left(\sum_{R \subseteq [r]} (-1)^{r-|R|} \prod_{i_1=1}^r \sum_{i_2 \in R} y_{i_2, v_{i_1}} \right) \left(\sum_{S \subseteq [s]} (-1)^{s-|S|} \prod_{j_1=1}^s \sum_{j_2 \in S} z_{j_2, e_{j_1}} \right) \\
= \operatorname{Per} \left(y_{i_2, v_{i_1}} \right)_{i_1, i_2 \in [r]} \operatorname{Per} \left(z_{j_2, v_{j_1}} \right)_{j_1, j_2 \in [s]} = \det \left(y_{i_2, v_{i_1}} \right)_{i_1, i_2 \in [r]} \det \left(z_{j_2, v_{j_1}} \right)_{j_1, j_2 \in [s]}.$$

Now if in Y_p (or Z_p) we have $y_{v_a} = y_{v_b}$, or equivalently $v_a = v_b$, for some $a \neq b$ then $\det \left(y_{i_2,v_{i_1}}\right)_{i_1,i_2\in[r]} = 0$ and $\Phi(Y_pZ_p) \equiv 0$. If Y_pZ_p is multilinear then $\Phi(Y_pZ_p) \not\equiv 0$. Therefore $\Phi(f) \not\equiv 0$ if and only if f contains a monomial $M_p = X_pY_pZ_p$ where Y_pZ_p is multilinear.

Now since substitution in $\Phi(f)$ can be simulated by 2^{r+s} substitutions in f and the degree of $\Phi(f)$ is $k+r+s \leq 3k+1$ we can randomly zero test f in time $O(poly(k,n)2^{r+s})$ [2, 4, 5].

3 Main Results

In this section we prove the Theorems

The following lemma is proved in [3] we give its proof for completeness

Lemma 4. Let $p = v_0, v_1, \ldots, v_k$ be a simple path. For a partition V_1, V_2 selected uniformly at random where $v_0 \in V_1$,

$$\Pr_{V_1, V_2} (|V(p) \cap V_1| = r, |E(p) \cap E_2| = s) = 2^{-k} \binom{r}{k - r - s + 1} \binom{k - r}{s}.$$

Proof. We will count the number of partitions V_1, V_2 that satisfies $|V(p) \cap V_1| = r$, $|E(p) \cap E_2| = s$ and $v_0 \in V_1$. Obviously, the probability in the lemma is 2^{-k} times the number of such partitions.

Let V_1, V_2 be a partition such that $|V(p) \cap V_1| = r$, $|E(p) \cap E_2| = s$ and $v_0 \in V_1$. Let $v_{i_1} = v_0, v_{i_2}, \ldots, v_{i_r}$ be the nodes in V_1 . Let $\bar{s}_j \geq 0$, $j = 1, \ldots, r-1$ be the number of nodes in V_2 that are between v_{i_j} and $v_{i_{j+1}}$. Let \bar{s}_r be the number of nodes in V_2 that are after v_{i_r} . Let t be the number of \bar{s}_i that are not zero. For j < r the number of edges in E_2 that are between v_{i_j} and $v_{i_{j+1}}$ is $s_i := \max(\bar{s}_i - 1, 0)$. The number of edges in E_2 that are after v_{i_r} is $s_r := \max(\bar{s}_r - 1, 0)$. Therefore

$$\sum_{i=1}^{r} \bar{s}_i = \sum_{i=1}^{r} s_i + t = s + t. \tag{1}$$

Since the number of nodes in the path is

$$k+1 = r + \sum_{i=1}^{r} \bar{s}_i = r + s + t \tag{2}$$

we must have t = (k+1) - (r+s).

Now any partition that satisfies $\sum_{i=1}^r \bar{s}_i = s + t$ and t = (k+1) - (r+s) must also satisfy $|V(p) \cap V_1| = r$ and $|E(p) \cap E_2| = s$. Therefore the number of such partitions is equal to the number ways of writing s + t as $\bar{s}_1 + \bar{s}_2 + \cdots + \bar{s}_r$ where exactly t of them are not zero. We first select those $\bar{s}_{j_1}, \ldots, \bar{s}_{j_t}$ that are not zero. This can be done in $\binom{r}{t}$ ways. Then the number of ways of writing s + t as $\bar{s}_{j_1} + \cdots + \bar{s}_{j_t}$ where $\bar{s}_{j_i} \geq 1$ is equal to the number of ways of writing s as $x_1 + \cdots + x_t$ where $x_i \geq 0$. The later is equal to $\binom{t+s-1}{t-1}$. Therefore the number of such partitions is

$$\binom{t+s-1}{t-1} \binom{r}{t} = \binom{k-r}{s} \binom{r}{k-r-s+1}.$$

We now give the algorithm.

The algorithm is in Figure 1. In the algorithm we randomly uniformly choose a partition $V = V_1 \cup V_2$ where $v_0 \in V_1$. This is done T times for each vertex $v_0 \in V$. If $p = v_0, v_1, \ldots, v_k$ is simple path then by Lemma 4, the probability that no partition satisfies $|V(p) \cap V_1| = r$ and $|E(p) \cap E_2| = s$ is at most

$$\left(1 - 2^{-k} \binom{r}{k - r - s + 1} \binom{k - r}{s}\right)^T \le \frac{1}{4}.$$

5

Algorithm Hamiltonian (G(V, E), k, r, s). For every $v_0 \in V$ For i = 1 to $T := 2^{k+1} / \left(\binom{r}{k-r-s+1}\binom{k-r}{s}\right)$ Choose a random uniform partition $V = V_1 \cup V_2$ where $v_0 \in V_1$ Build the circuit $f = F_{k,r,s}^{v_0,V_1,V_2}(x,y,z)$ using Lemma 1 Test if $\Phi(f) = \sum_{S \subseteq [s]} \sum_{R \subseteq [r]} f\left(x, \sum_{i \in R} y^{(i)}, \sum_{j \in S} z^{(j)}\right) \equiv 0$. If $\Phi(f) \not\equiv 0$ answer "YES" and halt. Answer "NO"

Figure 1: An algorithm for generating.

Then by Lemma 1, $f = F_{k,r,s}^{v_0,V_1,V_2}(x,y,z)$ can be constructed in poly(n) time. By Lemma 2 f has a multilinear monomial. Then, by Lemma 3, this can be tested with probability at least 3/4. Therefore, if there is a simple path then the algorithm answer "YES" with probability at least 1/2. If there is no simple path then, by Lemma 2, for every $v_0 \in V$ and every partition $V_1 \cup V_2$, $f = F_{k,r,s}^{v_0,V_1,V_2}(x,y,z)$ has no multilinear monomial. By Lemma 3, $\Phi(f) \equiv 0$ and the answer is "NO" with probability 1.

This proves the following

Lemma 5. Let G be undirected graph. Algorithm **Hamiltonian** (G(V, E), k, r, s) runs in time

$$O\left(\frac{2^{r+s+k} \cdot poly(n)}{\binom{r}{k-r-s+1}\binom{k-r}{s}}\right) \tag{3}$$

and satisfies the following. If G contains a simple path of length k then **Hamiltonian** (G(V,E),k,r,s) answer "YES" with constant probability. If G contains no simple path of length k then **Hamiltonian** (G(V,E),k,r,s) answer "NO" with probability 1.

Now to minimize (3) we choose $r = \lfloor 0.5 \cdot k \rfloor$ and $s = \lfloor 0.208 \cdot k \rfloor$ and get the result.

References

- [1] A. Björklund. Determinant Sums for Undirected Hamiltonicity. FOCS 2010, pp. 173–182, (2010).
- [2] R. A. DeMillo and R. J. Lipton. A probabilistic remark on algebraic program testing, *Inform. Process Lett.* 7, pp. 193-195, (1978).
- [3] A. Björklund, T. Husfeldt, P. Kaski, M. Koivisto. Narrow sieves for parameterized paths and packings. *arXiv*:1007.1161v1, (2010).

- [4] J. T. Schwartz, Fast probabilistic algorithms for verification of polynomial identities, *J. Assoc. Comput. Mach.* 27, pp. 701-717, (1980).
- [5] R. Zippel. An Explicit Separation of Relativised Random Polynomial Time and Relativised Deterministic Polynomial Time. *Inf. Process. Lett.* 33(4). pp. 207–212 (1989).