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Abstract

We develop a new algebraic technique that gives a simple randomized algorithm
for the simple k-path problem with the same complexity O∗(1.657k) as in [1] and [3].

1 Introduction

Given an undirected graph G on n vertices, the k-path problem asks whether G contains
a simple path of length k. For k = n − 1 the problem is the Hamiltonian path problem
in undirected graph.

Björklund proved in [1]

Theorem 1. The undirected Hamiltonian path problem can be solved in time O∗(1.657n)
by a randomized algorithm with constant, one sided error.

Björklund et. al. proved in [3]

Theorem 2. The undirected k-path problem can be solved in time O∗(1.657k) by a ran-
domized algorithm with constant, one sided error.

In this paper we give a simple algorithm for the above problems with same complexity
as above.

2 Preliminary Results

In this section we give some preliminary results
Let G(V,E) be an undirected graph with n = |V | vertices. A k-path is v0, v1, . . . , vk

such that {vi, vi+1} ∈ E for every i = 0, . . . , k− 1. A k-path v0, v1, . . . , vk is called simple
if the vertices in the path are distinct.

Let V = V1 ∪ V2 be a partition of V . Let E1 = E(V1) and E2 = E(V2) be the set
of edges with both ends in V1 and V2, respectively. Our goal is to find a simple k-path
that starts from some fixed vertex. For a path p = v0, v1, . . . , vk we define the multiset
of vertices in p as V (p) = {v0, . . . , vk} and the (undirected) edges in p as the multiset
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E(p) = {{v0, v1}, . . . , {vk−1, vk}}. When we write V (p) ∩ V1 (or E(p) ∩E2) we mean the
multiset that contains the elements in V (p) that are also in V1.

Define for every edge e ∈ E a variable xe, for every vertex v ∈ V1 a variable yv and
for every edge e ∈ E2 a variable ze. Let x = (xe)e∈E y = (yv)v∈V1 and z = (ze)e∈E2 . For
every k-path p = v0, v1, . . . , vk we define a monomial over any field of characteristic 2
Mp = XpYpZp where

Xp =

 ∏
e∈E(p)

xe

 , Yp =

 ∏
v∈V (p)∩V1

yv

 and Zp =

 ∏
e∈E(p)∩E2

ze

 .

Note here that if e appears twice in E(p) then xe appears twice in Xp.
A path p = v0, v1, . . . , vk is called (r, s)-legitimate k-path with the partition V =

V1 ∪ V2 if |V (p) ∩ V1| = r, |E(p) ∩ E2| = s and it contains no three consecutive vertices
vi, vi+1, vi+2 where vi+2 = vi, vi ∈ V2 and vi+1 ∈ V1. Fix a vertex v0 ∈ V1. We denote by
Lk,r,s(v0, V1, V2) the set of all (r, s)-legitimate k-paths in G with the partition V1∪V2 = V
that starts from v0 ∈ V1. Define

F v0,V1,V2
k,r,s (x, y, z) =

∑
p∈Lk,r,s(v0,V1,V2)

Mp.

We now prove the following results.

Lemma 1. Given an undirected graph G = (V,E), a partition V = V1 ∪ V2, v0 ∈ V1 and
two integers s and r. There is a deterministic polynomial time algorithm that construct
a polynomial size circuit for the function F v0,V1,V2

k,r,s (x, y, z).

Lemma 2. Mp = XpYpZp is a monomial in F v0,V1,V2
k,r,s (x, y, z) and YpZp is multilinear if

and only if p is a (r, s)-legitimate simple k-path with the partition V1∪V2 = V that starts
from v0.

Lemma 3. There is a randomized algorithm with constant, one sided error, that runs in
time O∗(2r+s) for the following decision problem: Given a black box for the multivariate
polynomial f(x, y, z) := F v0,V1,V2

k,r,s (x, y, z) over a field of characteristic 2. Decides whether
f contains a monomial Mp = XpYpZp where YpZp is multilinear.

Proof of Lemma 1. For any two vertices u1, u2 ∈ V we define Lk,r,s(v0, V1, V2, u1, u2)
the set of all (r, s)-legitimate k-paths that start with v0 and end with u1, u2. Define

F v0,V1,V2,u1,u2
k,r,s =

∑
p∈Lk,r,s(v0,V1,V2,u1,u2)

Mp.

Then
F v0,V1,V2
k,r,s (x, y, z) =

∑
u1,u2∈V

F v0,V1,V2,u1,u2
k,r,s .

We now show, using dynamic programming, that F v0,V1,V2,u1,u2
k,r,s can be computed in

polynomial time. For a vertex v let N(v) be the neighbor vertices of v. For a predicate
A we define [A] = 1 if A is true and 0 otherwise. Now it is easy to verify the following
recurrence formula
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1. If k ≥ 2, r ≤ k + 1, s ≤ k and {u1, u2} ∈ E then

F v0,V1,V2,u1,u2
k,r,s = [u2 ∈ V1] · x{u1,u2}yu2

∑
w∈N(u1)

F v0,V1,V2,w,u1
k−1,r−1,s

+[u2 ∈ V2 ∧ u1 ∈ V2] · x{u1,u2}z{u1,u2}
∑

w∈N(u1)

F v0,V1,V2,w,u1
k−1,r,s−1

+[u2 ∈ V2 ∧ u1 ∈ V1] · x{u1,u2}
∑

w∈N(u1)\{u2}

F v0,V1,V2,w,u1
k−1,r,s

2. If k = 1, u1 = v0, u2 ∈ V2, r = 1 and s = 0 then F v0,V1,V2,u1,u2
k,r,s = x{v0,u2}yv0 .

3. If k = 1, u1 = v0, u2 ∈ V1, r = 2 and s = 0 then F v0,V1,V2,u1,u2
k,r,s = x{v0,u2}yv0yu2 .

4. Otherwise F v0,V1,V2,u1,u2
k,r,s = 0.

Since u1, u2, k, r, s can take at most k2(k + 1)n2 different values the above recurrence
can be computed in polynomial time.

Proof of Lemma 2. (⇐) Let p = v0, v1, . . . , vk be any (r, s)-legitimate simple k-path
with the partition V1 ∪ V2 = V . Then p ∈ Lk,r,s(v0, V1, V2). Since p is simple YpZp is
multilinear. We now need to show that no other path p′ satisfies Mp′ = Mp. If Mp = Mp′

then Xp = Xp′ and since p is simple and starts from v0 by induction on the path p ≡ p′.

Therefore Mp is a multilinear monomial in F v0,V1,V2
k,r,s (x, y, z)

(⇒) We now show that all the monomials that correspond to (r, s)-legitimate non-
simple k-path p = v0, v1, . . . , vk with the partition V1∪V2 = V either vanish (because the
field is of characteristic 2) or are not multilinear.

Consider a (r, s)-legitimate non-simple k-path with the partition V1∪V2 = V . Consider
the first circuit C in this path. If C = vi, vi+1, vi then either vi ∈ V1 and then Yp contains
y2vi or vi, vi+1 ∈ V2 and then Zp contains z2{vi,vi+1}. Notice that p is legitimate and therefore
the case vi ∈ V2 and vi+1 ∈ V1 cannot happen.

Now suppose |C| > 2, C = vi, vi+1, . . . , vj, vj+1(= vi). Define p1 = v1, . . . , vi−1 and
p2 = vj+2, . . . , vk. Then p = p1Cp2. If vi ∈ V1 then Yp contains yviyvj+1

= y2vi . Therefore
we may assume that vi ∈ V2. Define the path

ρ(p) := p1C
′p2 = v0, v1, . . . , vi−1, vi, vj, vj−1, . . . , vi+1, vi, vj+2, vj+3, . . . , vk.

We now show that

1. ρ(ρ(p)) = p.

2. ρ(p) is (r, s)-legitimate non-simple k-path with the partition V1∪V2 = V that starts
with v0.

3. ρ(p) 6= p and Mp = Mρ(p).
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This implies that Mp vanishes from F v0,V1,V2
k,r,s (x, y, z) because the characteristic of the field

is 2. Let p′ = ρ(p). Since C is the first circuit in p we have v0, v1, . . . , vj are distinct and
vj+1 = vi. This implies that C ′ is the first circuit in p′ and therefore ρ(ρ(p)) = ρ(p′) = p.
This implies 1.

Obviously, |V (p′)∩V1| = |V (p)∩V1| = r and |E(p′)∩E2| = |E(p)∩E2| = s. Suppose
p′ contains three consecutive vertices u,w, u such that w ∈ V1 and u ∈ V2. Then since p
is (r, s)-legitimate path and vi ∈ V2 we have three cases
Case I. u,w, u is in C ′. Then u,w, u is in C which contradict the fact that p is legitimate.
Case II. u = vi−2 ∈ V2, w = vi−1 ∈ V1 and vi−2 = vi. In this case C ′′ = vi−2, vi−1, vi is a
circuit in p and then p is not legitimate. A contradiction.
Case III. u = vi ∈ V2, w = vj+2 ∈ V1 and vj+3 = vi. In this case, C ′′ = vivj+2vj+3 is a
circuit in p and then p is not legitimate. A contradiction.

This proves 2.
If p = p′ then C = C ′ and since |C| > 2 we get a contradiction. Therefore p 6= p′.

Since E(p) = E(p′), V (p′) ∩ V1 = V (p) ∩ V1 and E(p′) ∩ E2 = E(p) ∩ E2 we also have
Mp = Mp′ . This proves 3.
Proof of Lemma 3. Consider the new indeterminates y(i) = (yi,v)v∈V1 , i ∈ [r] and
z(j) = (zj,e)e∈E2 , j ∈ [s] where [r] = {1, 2, . . . , r}. Consider the operator

Φ(f) =
∑
S⊆[s]

∑
R⊆[r]

f

(
x,
∑
i∈R

y(i),
∑
j∈S

z(j)

)
.

If f(x, y, z) =
∑

p∈P XpYpZp then Φ(f) =
∑

p∈P XpΦ(YpZp). If Yp = yv1 · · · yvr and
Zp = ze1 · · · zes then, by Ryser formula for permanent and since permanent in field of
characteristic 2 is equal to determinant we have

Φ(YpZp) =
∑
S⊆[s]

∑
R⊆[r]

(
r∏

i1=1

∑
i2∈R

yi2,vi1

s∏
j1=1

∑
j2∈S

zj2,ej1

)

=

∑
R⊆[r]

r∏
i1=1

∑
i2∈R

yi2,vi1

∑
S⊆[s]

s∏
j1=1

∑
j2∈S

zj2,ej1


=

∑
R⊆[r]

(−1)r−|R|
r∏

i1=1

∑
i2∈R

yi2,vi1

∑
S⊆[s]

(−1)s−|S|
s∏

j1=1

∑
j2∈S

zj2,ej1


= Per

(
yi2,vi1

)
i1,i2∈[r]

Per
(
zj2,vj1

)
j1,j2∈[s]

= det
(
yi2,vi1

)
i1,i2∈[r]

det
(
zj2,vj1

)
j1,j2∈[s]

.

Now if in Yp (or Zp) we have yva = yvb , or equivalently va = vb, for some a 6= b then
det
(
yi2,vi1

)
i1,i2∈[r]

= 0 and Φ(YpZp) ≡ 0. If YpZp is multilinear then Φ(YpZp) 6≡ 0.

Therefore Φ(f) 6≡ 0 if and only if f contains a monomial Mp = XpYpZp where YpZp is
multilinear.

Now since substitution in Φ(f) can be simulated by 2r+s substitutions in f and the
degree of Φ(f) is k+r+s ≤ 3k+1 we can randomly zero test f in timeO(poly(k, n)2r+s) [2,
4, 5].
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3 Main Results

In this section we prove the Theorems
The following lemma is proved in [3] we give its proof for completeness

Lemma 4. Let p = v0, v1, . . . , vk be a simple path. For a partition V1, V2 selected uni-
formly at random where v0 ∈ V1,

Pr
V1,V2

(|V (p) ∩ V1| = r, |E(p) ∩ E2| = s) = 2−k
(

r

k − r − s+ 1

)(
k − r
s

)
.

Proof. We will count the number of partitions V1, V2 that satisfies |V (p)∩V1| = r, |E(p)∩
E2| = s and v0 ∈ V1. Obviously, the probability in the lemma is 2−k times the number of
such partitions.

Let V1, V2 be a partition such that |V (p) ∩ V1| = r, |E(p) ∩ E2| = s and v0 ∈ V1. Let
vi1 = v0, vi2 , . . . , vir be the nodes in V1. Let s̄j ≥ 0, j = 1, . . . , r − 1 be the number of
nodes in V2 that are between vij and vij+1

. Let s̄r be the number of nodes in V2 that are
after vir . Let t be the number of s̄i that are not zero. For j < r the number of edges in
E2 that are between vij and vij+1

is si := max(s̄i− 1, 0). The number of edges in E2 that
are after vir is sr := max(s̄r − 1, 0). Therefore

r∑
i=1

s̄i =
r∑
i=1

si + t = s+ t. (1)

Since the number of nodes in the path is

k + 1 = r +
r∑
i=1

s̄i = r + s+ t (2)

we must have t = (k + 1)− (r + s).
Now any partition that satisfies

∑r
i=1 s̄i = s + t and t = (k + 1) − (r + s) must also

satisfy |V (p) ∩ V1| = r and |E(p) ∩ E2| = s. Therefore the number of such partitions is
equal to the number ways of writing s + t as s̄1 + s̄2 + · · · + s̄r where exactly t of them
are not zero. We first select those s̄j1 , . . . , s̄jt that are not zero. This can be done in

(
r
t

)
ways. Then the number of ways of writing s + t as s̄j1 + · · · + s̄jt where s̄ji ≥ 1 is equal
to the number of ways of writing s as x1 + · · · + xt where xi ≥ 0. The later is equal to(
t+s−1
t−1

)
. Therefore the number of such partitions is(

t+ s− 1

t− 1

)(
r

t

)
=

(
k − r
s

)(
r

k − r − s+ 1

)
.

We now give the algorithm.
The algorithm is in Figure 1. In the algorithm we randomly uniformly choose a

partition V = V1 ∪ V2 where v0 ∈ V1. This is done T times for each vertex v0 ∈ V .
If p = v0, v1, . . . , vk is simple path then by Lemma 4, the probability that no partition
satisfies |V (p) ∩ V1| = r and |E(p) ∩ E2| = s is at most(

1− 2−k
(

r

k − r − s+ 1

)(
k − r
s

))T
≤ 1

4
.
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Algorithm Hamiltonian(G(V,E),k,r,s).

For every v0 ∈ V

For i = 1 to T := 2k+1/
((

r
k−r−s+1

)(
k−r
s

))
Choose a random uniform partition V = V1 ∪ V2 where v0 ∈ V1

Build the circuit f = F v0,V1,V2
k,r,s (x, y, z) using Lemma 1

Test if Φ(f) =
∑

S⊆[s]
∑

R⊆[r] f
(
x,
∑

i∈R y(i),
∑

j∈S z
(j)
)
≡ 0.

If Φ(f) 6≡ 0 answer “YES” and halt.
Answer “NO”

Figure 1: An algorithm for generating .

Then by Lemma 1, f = F v0,V1,V2
k,r,s (x, y, z) can be constructed in poly(n) time. By Lemma 2

f has a multilinear monomial. Then, by Lemma 3, this can be tested with probability
at least 3/4. Therefore, if there is a simple path then the algorithm answer “YES” with
probability at least 1/2. If there is no simple path then, by Lemma 2, for every v0 ∈ V and
every partition V1 ∪ V2, f = F v0,V1,V2

k,r,s (x, y, z) has no multilinear monomial. By Lemma 3,
Φ(f) ≡ 0 and the answer is “NO” with probability 1.

This proves the following

Lemma 5. Let G be undirected graph. Algorithm Hamiltonian (G(V,E),k,r,s) runs in
time

O

(
2r+s+k · poly(n)(

r
k−r−s+1

)(
k−r
s

) ) (3)

and satisfies the following. If G contains a simple path of length k then Hamiltonian
(G(V,E),k,r,s) answer “YES” with constant probability. If G contains no simple path of
length k then Hamiltonian(G(V,E),k,r,s) answer “NO” with probability 1.

Now to minimize (3) we choose r = b0.5 · kc and s = b0.208 · kc and get the result.
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