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Abstract

We develop a new algebraic technique that gives a simple randomized algorithm
for the simple k-path problem with the same complexity O*(1.657%) as in [1] and [3].

1 Introduction

Given an undirected graph G on n vertices, the k-path problem asks whether G contains
a simple path of length k. For k = n — 1 the problem is the Hamiltonian path problem
in undirected graph.

Bjorklund proved in [1]

Theorem 1. The undirected Hamiltonian path problem can be solved in time O*(1.657™)
by a randomized algorithm with constant, one sided error.

Bjorklund et. al. proved in [3]

Theorem 2. The undirected k-path problem can be solved in time O*(1.657%) by a ran-
domized algorithm with constant, one sided error.

In this paper we give a simple algorithm for the above problems with same complexity
as above.

2 Preliminary Results

In this section we give some preliminary results

Let G(V, E) be an undirected graph with n = |V/| vertices. A k-path is vo,vq,. .., vk
such that {v;,v;41} € E for every i =0,...,k—1. A k-path vg, vy, ..., v is called simple
if the vertices in the path are distinct.

Let V. = V3 UV, be a partition of V. Let Fy = E(V}) and Ey = E(V3) be the set
of edges with both ends in Vi and V5, respectively. Our goal is to find a simple k-path
that starts from some fixed vertex. For a path p = vg,vy,..., v we define the multiset
of vertices in p as V(p) = {wo,...,vr} and the (undirected) edges in p as the multiset
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E(p) = {{vo,v1}, ..., {vk—1,vx}}. When we write V(p) NV} (or E(p) N Ey) we mean the
multiset that contains the elements in V' (p) that are also in V;.

Define for every edge e € E a variable z., for every vertex v € V; a variable y, and
for every edge e € Fy a variable z.. Let © = (Ze)eer ¥ = (Yv)vey, and 2z = (ze)eep,. For
every k-path p = vg,vq,...,v, we define a monomial over any field of characteristic 2
M, = X,Y,Z, where

X, = H:ce Y, = H Yy | and Z, = H Ze

ecE(p) veV (p)NVy e€E(p)NEs

Note here that if e appears twice in E(p) then x. appears twice in X,.

A path p = vy, v1,...,v; is called (r,s)-legitimate k-path with the partition V =
ViUV if [V(p) N Vi| =r, |E(p) N Es| = s and it contains no three consecutive vertices
Vi, Vix1, Viro Where v;19 = v;, v; € Vo and v, € V. Fix a vertex vy € V;. We denote by
Ly s(vo, V1, Vo) the set of all (r, s)-legitimate k-paths in G with the partition VUV, =V
that starts from vy € V;. Define

FUO,VLVQ

k,r,s (%, Y, Z) = Z Mp'

PEL r s(v0,V1,V2)
We now prove the following results.

Lemma 1. Given an undirected graph G = (V, E), a partition V =V, U Vs, vy € V] and
two integers s and r. There is a deterministic polynomial time algorithm that construct

. . . . . Vi
a polynomial size circuit for the function F,:?,’SI’VQ (,y,2).

Lemma 2. M, = X,Y,Z, is a monomial in F;)73,’7‘s/1’v2(x,y, z) and Y,Z, is multilinear if

and only if p is a (r, s)-legitimate simple k-path with the partition Vi UV, =V that starts
from vy.

Lemma 3. There is a randomized algorithm with constant, one sided error, that runs in
time O*(2"*%) for the following decision problem: Given a black box for the multivariate
polynomial f(x,y,z) = F,ff;:ghv? (x,y, z) over a field of characteristic 2. Decides whether
f contains a monomial M, = X,Y,Z, where Y,Z, is multilinear.

Proof of Lemma 1. For any two vertices uy,us € V' we define Ly, 5(vo, Vi, Va, u1, ug)
the set of all (r, s)-legitimate k-paths that start with vy and end with wuy, us. Define

vo,V1,Va,u,ue
kas = E M,.

PELE 1, s (v0,V1,V2,u1,u2)

Then
vo,V1,V2 _ E vo,V1,V2,u1,u2
Fk,r,s (I7 Y, Z) - Fk,r,s :

u1,u2€V

We now show, using dynamic programming, that F| ;3,;/1,V2,u1,u2 can be computed in
polynomial time. For a vertex v let N(v) be the neighbor vertices of v. For a predicate
A we define [A] = 1 if A is true and 0 otherwise. Now it is easy to verify the following

recurrence formula



1. HE>2r<k+1,s<kand {uj,uy} € F then

vo,V1,Vo,uruz vo,V1,V2,w,u1
Fk,r,s - [U’? < ‘/1] * T {ug,up}Yug § : Fk—l,r—l,s
wEN (u1)
V- V- FU07V1,V2,UMU1
+uz € Va ANur € Val * Tuy s} Zur us} k—1,rs—1
wEN (u1)
V- v Fvo,V17V27w7u1
—|—[U2 e VaAu € 1] " Tl uz} k—1,rs
weN (u1)\{uz}

2. fk=1,u =wvy, ug € Vo, r =1 and s = 0 then F:i";l’VQ’“l’W = T u2} Yo

3. If k=1, u; = v, ug € Vi, 7 =2 and s = 0 then FoYYzune — L s} Yoo Yus -

k,r,s

: Vi,V
4. Otherwise F}° 72" = 0.

Since uy, us, k, 7, s can take at most k?(k + 1)n? different values the above recurrence
can be computed in polynomial time. O

Proof of Lemma 2. (<) Let p = vy, v1,...,ux be any (7, s)-legitimate simple k-path
with the partition V4 UV, = V. Then p € Ly, (v, V1, V2). Since p is simple Y,Z, is
multilinear. We now need to show that no other path p’ satisfies M,y = M,. If M, = M,
then X, = X,/ and since p is simple and starts from v, by induction on the path p = p'.
Therefore M, is a multilinear monomial in F 13,37,‘5/1"/2 (x,y, 2)

(=) We now show that all the monomials that correspond to (r, s)-legitimate non-
simple k-path p = vy, vy, ..., v, with the partition V; UV, = V either vanish (because the
field is of characteristic 2) or are not multilinear.

Consider a (r, s)-legitimate non-simple k-path with the partition V;UV; = V. Consider
the first circuit C' in this path. If C' = v;, v;41, v; then either v; € V; and then Y, contains
ygl or v;, vi+1 € Vo and then Z, contains zfvwiﬂ}. Notice that p is legitimate and therefore
the case v; € V5 and v;11 € Vi cannot happen.

Now suppose |C] > 2, C' = v;,vi41, ..., 05, Vjp1(= v;). Define py = vy,...,v;-1 and
P2 = Vjt2,.. .,V Then p=pCpy. If v; € V) then Y, contains yu,y,,,, = yg Therefore
we may assume that v; € V5. Define the path

o N
p(p) = p1C'p2 = Vo, Vi, - -, Vis1, V5, U, V51, -+« Vit Vi, Vg, Ujg3, - - - V.

We now show that

L. p(p(p)) = p.

2. p(p) is (r, s)-legitimate non-simple k-path with the partition V; UV, = V' that starts
with vy.

3. p(p) #p and M, = M.



This implies that M, vanishes from F, ,:3”’,?"/2 (x,y, z) because the characteristic of the field
is 2. Let p’ = p(p). Since C' is the first circuit in p we have vy, vy, ..., v; are distinct and
vj+1 = v;. This implies that C’ is the first circuit in p’ and therefore p(p(p)) = p(p’) = p.
This implies 1.

Obviously, |V (p')NVi| = |V(p)NVi| = r and |E(p') N Es| = |E(p) N Es| = s. Suppose
p’ contains three consecutive vertices u, w, u such that w € V; and u € V5. Then since p
is (1, s)-legitimate path and v; € V5 we have three cases
Case I. u,w,u is in C’. Then u, w, u is in C' which contradict the fact that p is legitimate.
Case II. u = v;_5 € Vo,w = v;_1 € V] and v;_o = v;. In this case C" = v;_o,v;_1,v; is a
circuit in p and then p is not legitimate. A contradiction.
Case IIl. u = v; € Vo, w = vy € V; and vj13 = v;. In this case, C" = v;vj490;43 is a
circuit in p and then p is not legitimate. A contradiction.

This proves 2.

If p=p' then C = C" and since |C| > 2 we get a contradiction. Therefore p # p'.
Since E(p) = E(p), V(') nVi = V(p) N Vi and E(p') N E; = E(p) N Ey we also have

M, = M,,. This proves 3. O
Proof of Lemma 3. Consider the new indeterminates y® = (y;.)vev;, i € [r] and
2U) = (2j0)ecr,, j € [s] where [r] = {1,2,...,7}. Consider the operator
= Z Z f <x7zy(i)’zz(a’)> .
SCls] RC[r] i€R jes

If f(z,y,2z) = ZpePXPY;?ZP then ®(f) = ZpePXPQD(Y;,Zp). IfY, = yy -y, and
Zy = Ze, * %, then, by Ryser formula for permanent and since permanent in field of
characteristic 2 is equal to determinant we have

002 = S5 (TS ne 115500

SC[s] RC[r] \i1=1i2€R j1=1j2€8

I > 1

RC[r]i1=1142€R s] j1=17j2€8
e ISR | DO R D BIC i | DL
RCr] t1=1i2€R SC[s] Ji=1j2€S

= Per (yimi1 ) ,

11,12€

[7] Per (Zj%vh) i

J1,92€]s] = det (yig’vil)il,mE[r] det (Zj2v”j1)

J1.j2€(s]
Now if in Y, (or Z,) we have y,, = v,,, or equivalently v, = v, for some a # b then
det (yml)mem = 0 and ®(Y,Z,) = 0. If Y,Z, is multilinear then ®(Y,Z,) # 0.
Therefore ®(f) # 0 if and only if f contains a monomial M, = X,Y,Z, where Y,Z, is
multilinear.

Now since substitution in ®(f) can be simulated by 2" substitutions in f and the
degree of ®(f) is k+r+s < 3k+1 we can randomly zero test f in time O(poly(k,n)2"*) [2,
4, 5]. O



3 Main Results

In this section we prove the Theorems
The following lemma is proved in [3] we give its proof for completeness

Lemma 4. Let p = vy, vq,...,v be a simple path. For a partition Vi, Vs selected uni-
formly at random where vy € V7,

r k—r
Proof. We will count the number of partitions Vi, V5 that satisfies |V (p)NVi| =r, |[E(p)N
E,| = s and vy € V4. Obviously, the probability in the lemma is 2% times the number of
such partitions.

Let Vi, V4 be a partition such that |V (p) NVi| =r, |[E(p) N Ey| = s and vy € V. Let
Vi, = V0, Vi, - .., V;, be the nodes in Vi. Let 5, > 0, j = 1,...,7 — 1 be the number of
nodes in V5 that are between v;, and v;,,,. Let s, be the number of nodes in V5 that are
after v; . Let t be the number of 5; that are not zero. For j < r the number of edges in
E5 that are between v, and v;,, is s; 1= max(s; — 1,0). The number of edges in Ey that
are after v;_ is s, := max(s, — 1,0). Therefore

isi:isi—l—t:s#—t. (1)
=1 =1

Since the number of nodes in the path is

k+l=r+> s=rts+t (2)
i=1
we must have t = (k+ 1) — (r + s).

Now any partition that satisfies Y, 5, = s+t and t = (k+ 1) — (r + s) must also
satisfy |V (p) N Vi| = r and |E(p) N Ey| = s. Therefore the number of such partitions is
equal to the number ways of writing s +¢ as 57 + Sy + - - - + 5, where exactly ¢ of them
are not zero. We first select those 5j,,...,5;, that are not zero. This can be done in (:)
ways. Then the number of ways of writing s +¢ as §;, +--- + 5;, where 5;, > 1 is equal
to the number of ways of writing s as x1 + - -+ + x; where x; > 0. The later is equal to
(t+8_1). Therefore the number of such partitions is

R G O R O !

We now give the algorithm.

The algorithm is in Figure 1. In the algorithm we randomly uniformly choose a
partition V' = V4 U V5, where vg € V4. This is done T times for each vertex vy € V.
If p = vy, vy,...,v, is simple path then by Lemma 4, the probability that no partition
satisfies |V (p) N V4| =r and |E(p) N Ey| = s is at most

(- ) () <5

5

]



Algorithm Hamiltonian(G(V, E),k,r,s).

For every vg € V

Fori=1to T:=2"1/((,_" 1) ("))
Choose a random uniform partition V = V4 U V5 where vg € V3

Build the circuit f = FV""2(z, y, 2) using Lemma 1

k,r,s

Test if ®(f) = Ygc iy Sorcp (:c ien v s z(j)) = 0.
If ®(f) # 0 answer “YES” and halt.
Answer “NO”

Figure 1: An algorithm for generating .

Then by Lemma 1, f = F,:y‘;:gl% (x,y, z) can be constructed in poly(n) time. By Lemma 2
f has a multilinear monomial. Then, by Lemma 3, this can be tested with probability
at least 3/4. Therefore, if there is a simple path then the algorithm answer “YES” with
probability at least 1/2. If there is no simple path then, by Lemma 2, for every vy € V and
every partition ViU Vs, f = F 1:;’,‘5/17‘/2 (x,y, z) has no multilinear monomial. By Lemma 3,

®(f) = 0 and the answer is “NO” with probability 1.
This proves the following

Lemma 5. Let G be undirected graph. Algorithm Hamiltonian (G(V, E),k,r,s) runs in

time
2r+s+k A poly n

(ks o) (57)

and satisfies the following. If G contains a simple path of length k then Hamiltonian
(G(V, E),k,r,s) answer “YES” with constant probability. If G contains no simple path of
length k then Hamiltonian(G(V, E),k,r,s) answer “NO” with probability 1.

Now to minimize (3) we choose r = [0.5- k| and s = [0.208 - k| and get the result.
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