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Abstract

We consider an instance of the following problem: Parties P1, . . . , Pk each receive an input xi,
and a coordinator (distinct from each of these parties) wishes to compute f(x1, . . . , xk) for some
predicate f . We are interested in one-round protocols where each party sends a single message
to the coordinator; there is no communication between the parties themselves. What is the
minimum communication complexity needed to compute f , possibly with bounded error?

We prove tight bounds on the one-round communication complexity when f corresponds to
the promise problem of distinguishing sums (namely, determining which of two possible values
the {xi} sum to) or the problem of determining whether the {xi} sum to a particular value.
Similar problems were studied previously by Nisan and in concurrent work by Viola. Our proofs
rely on basic theorems from additive combinatorics, but are otherwise elementary.

1 Introduction

Consider the following general problem: There are k parties P1, . . . , Pk, with each party Pi holding
input xi. A central coordinator (distinct from each of the parties) wants to learn f(x1, . . . , xk)
for some fixed boolean function (or partial function) f . We are interested in one-round protocols
where each party sends a single message to the coordinator and the coordinator then computes the
result; there is no communication between the parties, nor does the coordinator send anything to
the parties. A trivial solution, of course, is for each party Pi to send xi to the coordinator, who then
applies f to the complete set of inputs and thus obtains the correct result. For which functions f
can the total communication complexity be reduced, possibly with bounded error?

Let G denote an abelian group and assume each party’s input lies in G. We study the commu-
nication complexity of two (related) functions in the model described above.

Definition 1. Fix distinct g0, g1 ∈ G. The k-party Sum-Distinguish problem (relative to g0, g1)
is defined by letting f be the partial function given by

f(x1, . . . , xk) =

{
1 if

∑
i xi = g1

0 if
∑

i xi = g0
.

Definition 2. Fix g ∈ G. The k-party Sum-Equal problem (relative to g) is defined by letting f
be the function given by

f(x1, . . . , xk) =

{
1 if

∑
i xi = g

0 otherwise
.
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We explore the communication complexity of solving the above for G = Zp (p prime) and
G = Z.1 Our proofs rely on the generalized Cauchy-Davenport Theorem, but otherwise use only
elementary arguments. Our results can be summarized as follows:

• For Sum-Distinguish with G = Z or G = Zp, p prime, we show a deterministic protocol with
total communication complexity k log k + O(k); note that the communication in the latter
case is independent of p. For G = Zp, we prove a lower bound of k ·min{log k, log p} − k on
the communication complexity of any deterministic protocol.

• For Sum-Equal with G = Z or G = Zp, p prime, we show a protocol using public random-
ness with error ε and total communication complexity k log k/ε + O(k). A lower bound (for
deterministic protocols and G = Zp) is implied by our lower bound for Sum-Distinguish.

We also briefly consider the case G = ZN for square-free N .

1.1 Motivation

The problems above are natural in the number-in-hand model of multi-party communication com-
plexity, and variants of the Sum-Distinguish and Sum-Equal problems have been considered in
prior work [8, 7, 4, 5, 10], sometimes for k = 2 only. (We survey prior results in the next section.)

Our motivation, though, comes from the domain of distributed intrusion detection. The goal of
distributed intrusion-detection systems (DIDS) is to monitor a network across a number of hosts
in order to detect aberrant behavior (indicating a potential intrusion) and, if detected, raise an
alarm. In typical operation of DIDS, each host records some observations over a specified time
period; at the end of this period, each of those hosts sends all the data it has recorded to a central
coordinator, which then determines — based on the aggregate data from all the hosts — whether
or not to issue an alarm. In some systems (e.g., when the hosts are geographically distributed,
when communication is over a low-bandwidth channel, and/or when the volume of data recorded
at each host is huge), reducing the communication becomes critical. While there has been some
work aimed at reducing the communication complexity of DIDS [2, 9, 6], we are not aware of any
prior theoretical study of the problem.

If we model the decision of the coordinator by some predicate f computed over the data
x1, . . . , xk recorded by each host, we recover exactly the general problem being considered here.
(For the application to distributed intrusion detection, direct communication between the hosts
would typically be impossible, and it would be undesirable for the coordinator to have to send data
to the hosts.) While Sum-Distinguish and Sum-Equal are too simplistic to capture real-world
decision procedures, they were chosen to correspond to the “DIDS-like” problems of distinguishing
between a “good” system state g0 and a “bad” system state g1 (in the case of Sum-Distinguish),
or identifying when the system is in one particular “bad” state g (in the case of Sum-Equal).

1.2 Prior Work

For the case of Sum-Equal with G = Z and where each party’s input is an n-bit integer, Nisan [7]
shows a randomized protocol with total communication complexity O(k log n). Our deterministic
protocol achieves better communication complexity k log k +O(k) when k < n. In concurrent and

1In the first case, each party’s input is an arbitrary element of Zp; in the second case, each party’s input is an
n-bit integer, with n being an additional parameter of the problem.
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independent work, Viola [10] studies Sum-Equal with G = Zp, and shows Θ(k log k) upper and
lower bounds on the communication complexity for certain ranges of k and p. Our protocols for
Sum-Equal achieve similar bounds for more general k, p, and using different tools.

Our protocols use a direct, combinatorial perspective that (along the way) explores a new
connection between communication complexity and additive combinatorics that may be appealing
in its own right. It will be interesting to explore other connections between these fields.

1.3 Organization

In Section 2, we recall the necessary preliminaries from additive combinatorics. In Section 3, we
prove upper and lower bounds for the Sum-Distinguish problem over Zp. In Section 4, we give
a randomized protocol for Sum-Equal over Zp. In Section 5, we show how our protocols can be
extended to work over Z or ZN for m the product of few primes.

2 Preliminaries

We let G denote an abelian group, written additively. Z denotes the integers, and Zp is the group
{0, . . . , p− 1} under addition modulo p. We use “log” to refer to logarithms base 2.

2.1 Tools from Additive Combinatorics

We utilize two well-studied, fundamental objects from additive combinatorics: sumsets and arith-
metic progressions.

Definition 3. For (not necessarily distinct) sets A1, . . . , Ak ⊆ G, define their sumset as
∑k

i=1Ai =

A1 + · · · + Ak
def
=
{∑k

i=1 ai | a1 ∈ A1, . . . , ak ∈ Ak
}

. That is,
∑

iAi is the set of all possible sums

obtainable by choosing one element from each set Ai.

In our constructions we use sumsets of arithmetic progressions, i.e. sequences of integers with
common difference D. We refer to these as D-APs.

Definition 4. Fix a prime p and a difference D 6= 0 mod p. For any b ∈ {0, . . . , D − 1}, let

A(b)
def
=

{
b, b+D, b+ 2D, . . . , b+

(⌊
p− 1− b

D

⌋)
D

}
⊆ Zp

denote the D-AP in Zp with base b.

Note that we only consider D-APs of maximal size with no “wrap-around”; i.e., the base b is less
than D, and the progression contains b + iD for all i ≥ 0 with b + iD < p. As an example, the
maximal 7-APs in Z19 are

A(0) = {0, 7, 14}; A(1) = {1, 8, 15} A(2) = {2, 9, 16}
A(3) = {3, 10, 17}; A(4) = {4, 11, 18}; A(5) = {5, 12}; A(6) = {6, 13}.

For our lower bounds, we use the generalized Cauchy-Davenport Theorem [1, 3].
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Theorem 5 (Generalized Cauchy-Davenport Theorem). For a prime p, and k (not necessarily
distinct) nonempty sets A1, . . . , Ak ⊆ Zp,∣∣∣∑k

i=1Ai

∣∣∣ ≥ min
{
p,
∑k

i=1 |Ai| − k + 1
}
.

For our constructions, we rely on the fact that sumsets of D-APs achieve the above minimum.

Lemma 6. For a prime p, and k (not necessarily distinct) D-APs A1, . . . , Ak ⊆ Zp,∣∣∣∑k
i=1Ai

∣∣∣ = min
{
p,
∑k

i=1 |Ai| − k + 1
}
.

Proof. We prove the lemma for k = 2; the general case follows by induction. Let A,B denote the
two sets in question. By Theorem 5, we have |A+B| ≥ min{p, |A|+ |B| − 1}. It remains to upper
bound |A+B|.

Write A = {bA + iD | 0 ≤ i < |A|}, B = {bB + i′D | 0 ≤ i′ < |B|} with 0 ≤ bA, bB < D. Then

A+B =
{
bA + bB +Di+Di′ mod p | 0 ≤ i < |A|, 0 ≤ i′ < |B|

}
=

{
bA + bB +Di′′ mod p | 0 ≤ i′′ ≤ |A|+ |B| − 2

}
.

So |A+B| contains at most |A|+ |B| − 1 elements, giving the desired bound.

2.2 Notions of Distance and Contiguity

In Section 3.1, we use a notion of distance between two elements g0, g1 ∈ Zp. Specifically, we define
their distance relative to some difference D to be the minimum number of additions or subtractions
by D (modulo p) needed to map g0 to g1. We define this formally next.

Definition 7. Fix a prime p and a difference D 6= 0 mod p. For any g0, g1 ∈ Zp, define the distance
from g0 to g1 (relative to p,D) as

distp,D(g0, g1)
def
= min

{
(g1 − g0)D−1 mod p, (g0 − g1)D−1 mod p

}
.

(The minimum is taken by viewing each term as an integer in {0, . . . , p− 1}.)

We say g0, g1 ∈ Zp are adjacent (with respect to distp,D) if distp,D(g0, g1) = 1. We say a set
A ⊆ Zp is contiguous (relative to D) if it can be ordered so that all adjacent elements in the
ordering are adjacent with respect to distp,D. When |A| = 1, A is vacuously contiguous. Clearly
D-APs are contiguous; we observe that sumsets of D-APs are also contiguous.

Lemma 8. Fix a prime p, difference D 6= 0 mod p, and any D-APs A1, . . . , Ak ⊆ Zp. Then∑k
i=1Ai is contiguous relative to D.

Proof. From the proof of Lemma 6, for any D-APs A and B we have

A+B = {bA + bB + iD mod p | 0 ≤ i ≤ |A|+ |B| − 2},

which is contiguous by definition. Induction on k completes the proof.

Corollary 9. Fix a prime p, difference D 6= 0 mod p, and D-APs A1, . . . , Ak ⊆ Zp. For any

g0, g1 ∈ Zp, if distp,D(g0, g1) ≥ |
∑k

i=1Ai| then g0 and g1 cannot both be in
∑k

i=1Ai.

Consider again the example of Z19 with D = 7. Then A(2) + A(3) = {2, 9, 16} + {3, 10, 17} =
{5, 12, 0, 7, 14} is contiguous, and |A(2) + A(3)| = 5. Taking 2, 5 ∈ Z19, we have dist19,7(5, 2) = 5 ≥
|A(2) +A(3)| and, indeed, 5 ∈ A(2) +A(3) but 2 6∈ A(2) +A(3).
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3 Sum-Distinguish over Zp
3.1 A Deterministic Protocol

Corollary 9 suggests a technique for efficiently distinguishing two sums. Say k parties wish to
determine whether their inputs x1, . . . , xk sum to g0 or g1 (modulo p). For some fixed, agreed-upon
difference D (we discuss how to set D below), each party Pi sends to the coordinator the index of
the D-AP Ai in which its input xi lies. The coordinator thus learns that the sum

∑
i xi lies in the

sumset A
def
=
∑k

i=1Ai. As long distp,D(g0, g1) ≥ |A|, it cannot be the case that both g0 and g1 are
in A; in that case, the coordinator learns the sum by checking which of g0, g1 lies in A.

The main difficulty in implementing the above is that g0, g1 may be very “close.” In that case, in
order to ensure that the above succeeds we need to ensure that |A| is small. This, in turn, requires
the D-APs to be small, which means that there are more of them. Since the communication from
each party is the logarithm of the number of D-APs, this makes the communication complexity
worse. Ideally, we would like to set D independently of the relative distance between g0 and g1.

A solution is to have the parties “shift” their inputs by each locally multiplying them (modulo p)
by an agreed-upon constant c. The problem then reduces to distinguishing whether the shifted

inputs sum to g′0
def
= c · g0 mod p or g′1

def
= c · g1 mod p. The insight is that regardless of g0, g1, we

can set c appropriately to ensure that g′0 and g′1 are “far apart.”
We proceed with the details, beginning with some preliminary lemmas.

Lemma 10. Fix a prime p > 2 and a difference D 6= 0 mod p. Then for any distinct g0, g1 ∈ Zp
there exists a value c 6= 0 mod p such that distp,D(c · g0 mod p, c · g1 mod p) = (p−1)

2 .

Proof. Set c = (p−1)
2 D(g1 − g0)−1 mod p. Then

c(g1 − g0)D−1 =
(p− 1)

2
D(g1 − g0)−1(g1 − g0)D−1 mod p

=
(p− 1)

2
mod p.

Since (p− 1)/2 < −(p− 1)/2 mod p (viewing the right-hand term as an integer in {1, . . . , p− 1}),
this completes the proof.

Lemma 11. Fix a prime p > 5, and integer k < p/4. Set D =
⌈

2kp
(p−3)

⌉
< p. Then for any D-APs

A1, . . . , Ak ⊆ Zp, we have
∣∣∣∑k

i=1Ai

∣∣∣ ≤ (p−1)
2 .

Proof. By Lemma 6, ∣∣∣∣∣
k∑
i=1

Ai

∣∣∣∣∣ = min

{
p,

k∑
i=1

|Ai| − k + 1

}
.

Observe that |Ai| ≤ d pDe ≤
p
D + 1. Therefore,

k∑
i=1

|Ai| − k + 1 ≤
k∑
i=1

( p
D

+ 1
)
− k + 1

≤ kp(p− 3)

2kp
+ k − k + 1 =

(p− 1)

2
,

completing the proof.
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Theorem 12. There is a universal constant C such that for any prime p and positive integer k
there is a k-party, one-round, deterministic protocol for Sum-Distinguish over Zp having com-
munication complexity k log k + C · k.

Proof. There is a trivial protocol having communication complexity k · dlog pe, so the theorem is
trivially true if p ≤ 5 or k ≥ p/4. In what follows we therefore assume p > 5 and k < p/4.

Fix arbitrary, distinct g0, g1 ∈ Zp. The protocol for solving Sum-Distinguish relative to g0, g1
is as follows. Set c as in Lemma 10, and D as in Lemma 11. Party Pi, holding input xi, computes

bi = ((c · xi) mod p) mod D

and sends bi to the coordinator. (Note that bi is the base for the D-AP A(bi) containing c·xi mod p.)

The coordinator outputs 0 if c · g0 mod p is in
∑k

i=1A(bi), and outputs 1 otherwise.
If
∑

i xi = g0 mod p then
∑

i c·xi = c·g0 mod p, and it is immediate that the coordinator outputs
the correct answer 0. So, assume instead that

∑
i xi = g1 mod p. Then c · g1 mod p is in

∑
iA(bi).

Since distp,D(c · g0 mod p, c · g1 mod p) = (p− 1)/2 (by Lemma 10) and
∣∣∑

iA(bi)

∣∣ ≤ (p− 1)/2 (by
Lemma 11), we conclude from Corollary 9 that c · g0 mod p is not in

∑
iA(bi). Hence, in this case

the coordinator outputs the correct answer 1.
The communication complexity is exactly k · dlogDe bits. Since D ≤ 2kp

p−3 + 1 ≤ C ′ · k for some

constant C ′ independent of p and k, this completes the proof.

Efficient implementation. We note that the coordinator can be implemented to run efficiently.
(It is clear that the parties can run efficiently.) First note that from bi the coordinator can efficiently

compute
∣∣A(bi)

∣∣ = dp−1−biD e+1. It can then compute d
def
=
∣∣∑

iA(bi)

∣∣ =
∑k

i=1 |A(bi)|−k+1. Finally,
the coordinator can check whether c · g0 ∈

∑
iA(bi) by computing b∗ =

∑
i bi mod p and then

checking whether (c · g0 − b∗) ·D−1 mod p is less than d.

3.2 A Lower Bound for Deterministic Protocols

In the following, we consider one-round protocols in which each party always sends exactly t bits to
the coordinator, for some t. We say any such protocol has per-party communication complexity t.

The basic idea of the lower bound is as follows. Each message m ∈ {0, 1}t from party P1, say,
defines a set A1,m of possible inputs x1 (namely, those inputs on which P1 would send m). Given
the messages m1, . . . ,mk sent by all the parties, the coordinator learns only that the sum

∑
i xi

lies in the sumset
∑

iAi,mi . If we can show that there exist some m1, . . . ,mk for which
∑

iAi,mi

contains both g0 and g1, then there must be some set of inputs on which the protocol outputs the
wrong result. The crux of the proof is to show that if t is too small, then there exist m1, . . . ,mk

for which
∑

iAi,mi = Zp, and hence the sumset does indeed contain both g0 and g1.

Theorem 13. Fix prime p and positive integer k > 1. If t ≤ min{log((k − 1)/2), log(p/2)}, there
is no deterministic, k-party protocol for Sum-Distinguish over Zp (relative to any g0, g1 ∈ Zp)
with per-party communication complexity t.

Proof. Fix some deterministic protocol for Sum-Distinguish over Zp (relative to some g0, g1 ∈ Zp)
with per-party communication complexity t. The protocol defines for each party Pi a partition
Ai,1, . . . , Ai,2t of Zp, where Ai,j is the set of inputs which cause Pi to send j to the coordinator.
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For each party Pi there exists an mi such that |Ai,mi | ≥ p/2t. Moreover, there is a legal set
of inputs for the parties such that P1, . . . , Pk−1 send m1, . . . ,mk−1, respectively. (Simply take
xi ∈ Ai,mi for i = 1, . . . , k − 1, and then let xk ∈ {g0 −

∑k−1
i=1 xi, g1 −

∑k−1
i=1 xi}.) When the

coordinator receivesm1, . . . ,mk−1 then, even if it is additionally given Pk’s input xk, the coordinator
learns only that the sum

∑
i xi of the parties’ inputs lies in the set xk+

∑k−1
i=1 Ai,mi . By Theorem 5,

however, we have∣∣∣∣∣
k−1∑
i=1

Ai,mi

∣∣∣∣∣ ≥ min

{
p,

k−1∑
i=1

p

2t
− (k − 1) + 1

}
= min

{
p,

(k − 1)p

2t
− k + 2

}
.

If p ≥ k − 1 then t ≤ log((k − 1)/2) and

(k − 1)p

2t
− k + 2 ≥ 2p− k + 2 > p.

On the other hand, if k − 1 > p then t ≤ log(p/2) and

(k − 1)p

2t
− k + 2 ≥ k > p.

In either case, then, we must have
∣∣∣∑k−1

i=1 Ai,mi

∣∣∣ ≥ p and so
∑k−1

i=1 Ai,mi = Zp. This implies

that there exist inputs x1, x
′
1 ∈ A1,m1 , . . . , xk−1, x

′
k−1 ∈ Ak,mk−1

with xk +
∑k−1

i=1 xi = g0 and

xk +
∑k−1

i=1 x
′
i = g1. But then there exists some set of legal inputs for the parties on which the

coordinator outputs an incorrect result.

4 A Randomized Protocol for Sum-Equal over Zp
Our protocol for Sum-Equal is similar to our protocol for Sum-Distinguish. Namely, each party
Pi scales its input xi by some value c and sends the index of the D-AP Ai that contains the scaled
value c · xi mod p; the coordinator outputs 1 iff c · g ∈

∑
iAi.

Note that the coordinator never errs if
∑

i xi = g, and so we need only analyze the case when∑
i xi 6= g. In the case of Sum-Distinguish, we are guaranteed that

∑
i xi ∈ {g0, g1} and so we

set c to some fixed value such that cg0 and cg1 are “far apart.” The problem here is that
∑

i xi
can be arbitrary. To deal with this, we have the parties select c ∈ Zp uniformly at random using
the public randomness. If

∑
i xi = g′ 6= g then the protocol will succeed as long as cg and cg′

are sufficiently “far apart” as before. By setting the parameters of the protocol appropriately, we
ensure that this happens with high probability over choice of c.

Lemma 14. Fix a prime p > 2, a difference D 6= 0 mod p, and ξ ∈ (0, 1). Then for any distinct
g, g′ ∈ Zp there are at least ξ · (p− 1) values c 6= 0 mod p such that

distp,D(c · g mod p, c · g′ mod p) > (1− ξ) · (p− 1)

2
.

Proof. Set δ
def
= dξ · (p− 1)/2e, and take any d in the set

{
(p−1)

2 − δ + 1, . . . , (p−1)2 + δ
}

of size 2δ.

Set c = d ·D(g1 − g0)−1 mod p. Then

c(g1 − g0)D−1 = d ·D(g1 − g0)−1(g1 − g0)D−1 = d mod p.
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Moreover,

distp,D(c · g mod p, c · g′ mod p) = min{d, p− d} ≥ (p− 1)

2
− δ + 1,

completing the proof.

Lemma 15. Fix a prime p > 5, an integer k < p/4, and ε > 2k
p−3 . Set D =

⌈
2kp

ε(p−3)

⌉
< p. Then

for any D-APs A1, . . . , Ak ⊆ Zp, we have
∣∣∣∑k

i=1Ai

∣∣∣ < ε · (p−1)2 + 1.

Proof. By Lemma 6, ∣∣∣∣∣
k∑
i=1

Ai

∣∣∣∣∣ = min

{
p,

k∑
i=1

|Ai| − k + 1

}
.

Observe that |Ai| ≤ d pDe ≤
p
D + 1. Therefore,

k∑
i=1

|Ai| − k + 1 ≤
k∑
i=1

( p
D

+ 1
)
− k + 1

≤ kpε(p− 3)

2kp
+ k − k + 1 <

ε(p− 1)

2
+ 1,

completing the proof.

Theorem 16. There is a universal constant C such that for any prime p, positive integer k,
and ε ∈ ( 2k

p−3 , 1), there is a k-party, one-round protocol for Sum-Equal over Zp using public
randomness, with error at most ε and communication complexity k log k/ε+ C · k.

Proof. There is a trivial protocol with communication complexity k · dlog pe, so the theorem is
trivially true if p ≤ 5 or k ≥ p/4. In what follows we therefore assume p > 5 and k < p/4.

The protocol for solving Sum-Equal is as follows. Set D as in Lemma 15, and use the public
randomness to choose uniform c ∈ Zp \ {0}. Party Pi, holding input xi, computes

bi = ((c · xi) mod p) mod D

and sends bi to the coordinator. The coordinator outputs 1 if c · g mod p is in
∑k

i=1A(bi), and
outputs 1 otherwise.

If
∑

i xi = g mod p then
∑

i c · xi = c · g mod p and the coordinator always outputs the correct
answer 1. Now say

∑
i xi = g′ 6= g mod p. Then c · g′ mod p is in

∑
iA(bi). Using Lemma 15, we

have
∣∣∑

iA(bi)

∣∣ < ε(p − 1)/2 + 1. Using Lemma 14, with probability at least ξ
def
= 1 − ε we have

distp,D(c · g mod p, c · g′ mod p) > ε(p− 1)/2. Assuming that to be the case, we have

distp,D(c · g mod p, c · g′ mod p) ≥
∣∣∑

iA(bi)

∣∣
(note that both sides of the above are integers), and so we conclude from Corollary 9 that c·g mod p
is not in

∑
iA(bi). We thus see that with probability at least 1 − ε the coordinator outputs the

correct answer 0.
The communication complexity is exactly k · dlogDe bits. Since D ≤ 2kp

ε(p−3) + 1 ≤ C ′ · k/ε for

some constant C ′ independent of p, k, and ε, this completes the proof.
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5 Protocols Over Z and ZN
In what follows, we show how to modify our protocols to work over the integers and in ZN for
square-free N .

Protocol over Z. Working over Z is relatively easy. The parties are given inputs in {0, . . . , 2n−1}.
The maximum sum of all the inputs is k2n, and the “target values” are at most that also. The
parties choose the smallest prime p > k2n, treat their inputs as lying in Zp, and run the protocol
for Zp. Note that

∑
i xi = g over the integers iff

∑
i xi = g mod p by our choice of p.

Protocol over ZN . Assume N is square-free, and let N =
∏m
i=1 pi be the prime factorization

of N . The parties can then work modulo each of the pi, and rely on the Chinese remainder theorem
for correctness. The complexity of the protocol scales with the number of prime factors m.
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