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Abstract Communication complexity is a central model of computation introduced by Yao [Yao79], where
two players, Alice and Bob, receive inputs x and y respectively and want to compute f(x, y) for some fixed
function f with the least amount of communication. Recently people have revisited the question of the privacy
of such protocols: is it possible for Alice and Bob to compute f(x, y) without revealing too much information
about their inputs? There are two types of privacy for communication protocols that have been proposed:
first, an information theoretic definition ([BYCKO93, K04]), which for Boolean functions is equivalent to the
notion of information cost introduced by [CSWY01] and that has since found many important applications;
second, a combinatorial definition introduced by [FJS10] and further developed by [ACCFKP12].

We provide new results for both notions of privacy, as well as the relation between them. Our new lower
bound techniques both for the combinatorial and the information-theoretic definitions enable us to give tight
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the process we also prove tight bounds (up to 1 or 2 additive bits) for the external information complexity of
these functions.

We also extend the definitions of privacy to bounded-error randomized protocols and provide a relation
between the two notions and the communication complexity. Again, we are able to prove tight bounds for the
above-mentioned functions as well as the Vector in Subspace and Gap Hamming Distance problems.

∗CNRS, LIAFA, Universite Paris 7 and CQT, NUS Singapore. jkeren@liafa.univ-paris-diderot.fr
†ENS Cachan, LIAFA, Universite Paris 7. mathieu.lauriere@ens-cachan.fr
‡CNRS, LIAFA, Universite Paris 7. dxiao@liafa.univ-paris-diderot.fr

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 15 (2013)



1 Introduction

Communication complexity is a central model of computation, first defined by Yao, [Yao79], that has found
applications in many areas of theoretical computer science. In the 2-party communication complexity setting,
we consider two players, Alice and Bob with unlimited computational power. Each of them receives an input,
say x ∈ X for Alice and y ∈ Y for Bob, and their goal is to compute f(x, y) ∈ Z for some fixed function f
with the minimum amount of communication.

Imagine now that Alice and Bob still want to collaboratively compute f(x, y), while retaining privacy of
their input. More precisely, the loss of privacy measures how much information about (x, y) is leaked to an
eavesdropper who has only access to the transcript (extrenal privacy), or how much information about one
party’s input is leaked through the transcript to the other pary (internal privacy). A perfectly private protocol
will reveal no information about x and y, other than what can be inferred from the value of f(x, y).

For example, if Alice and Bob both want to output the minimum of x, y ∈ {0, 1}n, then the optimal
deterministic communication protocol is the trivial protocol of complexity 2n. In fact one can show that any
deterministic protocol that has optimal communication complexity is not private at all against an eavesdropper
since basically both players have to send the input to the other one. However a perfectly private deterministic
protocol exists, alas with much worse communication complexity: the two parties initiate a counter i = 0 and
in each round i = 0 to 2n − 1, Alice announces "Yes" if x = i, otherwise "No"; Bob announces "Yes" if
y = i, otherwise "No". If neither party says “Yes” then they increment i, otherwise the protocol ends when
someone says "Yes". It is clear that from the transcript, one only learns what can be inferred from the value
of the function and nothing more.

In order to quantify the notion of privacy, Bar-Yehuda et al. [BYCKO93] provided a definition of internal
privacy of a function f according to an input distribution µ, a variation of which has been subsequently
referred to as internal information cost (ICint

µ (f)). In high level, it measures the amount of information
Alice learns about Bob’s input from the transcript and vice versa. A second type of information cost, called
external information cost (ICext

µ (f)) was defined in [CSWY01] and measures the amount of information that
is learned by an external observer about Alice and Bob’s inputs given the messages they exchanged during the
protocol. The notion of internal and external information cost has recently found many important applications
in communication complexity [CSWY01, BJKS02, BBCR10, Bra11].

Klauck [K04] also defined an information theoretic notion of privacy, which we denote here by PRIVint
µ (f),

which is closely related to the internal information cost (the only difference being that it measures the amount
of information Alice learns about Bob’s input from the transcript conditioned on knowing the value of the
function, and vice versa). In fact, the two notions are basically equivalent for boolean functions and all our
results about PRIV can be translated to results about information cost. These definitions have the advantage
to be easily related to other tools in information theory, but are not easily seen in a combinatorial way.

Feigenbaum et al. [FJS10] gave a combinatorial definition of privacy, called objective privacy-approximation
ratio (that we will refer to as external privacy-approximation ratio), that is equal to the expected value over
the inputs (x, y) drawn from some distribution µ of the following ratio: the number of inputs that are mapped
to the same value by f (that are indistinguishable of (x, y) by looking only at the function’s output) over the
number of inputs giving rise to the same transcript as the one of (x, y) (that are indistinguishable of (x, y)
by looking only at the protocol’s transcript). They also defined a notion of subjective (or internal) privacy-
approximation ratio, that captures how much more one player learns about the input of the other one through
the transcript than through the value of the function, and equals the ratio of the number of Alice’s possible
inputs x that are indistinguishable by looking only at Bob’s input y and the output of the function, over the
number of x’s that are instiguishable by looking at y and the full transript. Last, they studied several functions
and computed lower bounds for their privacy-approximation ratio, however restricting themselves to the case
of uniformly distributed inputs.
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More recently, Ada et al. in [ACCFKP12] have modified the definition of privacy-approximation ratio,
which we denote as PARext

µ (f) and PARint
µ (f), so that it measures the size of subsets of X × Y not just by

counting the number of elements, but relative to the inputs’ distribution µ. They showed that the logarithm of
this new definition of internal PAR can be lower bounded by the zero-error internal information cost (which
nevertheless can be arbitrarily smaller for certain functions with large output range). They also proved a
tradeoff between privacy and communication complexity for a specific function (Vickrey-auction) and
the uniform distribution of inputs.

We note that in [FJS10] and [ACCFKP12] only deterministic protocols were considered. Moreover, the
relation between the two measures was not very well understood.

1.1 Our results

We provide new results for the two notions of privacy, PRIV and PAR, both external and internal, as well as
about their relation. These results enable us to give tight bounds for the privacy of several functions. We also
extend the definitions of PRIV and PAR to bounded-error randomized protocols, provide a relation between
the two notions and the communication complexity and prove tight bounds for several functions.

New lower bounds for external PAR First, we present a general lower bound technique for PARext
µ (f)

via linear programming. We relate it to two other well known lower bound techniques for communication
complexity (see [JK10]): the rectangle bound (rec(f)) and the partition bound (prt(f)). This linear program
can be written as a weighted sum of rectangle bounds recz(f), where the weight is equal to the weight of the
inputs (x, y) according to µ that are mapped to z by f . It is, hence, easy to compute for many functions:

Theorem: For all functions f , PARext
µ (f) ≥

∑
z∈Z

∣∣f−1(z)
∣∣
µ
· recz(f).

Moreover, for the case of boolean functions we present two more lower bound techniques. First, as a
weighted sum of the size of the 0- and 1-fooling sets of Mf (|F0| and |F1| respectively); and second, by the
rank of Mf :

Theorem: For boolean functions f , PARext
µ (f) ≥

∣∣f−1(0)
∣∣
µ
· |F0|+

∣∣f−1(1)
∣∣
µ
· |F1|.

Theorem: For boolean functions f , PARext
µ (f) ≥ min{rank (Mf ) , rank (Mnotf )} ≥ rank (Mf )− 1.

In addition, we prove that external PAR is larger than internal PAR and that external PAR and communi-
cation complexity are polynomially related, provided that the log-rank conjecture holds.

New lower bound techniques for external IC and PRIV We prove a new lower bound on the external
zero-error information cost which using the equivalence between IC and PRIV given in Theorem 2.8 will in
turn give new lower bounds on PRIVext

µ (f).

Theorem: Fix a function f . Suppose there exists δ > 0 and a distribution µ over the inputs of f whose
support is a rectangle, such that for all monochromatic rectangles R of f , µ(R) ≤ δ. Then it holds for every
protocol P that computes f with zero error that ICext

µ (P ) ≥ log(1/δ).

We remark that our theorem allows us to prove exact bounds for zero-error IC up to an additive constant
term (with a small constant, between 1 and 2).

Theorem: For each of f = EQ,GT,DISJ, there exists µ such that ICext
µ (f) ≥ n. Also, there exists µ such

that ICext
µ (IP) ≥ n− 1− o(1).

These are much sharper than typical lower bounds on IC, which work in the bounded-error case and incur
multiplicative constants [BJKS02, Bra11, BW12, KLLRX12]. The only other such sharp lower bounds we
are aware of are due to Braverman et al. [BGPW12] who study the AND and DISJ functions. However they
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PARext
µ PRIVext

µ PARint
µ,ε

Problem [FJS10] Our contribution (for some µ) (for some µ)
(for uniform µ) (for any µ)

Equality - 2n n− 1 Θ(1)

Disjointness
(

3
2

)n
2n − 1 n− 1 2Θ(n)

Inner Product - 2n − 1 n− 2− o(1) 2Θ(n)

Greater Than 2n + 1
2n+1 − 1

2 2n − 1 n− 1 2Θ(logn)

Table 1: Lower bounds for specific functions

prove sharp bounds for the internal IC of DISJ, not for the external IC as we study here.

Our bound can be used to prove an optimal lower bound on the zero-error information complexity of
certain functions (i.e. without even an additive constant loss). For example, for the single bit AND function,
our theorem implies that there exists µ such that ICext

µ (P ) ≥ log2 3. This matches a recent upper bound of
[BGPW12] (they also proved that their upper bound is tight via different techniques).

Applications We exhibit the power of these new lower bound techniques for PAR and PRIV by proving
optimal lower bounds on most of the examples of functions left open in [FJS10] and more: Equality,
Disjointness, Inner Product, Greater Than (Millionaire’s problem).

Privacy for bounded-error randomized protocols We extend the definition of PAR and PRIV to bounded-
error randomized protocols and show that for any protocol, external PRIV is a lower bound on external PAR
and the same for the internal notions.

Theorem: PRIVext
µ (P ) ≤ log PARext

µ (P ) and PRIVint
µ (P ) ≤ 2 · log

(
PARint

µ (P )
)
.

Since PRIV is lower bounded by IC, which was shown in [KLLRX12] to subsume almost all known
lower bounds for communication complexity, i.e. smooth rectangle, γ2-norm bound, discrepancy, etc., the
two notions of privacy, for the bounded-error case, are in fact both equal to the communication complexity for
all boolean functions for which we have a tight bound on their communication complexity. Interestingly, the
notion of PAR sits between information and communication complexity, and it is an important open question
whether these two notions are equal (which would also make PAR equal to them).

Comparison between the two notions of privacy As we have said, for the case of bounded-error protocols,
the two notions of privacy seem to be practically equal for most functions. However, for the zero-error case,
they can diverge for certain functions. In order to understand the differences between the notions, we study
their robustness when we change slightly the input distribution and we show that the information theoretic
notion of privacy is more robust to such changes. Moreover, we show that while PRIV is always less than the
expected communication complexity of the protocol, the same is not true for PAR. We also discuss an error
in the appendix of [FJS10] where they claim that PRIV is not as robust as PAR for distinguishing the privacy
of two specific protocols they exhibited.

2 Preliminaries

We consider three non empty sets X ,Y,Z and a function f : X × Y → Z . µ denotes a distribution over
X ×Y , and for any set E ⊆ X ×Y, |E|µ :=

∑
(x,y)∈E µ(x, y).Mf is the matrix of f :Mf [x, y] := f(x, y).

We let P denote a two-party communication protocol. Protocols may use both public and private random
coins. For any protocol P , let TP denote its transcript. For randomized protocols, TP (x, y) is a random
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variable comprised of all messages as well as the public coins, but not the private coins. We will simply write
T if the protocol is clear from context. Given a protocol P and a transcript T , for any input (x, y) ∈ X × Y ,
P (x, y) is the value output by Alice and Bob upon running the protocol, and T (x, y) is the whole transcript
(these are random variables if the protocol is randomized). Let CC(P ) be the maximum number of bits
communicated by P over all choices of inputs and random coins. Let D(f) = minP CC(P ) where P
ranges over all deterministic protocols computing f . Let Rε(f) = minP CC(P ) where P ranges over all
randomized protocols computing f with error at most ε.

For any input (x, y) ∈ X × Y , the monochromatic f -region of (x, y) is defined as Df
x,y := f−1(f(x, y)),

and is equal to the monochromatic P -region DP
x,y of (x, y) if P is deterministic or 0-error. The monochromatic

P -rectangle of (x, y) is defined as DTP
x,y := T−1

P (TP (x, y)). For any output z ∈ Z , the monochromatic f -
region of z is: f−1(z) := f−1({z}), which is equal to the monochromatic P -region of z, P−1(z), if P is
deterministic or 0-error. Let RPz be the set of P -rectangles covering P−1(z), that is: RPz := {DTP

x,y|(x, y) :

P (x, y) = z}. Let RP = ∪z∈ZRPz =
{

DTP
x,y

∣∣(x, y) ∈ X × Y
}

be the set of all P -rectangles. If P is a
deterministic or zero-error protocol for f , for each z ∈ Z , cutP (z) is the number of P -rectangles in f−1(z);
R(X × Y) is the set of all rectangles in X × Y .

For three random variablesA,B,C the conditional mutual information is defined as I(A;B|C) := H(A|C)−
H(A|BC), where H denotes Shannon entropy: if X and Y are two random variables H(X) =

∑
x P{X =

x} log(1/P{X = x}) and H(X|Y ) = E[− log(P(X|Y )]. We recall some simple facts about information
and entropy (more details about information theory can be found in the textbook of Cover and Thomas
[CT06].) For any random variables X,Y, Z,W , the Chain Rule says that H(X,Y ) = H(X) + H(Y |X)
and I(X,Z;Y ) = I(X;Y ) + I(Z;Y |X). Another easy fact (see for example [ACCFKP12]) is that:

|I(X;Y |W )− I(X;Y |W,Z)| ≤ H(Z) (1)

2.1 Definitions of privacy for deterministic or zero-error protocols

Information complexiy: We define the external and internal information complexity, notions that have re-
cently found many applications in communication complexity [CSWY01, BJKS02, BBCR10, Bra11]. The
external information complexity measures the amount of information that is learned from someone who looks
at the messages exchanged between Alice and Bob during the protocol about their inputs. The internal infor-
mation complexity measures the amount of information that Alice learns about Bob’s input and vice versa.

Definition 2.1. We define the external information complexity of P as ICext
µ (P ) := I(TP ;X,Y ). The exter-

nal information complexity of f is ICext
µ (f) := minP ICext

µ (P ) where the minimum is over all protocols P
computing f .

Definition 2.2. We define the internal information complexity of P as ICint
µ (P ) := I(TP ;X|Y )+I(TP ;Y |X).

The internal information complexity of f is ICint
µ (f) := minP ICint

µ (P ) where the minimum is over all
protocols P computing f .

Information-theoretic privacy: In [BYCKO93], the definition of privacy (Idet
c−i in their notations) is basi-

cally the same as what we now call ICint
µ (P ) (they used the max instead of the sum of the two terms). A

related notion of privacy has been defined by Klauck in [K04], where again he takes the max of the two terms
instead of the sum. We give a distribution-dependent version of his definition. Roughly, it represents how
much an observer learns about the inputs conditioned on knowing the output of the function. We also define
an internal version of the definition.

Definition 2.3. The external privacy of P is defined as PRIVext
µ (f, P ) := I(TP (X,Y );X,Y |f(X,Y )). The

external privacy of a function f is defined as PRIVext
µ (f) := minP PRIVext

µ (f, P ) where the minimum is
taken over all protocols P for f .
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Definition 2.4. The internal privacy of P is defined as PRIVint
µ (f, P ) := I(TP (X,Y );X|Y, f(X,Y )) +

I(TP (X,Y );Y |X, f(X,Y )) The internal privacy of a function f is defined as PRIVint
µ (f) := minP PRIVint

µ (f, P )
where the minimum is taken over all protocols P for f .

Combinatorial privacy PAR: We present here the definition of PAR given by [ACCFKP12], which modi-
fied the original definition in [FJS10] in order to measure the size of regions relative to the inputs’ distribution.

Definition 2.5. The external privacy-approximation ratio of a deterministic protocol P computing f is defined
as:

PARext
µ (f, P ) := E(x,y)∼µ

[ ∣∣∣Dfx,y∣∣∣
µ∣∣∣DTPx,y∣∣∣
µ

]
= E(x,y)∼µ

[
|DPx,y|µ∣∣∣DTPx,y∣∣∣

µ

]
(where the equality holds because P has zero error). The external privacy-approximation ratio of a function
f is defined as: PARext

µ (f) := min
P

PARext
µ (f, P ).

Definition 2.6. The internal privacy-approximation ratio of a protocol P computing f is defined as:

PARint
µ (f, P ) := E(x,y)∼µ

[ ∣∣∣Dfx,y∩X×{y}∣∣∣
µ∣∣∣DTPx,y∩X×{y}∣∣∣
µ

]
+ E(x,y)∼µ

[ ∣∣∣Dfx,y∩{x}×Y∣∣∣
µ∣∣∣DTPx,y∩{x}×Y∣∣∣
µ

]

The internal privacy-approximation ratio of a function f is defined as: PARint
µ (f) := min

P
PARint

µ (f, P ).

Basic relations and bounds: The relation between internal IC and internal PRIV was explained in [ACCFKP12].
It is possible to improve the lower bound and to show the same relationship for external notions.

Theorem 2.7. For any protocol P and any distribution µ,

PRIVint
µ (f, P ) ≤ ICint

µ (P ) ≤ PRIVint
µ (f, P ) + 2 log(|Z|)

and similarly:

Theorem 2.8. For any protocol P and any distribution µ,

PRIVext
µ (f, P ) ≤ ICext

µ (P ) ≤ PRIVext
µ (f, P ) + log(|Z|)

Proof of Theorem 2.7 and Theorem 2.8. Let us first prove the upper bounds. By definition of IC and PRIV
we have, respectively for the external and the internal notions:

ICint
µ (P )− PRIVint

µ (f, P ) = I(TP (X,Y );X|Y )− I(TP (X,Y );X|Y, f(X,Y ))

+ I(TP (X,Y );Y |X)− I(TP (X,Y );Y |X, f(X,Y ))

≤ 2 log(|Z|),
ICext

µ (P )− PRIVext
µ (f, P ) = I(TP (X,Y );X,Y )− I(TP (X,Y );X,Y |f(X,Y ))

≤ log(|Z|).

The inequalities come from Inequality (1). Let us prove now the lower bound. Since the output of function is
completely determined by the input,

PRIVext
µ (f, P ) = I(TP (X,Y );X,Y |f(X,Y )) = H(TP (X,Y )|f(X,Y ))−H(TP (X,Y )|X,Y, f(X,Y ))

= H(TP (X,Y )|f(X,Y ))−H(TP (X,Y )|X,Y )

≤ H(TP (X,Y ))−H(TP (X,Y )|X,Y )

= ICext
µ (P ).

The same arguments work also for the internal notions.
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We can show that internal PAR is smaller than external one:

Theorem 2.9. For any deterministic protocol P computing f :

PARint
µ (f, P ) ≤ 2 · PARext

µ (f, P ).

Proof. Recall that: PARext
µ (f, P ) =

∑
z∈Z

∣∣f−1(z)
∣∣
µ
·nz , where nz = #RPz . If we denote by nz,y and nz,x

respectively |{R ∩ X × {y}
∣∣R ∈ RPz }| and |{R ∩ {x} × Y

∣∣R ∈ RPz }|, then:

E(x,y)∼µ


∣∣∣Df

x,y ∩ X × {y}
∣∣∣
µ∣∣∣DTP

x,y ∩ X × {y}
∣∣∣
µ

 =
∑

(x,y)∈X×Y

µ(x, y) ·

∣∣∣Df
x,y ∩ X × {y}

∣∣∣
µ∣∣∣DTP

x,y ∩ X × {y}
∣∣∣
µ

=
∑
z∈Z

∑
y∈Y

∣∣f−1(z) ∩ X × {y}
∣∣
µ

∑
R∈RPz

1

|R ∩ X × {y}|µ

∑
x:(x,y)∈R

µ(x, y)

︸ ︷︷ ︸
=|R∩X×{y}|µ

=
∑
z∈Z

∑
y∈Y

∣∣f−1(z) ∩ X × {y}
∣∣
µ
· nz,y.

Similarly we prove:

E(x,y)∼µ


∣∣∣Df

x,y ∩ {x} × Y
∣∣∣
µ∣∣∣DTP

x,y ∩ {x} × Y
∣∣∣
µ

 =
∑
z∈Z

∑
x∈X

∣∣f−1(z) ∩ {x} × Y
∣∣
µ
· nz,x.

Hence:

PARint
µ (f, P ) =

∑
z∈Z

∑
y∈Y

∣∣f−1(z) ∩ X × {y}
∣∣
µ
· nz,y +

∑
x∈X

∣∣f−1(z) ∩ {x} × Y
∣∣
µ
· nz,x


≤
∑
z∈Z

(
2 ·
∣∣f−1(z)

∣∣
µ
· nz
)

= 2 · PARext
µ (f, P )

the inequality follows from the fact that for each z, for any x and y, nz,x and nz,y are smaller than nz , and∑
y∈Y

∣∣f−1(z) ∩ X × {y}
∣∣
µ

=
∑

x∈X
∣∣f−1(z) ∩ {x} × Y

∣∣
µ

=
∣∣f−1(z)

∣∣
µ

.

It is also easy to see that

Theorem 2.10. PRIVint
µ (f, P ) ≤ PRIVext

µ (f, P ) + log(|Z|).

Proof. Braverman [Bra11] proved that: ICint
µ (P ) ≤ ICext

µ (P ). Hence, with Theorem 2.8:

PRIVint
µ (f, P ) ≤ ICint

µ (P ) ≤ ICext
µ (P ) ≤ PRIVext

µ (f, P ) + log(|Z|).

We can also relate PAR and PRIV:

Theorem 2.11. (Theorem 19 in [ACCFKP12]) For any deterministic protocol P and any distribution µ:
PRIVint

µ (f, P ) ≤ 2 · log
(
PARint

µ (f, P )
)
.
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Similarly, for external privacy we can prove:

Theorem 2.12. For any deterministic protocolP and any distribution µ, PRIVext
µ (f, P ) ≤ log

(
PARext

µ (f, P )
)
.

The proof follows from a more general result that we prove in section 4.

The external PAR equals a weighted sum of the number of rectangles tiling each f -monochromatic region.

Theorem 2.13 ([ACCFKP12]). For any deterministic protocol P , we have:

PARext
µ (f, P ) =

∑
z∈Z

∣∣f−1(z)
∣∣
µ
· cutP (f−1(z)).

This result was stated in [ACCFKP12] but for completeness we present a proof:

Proof. We successively write:

PARext
µ (f, P ) = E(x,y)∼µ


∣∣∣Df

x,y

∣∣∣
µ∣∣∣DTP

x,y

∣∣∣
µ

 =
∑

(x,y)∈X×Y

µ(x, y) ·

∣∣∣Df
x,y

∣∣∣
µ∣∣∣DTP

x,y

∣∣∣
µ

=
∑
z∈Z

∑
R∈RPz

∣∣f−1(z)
∣∣
µ

|R|µ

∑
(x,y)∈R

µ(x, y)

︸ ︷︷ ︸
=|R|µ

=
∑
z∈Z

∣∣f−1(z)
∣∣
µ
·#RPz =

∑
z∈Z

∣∣f−1(z)
∣∣
µ
· cutP (f−1(z)).

The third equality holds because each rectangle generated by the transcript is included in the f -region that
corresponds to its output (since P is a zero-error protocol).

Finally, if Distµ,ε for ε ≥ 0 represents the expected distributional complexity of a randomized ε-error
protocol with respect to some input distribution µ, we have:

Theorem 2.14. For any randomized ε-error protocol and any input distribution, Distµ,ε(P ) ≥ ICext
µ,ε (P ).

Proof. We consider the code TP (X,Y ) where the codewords are all the possible transcripts over the alphabet
{0, 1}, for a randomized ε-error protocol P over the input X,Y distributed according to µ. This code is
uniquely decodable, and hence we can use the Kraft inequality of theorem 5.5.1 in [CT06]: the expected
length of TP (X,Y ) is greater than its entropy. Hence, for any input distribution, Distµ,ε(P ) ≥ H(TP ). The
conclusion follows from: H(TP ) ≥ H(TP )−H(TP |X,Y ) = I(TP ;X,Y ) = ICext

µ,ε (P ).

Note that, since ICext
µ,ε (P ) ≥ ICint

µ,ε(P ), we also have: Distµ,ε(P ) ≥ ICint
µ,ε(P ).

We can summarize the relations between the notions of communication or information complexity and
privacy by the diagrams of figure 2.1. In the diagram, an arrow A ← B indicates that A ≤ B (up to
constants). The quantities indicate worst-case complexity except for Dist, clarified below. Relations between:

• D (resp. Rε) and PAR is given by Theorem 4.4;
• PARext and PARint comes from Theorem 2.9;
• PAR and PRIV for the deterministic 0-error setting are given in Theorem 2.11 (internal) and Theo-

rem 2.12 (external), while Theorem 4.5 give these relations in the bounded-error setting (internal and
external);
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Figure 1: Lower bounds diagrams for deterministic and bounded error cases

• PRIVext and PRIVint (both for deterministic 0-error and bounded error) comes from Theorem 2.10;
• IC and PRIV (both for deterministic 0-error and bounded error) are in Theorem 2.7 (internal) and

Theorem 2.8 (external).
• The expected distributional complexity and IC (or PRIV) for every possible input distribution is given

in Theorem 2.14

3 New lower bound techniques for PAR and PRIV of deterministic protocols

3.1 External PAR and the rectangle bound

We start by defining a linear program and prove that its optimal value is a lower bound for external PAR.
Then we relate it to two other well known bounds (the rectangle and the partition bound) that often provide
tight lower bounds for communication complexity.

Definition 3.1. Let P̃ARµ(f) be the value of the following linear program:

min
wz,R

∑
z,R

wz,R ·
∣∣f−1(z)

∣∣
µ

s.t. ∀ (x, y) ∈ f−1(Z) :
∑

R:R3(x,y)

wf(x,y),R = 1 (2)

∀ (x, y) ∈ f−1(Z) :
∑

R:R3(x,y)

∑
z

wz,R = 1 (3)

∀ z, ∀R : wz,R ≥ 0. (4)

where the z’s and the R’s are always taken respectively in Z and inR(X × Y).

Intuitively, conditions (3) and (4) say that we can interprete wz,R as a probability distribution. In fact,
wz,R can be seen as the probability distribution that picksR and outputs z on (x, y). This is because condition
(2) forces the probability of outputting f(x, y) on (x, y) to be 1. We prove the following theorem that the
optimal value of this linear program is a lower bound for PAR:

Theorem 3.2. PARext
µ (f) ≥ P̃ARµ(f).
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Proof. Let P be a deterministic protocol for f and T its transcript. Since P is zero-error, its rectangles
are included in f -monochromatic regions. Given a rectangle R of the transcript, let Df

R be the unique f -
monochromatic region containing R. Then:

PARext
µ (f, P ) = E(x,y)∼µ

[ ∣∣∣Dfx,y∣∣∣
µ

|DTx,y|µ

]
=
∑
(x,y)

µ(x, y) ·

∣∣∣Dfx,y∣∣∣
µ

|DTx,y|µ
=
∑
R∈RP

∣∣∣DfR∣∣∣µ
|R|µ

∑
(x,y)∈R

µ(x, y) =
∑
R∈RP

∣∣∣Df
R

∣∣∣
µ

Letting wz,R := 1R∈RPz (= 1 if P outputs z on R, 0 otherwise), we can write:

PARext
µ (f, P ) =

∑
R∈R(X×Y)

∑
z∈Z

wz,R ·
∣∣∣Df

R

∣∣∣
µ

=
∑

z∈Z,R∈R(X×Y)

wz,R ·
∣∣f−1(z)

∣∣
µ
.

Moreover it is easy to see that this family wz,R satisfies the constraints of Definition 3.1 because P is zero-
error. Hence it is a valid solution, whose corresponding objective value is at least the optimal value.

3.1.1 Relation with rectangle linear program:

We use the formulation of the rectangle bound given by [JK10] as the following linear program:

Definition 3.3. recz(f) is the optimal value of the following linear program:

min
wR

∑
R

wR s.t. ∀(x, y) ∈ f−1(z) :
∑

R:R3(x,y)

wR = 1

∀(x, y) ∈ X × Y \ f−1(z) :
∑

R:R3(x,y)

wR = 0

∀R : wR ≥ 0.

where the R’s are taken inR(X × Y).

Theorem 3.4. P̃ARµ(f) ≥
∑

z∈Z
∣∣f−1(z)

∣∣
µ
· recz(f).

Proof. Note first that, thanks to the first and the third conditions in the definition of recz(f), we can replace
the second condition by ∀(x, y) ∈ f−1(Z) :

∑
R:R3(x,y)wR = 1. Now, let us rewrite Definition 3.1 in the

following way, that exhibits the independance of constraints for each f -monochromatic region D ∈ Df :

min
wz,R

∑
z

∣∣f−1(z)
∣∣
µ

∑
R

wz,R s.t. ∀ z, ∀ (x, y) ∈ f−1(z) :
∑

R:R3(x,y)

wf(x,y),R = 1

∀ z, ∀ (x, y) ∈ f−1(z) :
∑

R:R3(x,y)

∑
z′

wz′,R = 1

∀ z, ∀R : wz,R ≥ 0,

where z ∈ Z and R denotes a rectangle in R(X × Y). The set of three constraints are independent from one
region f−1(z) to another. Furthermore, since the

∣∣f−1(z)
∣∣
µ

are non-negative, we can replace the objective
function by:

∑
z

∣∣f−1(z)
∣∣
µ
·minwR

∑
R wR, without changing either the set of solutions nor the optimal value.

We finally get the formula (equality of the optimal values) as a consequence of LP formulations’ equality.
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3.2 External PAR and the partition bound

Following Jain and Klauck [JK10], we define the partition lower bound in the following way:

Definition 3.5. We define prt(f) as the optimal value of the following linear program:

min
wz,R

∑
z

∑
R

wz,R

s.t. ∀(x, y) ∈ X × Y :
∑

R:R3(x,y)

wf(x,y),R = 1

∀(x, y) ∈ X × Y :
∑

R:R3(x,y)

∑
z

wz,R = 1

∀z, ∀R : wz,R ≥ 0.

where z ∈ Z and R denotes a rectangle inR(X × Y).

From [JK10], we know that log prt(f) is a lower bound on the communication complexity of f , that is
even tighter than log rec(f):

Theorem 3.6. 1. D(f) ≥ log prt(f).
2. prt(f) ≥ recz(f) for every z ∈ Z .

We can relate this known bound to PAR in the case of a uniform output distribution:

Theorem 3.7. Assume the distribution µ of the input is such that the distribution of the outputs is uniform,
i.e.: ∀ z ∈ Z

∣∣f−1(z)
∣∣
µ

= P(x,y)∼µ {f(x, y) = z} = 1
|Z| , then:

PARext
µ (f) ≥ P̃ARµ(f) =

1

|Z|
· prt(f).

Proof. It follows directly from PAR and partition linear program formulations.

3.3 External PAR of boolean functions

We now turn our attention to the case of boolean functions: we prove lower bounds on PAR with respect to
the number of monochromatic rectangles of the communication matrix and the communication matrix rank.
We also prove that if the log-rank conjecture holds, PAR and communication complexity are polynomially
related.

Let f be a boolean function (i.e. |Z| = 2, so that we identify Z with {0, 1}), P a deterministic protocol
for f and T its transcript. Let n0 and n1 be the number of P -rectangles where the output is respectively 0 and
1 (n0 = |RP0 |, n1 = |RP1 |).

Theorem 3.8. PARext
µ (f) ≥ min{rank (Mf ) , rank (Mnotf )} ≥ rank (Mf )− 1

Proof. We can rewrite the PAR of any deterministic protocol for f as:

PARext
µ (f, P ) =

∑
z∈Z

∣∣f−1(z)
∣∣
µ
· cutP (f−1(z)) =

∣∣f−1(0)
∣∣
µ
· n0 +

∣∣f−1(1)
∣∣
µ
· n1 (5)

where the first equality comes from Theorem 2.13. Then, PARext
µ (f, P ) ≥ min(n0, n1) since

∣∣f−1(0)
∣∣
µ

+∣∣f−1(1)
∣∣
µ

= 1. The theorem follows since for any protocol rank (Mf ) ≤ n1 and rank (Mnotf ) ≤ n0 (see
for example [KN97]).
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Observe that rank (Mf ) and rank (Mnotf ) differ by at most 1 (Mnotf = J−Mf where J is the all-ones
matrix), hence we deduce the second statement.

Relation with log-rank conjecture: The log-rank conjecture states that there exists γ such that D(f) ≤
logγ rank (Mf ).

Theorem 3.9. The log-rank conjecture implies PARext
µ (f) and D(f) are polynomially related for boolean f .

Proof. It suffices to note that D(f) + 1 ≥ log
(
PARext

µ (f) + 1
)
≥ log rank (Mf ) ≥ (D(f))1/γ , where the

first equality comes from Theorem 4.4 applied to deterministic protocols.

Moreover, we show that Theorem 3.8 and Theorem 3.9 fail for non-boolean functions.

Rank argument fails for non-Boolean functions Theorem 3.8 and Theorem 3.9 are not true in general
for non-boolean functions. For instance, consider the following function that take three values: let EQ′ :
{1, . . . ,m}2 → {0, 1, 2} be the function defined by:

EQ′(x, y) =


0 if x 6= y and x < m or y < m

1 if x = y and x < m or y < m

2 otherwise (x = m or y = m).

whose matrix is: MEQ′ =


1 0 · · · 0 2
0 1 · · · 0 2
...

...
. . .

...
0 0 · · · 1 2
2 2 · · · 2 2

 .

Then, for any (zero-error) protocol P solving EQ′, the number of 0-rectangles and the number of 1-rectangles
are at least the minimum number of such rectangles for EQm−1:

EQm−1 : {1, . . . ,m− 1}2 → {0, 1}, (x, y) 7→ 1 iff x = y.

But the number of 2-rectangles can be only 2. Now, if we pick a distribution µ and δ satisfying
∣∣EQ′−1(0)

∣∣
µ

=∣∣EQ′−1(1)
∣∣
µ

= δ/2 < 2−(2m−2) and
∣∣EQ′−1(2)

∣∣
µ

= 1− δ, then:

PARext
µ (EQ′) =

∣∣EQ′−1(0)
∣∣
µ
· n0 +

∣∣EQ′−1(1)
∣∣
µ
· n1 +

∣∣EQ′−1(2)
∣∣
µ
· n2 =

δ

2
· (n0 + n1) + 2 · (1− δ)

≤ 2−(2m−2) · 22m−2 + 2 · (1− δ) (since n0 + n1 ≤ #{(x, y) ∈ {1, . . . ,m− 1}2})
≤ 3.

Hence for this function EQ′ and this distribution µ:

PARext
µ (EQ′, P ) ≤ 3

whereas rank
(
MEQ′

)
≥ rank

(
MEQn−1

)
= 2n−1.

As a consequence, we see that Theorem 3.8 and Theorem 3.9 are not true in general for non-boolean functions.

Relation between PAR and fooling sets: Recall that a z-fooling set (z ∈ Z) for f : X ×Y → Z is a subset
Fz ⊆ f−1(z) such that: ∀ (x, y) ∈ Fz, f(x, y) = z and ∀ (x1, y1), (x2, y2) ∈ Fz, (x1, y1) 6= (x2, y2) it holds
that f(x1, y2) 6= z or f(x2, y1) 6= z. Recall the following theorem about fooling sets and monochromatic
rectangles:

Theorem 3.10 ([KN97]). If Fz is a z-fooling set for f , then any covering of f−1(z) by monochromatic
rectangles has at least |Fz| rectangles.
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As a corollary of Theorem 2.13 and Theorem 3.10:

Corollary 3.11. For any function f and any set of z-fooling sets {Fz}z∈Z ,

PARext
µ (f) ≥

∑
z∈Z

∣∣f−1(z)
∣∣
µ
· |Fz|.

3.4 New lower bound techniques for external IC

We show lower bounds on the external zero-error information complexity, which using Theorem 2.8 will in
turn give new lower bounds on information-theoretic privacy.

Theorem 3.12. Fix a function f . Suppose there exists δ > 0 and a distribution µ over the inputs of f whose
support is a rectangle, such that for all monochromatic rectangles R of f , µ(R) ≤ δ. Then it holds for every
P that computes f with zero error that ICext

µ (P ) ≥ log(1/δ).

Proof. Suppose t is a transcript of the protocol P , let suppXY (t) denote the support of inputs for transcript t,
namely all x, y such that Pr[TP (x, y) = t] > 0. Since P has no error, suppXY (t) is monochromatic. Also,
since supp(µ) is a rectangle, this implies that suppXY (t) is a monochromatic rectangle. It holds that:

I(TP (X,Y ); (X,Y )) = E(x,y,t)∼(X,Y,TP (X,Y )) log P[(X,Y )=(x,y)|TP (X,Y )=t]
P[(X,Y )=(x,y)]

= Et∼TP
∑

(x,y)∈suppXY (t)

P[(X,Y ) = (x, y | TP (X,Y ) = t] log P[(X,Y )=(x,y)|TP (X,Y )=t]
P[(X,Y )=(x,y)]

≥ Et∼TP log 1∑
(x,y)∈suppXY (t) P[(X,Y )=(x,y)] = Et∼TP log 1

P[(X,Y )∈suppXY (t)] ≥ log(1/δ)

The first inequality is a consequence of the log-sum inequality and the second inequality follows because
suppXY (t) is a monochromatic rectangle and by the hypothesis that all monochromatic rectangles have mass
at most δ.

We prove the following corollary for fooling sets.

Corollary 3.13. For any function f with a fooling set S of size |S| = k, there exists a distribution µ such that
for all protocols P that compute f with zero error over µ, it holds that ICext

µ (P ) ≥ log k.

Proof. Let S = {(xi, yi)}i=1,...,k. Let z be the element such that f(xi, yi) = z for all (xi, yi) ∈ S.

Set γ = 2−k. Construct µ as follows: with probability 1− γ pick a random element of S, with probability
γ choose (xi, yj) where i 6= j are chosen uniformly from [k].

Observe that the z-rectangles in the support of µ are exactly the singleton elements (xi, yi), and µ(xi, yi) =
(1 − γ)2−k ≤ 2−k. On the other hand, the total mass on all elements not labeled z is γ, so in particular the
mass of any z′-rectangles for z′ 6= z is at most γ = 2−k. Finally observe that the support of µ is a rectangle.

Therefore µ satisfies the hypotheses of Theorem 3.12 with δ = 2−k, and therefore ICext
µ (P ) ≥ log k.

Remark 3.14. Theorem 3.12 can be used to prove an optimal lower bound on the zero-error information
complexity of certain functions. For example, single bit AND function, the hard distribution µ is uniform over
(0, 1), (1, 0), (1, 1), and our theorem implies that ICext

µ (P ) ≥ log2 3. This matches a recent upper bound by
Braverman et al. [BGPW12]. We note that it is not possible to extend Theorem 3.12 for the internal informa-
tion complexity, as the AND function (on single bits) has strictly smaller internal information complexity than
external [BGPW12].
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3.5 Applications: tight bounds on external PAR and PRIV for specific functions

Our applications as described in Table 1 follow from the lower bounds techniques that we have seen and
applying well known facts about the rank or the size of the fooling sets of the communication matrix of the
functions in question. An advantage of our techniques is that they give bounds for any distribution of input
µ, and not only for a uniform distribution as what was done in [FJS10]. Since any of these problems can be
solved by sending Alice’s entire input (n bits), the communication complexity is always upper-bounded by n,
hence so PAR is always upper-bounded by 2n.

Theorem 3.15. For any distribution µ:

1. PARext
µ (EQ) = 2n

2. PARext
µ (DISJ) = 2n − 1

3. PARext
µ (IP) = 2n − 1

4. PARext
µ (GT) ≥ 2n − 1. If µ = U is uniform, then: PARext

U (GT) ≥ 2n + 1
2n+1 − 1

2 .

Proof. For each of the functions, the lower bound is attained by computing the rank of the matrix and applying
Theorem 3.8. Since rank (MnotEQ) = 2n too, we have min(n0, n1) = 2n in the particular case of EQ. For
GT and the uniform distribution, we count the 0- and 1-rectangles and apply equation (5)

For PRIV we have:

Theorem 3.16. For each of the following, there exists an appropriate distribution µ such that:

1. ICext
µ (EQ) ≥ n, and PRIVext

µ (EQ) ≥ n− 1
2. ICext

µ (DISJ) ≥ n, and PRIVext
µ (DISJ) ≥ n− 1

3. ICext
µ (IP) ≥ n− 1− o(1), and PRIVext

µ (IP) ≥ n− 2− o(1)
4. ICext

µ (GT) ≥ n, and PRIVext
µ (GT) ≥ n− 1. If µ = U is uniform, then: PRIVext

U (GT) = O(1).

Proof. For the lower bounds for EQ,DISJ,GT, we can apply Corollary 3.13 using an appropriate fooling
set, followed by the relationship between IC and PRIV given in Theorem 2.8.

For IP we use the well-known fact that all 0-monochromatic rectangles of the IP function contain at most
2n elements. Construct the distribution µ that with probability γ = 2−n picks a uniformly random x, y and
with probability 1 − γ uniformly random non-zero x, y such that IP(x, y) = 0. Clearly µ has support over a
(2n − 1) × (2n − 1) rectangle, and it is balanced. Since the combined weight of all 1-inputs is at most 2−n,
the weight of all 1-monochromatic rectangles is at most 2−n. Since each 0-monochromatic rectangle has at
most 2n elements and each of these receives weight (1− γ)2/(2n− 1)2, the weight of each 0-monochromatic
rectangle is at most 2

2n−1 and therefore log 2n−1
2 > n− 1− o(1). Applying Theorem 2.8 and the observation

gives a lower bound of n− 2− o(1).

The fact that PRIVext
U (GT) = O(1) can be observed by considering the deterministic protocol that sends

the inputs of both parties bit-by-bit, stopping when they reach a disagreeing bit. In expectation they exchange 2
bits before finding a disagreement, and therefore it holds that PRIVext

U (GT) ≤ ICext
U (GT) ≤ DistU ,0(GT) ≤

O(1).

Remark 3.17. We note that in Theorem 3.16 it is possible to improve the lower bounds on PRIV for
EQ,DISJ,GT from n − 1 to n − o(1) and for IP from n − 2 − o(1) to n − 1 − o(1). This is achieved
by noticing that the loss incurred by going from IC to PRIV can be bounded by the entropy of the output of
the function, and for our choice of distributions this entropy is o(1).
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4 Privacy for bounded-error protocols

4.1 Considerations for defining privacy for bounded-error protocols

We start by extending the definitions of PRIV and PAR to the bounded-error randomized model. We as-
sume that the output of the protocol depends only on the transcript (i.e.P (x, y) is a deterministic function of
T (x, y)). Our definitions measures the amount of information learned by an observer conditioned on know-
ing the output of the protocol, rather than conditioned on knowing the output of the function as in Klauck’s
definition [K04].

At a high level our definitions attempt to measure how much additional information an observer (either
exterior or one of the players) learns about the players’ inputs above and beyond what he is supposed to learn.

The main choice in taking this approach that we must make is what constitutes “what is permissible for
the observers to learn”. The two most reasonable choices are the output of the protocol and the output of the
function. (Observe that this dilemma does not exist for deterministic or zero-error protocols, since in that case
the output of the protocol and the output of the function must be identical, but when there is non-zero error
these can differ.)

We choose to define all of our measures in terms of the output of the protocol: our measures capture how
much information is leaked above and beyond the output of the protocol. We believe this is the more natural
choice for several reasons.1 First it cleanly separates the issues of correctness and privacy: the privacy of a
protocol does not vary depending on what “target” function it is trying to compute. Second, an observer learns
the output of the protocol but she does not know the output of the function: she is only able to observe the
transcript of the protocol and this does not necessarily reveal the value of the function if the protocol has error.
In this sense, the output of the protocol corresponds more closely to “what is permissible for the players to
learn by running the protocol”.

Finally, on a technical level our definition is better-behaved: suppose that instead we used an alternative
definition of external PAR that conditioned on the output of the function instead of the value of the protocol,
for instance:

PARaltext
µ,ε (f) := inf

P ε-computes f
Ex,y,t

[
PX,Y (f(X,Y ) = zt)

PX,Y,T (T (X,Y ) = t)

]
For any ε > 0, consider some f such that Pr[f(X,Y ) = 1] = 1− ε. Then the protocol P that always outputs
1 without communication computes f with error ε and therefore PARaltext

U ,ε (f) ≤ 1−2ε. This is non-sensical,
since the PAR should always be at least 1.

Definition 4.1. We define:

• The external privacy of a randomized protocol P as: PRIVext
µ (P ) := I(TP (X,Y );X,Y |P (X,Y )).

For ε ≥ 0, the external ε-error privacy of f is defined as the following, where the infimum is taken over
all protocols P computing f with error at most ε: PRIVext

µ,ε (f) := infP PRIVext
µ (P ).

• The internal privacy of a randomized protocol P :

PRIVint
µ (P ) := I(TP (X,Y );X|P (X,Y ), Y ) + I(TP (X,Y );Y |P (X,Y ), X)

For ε ≥ 0, the internal ε-error privacy of f is defined as the following, where the infimum is taken over
all protocols P computing f with error at most ε: PRIVint

µ,ε(f) := infP PRIVint
µ (P ).

In the following, the expectations are taken over inputs x, y, transcripts t resulting from computing P (x, y)
(where P may be randomized), and zt which is the output contained in t.

1We observe that Klauck [K04] studied the other notion, conditioning on the output of the function.
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Definition 4.2. We define:

• The external PAR of a randomized protocol P as: PARext
µ (P ) := Ex,y,t

[
PX,Y,P (P (X,Y )=zt)
PX,Y,T (T (X,Y )=t)

]
. For

ε ≥ 0, the external ε-error PAR of f is defined as the following, where the infimum is taken over all
protocols P computing f with error at most ε: PARext

µ,ε (f) := infP PARext
µ (P ).

• The internal PAR of a randomized protocol P as:

PARint
µ (P ) :=Ex,y,t

[
PX,Y,P (P (X,Y )=zt∧Y=y)
PX,Y,T (T (X,Y )=t∧Y=y)

]
+ Ex,y,t

[
PX,Y,P (P (X,Y )=zt∧X=x)
PX,Y,T (T (X,Y )=t∧X=x)

]
.

For ε ≥ 0, the external ε-error PAR of f is defined as the following, where the infimum is taken over
all protocols P computing f with error at most ε: PARint

µ,ε(f) := infP PARint
µ (P ).

We can show that internal PAR is smaller than external one in the randomized bounded error setting (see
Theorem 2.9 for 0-error deterministic case):

Theorem 4.3. For any randomized bounded error protocol P computing f :

PARint
µ (f, P ) ≤ 2 · PARext

µ (f, P ).

Proof. Let ν denote the distribution of x, y, t. Then we have:

Ex,y,t
[
PX,Y,P (P (X,Y )=zt∧Y=y)
PX,Y,T (T (X,Y )=t∧Y=y)

]
=
∑
x,y,t

ν(x, y, t) ·
PX,Y,P (P (X,Y ) = zt ∧ Y = y)

PX,Y,T (T (X,Y ) = t ∧ Y = y)

=
∑
y,z

PX,Y,P (P (X,Y ) = z ∧ Y = y) ·
∑
t:zt=z

1
PX,Y,T (T (X,Y )=t∧Y=y)

∑
x

ν(x, y, t)

=
∑
y,z

PX,Y,P (P (X,Y ) = z ∧ Y = y) · |{t ∈ T(·,y) : zt = z}|,

since ν(x, y, t) = PX,Y,T (T (X,Y ) = t∧Y = y ∧X = x) and
∑

x ν(x, y, t) = PX,Y,T (T (X,Y ) = t∧Y =
y), where T(·,y) is the set of all possible transcripts provided that Y = y. Similarly we prove:

Ex,y,t
[
PX,Y,P (P (X,Y )=zt∧X=x)
PX,Y,T (T (X,Y )=t∧X=x)

]
=
∑
x,z

PX,Y,P (P (X,Y ) = z ∧X = x) · |{t ∈ T(x,·) : zt = z}|.

Hence:

PARint
µ (f, P ) =

∑
z

|{t ∈ T(x,·) : zt = z}| ·
∑
x

PX,Y,P (P (X,Y ) = z ∧X = x)

+
∑
z

|{t ∈ T(·,y) : zt = z}| ·
∑
y

PX,Y,P (P (X,Y ) = z ∧ Y = y)

≤ 2 ·
∑
z

|{t : zt = z}| ·
∑
x

PX,Y,P (P (X,Y ) = z) = 2 · PARext
µ (f, P ),

since PARext
µ (f, P ) =

∑
z P(P (X,Y ) = z)

∑
t:zt=z

∑
x,y ν(x,y,t)

P(T (X,Y )=t) =
∑

z P(P (X,Y ) = z)|t : zt = z|.

4.2 Bounds

We first observe that several bounds from the deterministic case carry over immediately: for example the
proof Theorem 2.8 carries over immediately to the bounded-error case. Here we also show that for any
protocol (deterministic or randomized), the external privacy-approximation ratio is at most exponential in the
communication of the protocol. We also prove that for bounded-error randomized protocols PRIV is a lower
bound for PAR both for the external and the internal case.
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Theorem 4.4. For any protocol P , PARext
µ (P ) ≤ 2CC(P ).

Proof. Fix a protocol P .

PARext
µ (P ) =

∑
x,y,t

P[(X,Y, TP (X,Y )) = (x, y, t)] · P[P (X,Y ) = zt]/P[TP (X,Y ) = t]

=
∑
x,y,t

P[TP (X,Y ) = t] · P[(X,Y ) = (x, y)|TP (X,Y ) = t] · P[P (X,Y ) = zt]/P[TP (X,Y ) = t]

≤
∑
t

∑
x,y

P[(X,Y ) = (x, y)|TP (X,Y ) = t]

≤ |{ possible t}|
≤ 2CC(P ).

Theorem 4.5. For any input distribution µ and any randomized protocol P , it holds that PRIVext
µ (P ) ≤

log
(
PARext

µ (P )
)

and PRIVint
µ (P ) ≤ 2·log

(
PARint

µ (P )
)
. As a consequence, ∀µ, f, ε it holds that PRIVext

µ,ε (f) ≤
log
(
PARext

µ,ε (f)
)

and PRIVint
µ,ε(f) ≤ log

(
PARint

µ,ε(f)
)
.

Proof. External: notice that, by the definition of conditional probability

P {(X,Y ) = (x, y)|T (X,Y ) = t} = P{(X,Y )=(x,y)∧T (X,Y )=t}
P{T (X,Y )=t} ,

P {(X,Y ) = (x, y)|P (X,Y ) = zt} = P{(X,Y )=(x,y)∧P (X,Y )=zt}
P{P (X,Y )=zt} .

Using the fact that the transcript determines the output of the protocol and that for any two variables X,Y ,
H(X|Y ) = E[− log(P(X|Y )], we have

PRIVext
µ (P ) = E

[
log P{(X,Y )=(x,y)∧T (X,Y )=t}

P{T (X,Y )=t} · P{P (X,Y )=zt}
P{(X,Y )=(x,y)∧P (X,Y )=zt}

]
= E

[
log P{(X,Y )=(x,y)∧T (X,Y )=t}

P{(X,Y )=(x,y)∧P (X,Y )=zt} ·
P{P (X,Y )=zt}
P{T (X,Y )=t}

]
≤ E

[
log 1 · P{P (X,Y )=zt}

P{T (X,Y )=t}

]
≤ logE

[
P{P (X,Y )=zt}
P{T (X,Y )=t}

]
= log PARext

µ (P ),

where the the second inequality follows from the concavity of log and the first inequality comes from the fact
that: {(X,Y ) = (x, y) ∧ P (X,Y ) = zt} ⊇ {(X,Y ) = (x, y) ∧ T (X,Y ) = t}. Internal: let us prove that:

E
[
log

P {X = x|T (X,Y ) = t ∧ P (X,Y ) = zt ∧ Y = y}
P {X = x|P (X,Y ) = zt ∧ Y = y}

]
≤ logE

[
P(P (X,Y ) = zt ∧ Y = y)

P(T (X,Y ) = t ∧ Y = y)

]
.

Notice that, by the definition of conditional probability and the fact that the transcript determines the output
of the protocol:

P {X = x|T (X,Y ) = t ∧ Y = y} =
P {X = x ∧ T (X,Y ) = t ∧ Y = y}

P {T (X,Y ) = t ∧ Y = y}

and similarly:

P {X = x|P (X,Y ) = zt ∧ Y = y} =
P {X = x ∧ P (X,Y ) = zt ∧ Y = y}

P {P (X,Y ) = zt ∧ Y = y}
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Hence:

E
[
log

P {X = x|T (X,Y ) = t ∧ P (X,Y ) = zt ∧ Y = y}
P {X = x|P (X,Y ) = zt ∧ Y = y}

]
= E

[
log

P {X = x ∧ T (X,Y ) = t ∧ Y = y}
P {T (X,Y ) = t ∧ Y = y}

· P {P (X,Y ) = zt ∧ Y = y}
P {X = x ∧ P (X,Y ) = zt ∧ Y = y}

]
= E

[
log

P {X = x ∧ T (X,Y ) = t ∧ Y = y}
P {X = x ∧ P (X,Y ) = zt ∧ Y = y}

· P {P (X,Y ) = zt ∧ Y = y}
P {T (X,Y ) = t ∧ Y = y}

]
≤ E

[
log 1 · P {P (X,Y ) = zt ∧ Y = y}

P {T (X,Y ) = t ∧ Y = y}

]
≤ logE

[
P {P (X,Y ) = zt ∧ Y = y}
P {T (X,Y ) = t ∧ Y = y}

]
,

where the first inequality comes from the fact that:

{(X,Y ) = (x, y) ∧ P (X,Y ) = zt} ⊇ {(X,Y ) = (x, y) ∧ T (X,Y ) = t}

and the second inequality follows from the concavity of log.
By symmetry in x and y, we also have:

E
[
log

P {Y = y|T (X,Y ) = t ∧ P (X,Y ) = zt ∧X = x}
P {Y = y|P (X,Y ) = zt ∧X = x}

]
≤ logE

[
P(P (X,Y ) = zt ∧X = x)

P(T (X,Y ) = t ∧X = x)

]
.

So we have:

PRIVint
µ (P ) ≤ logE

[
P {P (X,Y ) = zt ∧ Y = y}
P {T (X,Y ) = t ∧ Y = y}

]
+ logE

[
P(P (X,Y ) = zt ∧X = x)

P(T (X,Y ) = t ∧X = x)

]
.

Hence:

either: 2
1
2
·PRIVintµ (P ) ≤ E

[
P {P (X,Y ) = zt ∧ Y = y}
P {T (X,Y ) = t ∧ Y = y}

]
or: 2

1
2
·PRIVintµ (P ) ≤ E

[
P(P (X,Y ) = zt ∧X = x)

P(T (X,Y ) = t ∧X = x)

]
.

Finally:

1

2
· PRIVint

µ (P ) ≤ log

(
E
[
P {P (X,Y ) = zt ∧ Y = y}
P {T (X,Y ) = t ∧ Y = y}

]
+ E

[
P(P (X,Y ) = zt ∧X = x)

P(T (X,Y ) = t ∧X = x)

])
= log PARint

µ (P )

4.3 Applications: tight bounds on PAR and PRIV for specific functions

Note that internal PRIV is lower bounded by Information Complexity, which was shown in [KLLRX12]
to subsume almost all known lower bounds for communication complexity, i.e. smooth rectangle, γ2-norm
bound, discrepancy, etc. Hence, for the bounded-error case, the two notions of privacy are in fact both equal to
the communication complexity for all boolean functions for which we have a tight bound on their communi-
cation complexity. Interestingly, the notion of PAR sits between information and communication complexity,
and it is an important open question whether these two notions are equal (which would also make PAR equal
to them). For the bounds in Table 1, the results follow immediately from known lower bounds on the IC of
these functions: for EQ the lower bound is trivial, for DISJ one can look at IC directly [BJKS02, Bra11],
while for EQ, IP,GT one can look at their discrepancies [BW12]. Then, using Theorem 2.8 and Theorem 4.5
we obtain bounds on internal PAR. Note that the bounds also hold for external PRIV and PAR (since inter-
nal is always at most external, see Theorem 2.10). Moreover, we can also get similar lower bounds for the
functions Vector in Subspace and Gap-Hamming distance by the results in [KLLRX12].
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5 Quality of the two definitions

5.1 Privacy for deterministic protocols:

For deterministic protocols, the two definitions of privacy, PRIV and PAR, can be arbitrarily different for the
same distribution. In high level, PRIV captures the expected privacy loss of a protocol, while PAR captures a
more “risk-averse” notion of privacy, where a protocol is penalized heaviliy for high-privacy-loss events, even
if they occur with small probability.

We show that this difference makes PRIV a much more robust definition: an ε change in the input distri-
bution causes at most an εn change in PRIV, so PRIV is “smooth”. Furthermore, PRIV always remains less
than the expected communication of the protocol, which we believe to be another natural property. We prove
that this is not the case for PAR: sometimes an ε change in the input distribution can cause PAR to change
exponentially, and PAR can grow arbitrarily larger than the expected communication. Finally we also point
out an error in the appendix of [FJS10] and show that for the example they gave, in fact PRIV is just as good
as PAR at distinguishing two protocols in their example.

5.1.1 Robustness over the input distribution

We show that PAR is not robust over the input distribution µ. More precisely, we give an example of a function
and of two distributions with exponentially small statistical distance, but whose privacy-approximation ratio
is constant for one and exponential for the other.

Proposition 5.1. There exists a function f and two input distributions µ1, µ2 satisfying |µ1 − µ2| ≤ 2−n/2 in
statistical distance, and yet such that PARext

µ1 (f) = Θ(1) and PARext
µ2 (f) = Ω(2n/2).

Proof. Let m = 2n and f : {0, . . . ,m}2 → {0, 1, 2} be the function defined by:

f(x, y) =


0 if x 6= y and x 6= m and y 6= m

1 if x = y and x 6= m and y 6= m

2 otherwise (x = m or y = m).

whose matrix is: Mf =


1 0 · · · 0 2
0 1 · · · 0 2
...

...
. . .

...
0 0 · · · 1 2
2 2 · · · 2 2

 .

Let µ1 be the following distribution: with probability 2−n pick a random element of f−1(0) ∪ f−1(1),
and with probability 1− 2−n pick a random element of f−1(2).

Set ε = 2−n/2 and let µ2 be the following distribution: with probability 2−n + ε pick a random element
of f−1(0) ∪ f−1(1), and with probability 1− 2−n − ε pick a random element of f−1(2).

Consider now the protocol P , where first Alice and Bob exchange a single bit to check whether x = m or
y = m and if they are both different than m, Alice and Bob solve Equality (by having Alice send her entire
input to Bob).

Then we have:

PARext
µ1 (f) ≤ PARext

µ1 (f, P ) =
∣∣f−1(0)

∣∣
µ
· n0 +

∣∣f−1(1)
∣∣
µ
· n1 +

∣∣f−1(2)
∣∣
µ
· n2

≤ (
∣∣f−1(0)

∣∣
µ

+
∣∣f−1(1)

∣∣
µ
) · 2n +

∣∣f−1(2)
∣∣
µ
· 3 = Θ(1)

On the other hand,any protocol for this function must solve Equality so n0 and n1 must be at least 2n,
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since they have to be larger than the rank of the matrix. Consider the optimal protocol P for f

PARext
µ2 (f) = PARext

µ2 (f, P ) =
∣∣f−1(0)

∣∣
µ
· n0 +

∣∣f−1(1)
∣∣
µ
· n1 +

∣∣f−1(2)
∣∣
µ
· n2

≥ (
∣∣f−1(0)

∣∣
µ

+
∣∣f−1(1)

∣∣
µ
) · 2n

= (
1

2n
+ ε) · 2n = Ω(2n/2).

One can finally verify that |µ1 − µ2| = ε = 2−n/2.

In fact, the right way to look at the robustness of PAR is to talk about log PARext
µ (f). Even in this

case, we see that an exponentially small change to the input distribution can change the log PARext
µ (f) from

constant to Ω(n).

On the other hand, we can prove that when the statistical distance of the input distributions is ε, then the
PRIV changes by at most O(εn). This implies, that in our previous example, PRIV changes only by an
exponentially small amount.

Theorem 5.2. For any protocol P and any two input distributions µ, µ′ with statistical distance |µ− µ′| ≤ ε,
it holds that

|PRIVext
µ (P )− PRIVext

µ′ (P )| ≤ O(εn)

|PRIVint
µ (P )− PRIVint

µ′ (P )| ≤ O(εn)

Proof. The proof is a consequence of the fact that two statistically close joint distributions must have similar
mutual information. To prove this formally we use the following lemma:

Lemma 5.3 (Lemma 3.15 of [MX12]). For any random variables XY,X ′Y ′ such that |XY − X ′Y ′| ≤ ε
and where X,X ′ take value in {0, 1}n, it holds that

|H(X | Y )−H(X ′ | Y ′)| ≤ 4(H(ε) + εn)

Let XY ∼ µ and T be the output of the transcript of P applied to XY and Z be the value output by T .
Similarly defineX ′Y ′T ′Z ′ with respect to µ′. Because |µ−µ′| ≤ ε it also holds that |XY TZ−X ′Y ′T ′Z ′| ≤
ε. Therefore, it holds that:

|PRIVext
µ (P )− PRIVext

µ′ (P )| = |I(XY ;T | Z)− I(X ′Y ′;T ′ | Z ′)|
= |H(XY | Z)−H(X ′Y ′ | Z ′) +H(X ′Y ′ | T ′Z ′)−H(XY | TZ)|
≤ |H(XY | Z)−H(X ′Y ′ | Z ′)|+ |H(X ′Y ′ | T ′Z ′)−H(XY | TZ)|
≤ 8(H(ε) + εn)

A similar derivation holds for the internal privacy cost.

5.1.2 Relationship between communication and privacy

A natural methodology for studying privacy is to measure the amount of information revealed by the transcript
above and beyond what is supposed to be revealed. We believe that both PRIV and PAR were designed with
this methodology in mind.

19



One intuitive bound that “natural” measures of information should satisfy is the following: a transcript of
length c can reveal at most c bits of information. As a consequence, the privacy loss should also be bounded by
the communication (appropriately normalized of course: for example in the case of PAR, one would compare
log PAR to communication).

When taking an expectation over randomized protocols, as one does for instance when measuring the
complexity of zero-error randomized protocols, one would therefore also expect that the privacy loss revealed
should be bounded by the expected communication. While PRIV does indeed satisfy this property, we observe
that PAR does not:

Remark 5.4. For the Greater Than function GT under the uniform input distribution U , the following
holds:

1. For all zero-error protocols P solving GT, PARext
U (P ) ≥ 2n − 1.

2. There exist a zero-error protocol for GT where the expected communication is constant.

The first point was proved in Theorem 3.15. The second point follows from the trivial protocol that
exchanges their inputs bit-by-bit starting with the highest order bits until the players find a difference, at
which point they terminate because they know which player has the greater value. Then clearly under uniform
inputs, for each i ≥ 1 the probability of terminating after 2i bits is 1−2−i, and so the expected communication
is 2

∑∞
i=1 i · 2−i = 4 regardless of the size of the inputs.

Thus, the above remark shows that PAR can tend to infinity even though the expected communication
is constant, which violates the “natural” property that c bits of communication can reveal at most c bits of
information.

On the other hand, one could argue that PAR captures a “risk-averse” notion of privacy, where one does
not want the expected privacy loss but rather the privacy loss with higher weights assigned to high-privacy-loss
events. In this case one may also want to look at worst-case choices of inputs and random coins; worst-case
inputs were defined in [FJS10, ACCFKP12], although they did not study worst-case random coins since they
focused on deterministic protocols.

5.2 Bounded-error case:

As we explained in section 4.3, in the case of bounded-error randomized protocols, the two notions of privacy
are in fact both equal to the communication complexity for all boolean functions for which we have a tight
bound on their communication complexity. Moreover, for functions with large output, we still do not have
any example where PRIV and PAR are different when we are allowed bounded error.

5.3 Error in appendix of [FJS10]

An example was given in the appendix of [FJS10] that claimed to exhibit a function f and two protocols
P,Q such that PARext

U (P ) = O(1) and PARext
U (Q) = 2Ω(n), whereas it was claimed that PRIVext

U (P ) =
PRIVext

U (Q) = Θ(n). This was interpreted to mean that PRIV was not sufficiently precise enough to capture
the difference between these two protocols.

However the second claim is incorrect as a simple calculation reveals that PRIVext
U (P ) = O(1) and

so PRIV does indeed distinguish between the two protocols. The flaw in their argument was in using the
geometric interpretation of PRIV: the characterization of [BYCKO93] that they use only applies to the worst
distribution for a function (which for the function they give is not uniform), whereas they explicitly want to
study the uniform distribution. For the worst distribution µ it is indeed the case that PRIVext

µ (P ) = Θ(n),
but not for the uniform distribution. Therefore, for their example, PRIV is actually just as capable as PAR in
distinguishing the two protocols P,Q.
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Conclusion

We proved new lower bound techniques both for PAR and PRIV (or IC), which enabled us to give tight
bounds for the privacy of several functions. In fact, for boolean functions we believe that our techniques give
tight bounds for almost all interesting functions. We also extended the definitions of privacy to bounded-
error randomized protocols and showed that PRIV is a lower bound on PAR, which in turn is less than the
randomized communication complexity. Since PRIV (in fact IC) subsumes most of the known lower bound
techniques for communication complexity, we get tight lower bounds for a large number of boolean functions.
For functions with large output, our techniques do not provide any strong bounds, which in fact is justified,
since some of these functions (for example, Vickrey Auction) admit perfectly private protocols. Ultimately,
we would like to understand the tradeoff between the communication complexity of a protocol and its privacy.
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