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Abstract. Autoepistemic logic is one of the most successful formalisms for
nonmonotonic reasoning. In this paper we provide a proof-theoretic analysis of
sequent calculi for credulous and sceptical reasoning in propositional autoepis-
temic logic, introduced by Bonatti and Olivetti [5]. We show that the calculus
for credulous reasoning obeys almost the same bounds on the proof size as
Gentzen’s system LK . Hence proving lower bounds for credulous reasoning will
be as hard as proving lower bounds for LK . This contrasts with the situation in
sceptical autoepistemic reasoning where we obtain an exponential lower bound
to the proof length in Bonatti and Olivetti’s calculus.

1 Introduction

Autoepistemic logic is one of the most popular nonmonotonic logics which is
applied in a diversity of areas as commonsense reasoning, belief revision, plan-
ning, and reasoning about action. It was introduced by Moore [19] as a modal
logic with a single modal operator L interpreted as “is known”. Semantically,
autoepistemic logic describes possible views of an ideally rational agent on the
grounds of some objective information. Autoepistemic logic has been intensively
studied, both in its semantical as well as in its computational aspects (cf. [18]).
The main computational problems in autoepistemic logic are the credulous
and sceptical reasoning problems, formalising that a given formula holds under
some, respectively all, views of the agent. Thus these problems can be under-
stood as generalisations of the classical problems SAT and TAUT. However,
in autoepistemic logic, these tasks are presumably harder than their proposi-
tional counterparts as they are complete for the second level of the polynomial
hierarchy [12].

In this paper we target at understanding the complexity of autoepistemic
logic in terms of theorem proving. Traditionally, the main objective in proof
complexity has been the investigation of propositional proofs [7, 16]. During
the last decade there has been growing interest in proof complexity of non-
classical logics, most notably modal and intuitionistic logics [14,15], and strong
results have been obtained (cf. [1] for an overview and further references). For
autoepistemic logic, Bonatti and Olivetti [5] designed elegant sequent calculi
for both credulous and sceptical reasoning. In this paper we provide a proof-
theoretic analysis of these calculi. Our main results show that (i) the calculus
for credulous autoepistemic reasoning obeys almost the same bounds to the
proof size as the classical sequent calculus LK and (ii) the calculus for sceptical
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autoepistemic reasoning has exponential lower bounds to the size and length of
proofs.

These results are interesting to compare with previous findings for default
logic—another principal approach in nonmonotonic logic. In a wider attempt
to a proof-theoretic formalisation of nonmonotic logics, Bonatti and Olivetti [5]
also devise calculi for default logic which were proof-theoretically analysed in
[2, 10]. Default logic is known to admit a very close relation to autoepistemic
logic via translations [13], but these are not directly applicable to transfer proof
complexity results from default logic to the autoepistemic calculi. Our findings
on autoepistemic logic in the present paper confirm results from [2] where the
authors establish a similar polynomial dependence between proof lengths in LK
and credulous default reasoning. Combining results from [2] with Theorem 4 of
this paper, we can infer that credulous reasoning in default and in autoepistemic
logic have the same complexity in theorem proving. On the other hand, [2]
also provides an unconditional exponential lower bound for sceptical default
reasoning. This reveals an interesting general picture for nonmonotonic logics:
while credulous reasoning is equivalent to classical reasoning in terms of lengths
of proofs, lower bounds are easier to obtain for sceptical reasoning. We comment
further on the broader picture in Section 5.

This paper is organised as follows. In Sect. 2 we start with some background
information on autoepistemic logic and proof systems. Our results on the proof
complexity of credulous and sceptical autoepistemic reasoning follow in Sects. 3
and 4, respectively. In Sect. 5, we conclude with a discussion and open questions.

2 Preliminaries

We assume familiarity with propositional logic and basic notions from complex-
ity theory (cf. [16]). By L we denote the set of all propositional formulas over
some fixed standard set of connectives.

Autoepistemic Logic. Autoepistemic logic is an extension of classical logic
that has been proposed by Moore [19]. The logic is non-monotone in the sense
that an increase in information may decrease the number of consequences. The
language of autoepistemic logic Lae consists of the language L of classical propo-
sitional logic augmented by an unary modal operator L. Intuitively, for a for-
mula ϕ, the formula Lϕ means that ϕ is believed by a rational agent. Classical
propositional formulas without occurrence of L are called objective formulas. A
set of premises is a finite set of Lae formulas.

Propositional assignments are extended to assignments for autoepistemic
logic by considering all formulas of the form Lϕ as propositional atoms, i.e., in
autoepistemic logic an assignment is a mapping from all propositional variables
and formulas Lϕ to {0, 1}. This yields an immediate extension of the conse-
quence relation to autoepistemic logic: if Φ ⊆ Lae and ϕ ∈ Lae, then Φ |= ϕ
iff ϕ is true under every assignment which satisfies all formulas from Φ. As in
classical logic we define Th(Φ) = {ϕ ∈ Lae | Φ |= ϕ}.

The main semantical notion in autoepistemic logic are stable expansions
which correspond to all possible views an ideally rational agent might adopt on
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the knowledge of some set of premises Σ ⊆ Lae. Formally, a stable expansion of
Σ ⊆ Lae was defined by Moore [19] as a set ∆ ⊆ Lae satisfying the fixed-point
equation

∆ = Th (Σ ∪ {Lϕ | ϕ ∈ ∆} ∪ {¬Lϕ | ϕ 6∈ ∆}) .

A set of premises Σ can have none or several stable expansions. A sentence
ϕ ∈ Lae is credulously entailed by Σ if ϕ holds in some stable expansion of Σ.
If ϕ holds in every expansion of Σ, then ϕ is sceptically entailed by Σ. We give
some examples which will be important later on.

Example 1. (a) If the premises Σ only consist of objective formulas, then Σ
has exactly one stable expansion, namely the deductive closure of Σ (together
with closure under L) if Σ is consistent and Lae if Σ is inconsistent. (b) The
set {p↔ Lp} has two stable expansions, one containing p and Lp and the other
containing both ¬p and ¬Lp. (c) The set {Lp} has no stable expansion.

Proof Systems. Cook and Reckhow [8] defined the notion of a proof system
for an arbitrary language L as a polynomial-time computable function f with
range L. A string w with f(w) = x is called an f -proof for x ∈ L. Proof systems
for L = TAUT are called propositional proof systems. The sequent calculus
LK of Gentzen [11] is one of the most important and best studied propositional
proof systems. It is well known that LK and Frege systems mutually p-simulate
each other (cf. [16]).

There are two measures which are of primary interest in proof complexity.
The first is the minimal size of an f -proof for some given element x ∈ L. To
make this precise, let sf (x) = min{|w| | f(w) = x} and sf (n) = max{sf (x) |
|x| ≤ n}. We say that the proof system f is t-bounded if sf (n) ≤ t(n) for all
n ∈ N. If t is a polynomial, then f is called polynomially bounded. Another
interesting parameter of a proof is the length defined as the number of proof
steps. This measure only makes sense for proof systems where proofs consist of
lines containing formulas or sequents. This is the case for LK and most systems
studied in this paper. For such a system f , we let tf (ϕ) = min{k | f(π) =
ϕ and π uses k steps} and tf (n) = max{tf (ϕ) | |ϕ| ≤ n}. Obviously, it holds
that tf (n) ≤ sf (n), but the two measures are even polynomially related for a
number of natural systems as extended Frege (cf. [16]).

The Antisequent Calculus. Bonatti and Olivetti’s calculi for autoepistemic
logic use three main ingredients: classical propositional sequents and rules of
LK , antisequents to refute formulas, and autoepistemic rules. In this section we
introduce Bonatti’s antisequent calculus AC from [4]. In AC we use antisequents
Γ 0 ∆, where Γ,∆ ⊆ L. Semantically, Γ 0 ∆ is true if there exists an assign-
ment satisfying

∧
Γ and falsifying

∨
∆. Axioms of AC are all sequents Γ 0 ∆,

where Γ and ∆ are disjoint sets of propositional variables. The inference rules
of AC are shown in Fig. 1. Bonatti [4] shows soundness and completeness of the
calculus AC . Proofs in the antisequent calculus are always short as observed
in [2] (the bounds are not stated explicitly, but are implicit in the proof):

Proposition 2 (contained in [2]). sAC (n) ≤ n2 and tAC (n) ≤ n.
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Γ 0 Σ,α
(¬ 0)

Γ,¬α 0 Σ
Γ,α 0 Σ

(0 ¬)
Γ 0 Σ,¬α

Γ, α, β 0 Σ
(∧ 0)

Γ, α ∧ β 0 Σ
Γ 0 Σ,α

(0 •∧)
Γ 0 Σ,α ∧ β

Γ 0 Σ, β
(0 ∧•)

Γ 0 Σ,α ∧ β

Γ 0 Σ,α, β
(0 ∨)

Γ 0 Σ,α ∨ β
Γ, α 0 Σ

(•∨ 0)
Γ, α ∨ β 0 Σ

Γ, β 0 Σ
(∨• 0)

Γ, α ∨ β 0 Σ

Γ,α 0 Σ, β
(0→)

Γ 0 Σ,α→ β

Γ 0 Σ,α
(• →0)

Γ, α→ β 0 Σ
Γ, β 0 Σ

(→ • 0)
Γ, α→ β 0 Σ

Fig. 1. Inference rules of the antisequent calculus AC .

The polynomial upper bounds on the complexity of AC are not surprising, since,
to prove Γ 0 ∆ we could alternatively guess assignments to the propositional
variables in Γ and ∆ and thereby verify antisequents in NP.

3 Proof Complexity of Credulous Autoepistemic Reasoning

We can now describe the calculus CAEL of Bonatti and Olivetti [5] for cred-
ulous autoepistemic reasoning. A credulous autoepistemic sequent is a 3-tuple
〈Σ,Γ,∆〉, denoted by Σ;Γ |∼∆, where Σ, Γ , and ∆ are sets of Lae-formulas.
Moreover, all formulas of Σ are of the form Lα or ¬Lα and are called provability
constraints. Semantically, the sequent Σ;Γ |∼∆ is true, if there exists a stable
expansion E of Γ which satisfies all of the constraints in Σ (i.e., E |= Σ) and∨
∆ ∈ E. The calculus CAEL uses credulous autoepistemic sequents and ex-

tends LK and AC by the inference rules shown in Fig. 2. Bonatti and Olivetti [5]

Γ ` ∆(cA1) (Γ ∪∆ ⊆ L)
; Γ |∼∆

Γ ` α Σ; Γ |∼∆
(cA2) (α ∈ L)

Lα, Σ; Γ |∼∆
Γ 6` α Σ; Γ |∼∆

(cA3) (Γ ∪ {α} ⊆ L)¬Lα, Σ; Γ |∼∆

¬Lα, Σ; Γ [Lα/⊥]|∼∆[Lα/⊥]
(cA4)

Σ; Γ |∼∆
Lα, Σ; Γ [Lα/>]|∼∆[Lα/>]

(cA5)
Σ; Γ |∼∆

In rules (cA4) and (cA5) Lα is a subformula of Γ ∪∆ and α ∈ L.

Fig. 2. Inference rules for the credulous autoepistemic calculus CAEL

show soundness and completeness of CAEL.

Theorem 3 (Bonatti, Olivetti [5]). A credulous autoepistemic sequent is
true if and only if it is derivable in CAEL.
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We now investigate the complexity of proofs in CAEL, showing a very tight
connection to proof size and length in the classical sequent calculus LK .

Theorem 4. CAEL obeys almost the same bounds on proof size and number
of proof steps as LK , more precisely: sLK (n) ≤ sCAEL(n) ≤ n(sLK (n) +n2 +n)
and tLK (n) ≤ tCAEL(n) ≤ n(tLK (n) + n+ 1).

Proof. For the first inequality sLK (n) ≤ sCAEL(n) (and similarly tLK (n) ≤
tCAEL(n)) it suffices to observe that each CAEL-proof of a sequent Γ |∼∆ with
Γ ∪∆ ⊆ L consists of an LK -derivation of Γ ` ∆ followed by one application
of rule (cA1).

We will now prove the remaining upper bounds, starting with tCAEL(n) ≤
n(tLK (n)+n+1). For α ∈ Lae we denote by LC(α) the number of occurrences of
L in α. We extend this notation to ∆ ⊆ Lae by defining LC(∆) =

∑
α∈∆ LC(α).

Let Σ;Γ |∼∆ be a true credulous autoepistemic sequent of total size n (as a
string). We will construct a CAEL-derivation of Σ;Γ |∼∆ starting from the
bottom with the given sequent. We first claim that we can normalise the proof
such that we start (always bottom-up) by eliminating all subformulas Lα in
Γ ∪ ∆ by using rules (cA4) and (cA5) and then use rules (cA2) and (cA3)
to eliminate all provability constraints. Finally, one application of rule (cA1)
follows. Thus the normalised proof will look as in Fig. 3. Let us argue that this
normalisation is possible. By Theorem 3 there exists a proof Π of Σ;Γ |∼∆.
At its top Π must contain exactly one application of (cA1). The rest of the
proof are applications of (cA2) to (cA5). As (cA2) and (cA3) do not alter the
part Γ |∼∆ of the sequent, they can be freely interchanged with applications of
(cA4) and (cA5). This yields a normalised proof of the same size as Π.

LK /AC

LK /AC

LK
(cA1)

Γ ′|∼∆′
(cA2) or (cA3)

σ;Γ ′|∼∆′
(cA2) or (cA3)

...

Σ′′;Γ ′|∼∆′
(cA2) or (cA3)

Σ′;Γ ′|∼∆′
(cA4) or (cA5)

...
Σ;Γ |∼∆

Fig. 3. The structure of the CAEL-proof in Theorem 4. LK/AC denotes a proof in either LK
or AC , LK denotes an LK -derivation, and σ is the last remaining constraint from Σ′ after
applications of (cA2) and (cA3).

We now estimate the length of this normalised proof. Eliminating all sub-
formulas Lα in Γ ∪∆ needs at most LC(Γ ∪∆) applications of rules (cA4) and
(cA5). The number of steps needed could be less than LC(Γ ∪∆) as one step
might delete several instances of Lα. After this process we obtain a sequent
Σ′;Γ ′|∼∆′ with Γ ′ ∪∆′ ⊆ L and |Σ′| ≤ |Σ|+LC(Γ ∪∆) < n. From this point
on we use rules (cA2) and (cA3) until we have eliminated all constraints and
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then finally apply rule (cA1) once. This will result in |Σ′|+ 1 ≤ n applications
of rules (cA1) to (cA3). Each of these applications will invoke either an LK or
an AC derivation of the left premise, but all these derived formulas are either
from Σ or subformulas of Γ or ∆. Therefore all these LK and AC -derivations
are used to prove formulas of size ≤ n. To estimate the lengths of AC -proofs
we use Proposition 2. In total this gives ≤ n(tLK (n) + n + 1) steps to prove
Σ;Γ |∼∆.

The bound for sCAEL follows as each of the < n applications of (cA4) and
(cA5) leads to a sequent of size ≤ n and therefore this part of the proof is of size
≤ n2. Each of the (cA2) and (cA3) applications shortens the sequentΣ′;Γ ′|∼∆′
which is of size ≤ n and incurs an LK or AC -derivation of a sequent of size
≤ n. Using Proposition 2 and taking account of the final (cA1) application this
contributes at most n(sLK (n) + n2) to the size of the overall proof. ut

In the light of this result, proving either non-trivial lower or upper bounds to
the proof size of CAEL seems very difficult as such a result would directly imply
a corresponding bound for LK which is know to be equivalent with respect to
proof size to Frege systems. Showing any non-trivial lower bound for Frege is
one of the hardest challenges in propositional proof complexity and this problem
has been open for decades (cf. [4, 16]).

The connection between proof size in classical LK and credulous autoepis-
temic logic has further consequences. In particular, it allows to transfer in-
tractability results from classical logic to autoepstemic reasoning. Automatiz-
ability asks whether proofs can be efficiently constructed, i.e.,whether a proof
of ϕ in a proof system P can be found in polynomial time in the length of the
shortest P -proof of ϕ [6]. Of course automatizability of a proof system is very
desirable from a practical point of view. However, most known classical proof
systems are not automatizable under cryptographic or complexity-theoretic as-
sumptions. In particular, Bonet, Pitassi, and Raz [6] showed that Frege sys-
tems are not automatizable unless Blum integers can be factored in polynomial
time (a Blum integer is the product of two primes which are both congruent 3
modulo 4). Frege systems are known to be equivalent to LK [8]. As credulous
autoepistemic reasoning extends LK this result easily transfers to credulous
autoepistemic reasoning:

Corollary 5. CAEL is not automatizable unless factoring integers is possible
in polynomial time.

The same result also holds for the sceptical autoepistemic calculus analysed in
the next section.

4 Lower Bounds for Sceptical Autoepistemic Reasoning

Bonatti and Olivetti [5] also introduce a calculus for sceptical autoepistemic
reasoning. In contrast to the credulous calculus, sequents are simpler as they
only consist of two components Γ,∆ ⊆ Lae. An SAEL sequent is such a pair
〈Γ,∆〉, denoted by Γ |∼∆. Semantically, the SAEL sequent Γ |∼∆ is true, if

∨
∆

holds in all expansions of Γ .
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To give the definition of the SAEL calculus of Bonatti and Olivetti [5] we
need some notation. An L-subformula of an Lae-formula ϕ is a subformula of ϕ
of the form Lθ. By LS(ϕ) we denote the set of all L-subformulas of ϕ. ELS(ϕ)
denotes the set of all external L-subformulas of ϕ, i.e., all L-subformulas of ϕ
that do not occur in the scope of another L-operator. The notation is extended
to sets of formulas Φ by LS(Φ) =

⋃
ϕ∈Φ LS(ϕ) and ELS(Φ) =

⋃
ϕ∈ΦELS(ϕ).

We say that a set Γ ⊆ Lae is complete with respect to Σ ⊆ Lae if for all ϕ ∈ Σ,
either ϕ ∈ Γ or ¬ϕ ∈ Γ .

Bonatti and Olivetti’s [5] calculus SAEL consists of the defining axioms and
inference rules of LK and AC together with the rules shown in Fig. 4. Bonatti

Γ ` ∆(sA1)
Γ |∼∆

¬Lα, Γ |∼α
(sA2) ¬Lα, Γ |∼∆

Lα, Γ 6` α
(sA3)

Lα, Γ |∼∆

where Γ ∪ {Lα} is complete wrt. ELS(Γ ∪ {α}) in rule (sA3)

Lα, Γ |∼∆ ¬Lα, Γ |∼∆
(sA4) (Lα ∈ LS(Γ ∪∆))

Γ |∼∆

Fig. 4. Inference rules for the sceptical autoepistemic calculus SAEL.

and Olivetti show soundness and completeness of this calculus for sceptical
autoepistemic reasoning:

Theorem 6 (Bonatti, Olivetti [5]). An SAEL sequent Γ |∼∆ is derivable in
SAEL if and only if it is true.

Let us comment a bit on the rules in Fig. 4. In rule (sA2), if ¬Lα, Γ |∼α
is true, then ¬Lα, Γ has no stable expansion and thus ¬Lα, Γ |∼∆ vacuously
holds. The same applies to rule (sA3). If Lα, Γ 6` α holds, then Lα, Γ does
not have any stable expansion and Lα, Γ |∼∆ is true (cf. [5, Theorem 5.14] for
a detailed argument). Thus, to derive a sequent Γ |∼∆ where the antecedent Γ
has a stable expansion, we can only use one of the rules (sA1) or (sA4) to
immediately get Γ |∼∆. Note that rule (sA1) is quite powerful. Not only can
it be used to derive sequents Γ |∼∆ with Γ and ∆ comprising of only classical
formulas, but it also applies to autoepistemic sequents Γ |∼∆ if L-subformulas
are treated as propositional atoms. We give an example.

Example 7. Let Γn be the sequence p1 ↔ Lp1, . . . , pn ↔ Lpn, q and ∆n =
p1 ∨ Lq. We obtain the derivation in Fig. 5. Neither Γn nor ∆n consist of
classical formulas and Γn ` ∆n are no true classical sequents, but still (sA1)
together with the omitted LK -derivations guarantee short proofs. Note that Γn
has 2n stable expansions (cf. also Example 1), but still the overall proofs of
Γn|∼∆n are of linear length.

In our next result we will show an exponential lower bound to the proof
length (and therefore also to the proof size) in the sceptical calculus SAEL.
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LK
Lq, (pi ↔ Lpi)i∈[n], q ` p1 ∨ Lq

(sA1)
Lq, (pi ↔ Lpi)i∈[n], q |∼ p1 ∨ Lq

LK
¬Lq, (pi ↔ Lpi)i∈[n], q ` q

(sA1)
¬Lq, (pi ↔ Lpi)i∈[n], q |∼ q

(sA2)
¬Lq, (pi ↔ Lpi)i∈[n], q |∼ p1 ∨ Lq

(sA4)
(pi ↔ Lpi)i∈[n], q |∼ p1 ∨ Lq

Fig. 5. Derivation of Γn|∼∆n in Example 7

Theorem 8. There exist sequents Sn of size O(n) such that every SAEL-proof
of Sn has 2Ω(n) steps. Therefore, sSAEL(n), tSAEL(n) ∈ 2Ω(n).

Proof. Let Γn consist of the formulas pi ↔ Lpi, qi ↔ Lqi, pi ↔ qi with i =
1, . . . , n and ∆n =

∧n
i=1 (Lpi ↔ Lqi). We will prove that each SAEL-proof of

Γn|∼∆n contains 2n applications of rule (sA4). Consider now sequents

(Lpi : i ∈ I+p ), (¬Lpi : i ∈ I−p ), (Lqi : i ∈ I+q ), (¬Lqi : i ∈ I−q ), Γn |∼∆n (1)

where I+p , I
−
p , I

+
q , I

−
q ⊆ [n] and I+p ∩ I−p = I+q ∩ I−q = ∅. If additionally I+p ∩

I−q = I−p ∩ I+q = ∅, we call a sequent of the form (1) a k-sequent for k =∣∣[n] \ (I+p ∪ I−p ∪ I+q ∪ I−q )
∣∣.

For a variable p let us denote by p1 the variable p while p−1 stands for ¬p.
We first note that each antecendent Γ of a k-sequent Γ |∼∆ has exactly 2k stable
expansions. Let J = [n] \ (I+p ∪ I−p ∪ I+q ∪ I−q ) be the index set corresponding
to the L-subformulas which are not already fixed by the antecedent. Then the
stable expansions of Γ are generated by p

ej
j , q

ej
j with j ∈ J (together with

(pi, qi : i ∈ I+p ∪ I+q ) and (p−1i , q−1i : i ∈ I−p ∪ I−q )) where the variables (ej)j∈J
range over all 2k elements of {−1, 1}k.

We will now prove the following claim:

Claim. For all k = 1, . . . , n, each SAEL-proof Π of Γn|∼∆n contains at least 2k

(n− k)-sequents. Moreover, all of these (n− k)-sequents appear as a premise of
an application of (sA4) which has a (n− k + 1)-sequent as its consequence.

For k = n this claim yields the desired lower bound.
We prove the claim by induction on k. For the base case k = 1 observe

that Γn|∼∆n is an n-sequent. We first determine which rule which was used in
the proof Π to derive Γn|∼∆n. The antecedent Γn has 2n stable expansions.
Therefore, Γn|∼∆n cannot have been derived by either rule (sA2) or (sA3) (cf.
the discussion before Example 7). Likewise, Γn|∼∆n is not derivable by (sA1).
This is so because even considering all subformulas Lpi, Lqi as propositional
atoms, Γn|∼∆n is not a true propositional sequent. Its succedent ∆n contains
subformulas Lpi ↔ Lqi, i ∈ [n] which are not propositionally implied by the
antecedent Γn. Therefore Γn|∼∆n is derived by an application of (sA4) by
branching over some L-subformula Lpi or Lqi. This yields two distinct (n− 1)-
sequents.

For the inductive step let Γ ′|∼∆′ be a (n− k)-sequent in Π which appears
as a premise of an application of (sA4) and has a (n − k + 1)-sequent as its
consequence. Let us determine which rule which was used in the proof Π to
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derive Γ ′|∼∆′. As Γ ′|∼∆′ is a (n−k)-sequent, its antecedent Γ ′ has 2n−k stable
expansions (see above). Therefore, Γ ′|∼∆′ cannot have been derived by either
rule (sA2) or (sA3) (cf. the discussion before Example 7). Likewise, Γ ′|∼∆′
is not derivable by (sA1). This is so because even considering all subformulas
Lpi, Lqi as propositional atoms, Γ ′|∼∆′ is not a true propositional sequent. Its
succedent ∆′ contains subformulas Lpi ↔ Lqi, i ∈ [n] \ (I+p ∪ I−p ∪ I+q ∪ I−q )
which are not propositionally implied by the antecedent Γ ′. Therefore Γ ′|∼∆′
is derived by an application of (sA4) branching over an L-subformula Lxi of
Γ ′ ∪∆′ where xi stands for either pi or qi. There are three cases according to
the choice of variable xi.

Case 1: i ∈ I+p ∩ I+q or i ∈ I−p ∩ I−q . In this case applying (sA4) yields two
sequents, one of them a sequent with contradictory formulas in the antecedent,
the other one again a (n− k)-sequent which deviates from Γ ′|∼∆′ only in that
Lxi occurs repeatedly in Γ ′. As this only increases the size of the overall proof,
Case 1 does not occur in proofs of minimal size.

Case 2: i ∈ I+p 4I+q or i ∈ I−p 4I−q . As both cases are symmetric let
us assume i ∈ I+p 4I+q . Then (sA4) yields the two sequents Lxi, Γ

′|∼∆′ and
¬Lxi, Γ ′|∼∆′. The latter sequent ¬Lxi, Γ ′|∼∆′ contains either both ¬Lpi and
Lqi (if xi = pi) or both of Lqi and ¬Lpi (if xi = qi) in its antecedent. There-
fore the antecedent is even propositionally unsatisfiable and hence the sequent
¬Lxi, Γ ′|∼∆′ can be proven by an LK -derivation followed by (sA1).

The first sequent Lxi, Γ
′ ∪ ∆′ is again a (n − k)-sequent (which, however,

does not fulfil the second sentence of the inductive claim). We apply again our
previous argument to this sequent: it must have been derived by (sA4). This
application might fall again under Case 2, but this can only occur a constant
number of times and eventually we will get an application of (sA4) to a (n−k)-
sequent according to the only remaining Case 3.

Case 3: i ∈ [n]\(I+p ∪I−p ∪I+q ∪I−q ). In this case (sA4) produces two ancestor
sequents Lxi, Γ

′|∼∆′ and ¬Lxi, Γ ′|∼∆′. Both of these are (n− k − 1)-sequents
and also fulfil the second condition of the inductive claim.

As we have seen, all three cases start with a (n − k)-sequent and lead to
two (n− k− 1)-sequents, and all of these sequents fulfil the second condition of
the inductive claim. By the induction hypothesis, Π contains 2k many (n− k)-
sequents. All of these are derived by one or more applications of (sA4) from
prerequisite (n− k− 1)-sequents which are mutually distinct. Thus Π contains
2k+1 many (n− k − 1)-sequents, completing the argument.

We point out that our argument does not only work against tree-like proofs,
but also rules out sub-exponential dag-like derivations for Γn|∼∆n. ut

5 Conclusion

In this paper we have shown that with respect to lengths of proofs, proof sys-
tems for credulous autoepistemic reasoning and for propositional logic are very
close to each other. On the other hand, we demonstrated exponential bounds
for sceptical autoepistemic reasoning in the natural calculus of [5]. Such bounds
are completely out of reach for the calculus LK in propositional logic. This situ-
ation closely resembles our findings for propositional default logic [2]. Credulous
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reasoning is Σp
2-complete for both default logic and autoepistemic logic while

the sceptical reasoning tasks are both Πp
2-complete as shown by Gottlob [12] (cf.

also [3,9] for a refined analysis). Can this common underlying complexity of the
decision problems serve as explanation for the similarities in proof complexity
of these logics?

Let us dwell a bit on this theme. Although deciding credulous autoepistemic
sequents is presumably harder than deciding tautologies (the former is Σp

2-
complete [12], while the latter is complete for coNP), the difference disappears
when we want to prove these objects. This becomes most apparent when we
consider polynomially bounded proof systems: by the classical theorem of Cook
and Reckhow [8], polynomially bounded propositional proof systems exist if
and only if NP = coNP, while credulous autoepistemic reasoning (or any logic
with a Σp

2-complete decision problem) has polynomially bounded proof systems
if and only if NP = Σp

2. However, the assertions NP = coNP and NP = Σp
2 are

equivalent and this also extends to other proof lengths:

Proposition 9. Let L be a language in Σp
2 and let f be any monotone function.

Then TAUT ∈ NTIME(f(n)) implies L ∈ NTIME(p(n)f(p(n))) for some poly-
nomial p. In other words, for each propositional proof system P with sP (n) ≤
f(n) there exists a proof system P ′ for L with sP ′(n) ≤ p(n)f(p(n)).

Proof. If L ∈ Σp
2, then there exists a polynomial-time nondeterministic oracle

Turing machine M which decides L under oracle access to TAUT. Assume now
TAUT ∈ NTIME(f(n)) via NTM N . We build an NTM N ′ for L by simulating
M and replacing each oracle query θ to TAUT by the following nondeterministic
procedure. Guess the answer to query θ. If the answer is yes, then simulate
N(θ) and check that it accepts. Otherwise, if the answer is no, then guess an
assignment α and verify that α satisfies ¬θ. If p is the polynomial bounding
the running time of M , then each oracle query is of size ≤ p(n) and there can
be at most p(n) such queries. Therefore the running time of N ′ is bounded by
p(n)f(p(n)). The second claim follows as each nondeterministic machine for L
can be converted into a proof system for L (and vice versa). ut

This observation implies that from each propositional proof system P we
can obtain a proof system for credulous autoepistemic logic which obeys almost
the same bounds on the proof size. Theorem 4 tells us that the proof system
for credulous autoepistemic reasoning constructed by this general method from
LK is essentially the sequent calculus CAEL of Bonatti and Olivetti [5].

For sceptical autoepistemic (or default) reasoning—both of them Πp
2-complete

[12]—the situation is less clear. To the best of our knowledge it is not known
whether a similar result as Proposition 9 holds for L ∈ Πp

2. While sceptical
autoepistemic reasoning has polynomially bounded proof systems if and only if
this holds for TAUT (because NP = coNP iff NP = Πp

2), we leave open whether
this equivalence between extends to other bounds. Thus it is conceivable that
lower bounds for sceptical reasoning are generally easier to obtain. This phe-
nomenon particularly occurs with non-classical logics of even higher complexity
as modal and intuitionistic logics which typically are PSPACE-complete and
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where exponential lower bounds are known for Frege and even extended Frege
systems in these logics [14,15].

In conclusion, the sequent calculi of Bonatti and Olivetti for credulous rea-
soning (both default and autoepistemic) are as good as one can hope for from
a proof complexity perspective, whereas the calculi for sceptical reasoning call
for stronger versions. This presents the double challenge of designing systems
which are both natural and elegant and allow concise proofs. We remark that
Kraj́ıček and Pudlák [17] introduced very elegant sequent calculi Gi for quan-
tified propositional logic, thus for logics with decision complexity ranging from
Σp
2 and Πp

2 through all the polynomial hierarchy up to PSPACE. However, no
nontrivial lower bounds are known for these systems. As sceptical autoepistemic
reasoning is Πp

2-complete one could translate SAEL-sequents into propositional
∀∃-formulas and use the sequent calculus G2 from [17] (cf. also [7]).
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16. J. Kraj́ıček. Bounded Arithmetic, Propositional Logic, and Complexity Theory, volume 60
of Encyclopedia of Mathematics and Its Applications. Cambridge University Press, 1995.
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