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Abstract

This brief survey gives a (roughly) self-contained overview of some complexity theoretic
results about semi-algebraic proof systems and related hierarchies and the strong connections
between them. The article is not intended to be a detailed survey on “Lift and Project” type
optimization hierarchies (cf. Chlamtac and Tulsiani [12]) or related proof systems (cf. Grigoriev
et al. [16]).

1 Introduction and Motivation

In the past decade a lot of work has been done on hierarchies based on Linear and Semidefinite
Programs (LPs and SDPs) in areas as diverse as Proof Complexity, Approximation Algorithms and
even Probability Theory. In this section we briefly mention some recent highlights which will moti-
vate further exploration of the limitations of such optimization based hierarchies or (propositional)
proof systems1.

A propositional proof system is any polynomial time computable function

P : {0, 1}∗ onto−→ TAUT,

where TAUT is the set of boolean tautologies (or a subclass of boolean tautologies). If P (x) = ϕ
for any string x then x is called a P -proof of ϕ. Cook and Reckhow showed that NP = coNP if and
only if there exists a proof system for TAUT , such that every input x has a polynomial sized proof.
Therefore it is a natural question to show that weaker proof systems, for example Resolution, do
not have subexponential sized refutations for some unsatisfiable families of formulae. It is known
that PHP and Tseitin Tautologies do not have subexponential sized refutations in Resolution [6]
and Polynomial Calculus [5]. However, it turns out that both these principles have polynomial
sized proofs in the Lovász-Schrijver (LS) type proof systems.

Theorem 1.1 ((informal) Pudlák) PHPn+1
n has polynomial sized refutations in LS.

Theorem 1.2 ((informal) [16]) There is a polynomial sized refutation of Tseitin Tautologies on
d-regular graphs in LSd+2. LSd+2 is a generalization of the usual LS proof system to allow degree
d+ 2 polynomials instead of just quadratic polynomials.

Such strong results provide one reason to explore the limitations of LS and related proof systems
or hierarchies.

1We use the words hierarchy and proof system interchangeably since they are roughly synonymous when dealing
with a boolean k-CSP - the running example in this article.
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However, size is not the only important parameter for such hierarchies. For 0-1 optimization
problems (like MAX-CSP) one can design approximation algorithms based on encoding the problem
as an Integer Program (IP), solve its LP/SDP relaxation to obtain an optimal fractional solution
and then round the fractional solution to an integer solution. While we know approximating
MAX-3-CSPs is NP-hard, a recent SDP rounding algorithm by Barak et al [4] uses the Lasserre
hierarchy, which is stronger than the basic LS hierarchy, to approximate the optimal value of some
MAX-2-CSPs.

Theorem 1.3 ((informal) [4]) Given a MAX-2-CSP instance F on alphabet [k], let rτ denote
the number of eigenvalues greater than τ for the normalized adjacency matrix of the constraint
graph of F . There exists a constant c such that for every ε > 0 and r ≥ k

εc rτ , the optimal value of
the objective function for the rth level Lasserre relaxation of F is within ε of the the optimal value of
F . Moreover there is a polynomial time rounding algorithm that finds the assignment corresponding
to the approximate optimum given the Lasserre SDP solution.

Such rounding algorithms and the the papers that build upon it [3, 19] give another reason to
study the limitations of such hierarchies. The reasonable way to proceed here is to lower bound the
worst case integrality gap i.e., the maximum of the ratio between the optimal fractional and integer
solution over all problem instances, of the Lasserre relaxation of the encoded LP / SDP - since it
is unreasonable to expect that one would always know the value of the optimal integer solution in
advance. Such lower bounds are now well studied for most LP and some SDP hierarchies [9, 1,
24, 11, 7] and we will sketch their relation to lower bounds for proof systems via the MAX-CSP
problem.

2 Preliminaries and Definitions

In this section we briefly remind the reader of some relevant basic definitions and provide a brief
overview of the type of lower bound problems which we will discuss later.

A polytope is a set of the form {x ∈ Rn : Ax ≥ b, A ∈ Rm×n, b ∈ Rn}. Throughout we assume that
the matrix A has size polynomial in n and is explicitly given. A Linear Program optimizes a linear
objective function cTx over some polytope P and therefore is of the form:

max
x

cTx s.t. Ax ≥ b.

In addition we will always assume that the polytope P lies in the unit cube of appropriate dimension.
The feasibility of a linear program can be decided in polynomial time and therefore the optimization
problem can be solved in polynomial time. A Semidefinite Program is of the form:

max
X

C ·X s.t. Ai ·X ≥ bi ∀i ∈ [k], X � 0,

where Ai, X ∈ Rn×n and · denotes the usual inner product. Hence an SDP reduces to an LP
whenever the matrix X is diagonal. There is no known algorithm to decide the feasibility of a SDP
in polynomial time but one can find the optimal solution to a SDP in polynomial time upto any
given level of accuracy.
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2.1 CSPs and their Representations

Definition 2.1 Given a boolean predicate f : {0, 1}k → {0, 1} we define MAX-k-CSP(f) as the
following optimization problem F :

max
x∈{0,1}n

∑
i∈[m]

fi(x), (2.1)

where fi denotes an instance of f on some k variables chosen from the n 0-1 variables such that
some of the input variables of f may be negated.

Throughout we will assume k ≥ 3. We will encode the above optimization problem as a LP or SDP
in the next section. For the purpose of proving integrality gaps F will usually consist of randomly
chosen instances of fi. It is known that such random instances are very unsatisfiable as long as
the number of constraints m exceeds a certain threshold δn. It is therefore natural to study the
complexity of refuting the CSP(f) formula corresponding to F :∧

i∈[m]

fi(x). (2.2)

We will soon see that lower bounds for the later problem imply integrality gaps for the former
problem and the converse will also hold in some cases. In the remainder of this subsection we
consider the example of MAX-k-SAT and show how to encode it as set of contradicting axioms to
a proof system which manipulates inequalities or equalities.

A MAX-k-SAT instance F consists of a conjunction of clauses each of the form
∨
i∈[k] li. Hence to

encode the axioms for F it suffices to provide an encoding for the clauses.

Encoding with linear inequalities or simply the linear encoding: Given a clause C :=
∨
i∈[k] li we

encode it as the inequality LC :=
∑

i∈[k] `i ≥ 1, where `i := 1−xi if li = ¬xi and `i := xi otherwise.
The `i are variables in R. Observe that both C and LC have the same set of satisfying solutions in
{0, 1}k.
Encoding with polynomial equalities or simply the product encoding: Given a clause C :=

∨
i∈[k] li

we encode it as the equality PC := Πi∈[k]`i = 0, where `i := xi if li = ¬xi and `i := 1−xi otherwise.
Usually, for our purposes, the `i are variables in R. Observe that both C and PC have the same
set of satisfying solutions in {0, 1}k.
Semialgebraic proof systems, like LS, manipulate inequalities starting from the linear encoding
of the axioms. The closely related algebraic proof systems - the Nullstellensatz and Polynomial
Calculus (PC) manipulate equalities starting from a product encoding of the axioms. See the survey
by Pitassi [20] for a review of proof complexity results related to the later.

2.2 Hierachies and Proof Systems

In this subsection we briefly review “lift and project” hierarchies and proof systems based on them.
Given a polytope P in [0, 1]n with m facets, it is sometimes possible to introduce more variables
and obtain another polytope Q, the extension (also lift) of P , such that Q lies in [0, 1]N (N > n)
but has M facets for some M < n, and the projection of Q to the original n dimensions is P . The
number of facets of Q is the extension complexity of Q and some recent papers [14, 8] also study
lower bounds on extension complexity.

Lovász and Schrijver made an important observation when the polytope P corresponds to an LP
relaxation of some 0-1 integer polytope PI . Given any polytope P they define a hierarchy of nested
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polyopes, via their systematic lift and project operations, which always converges to PI in at most
n such operations. Moreover they constructed separation oracles for the intermediate polytopes
in their hierarchy which allows one to efficiently optimize LPs over the nested polytopes obtained
within a few lift and project steps (for details see [12]).

Definition 2.2 (see [12]) Given a polytope P r ⊆ P obtained after r rounds of LS lift and project,
inductively define P r+1 as the polytope bounded by linear inequalities of the form:

n∑
i=1

αih
(r)(x)xi +

n∑
i=1

βig
(r)(x)(1− xi) +

n∑
i=1

γi(x
2
i − xi) ≥ 0, (2.3)

where h(r)(x) ≥ 0 and g(r)(x) ≥ 0 are linear inequalities valid for P r, αi, βi ∈ R+ and γi ∈ R.

Note that P 0 = P and r is the rank of P r. It is known that P r = PI for some r ≤ n. By
restricting the final form of the inequality in Equation 2.3 to be linear, we have implicitly defined
P r+1 as the projected polytope obtained from P r after one step of lift and project. If we map
products of variables xixj → xij then any quadratic inequality which can be expressed in the form
of Equation 2.3 corresponds to a linear inequality (in

(
n
2

)
variables) of the (LS) lifted polytope Qr

obtained from P r. The corresponding LS proof system may be formally defined as follows.

Definition 2.3 ([16]) Given a set P of linear inequalities on the variables {x1, ..., xn} and axioms
x2i − xi = 0, we have the following inference rules for LS:

1. p≥0
p·q≥0 where deg(pq) ≤ 2 and q ∈ {xi, 1− xi : i ∈ [n]}.

2. p≥0 q≥0
αp+βq≥0 for α, β ∈ R+.

A valid refutation of P must obtain the contradiction −1 ≥ 0.

Various strengthenings of the LS hierachy have been defined. The LS+ hierarchy works with
SDP relaxations and Equation 2.3 is modified to allow addition of squares of arbitrary linear
forms. Another strengthening of LS is the Sherali-Adams (SA) hierarchy in which there are no
intermediate projection steps i.e., one is allowed to multiply the original inequalities with multipliers
ΠIxiΠJ(1−xj), to obtain the SA lifted polytope in one shot. The SA (also static-LS) proof system2

may be defined as:

Definition 2.4 ([16]) Given a set P of linear inequalities on the variables {x1, ..., xn} and axioms
x2i − xi = 0. A valid SA refutation consists of positive linear combination of the terms ϕI,J =
sI,J · Πi∈IxiΠj∈J(1 − xj) where I and J are multisets of variable indices and sI,J is an axiom. A
valid refutation is obtained by deriving∑

l

ωl · ϕIl,Jl = − 1 (2.4)

where each ωl ∈ R+.

2Formally SA (equivalently static-LS) may not even be a proof system since even a simple verification of validity of
the certificate may require exponential time [16]. But for lower bound purposes these systems are no less interesting.
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Remark 2.5 Observe that the LS is a dynamic proof system since it derives a refutation in a step
by step manner (like Resolution and Polynomial Calculus), while SA is a static proof system since
it derives the refutation in one shot (like the Nullstellensatz). The division into dynamic and static
seems to play some role as far as lower bound methods are concerned.

Similar to LS one can strengthen static-LS to static-LS+. We will define the stronger Lasserre
hierarchy and Positivstellensatz Calculus in the upcoming sections.

2.3 Measures of Complexity

We have already defined rank for the LS hierarchy. The rank of an LS refutation is analogously
defined as the maximum number of applications of the first inference rule along any path in the
proof DAG. Note that for any linear encoding of an unsatisfiable MAX-k-CSP instance the LS
hierarchy rank and LS proof system rank are equivalent by Farkas’ lemma and similarly for LS+.
The rank of a static-LS refutation is just the maximum degree of summands in Equation 2.4. Like
other dynamic proofs, the size of an LS refutation is just the number of lines in the refutation and
the size of a static-LS refutation is the number of summands in Equation 2.4. The surveys [16]
and [12] have a more detailed discussion on this.

Each of these measures has some physical significance. For example, optimization over the rank
r polytope in the LS, SA (and other similar hierarchies) takes nO(r) time. The LS rank lower
bounds the static-LS rank and also the logarithm of LS (and static-LS) size. No relation seems
to be known between LS and static-LS size. Since the size lower bounds would hold against any
optimization algorithm captured by the model, as opposed to the fixed nO(r) algorithms, they are
more difficult to obtain. The same measures can also be defined for LS+ and static-LS+.

3 Overview of Proof Techniques in the Area

We now provide an overview of techniques in the lower bounds for the MAX-k-CSP(P ) problem
(Equation 2.1), where P : {0, 1}k → {0, 1} is a boolean predicate, and the closely related problem of
proving lower bounds for random instances of CSP(P ) (Equation 2.2). As far as basic techniques in
the proofs of integrality gaps and rank lower bounds for SA and Lasserre hierachies are concerned,
the proofs for just the case of MAX-k-XOR provide a fairly complete picture. While we do know
some gaps for problems like finding the maximum independent set or the minimum vertex cover in
graphs, much can be shown via involved reductions from gaps of MAX-k-XOR (see [1, 23, 26] and
exceptions in [11]).

3.1 Resolution and Polynomial Calculus

We take a short detour through two techniques previously used for weaker proof systems - Resolution
and Polynomial Calculus, for their influence on lower bound proofs for static proof systems.

The Resolution refutations have propositional clauses as lines and a valid refutation uses the infer-
ence rule:

C1 ∨ ¬x x ∨ C2

C1 ∨ C2

to derive an empty clause. The size (S) of a refutation is the number of lines in it and the width
(w) of a refutation is the maximum number of variables in a clause in the refutation. Ben-Sasson
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and Wigderson [6] related size and width of a refutation π as follows:

w(π) ≤ w0(π) +
√
n logS,

where w0 is the maximum of the width of the axioms and n the number of variables. Therefore
lower bounding the width of a Resolution refutation also serves to lower bound its size. In the case
of random instances of CNF-SAT they prove a linear lower bound on the width of any Resolution
refutation by showing that high (boundary) expansion of the constraint graph of the instance i.e.
the natural variable vs constraint bipartite graph, implies the refutation has a wide clause. They
generalized their proof to random instances of CSP(P ), where P : {0, 1}k → {0, 1} is any sensitive
predicate (For eg. XOR, which can be satisfied by flipping only a few bits of any unsatisfying
assignment). Immediately afterwards Ben-Sasson and Impagliazzo [5] used a similar technique to
prove linear lower bounds for the degree in the algebraic proof system - Polynomial Calculus. The
Polynomial Calculus (PC) [13] is a dynamic version of the Nullstellensatz, where the lines are
polynomial equalities from the ring Sn(F) = F[x1, .., xn]/{x2i − xi : i ∈ [n]}. Sometimes the rule
x2i − 1 = 0 may be substituted for x2i − xi = 0 and these axioms allow us to ignore issues about the
completeness of the underlying field F. The inference rules for PC are:

p = 0 q = 0

αp+ βq = 0
,

p = 0

x · p = 0
,

where p, q ∈ Sn(F) and α, β ∈ F. A valid refutation shows 1 = 0. The degree (d) of a refutation is
the maximum degree among the lines of the refutation and the size (S) of a refutation is number
of monomials in the refutation. Size vs degree trade-offs are also known for PC [13] and they
chronologicaly preceeded the size-width trade-offs for Resolution. For an instance of CSP(P ), PC
encodes the axioms in the product encoding, typically over R in relation to semialgebraic proof
systems. In [5], the authors use the ideas from [6] to show linear lower bounds for the degree in
any PC refutation of random instances of CNF-SAT over F 6= F2. They actually show the lower
bound when the axioms lead to binomials3 and from it deduce the lower bound for CNF-SAT by a
simple reduction. We will illustrate the importance of these ideas for Lasserre rank lower bounds
and integrality gaps in the next section.

The lower bounds for PC degree when the predicate P in CSP(P ) does not translate to binomials
were more involved and used different techniques [2]. Given a random instance F of a CSP(P ), as
in Equation 2.2, the fi are polynomials in Sn(F) derived from P which is assumed to be immune (a
fairly general class of predicates) and suppose one wants to exhibit a degree d lower bound on PC
refutations of F . The main idea in [2] is to construct an operator Rd : Sn,d(F) → Sn,d(F) defined
on monomials of degree at most d and linearly extended to the degree d fragment of the ring Sn(F)
such that:

1. Vd(F ) ⊆ Ker(Rd) ⊂ Sn(F), where Vd(F ) is a degree d pseudoideal of F (cf [13, 2]).

2. Rd(xjt) = Rd(xjRd(t)), where t is a monomial of degree at most d− 1.

Intuituvely, Rd would send the LHS of any degree d PC refutation to zero while the RHS of
the refutation would remain non-zero thus giving us a contradiction to the existence of such a
refutation. The operator Rd in [2] is constructed by restricting the classical reduction operator i.e
RI : Sn(F) → Sn(F), which gives the unique remainder upon reduction by the Groebner basis of

3A Binomial Ideal is any ideal generated by binomials, which are polynomials consisting of a linear combination
of two monomials. For example, the product encoding of the axioms of XOR with x2 = 1 gives binomials.
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the ideal I := 〈{fi}i=1,..,r〉, to the degree d fragment of Sn. Of course there are many ideals in Sn,
and hence many RIs, and to fix the value of Rd(t) for a term t ∈ Sn one has to choose which RI
to use. Using an involved argument relying on immunity and expansion properties of F , [2] get
around this problem and show local consistency among the RIs i.e.

R〈{fi}i1,..,ir 〉(t) = R〈{fi}i1,..,iν 〉(t)

when the monomial t has small enough, but still Ω(n), degree and the small set of generators
{fi}i1,..,iν depends only on the term t. Therefore Rd(t) is chosen locally i.e. depending only on t,
with respect to some small enough, in the number of generators, ideal I. The local consistency of
RIs will ensure properties 1 and 2 above for Rd. A similar, but somewhat simpler, approach works
for proofs of rank lower bounds in static hierarchies. In particular, proofs of SA integrality gaps
use a similar local consistency lemma but with functionals.

We conclude this subsection by noting that width in Resolution and degree in PC play a role
analogous to rank in hierarchies and proof systems and such evidence is given by [25, 21]. However,
we still do not know any size-rank trade-offs for LS type dynamic proof systems.

3.2 Static Hierachies and Proof Systems

We will consider the example of integrality gaps for a random instance F of MAX-k-XOR in the SA
hierarchy [7]. For clarity we write down the SA LP correponding to MAX-k-XOR (Equation 2.1
instantiated with XOR) instance F consisting of variables V = {x1, .., xn} and XOR constraints
C = {Ci : {0, 1}k → {0, 1} : i ∈ [m]}. The variables of the LP obtained after r rounds of SA
hierarchy are: xS,A, where S ⊆ V, |S| ≤ r and A ∈ {0, 1}r. Intuitively, xS,A is 1 if S → A and 0
otherwise. Let SCi be the set of variables in constraint Ci then the LP after r rounds of SA is given
below. Note that the usual definition of SA has variables of the form xS but not xS,A but it is easier

Sherali-Adams LP for MAX-k-CSP(f)

maximize

m∑
i=1

∑
A∈{0,1}Ti

Ci(A)·x(Ti,A)

subject to x(∅,∅) = 1∑
j∈{0,1}

x(S∪{i},A◦j) = x(S,A) ∀S s.t. |S| < r, ∀i /∈ S,A ∈ {0, 1}S

x(S,A) ≥ 0 ∀S s.t. |S| ≤ r, ∀A ∈ {0, 1}S

to write the objective function of the LP in the above formulation. One can think of xS  xS,{1,..,1}
and use induction on the size of S to see that with respect to SA rank and integrality gaps the two
translations are equivalent.

Theorem 3.1 ((informal) [7]) For a random instance F of MAX-k-XOR, the SA LP (above)
has an integrality gap of 2− ε w.h.p. even after some Ω(n) rounds.

For the sake of exposition we will illustrate the rank lower bound proofs with respect to SA i.e.
static-LS, proof system and not with the LP formulation.

Remark 3.2 A rank lower bound on SA for a linear encoding of F already implies an integrality
gap of 2− ε for F .
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This follows because at most 1/2 + ε of the constraints in F are simultaneously satisfiable by 0-1
assignments and (by Farkas lemma) the rank lower bound in the SA proof system implies that
there is an obstruction, in the form of a fractional point, which satisfies all the lifted constraints of
F after many rounds of SA lifts. Hence it will suffice to sketch a rank lower bound for F instead
of an integrality gap for F .

3.2.1 Locally Consistent Measures

First we define families of locally consistent measures on 0-1 assignments to small sized sets of
variables of F .

Definition 3.3 ([7, 11]) Given an instance F of CSP(P ) with variables V := {x1, .., xn} and
constraints C := {ci : i ∈ [m]}, a family of distributions (i.e. discrete probability measures) mT

on 0-1 assignments to all T ⊆ V such that |T | ≤ r is r-locally consistent if for any R,S and T ,
R ⊆ S ⊆ T , we have

∀A ∈ {0, 1}|S| :
∑

B∈{0,1}|S\R|
mT (A ◦B) = mS(A). (3.1)

Clearly, the definition above is inspired by the constraints in the SA LP. However, as promised, we
will illustrate the proof technique in terms of proof systems to make the connections with PC and
Resolution clearer.

3.2.2 Perfect and Imperfect Completeness

Definition 3.4 Given a family of r-locally consistent measures on an instance F of MAX-k-XOR
such that every measure in the family is positive only on the satisfying 0-1 partial assignments of
F i.e. if a 0-1 partial assignment AT violates a constraint supported on only the variables in T
(|T | ≤ O(r)) then mT (AT ) = 0, then such a family of measures is said to have perfect completness

The idea is that the measure fools the LP or SDP into thinking that the instance is perfectly
satisfiable 4. Now assume we had a rank/degree d < r SA (static-LS) refutation of F (as in
Equation 2.4) then we can obtain a contradiction as follows.

Define a funtional ϕ : Sn,d(R) → R on monomials in Sn,d as Πi∈Ixi 7→ EmI
[
Πi∈I1{I}

]
, and ϕ is

extended linearly to Sn,d. Now we apply ϕ to both sides of our degree d refuation and by using local
consistency and perfect completeness of mI (see for eg. [11, 28] for a similar proof) we will obtain
−1 ≥ 0 - a contradiction. Observe the similarities to the high level framework of [2]. However,
the similarities do not end at the high level since the actual construction of these locally consistent
measures with perfect completeness in [7], which we skip, relies on similar notions of boundary
expansion and closures of constraints that have also been used by [2]. We will see more of such
similarities between lower bounds for PC and integrality gaps / rank lower bounds for proof systems
in the next sections. To summarize:

Remark 3.5 The existence of r-locally consistent measures with perfect completeness implies de-
gree must be ≥ r for any refutation of CSP(P ) in the static proof system in question (SA, static-LS+
etc). So far the constructions, for example [7, 23], of integrality gaps for SA (and also Lasserre) for
MAX-k-CSPs rely on exhibiting locally consistent measures and all of them, except [11], additionally
satisfy the perfect completeness property.

4This terminology has its origins in PCP literature.
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4 Lasserre Lower Bounds for Parity

Given a sequence {yi : yi ∈ [0, 1]}1,..,s(2t), where s(2t) =
(
n
≤2t
)
, the 0-1 moment matrix Mt(y) is a

Rs(t)×s(t) matrix indexed by t-subsets of [n] such that Mt(I, J) := yI∪J . The r round Lasserre SDP
for MAX-k-CSP in Equation 2.1 is defined as follows (see [18]).

max
∑

A∈{0,1}k,Ci∈C

xSi,ACi(A)

s.t. Mt(x) � 0, ∀t ≤ r.

Using the fact that any positive semidefinite matrix X can be written in the form Y Y T , the above
SDP can be rewritten in a form similar to the SA LP from the previous section.

Lasserre SDP for MAX-k-CSP(f)

maximize E
Ci∈F

∑
A∈{0,1}Ci

Ci(α)·
∥∥∥V(SCi

,A)

∥∥∥2
subject to

〈
V(S1,A1),V(S2,A2)

〉
= 0 ∀ A1(S1 ∩ S2) 6= A2(S1 ∩ S2)〈

V(S1,A1),V(S2,A2)

〉
=
〈
V(S3,A3),V(S4,A4)

〉
∀ S1 ∪ S2 = S3 ∪ S4, A1 ◦A2 = A3 ◦A4∑

j∈{0,1}

∥∥V({i},j)
∥∥2 = 1 ∀i ∈ [n]

〈
V(S1,A1),V(S2,A2)

〉
≥ 0 ∀S1, S2, A1, A2∥∥V(∅,∅)

∥∥ = 1

Theorem 4.1 ((informal) [23]) Given a random instance F of MAX-k-XOR an integrality gap
of 2− ε persists w.h.p. even after Ω(n) rounds of Lasserre.

The proof in [23] explicitly constructs the vectors in the above Lasserre SDP for some r = Ω(n). We
take some liberty with the notation in [23] to make the connections with PC degree lower bounds
clearer. The proof is in two steps.

• Consider the refutation of F via Gaussian Elimination (GE) [5] over R := F2[x1, .., xn]. The
width of such a refutation is the maximum number of variables in a line of the refutation.
Let LF,r be the lines deducible via width r Gaussian Elimination starting from F . For linear
forms l1, l2 ∈ R, we say l1 ∼F l2 if l1 + l2 ∈ LF,r. For l ∈ LF,r, define π(l) = 1 if l has the
form:

∑
i xi = 0, and π(l) = −1 if l has the form:

∑
i xi + 1 = 0.

Remark 4.2 It is shown in [5] that any such expanding instance of XORs needs width Ω(n)
to deduce a valid GE refutation. Hence for some r = Ω(n), ∼F is an equivalence relation and
π is well defined.

• We now construct the SDP vectors using π and ∼F . Each vector will have a coordinate I
corresponding to the representative of an equivalence class [I] of ∼F . Define

vS,A(I) :=
∑

J∈[I], V ars(J)⊆S

π(J)
(−1)J(A)

2|S|
,
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where J ∈ R, V ars(J) denotes the variables in J , and J(A) is simply J evaluated on assign-
ment A.

Finally [23] verifies that the vectors vS,A defined above indeed satisfy satisfy the Lasserre SDP
constraints and that

∑
A∈C−1

i (1) ||vSi,A||
2
2 = 1, which implies the SDP optimum is 1. However,

since the integer optimum is 1/2− ε we have shown the required integrality gap of 2− ε.

The GE width and PC degree are equivalent upto a factor of 2 for their respective refutations
of k-XOR [5], and note that the Lasserre SDP solution above has “perfect completeness” so we
summarize this section with the following remark but without a formal justification.

Remark 4.3 For the case of k-XOR we have shown that a linear lower bound on the degree of
PC refutation together with high enough expansion implies a linear lower bound on the rank of the
Lasserre SDP relaxation.

5 Positivstellensatz Calculus and Binomial Ideals

In this section we sketch yet another lower bound for k-XOR type instances but this time for the
degree in the stronger Positivstellensatz Calculus of Grigoriev. The technique of the proof will be
reminiscent of [2]. The proof is from [15]. However, we will not use Laurent monomials as in [15],
but stick to Sn(R) in order to make the similarities with other lower bound proofs clearer.

Definition 5.1 ([15]) Let f ∈ Sn,d(R) be derived using degree d PC and h ∈ Sn,d(R) be a sum of
squares of multiinear polynomials. A degree d Positivstellensatz Calculus (PZ) refutation has the
form:

f + h = −1. (5.1)

As noted before, the product encoding of k-XOR constitutes of binomials when we quotient with
{x2i − 1 : i ∈ [n]} as opposed to {x2i − xi : i ∈ [n]}. Hence, when dealing with a random instance of
k-XOR predicates one prefers to work in the quotient ring of the former. Let us denote this ring
by S′n(R).

Theorem 5.2 ((informal) [15]) Suppose any PC refutation of a k-CSP instance F requires de-
gree 2d, when encoded as binomials over S′n(R) with all coeffcients in {±1, 0}5, then any PZ refu-
tation of F starting with the same encoding requires degree d.

We provide a sketch of the proof from [15]. The idea is to construct a functional ϕ : S′n,d(R)→ R
such that ϕ(f) 7→ 0 in Equation 5.1 and ϕ(h) 7→ α with α ≥ 0 thus giving a contradiction. When
the axioms of F encode to binomials with all coeffcients in {±1, 0}, the Groebner basis algorithm
of [13] implies that the vector space of polynomials derived from a degree d PC on F i.e. the
pseudoideal Vn,d(F ), is a R-linear span of a subset of binomials with all coeffcients in {±1, 0}. This
property of binomials was also used in [5, 10]. We define ϕ(m) 7→ 0 whenever neither (m + 1)
nor (m− 1) belongs to Vn,d(F ). Otherwise, ϕ(m) 7→ {±1} depending on whether m + 1 or m− 1
is in Vn,d. Since we already know that PC has no degree 2d refutation for F , ϕ is well defined.
We linearly extend ϕ to S′n,d. Clearly ϕ(f) = 0 for f ∈ Vn,d(F ). The argument that ϕ(h) ≥ 0
is by elementary manipulation. One simply expands the squares in h, applies ϕ and after some

5This holds when F is a random instance of k-XOR as in [5].
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simplification constructs a new sum of squares but this time over R. We refer the reader to [15] for
the remaining details.

Some concluding remarks are in order. The first is regarding if we can view ϕ as an instance of
some R as in [2].

Remark 5.3 It is possible that ϕ(xm) 67→ 0 for some monomial m and yet ϕ(m) 7→ 0 so the
answer is negative. However, over monomials m such that ϕ(m) 7→ {±1} one may think of ϕ
as a remainder in the Groebner basis division (w.r.t. some appropriate ideal). It seems that the
definition of ϕ escapes the complexities involved in defining R [2] because knowledge of the structure
of the basis of Vn,d(F ) makes it easier to define non-trivial ϕ such that Vn,d(F ) ⊆ Ker(ϕ).

The second remark is regarding the similarities between Lasserre and Positivstellensatz Calculus
lower bounds for CSPs. For example, both the Lasserre integrality gap in Section 4 and the PZ
degree lower bound above define maps from subsets of variables to {±1} i.e. π and ϕ respectively,
we note that π = ϕ.

Remark 5.4 The Positivstellensatz (PS) [15] is the static version of PZ. The dual of the rank r
Lasserre SDP has the same structure as a degree r PS refutation (Section 4.2 in [18]). If we use
the product encoding over Sn (or S′n) for Lasserre then the SDP objective function for MAX-k-CSP
remains unchanged. Although there maybe some subtleties about SDP duality that may prevent a
black-box relationship between the degree lower bound for the PS and integrality gaps with perfect
completeness for Lasserre, it is likely that the ideas involved in the lower bounds for k-CSP in PZ
would be helpful for proving Lasserre integrality gaps with perfect completeness.

6 Dynamic Hierarchies and Proof Systems

The integrality gaps and rank lower bounds for dynamic hierarchies like LS and LS+ have used a
different proof framework [9, 1, 24]. For MAX-CSPs most of the LS rank lower bounds are now
subsumed by the corresponding SA rank lower bounds. The LS+ rank lower bounds were not
implied by static-LS+ lower bounds(cf. [27]). The LS (and LS+) integrality gaps or rank lower
bounds follow via intricrate induction arguments which are framed as a Prover-Adversary game
to make them more readable. The game involves construction of protection matrices since this
approach was inspired from the orginal definition of LS hierarchy, which is repeated below for
completeness.

Definition 6.1 (see [12]) Given homogenized convex cones K̃1, K̃2 in Rn+1 corresponding to poly-
topes K1 and K2, define the cone M(K̃1, K̃2) (the lifted LS cone) as the cone consisting of all
(n+ 1)× (n+ 1) matrices Y in R satisfying the conditions:

1. Y is symmetric

2. Yii = Yi0

3. K̃1
∗
Y K̃2

∗ ≥ 0.

Let N(K̃1, K̃2) denote the projection Y e0 of M(K̃1, K̃2). Let Qn denote the unit cube [0, 1]n. Define
N(K̃, Q̃n) (or simply N(K)) as the cone (polytope) obtained after a single LS lift and project step.
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The rank r polytope is obtained by applying N for r times. The matrices in M are typically
referred to as Protection matrices in the lower bound proofs. LS+ additionally requires elements
of M(K,Q) be positve semidefinite. We illustrate this method next with a much simpler example.

Consider the Symmetric Knapsack polytope defined as:

2n+1∑
i=1

xi = n+ 1/2,

∀i ∈ [2n+ 1] : xi ∈ [0, 1].

The polytope has no 0-1 vertices and so LS will derive a refutation in 2n rounds. The LS rank
lower bound of n/2 (due to [16]6) actually proves the stronger static-LS lower bound via defining a
functional - as expected for the case for static proof systems. However, a direct rank lower bound
for LS using the game method would likely amount to an inductive proof of the claim: The LS
polytope of rank ≤ k would contain all the points of the form:

{π(〈~1n−k,~0n−k,
~1

2

2k+1

〉) : π ∈ S2n+1}.

Using an involved argument [24] prove the following statement.

Theorem 6.2 ((informal) [24]) For a random instance F of MAX-k-XOR, a gap of 2−ε persists
w.h.p. even after Ω(n) rounds of LS+.

The proof constructs protection matrices as mentioned before using the Prover-Adversary game
framework. The expansion of the underlying constraint graph of F is used to ensure positive
semidefiniteness and also prove that the protection matrices exist even after many rounds of LS+.

7 Some Open Problems

Several important open problems remain as far as lower bounds for such hierarchies and proof
systems are concerned. We list some of the less well known questions below.

1. It is known that a random instance of MAX-k-XOR (k ≥ 3) [7, 23] almost always has an
integrality gap with perfect completeness even after linear number of rounds of Lasserre and
the corresponding degree lower bounds for the Positvstellensatz are also known. However, it
is not known for which predicates other than k-XOR can one can show similar lower bounds.
There is modest progress in this direction in [27] which shows rank lower bounds for the static-
LS+ hierarchy, which is at least as strong as the mixed hierarchy. It would be interesting
to see if one can define a reduction operator similar to Alekhnovich and Razborov [2] and
generalize their lower bound for the degree of any polynomial calculus refutation of immune
predicates to show similar positivstellensatz type lower bounds for (say) immune predicates.

2. As far as just the question of integrality gaps is concerned i.e., one is even satisfied with hard
instances which have imperfect completeness, it would be interesting to answer for which
predicates P does MAX-k-CSP(P ) have large integrality gap even in strong hierarchies. Of
course we know some such results with perfect completeness here [23, 26, 7, 27] and such

6The lower bound in [16] is actually for the positivstellensatz.
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questions have also been explored for weak proof systems like Resolution [6] and Polynomial
Calculus [2]. But we know very few results with imperfect completeness for MAX-k-CSPs.
Moreover, one may go a step further and ask for algorithms which beat the random assignment
in case existence of lower bounds is suspect. Such a question essentially asks for dichotomy
type results but with respect to weaker models of computation. There is modest progress in
this direction in [17] but still many questions remain open.

3. Integrality gaps for the Unique Games type of problems remain elusive in SDP hierarchies
and since the Sum of Squares type derivations can refute known hard instances, any progress
would be very interesting. However, is the full power of SOS derivations necessary for non-
trivial approximation algorithms or could we use fewer rounds of fancier “lift and project”
type derivations. For example, could dynamic hierachies (for eg. the LS∗ hierarchy) be used
to show non-trivial rank bounds for such questions. While there is some progress in [28] for
this question as far as the LS∗ hierarchy is concerned, there are likely a couple of obvious
weak (non-SOS) hierarchies which are left to be ruled out.

4. Finally, all lower bounds mentioned so far essentially show that some fixed algorithms based
on LP and SDP relaxations can not approximate or refute certain hard instances. However,
the question of size lower bounds in dynamic hierarchies [16, 22] goes beyond fixed algorithms
and we do not know any size vs rank tradeoffs in dynamic hierachies. Moreover, we also do
not know size vs rank tradeoffs for the static positivstellensatz. Such size lower bounds for
static hierarchies may also be interesting simply because they would imply a lower bound on
the number of lifted inequalities needed to deduce the empty polytope and as a consequence
also imply corresponding rank lower bounds.

References

[1] Michael Alekhnovich, Sanjeev Arora, and Iannis Tourlakis. Towards Strong Non-
Approximability Results in the Lovász-Schrijver Hierarchy. In STOC, pages 294–303, 2005.

[2] Michael Alekhnovich and Alexander Razborov. Lower Bounds for Polynomial Calculus: Non-
Binomial Case. In FOCS, pages 190–199, Washington, DC, USA, 2001. IEEE Computer
Society.

[3] Boaz Barak, Fernando G. S. L. Brandão, Aram Wettroth Harrow, Jonathan A. Kelner, David
Steurer, and Yuan Zhou. Hypercontractivity, Sum-of-Squares Proofs, and their Applications.
CoRR, abs/1205.4484, 2012.

[4] Boaz Barak, Prasad Raghavendra, and David Steurer. Rounding Semidefinite Programming
Hierarchies via Global Correlation. In FOCS, pages 472–481, 2011.

[5] Eli Ben-Sasson and Russell Impagliazzo. Random CNFs are Hard for the Polynomial Calculus.
Comput. Complex., 19(4):501–519, December 2010.

[6] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow – resolution made simple. J.
ACM, 48(2):149–169, March 2001.

[7] Siavosh Benabbas, Konstantinos Georgiou, Avner Magen, and Madhur Tulsiani. SDP Gaps
from Pairwise Independence. In Theory of Computing, To appear.

13
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