
Arthur-Merlin Streaming Complexity

Tom Gur ∗ Ran Raz ∗

February 2, 2013

Abstract

We study the power of Arthur-Merlin probabilistic proof systems in the data stream
model. We show a canonical AM streaming algorithm for a wide class of data stream
problems. The algorithm offers a tradeoff between the length of the proof and the space
complexity that is needed to verify it.

As an application, we give an AM streaming algorithm for the Distinct Elements
problem. Given a data stream of length m over alphabet of size n, the algorithm uses
Õ(s) space and a proof of size Õ(w), for every s, w such that s ·w ≥ n (where Õ hides a
polylog(m,n) factor). We also prove a lower bound, showing that everyMA streaming
algorithm for the Distinct Elements problem that uses s bits of space and a proof of
size w, satisfies s · w = Ω(n).

As a part of the proof of the lower bound for the Distinct Elements problem, we
show a new lower bound of Ω (

√
n) on theMA communication complexity of the Gap

Hamming Distance problem, and prove its tightness.

Keywords: Probabilistic Proof Systems, Data Streams, Communication Complexity.

1 Introduction

The data stream computational model is an abstraction commonly used for algorithms that
process network traffic using sublinear space [AMS96, IW03, CCM09]. In the settings of this
model, we have an algorithm that gets a sequence of elements (typically, each element is an
integer) as input. This sequence of elements is called a data stream and is usually denoted
by σ = (a1, . . . , am); where a1 is the first element, a2 is the second element, and so forth.
The algorithm receives its input (a data stream) element-by-element. After it sees each ai,
it no longer has an access to elements with index that is smaller than i. The algorithm is
required to compute a function of the data stream, using as little space as possible.
∗Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot

76100, Israel. E-mail: {tom.gur, ran.raz}@weizmann.ac.il. Research supported by an Israel Science
Foundation grant and by the I-CORE Program of the Planning and Budgeting Committee and the Israel
Science Foundation.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 20 (2013)

Among the most fundamental problems in the data stream model is the problem of
Distinct Elements, i.e., the problem of computing the number of distinct elements in a given
data stream. The problem has been studied extensively in the last two decades (see, for
example, [AMS96, IW03, KNW10]). Its significance stems both from the vast variety of
applications that it spans (covering IP routing, database operations and text compression,
cf. [Mut05, AMS96, GKG05]), and due to the theoretical insight that it gives on the nature
of computation in the data stream model.

Alon at el. [AMS96] have shown a lower bound of Ω(n) (where n is the size of the alphabet
from which the elements are taken) on the streaming complexity of the computation of the
exact number of distinct elements in a sufficiently long data stream (i.e., where the length of
the data stream is at least proportional to n). The goal of reducing the space complexity of
the Distinct Elements problem has led to a long line of research of approximation algorithms
for the problem, starting with the seminal paper [FM83] by Flajolet and Martin. Recently,
Kane at el. [KNW10] gave the first optimal approximation algorithm for estimating the
number of distinct elements in a data stream; for a data stream with alphabet of size n, given
ε > 0 their algorithm computes a (1± ε) multiplicative approximation using O(ε−2 + log n)
bits of space, with 2/3 success probability.

A natural approach for reducing the space complexity of streaming algorithms, without
settling on an approximation, is by considering a probabilistic proof system. Chakrabarti at
el. [CCM09] have shown data stream with annotations algorithms for several data stream
problems, using a probabilistic proof system that is very similar toMA. This line of work
continued in [CMT10], wherein a probabilistic proof system was used in order to reduce
the streaming complexity of numerous graph problems. In a subsequent work [CMT11],
Chakrabarti at el. provided a practical instantiation of one of the most efficient general-
purpose construction of an interactive proof for arbitrary computations, due to Goldwasser
at el. [GKR08].

In this work, we study the power of Arthur-Merlin probabilistic proof systems in the
data stream model. We show a canonical AM streaming algorithm for a wide class of data
stream problems. The algorithm offers a tradeoff between the length of the proof and the
space complexity that is needed to verify it. We show that the problem of Distinct Elements
falls within the class of problems that our canonical algorithm can handle. Thus, we give an
AM streaming algorithm for the Distinct Elements problem. Given a data stream of length
m over alphabet of size n, the algorithm uses Õ(s) space and a proof of size Õ(w), for every
s, w such that s · w ≥ n (where Õ hides a polylog(m,n) factor).

In addition, we give a lower bound on the MA streaming complexity of the Distinct
Elements problem. Our lower bound for Distinct Elements relies on a new lower bound that
we prove on theMA communication complexity of the Gap Hamming Distance problem.

1.1 Arthur-Merlin Probabilistic Proof Systems

AnMA (Merlin-Arthur) proof is a probabilistic extension of the notion of proof in complex-
ity theory. Proofs of this type are commonly described as an interaction between two players,
usually referred to as Merlin and Arthur. We think of Merlin as an omniscient prover, and

2

of Arthur as a computationally bounded verifier. Merlin is supposed to send Arthur a valid
proof for the correctness of a certain statement. After seeing both the input and Merlin’s
proof, with high probability Arthur can verify a valid proof for a correct statement, and
reject every possible alleged proof for a wrong statement.

Formally, the complexity classMA(T,W) is defined as follows:

Definition 1.1. Let ε ≥ 0, and let T,W : N → N be monotone functions. A language L is
inMAε(T,W) if there exists a randomized algorithm V (the verifier) that receives an input
x (denote its size by |x|) and a proof (sometimes called witness) w, such that,

1. Completeness: For every x ∈ L, there exists a string w of length at most W (|x|) that
satisfies

Pr[V (x,w) = 1] > 1− ε.

2. Soundness: For every x 6∈ L, and for any string w of length at most W (|x|),

Pr[V (x,w) = 1] < ε.

3. For every x,w the running time of V on (x,w) is at most T (|x|).

Under these notations, we refer to T as the time complexity of the verifier. The function
W is referred to as the length of the proof, and the sum T +W is called theMA complexity
of the algorithm.

An AM proof is defined almost the same as an MA proof, except that in AM proof
systems we assume that both the prover and the verifier have access to a common source of
randomness (alternatively, AM proof systems can be described asMA proof systems that
start with an extra round, wherein Arthur sends Merlin a random string).

The notion of AM and MA proof systems can be extended to many computational
models. In this work we consider both the communication complexity analogue of MA,
wherein Alice and Bob receive a proof that they use in order to save communication, and
the data stream analogues ofMA and AM, wherein the data stream algorithm receives a
proof and uses it in order to reduce the required resources for solving a data stream problem.

Recently, probabilistic proof systems for streaming algorithms have been used to provide
an abstraction of the notion of delegation of computation to a cloud (see [CMT10, CMT11,
CKLR11]). In the context of cloud computing, a common scenario is one where a user
receives or generates a massive amount of data, which he cannot afford to store locally. The
user can stream the data he receives to the cloud, keeping only a short certificate of the
data he streamed. Later, when the user wants to calculate a function of that data, the
cloud can perform the calculations and send the result to the user. However, the user cannot
automatically trust the cloud (as an error could occur during the computation, or the service
provider might not be honest). Thus the user would like to use the short certificate that he
saved in order to verify the answer that he gets from the cloud.

3

1.2 Communication Complexity and the Gap Hamming Distance Problem

Communication complexity is a central model in computational complexity. In its basic
setup, we have two computationally unbounded players, Alice and Bob, holding (respectively)
binary strings x, y of length n each. The players need to compute a function of both of the
inputs, using the least amount of communication between them.

In this work we examine the well known communication complexity problem of Gap
Hamming Distance (GHD), wherein each of the two parties gets an n bit binary string, and
together the parties need to tell whether the Hamming distance of the strings is larger than
n
2

+
√
n or smaller than n

2
−
√
n (assuming that one of the possibilities occurs). In [CR11]

a tight linear lower bound was proven on the communication complexity of a randomized
communication complexity protocol for GHD. Following [CR11], a couple of other proofs
([Vid11, She11]) were given for the aforementioned lower bound. Relying on [She11], in this
work we give a tight lower bound of Ω(

√
n) on theMA communication complexity of GHD.

1.3 Our Results

The main contributions in this work are:

1. A canonical AM streaming algorithm for a wide class of data stream problems, in-
cluding the Distinct Elements problem.

2. A lower bound on theMA streaming complexity of the Distinct Elements problem.

3. A tight lower bound on the MA communication complexity of the Gap Hamming
Distance problem.

In order to state the results precisely, we first introduce the following notations: given
a data stream σ = (a1, . . . , am) (over alphabet [n]), the element indicator χi : [n] → {0, 1}
of the i’th element (i ∈ [m]) of the stream σ, is the function that indicates whether a given
element is in position i ∈ [m] of σ, i.e., χi(j) = 1 if and only if ai = j. Furthermore, let
χ : [n]→ {0, 1}m be the element indicator of σ, defined by

χ(j) =
(
χ1(j), . . . , χm(j)

)
.

In addition, given n ∈ N we define a clause over n variables x1, . . . , xn as a function C :
{0, 1}n → {0, 1} of the form (y1 ∨ y2 ∨ . . .∨ yn), where for every i ∈ [n] the literal yi is either
a variable (xj), a negation of a variable (¬xj), or one of the constants {0, 1}.

Equipped with the notations above, we formally state our results. Let 0 ≤ ε < 1/2. Let
P be a data stream problem such that for every m,n ∈ N there exists a set of k = k(m,n)
clauses {Ct}t∈[k] over m variables, and a function ψ : {0, 1}k → Z, such that for every data
stream σ = (a1, . . . , am) with alphabet [n],

(1− ε)P(σ) ≤
n∑
j=1

ψ
(
C1 ◦ χ(j), . . . , Ck ◦ χ(j)

)
≤ (1 + ε)P(σ).

4

Moreover, we assume that ψ and {Ct}t∈[k] are known to the verifier1, and that there exists
B ≤ poly(m,n) such that ψ(x) < B for every x ∈ {0, 1}k. Given such P , for every 0 < δ ≤ 1
and every s, w ∈ N such that s · w ≥ n, we give an AM streaming algorithm, with error
probability δ, for approximating P(σ) within a multiplicative factor of 1± ε. The algorithm
uses space O

(
sk · polylog(m,n, δ−1)

)
, a proof of size W = O

(
wk · polylog(m,n, δ−1)

)
, and

randomness complexity polylog(m,n, δ−1).

We show that the aforementioned algorithm, when applied to the Distinct Elements
problem with parameters s, w such that s · w ≥ n, yields an AM streaming algorithm for
the problem. The algorithm computes, with probability at least 2/3, the exact number of
distinct elements in a data stream of lengthm over alphabet [n], using space Õ(s) and a proof
of size Õ(w) (where Õ hides a polylog(m,n) factor). For example, by fixing w = n, we get an
AM streaming algorithm for the Distinct Elements problem that uses only polylogarithmic
space.

We note that an interesting special case of the class of problems that our canonical
AM streaming algorithm handles can also be stated in terms of Boolean circuits, instead of
clauses. That is, given 0 ≤ ε < 1/2 and a data stream problem P such that for everym,n ∈ N
there exists an unbounded fan-in Boolean circuit C : {0, 1}m → {0, 1} with k = k(m,n) non-
input gates, such that for every data stream σ = (a1, . . . , am) with alphabet [n],

(1− ε)P(σ) ≤
n∑
j=1

C
(
χ1(j), . . . , χm(j)

)
≤ (1 + ε)P(σ).

Assuming that C is known to the verifier, we get an AM streaming algorithm for P with
the same parameters as in the original formulation of the canonical AM algorithm above.

Our next result is a lower bound on theMA streaming complexity of the Distinct Ele-
ments problem. We show that everyMA streaming algorithm that approximates, within a
multiplicative factor of 1± 1/√n, the number of distinct elements in a data stream of length
m over alphabet [n], using s bits of space and a proof of size w, must satisfy s · w = Ω(n).

Last, we show a tight (up to a logarithmic factor) lower bound on the MA communi-
cation complexity of the Gap Hamming Distance problem. For everyMA communication
complexity protocol for GHD that communicates t bits and uses a proof of size w, we have
t · w = Ω(n). We prove the tightness of the lower bound by giving, for every t, w ∈ N such
that t · w ≥ n, anMA communication complexity protocol for GHD, which communicates
O(t log n) bits and uses a proof of size O(w log n).

1.4 Techniques

The main intuition behind our canonical AM streaming algorithm is based on the “alge-
brization” inspired communication complexity protocol of Aaronson and Wigderson [AW09].
However our proof is much more technically involved.

1For example, ψ and {Ct}t∈[k] can be polylog(m,n)-space uniform; that is, the description of ψ and
{Ct}t∈[k] can be computed by a deterministic Turing machine that runs in polylog(m,n) space.

5

In general, say we have a data stream problem P and two integers s, w such that s·w ≥ n.
If there exists a low degree polynomial g(x, y) : Z2 → Z (that depends on the input stream
σ) and two domains Dw,Ds ⊆ Z of cardinality w, s (respectively) such that

P(σ) =
∑
x∈Dw

∑
y∈Ds

g(x, y),

then assuming we can efficiently evaluate g at a random point, by a straightforward adapta-
tion of the [AW09] protocol to the settings of streaming algorithms, we obtain a simpleMA
streaming algorithm for P .

However, in our case we can only express P(σ) as∑
x∈Dw

∑
y∈Ds

ψ
(
C1 ◦ χ̃(x, y), . . . , Ck ◦ χ̃(x, y)

)
,

where k is a natural number, {Ct}t∈[k] are clauses over m variables, ψ : {0, 1}k → Z is a
function over the hypercube, χ̃ : Dw×Ds → {0, 1}m is the bivariate equivalent of the element
indicator χ : [n]→ {0, 1}m, and Dw,Ds ⊆ Z are domains of cardinality w, s (respectively).

The function ψ
(
C1 ◦ χ̃(x, y), . . . , Ck ◦ χ̃(x, y)

)
is not a low degree polynomial. We would

have liked to overcome this difficulty by using the approximation method of [Raz87, Smo87].
The latter allows us to have a low degree approximation of the clauses {Ct}t∈[k], such that
with high probability (over the construction of the approximation polynomials) we can re-
place the clauses with low degree polynomials, without changing the output. The aforemen-
tioned randomized procedure comes at a cost of turning theMA streaming algorithm to an
AM streaming algorithm.

Yet, the above does not sufficiently reduces the degree of ψ
(
C1 ◦ χ̃(x, y), . . . , Ck ◦ χ̃(x, y)

)
.

This is due to the fact that the method of [Raz87, Smo87] results with approximation poly-
nomials over a finite field of cardinality that is larger than P(σ). The degree of the approx-
imation polynomials is close to the cardinality of the finite field, which in our case can be a
large number (poly(m,n)).

Instead we aim to apply the method of [Raz87, Smo87] to approximate

{P(σ) (mod q)}q∈Q
for a set Q of polylog(m,n) primes, each of size at most polylog(m,n). This way, each
approximation polynomial that we get is over a finite field of cardinality polylog(m,n), and
of sufficiently low degree. Then, we use the Chinese Remainder Theorem to extract the
value of P(σ) from {P(σ) (mod q)}q∈Q.

Nonetheless, this is still not enough, as for every q ∈ Q we want the answer to be the
summation of the polynomial approximation of ψ

(
C1◦χ̃(x, y), . . . , Ck◦χ̃(x, y)

)
(mod q) over

some domain Dw × Ds ⊆ Z2 (where |Dw| = w and |Ds| = s). Since the cardinality of the
field Fq is typically smaller than w and s, we use an extension (of sufficient cardinality) of
the field Fq.

At each step of the construction, we make sure that we perserve both the restrictions
that are imposed by the data stream model, and the conditions that are needed to ensure
an efficient verification of the proof.

6

The idea behind our AM streaming algorithm for Distinct Elements is simply noting
that we can indicate whether an element j appears in the data stream, by the disjunction of
the element indicators of j ∈ [n] in all of the positions of the stream (i.e., χ1(j), . . . , χm(j)).
Then we can represent the number of distinct elements as a sum of disjunctions, and use the
canonical AM streaming algorithm in order to solve the Distinct Elements problem.

As for the lower bound on theMA streaming complexity of the Distinct Elements prob-
lem, we start by establishing a lower bound on the MA communication complexity of the
Gap Hamming Distance problem (GHD). A key element in the proof of the latter is based
on Sherstov’s recent result [She11] on the Gap Orthogonality problem (ORT) and its relation
to GHD. Sherstov observed that the problem of Gap Orthogonality readily reduces to Gap
Hamming Distance problem. Although at first glance it seems that the transition to ORT
is of little substance, it turns out that Yao’s corruption bound [Yao83] suits it perfectly. In
fact, the corruption property for ORT is equivalent to the anti-concentration property of
orthogonal vectors in the Boolean cube. Using this observation, we prove a lower bound
on theMA communication complexity of ORT (following the method of [RS04]), which in
turn, by the reduction from ORT to GHD, implies a lower bound on the MA communica-
tion complexity of GHD. Next we adapt the reduction that was implicitly stated in [IW03],
and reduce the MA communication complexity problem of GHD to the MA problem of
calculating the exact number of Distinct Elements.

1.5 Related Work

The data stream model has gained a great deal of attention after the publication of the sem-
inal paper by Alon, Matias and Szegedy [AMS96]. In the scope of that work, the authors
have shown a lower bound of Ω(n) (where n is the size of the alphabet) on the stream-
ing complexity of Distinct Elements (i.e., the computation of the exact number of distinct
elements in a data stream) where the length of the input is at least proportional to n.

Following [AMS96] there was a long line of theoretical research on the approximation of
the Distinct Element problem ([BYJK+02, IW03, BHR+07, BC09, KNW10], see [Mut05] for
a survey of earlier results). Finally, Kane at el. [KNW10] gave the first optimal approxima-
tion algorithm for estimating the number of distinct elements in a data stream; for a data
stream with alphabet of size n, given ε > 0 their algorithm computes a (1± ε) multiplicative
approximation using O(ε−2 + log n) bits of space, with 2/3 success probability. This result
matches the tight lower bound of Indyk and Woodruff [IW03].

In a recent sequence of works, the data stream model was extended to support several
interactive and non-interactive proof systems [CCM09, CMT10, CKLR11]. The model of
streaming algorithms with non-interactive proofs was first introduced in [CCM09] and ex-
tended in [CMT10, CMT11]. In [CCM09] the authors gave an optimal (up to polylogarithmic
factors) data stream with annotations algorithm for computing the k’th frequency moment
exactly, for every integer k ≥ 1.

7

2 Preliminaries

2.1 Communication Complexity

Let X, Y, Z be finite sets, and let f : X × Y → Z be a (possibly partial) function. In
the two-party probabilistic communication complexity model we have two computationally
unbounded players, traditionally referred to as Alice and Bob. Both players share a random
string. Alice gets as an input x ∈ X. Bob gets as an input y ∈ Y . At the beginning, none of
the players has any information regarding the input of the other player. Their common goal
is to compute the value of f(x, y), using a protocol that communicates as small number of
bits as possible. In each step of the protocol, one of the players sends one bit to the other
player. This bit may depend on the player’s input, the common random string, as well as on
all previous bits communicated between the two players. At the end of the protocol, both
players have to know the value of f(x, y) with high probability.

2.1.1 MA Communication Complexity

InMA communication complexity protocols, we have a (possibly partial) function f : X ×
Y → {0, 1} (for some finite setsX, Y), and three computationally unbounded parties: Merlin,
Alice, and Bob. The function f is known to all parties. Alice gets as an input x ∈ X. Bob
gets as an input y ∈ Y . Merlin sees both x and y. We think of Merlin as a prover, and think
of Alice and Bob as verifiers. We assume that Alice and Bob share a private random string
that Merlin cannot see.

At the beginning of an MA communication complexity protocol, Merlin sends a proof
string w to both Alice and Bob, so both players have a free access to w. The players proceed
as before. In each step of the protocol, one of the players sends one bit to the other player. At
the end of the protocol, both players have to know an answer z. Hence, the answer depends
on the input (x, y) as well as on the proof w. For a protocol P , denote by P

(
(x, y), w

)
the

probabilistic answer z given by the protocol on input (x, y) and proof w.

AnMA communication complexity protocol has three parameters: a limit on the proba-
bility of error of the protocol, denoted by ε; a limit on the number of bits of communication
between Alice and Bob, denoted by T ; and a limit on the length of Merlin’s proof string,
denoted by W .

With the above in mind, we can now define MAε(T,W) communication complexity as
follows:

Definition 2.1. AnMAε(T,W)-communication complexity protocol for f is a probabilistic
communication complexity protocol P , as above (i.e., with an additional proof string w pre-
sented to the players). During the protocol, Alice and Bob communicate at most T bits. The
protocol satisfies,

1. Completeness: for all (x, y) ∈ f−1(1), there exists a string w such that |w| < W ,

8

that satisfies

Pr
[
P
(
(x, y), w

)
= 1
]
> 1− ε.

2. Soundness: for all (x, y) ∈ f−1(0) and for any string w such that |w| < W , we have

Pr
[
P
(
(x, y), w

)
= 1
]
< ε.

2.1.2 The Gap Hamming Distance Problem

Let n ∈ N, and let ζ0, ζ1 > 0. We define the Gap Hamming Distance problem as follows:

Definition 2.2. The Gap Hamming Distance problem is the communication complexity
problem of computing the partial Boolean function GHDn,ζ0,ζ1 : {−1, 1}n×{−1, 1}n → {0, 1}
given by

GHDn,ζ0,ζ1(x, y) =

{
1 if 〈x, y〉 > ζ1

0 if 〈x, y〉 < −ζ0

Denote GHD = GHDn,
√
n,
√
n.

2.2 Streaming Complexity

Let ε ≥ 0, δ > 0. Let m,n ∈ N. A data stream σ = (a1, . . . , am) is a sequence of elements,
each from [n] = {1, . . . , n}. We say that the length of the stream is m, and the alphabet size
is n.

A streaming algorithm is a space-bounded probabilistic algorithm that gets an element-
by-element access to a data stream. After each element arrives, the algorithm can no longer
access the elements that precede it. At the end of its run, the streaming algorithm is required
to output (with high probability) a certain function of the data stream that it read. When
dealing with streaming algorithms, the main resource we are concerned with is the size of
the space that the algorithm uses.

Formally, a data stream problem P is a collection of functions {fm,n : [n]m → R}m,n∈N.
That is, a function for every combination of length and alphabet size of a data stream.
However, slightly abusing notation for the sake of brevity, we will define each data stream
problem by a single function (which in fact depends on the lengthm and alphabet size n of the
data stream). A δ-error, ε-approximation data stream algorithm Aε,δ for P is a probabilistic
algorithm that gets a sequential, one pass access to a data stream σ = (a1, . . . , am) (where
each ai is a member of [n]), and satisfies:

Pr

[∣∣∣∣Aε,δ(σ)

fm,n(σ)
− 1

∣∣∣∣ > ε

]
< δ.

If ε = 0 we say that the streaming algorithm is exact.

9

Last, given a data stream problem P = {fm,n : [n]m → R}m,n∈N and a data stream
σ = (a1, . . . , am) (with alphabet [n]) we denote by P(σ) the output of fm,n(σ), for the
fm,n ∈ P that matches the length and alphabet size of σ. Similarly, when applying a
family of functions to σ, we in fact apply a specific function in the family, according to the
parameters m,n of σ.

2.2.1 The Distinct Elements Problem

The Distinct Elements problem is the problem of computing the exact number of distinct
elements that appear in a data stream, denoted by F0(σ). Formally, we define:

Definition 2.3. The Distinct Elements problem is the data stream problem of computing
the exact number of distinct elements in a data stream σ = (a1, . . . , am) (where ai ∈ [n] for
every i), i.e., computing (exactly):

F0(σ) =
∣∣ {i ∈ N : ∃j ∈ [m] aj = i}

∣∣.
Note that if we define 00 = 0 then this is exactly the 0’th frequency moment of the

stream. Hence the notation F0.

3 Streaming Algorithms with Probabilistic Proof Systems

In this section we extend the data stream computational model in order to support two
types of probabilistic proof systems: MA algorithms, wherein the streaming algorithm gets
a proof that it probabilistically verifies, and AM algorithms that extend MA algorithms
by adding shared randomness. We study both of these probabilistic proof systems in two
variations: in the first, the proof is also being streamed to the verifier, and in the second,
the verifier has a free access to the proof. Formal definitions follow.

3.1 MA Streaming Algorithms

Similarly to the wayMA communication complexity protocols are defined, inMA streaming
algorithms we have an omniscient prover (Merlin) who sends a proof to a verifier (Arthur),
which is in fact a streaming algorithm that gets both the input stream and the proof (either
by a free access or by a one-pass, sequential access). The streaming algorithm computes a
function of the input stream. Using the proof we hope to achieve a better space complexity
than what the regular streaming model allows.

We start withMA proofs wherein the proof is being streamed to the verifier. Formally,
we define

Definition 3.1. Let ε ≥ 0, δ > 0, and let P = {fm,n : [n]m → R}m,n∈N be a data stream
problem. AnMA streaming algorithm for P is a probabilistic data stream algorithm A, which
simultaneously gets two streams: an input stream σ = (a1, . . . , am) (where ai ∈ [n] for every

10

i) and a proof stream ω; to both it has a sequential, one pass access. Given two functions
S,W : N2 → N, we say that an MA streaming algorithm is MAε,δ

(
S(m,n),W (m,n)

)
if it

uses at most S(m,n) bits of space, and satisfies:

1. Completeness: for every σ = (a1, . . . , am) (with alphabet [n]) there exists a non
empty set Wσ of proof streams of length at most W (m,n), such that for every ω ∈ Wσ

we have,

Pr

[∣∣∣∣A(σ, ω)

fm,n(σ)
− 1

∣∣∣∣ ≤ ε

]
> 1− δ

2. Soundness: for every σ = (a1, . . . , am) (with alphabet [n]), and for every ω 6∈ Wσ we
have

Pr[A(σ, ω) 6= ⊥] < δ

where ⊥ 6∈ R is a symbol that represents that the algorithm could not verify the cor-
rectness of the proof.

The second natural way to define anMA probabilistic proof system for the data stream
model, is by allowing the algorithm a free access to the proof. This leads to the following
definition:

Definition 3.2. Let ε ≥ 0, δ > 0, and let P = {fm,n : [n]m → R}m,n∈N be a data
stream problem. An M̂A streaming algorithm for P is a probabilistic data stream algo-
rithm Aw, which has a free oracle access to a proof string w. The algorithm gets a stream
σ = (a1, . . . , am) (where ai ∈ [n] for every i) as an input, to which it has a sequential, one
pass access. Given two functions S,W : N2 → N, we say that an M̂A streaming algorithm
is M̂Aε,δ

(
S(m,n),W (m,n)

)
if it uses at most S(m,n) bits of space, and satisfies:

1. Completeness: for every σ = (a1, . . . , am) (with alphabet [n]), there exists a non
empty set Wσ of proof strings of length at most W (m,n), such that for every w ∈ Wσ

we have,

Pr

[∣∣∣∣ Aw(σ)

fm,n(σ)
− 1

∣∣∣∣ ≤ ε

]
> 1− δ

2. Soundness: for every σ = (a1, . . . , am) (with alphabet [n]), and for every w 6∈ Wσ we
have

Pr[Aw(σ) 6= ⊥] < δ

where ⊥ 6∈ R is a symbol that represents that the algorithm could not verify the cor-
rectness of the proof.

Note that by definition, the model of MA streaming with a free access to the proof is
stronger than the model ofMA streaming with a proof stream. Thus when in Section 6 we
prove lower bounds on the M̂A streaming complexity, it also implies lower bounds on the
MA streaming complexity.

11

3.2 AM Streaming Algorithms

We can further extend the data stream model to support an AM probabilistic proof system.
Similarly to the case of MA proofs, an AM streaming algorithm receives a proof stream
and an input stream, to which it has a sequential, one pass access; except that in AM proof
systems the prover and verifier also share a common random string. Formally, we define

Definition 3.3. Let ε ≥ 0, δ > 0, and let P = {fm,n : [n]m → R}m,n∈N be a data stream
problem. An AM streaming algorithm for P is a probabilistic data stream algorithm Ar
that has an oracle access to a common random string r, and that is also allowed to make
private random coin tosses. The algorithm simultaneously gets two streams: an input stream
σ = (a1, . . . , am) (where ai ∈ [n] for every i) and a proof stream ω, to both it has a sequential,
one pass access. Given two functions S,W : N2 → N, we say that an AM streaming
algorithm is AMε,δ

(
S(m,n),W (m,n)

)
if it uses at most S(m,n) bits of space, and satisfies

that for every σ = (a1, . . . , am) (over alphabet [n]), with probability at least 1− δ/2 (over r)
there exists a non empty set Wσ(r) of proof streams of length at most W (m,n), such that:

1. Completeness: For every ω ∈ Wσ(r)

Pr

[∣∣∣∣Ar(σ, ω)

fm,n(σ)
− 1

∣∣∣∣ ≤ ε

]
> 1− δ

2
,

where the probability is taken over the private random coin tosses of Ar.

2. Soundness: For ω 6∈ Wσ(r)

Pr [Ar(σ, ω) = ⊥] > 1− δ

2
,

where the probability is taken over the private random coin tosses of Ar, and ⊥ 6∈ R
is a symbol that represents that the algorithm could not verify the correctness of the
proof.

The randomness complexity of the algorithm is the total size of the common random string
r, and the number of private random coin tosses that the algorithms performs.

Note that we slightly deviate from the standard definition of an AM algorithm, by
allowing A to be a probabilistic algorithm with a private random string.

Just as with the MA streaming model, we can define ÂM streaming algorithms by
allowing a free access to the proof. Again, by definition the model of AM streaming with a
free access to the proof is stronger than the model ofAM streaming with a proof stream. Our
canonical AM algorithm works for the weaker model, wherein the proof is being streamed,
thus our AM upper bounds also implies ÂM upper bounds.

Note 1: In both of the models (MA and AM), as traditionally done in Arthur-Merlin
probabilistic proof systems, we will sometimes describe the MA/AM algorithm as an in-
teraction between an omniscient prover Merlin, who sends an alleged proof of a statement

12

to Arthur, a computationally limited verifier (in our case, a streaming algorithm), who in
turn probabilistically verifies the correctness of Merlin’s proof.

Note 2: In all of our (MA and AM) algorithms, we assume without loss of generality
that Arthur knows both the length m and the alphabet size n. This can be done since we
can insert m,n at the beginning of the proof. Then, Arthur only needs to verify that the
length of the stream was indeed m, and that no element was bigger than n. Since all of
the algorithms we present in this paper are Ω(logm + log n) in both proof size and space
complexity, this does not change their overall asymptotical complexity.

4 The Canonical AM Streaming Algorithm

In this section we show our canonical AM algorithm. Recall that given a data stream
σ = (a1, . . . , am) (over alphabet [n]), the element indicator χi : [n] → {0, 1} of the i’th
element (i ∈ [m]) of the stream σ, is the function that indicates whether a given element is
in position i ∈ [m] of σ, i.e., χi(j) = 1 if and only if ai = j. Furthermore, let χ : [n]→ {0, 1}m
be the element indicator of σ, defined by

χ(j) =
(
χ1(j), . . . , χm(j)

)
.

In addition, given n ∈ N we define a clause over n variables x1, . . . , xn as a function C :
{0, 1}n → {0, 1} of the form (y1 ∨ y2 ∨ . . .∨ yn), where for every i ∈ [n] the literal yi is either
a variable (xj), a negation of a variable (¬xj), or one of the constants {0, 1}.

We prove the following theorem:

Theorem 4.1. Let 0 ≤ ε < 1/2. Let P be a data stream problem such that for every
m,n ∈ N there exists a set of k = k(m,n) clauses {Ct}t∈[k] over m variables, and a function
ψ : {0, 1}k → Z, such that for every data stream σ = (a1, . . . , am) with alphabet [n],

(1− ε)P(σ) ≤
n∑
j=1

ψ
(
C1 ◦ χ(j), . . . , Ck ◦ χ(j)

)
≤ (1 + ε)P(σ).

Moreover, we assume that ψ and {Ct}t∈[k] are known to the verifier, and that there exists B ≤
poly(m,n) such that ψ(x) < B for every x ∈ {0, 1}k. Then, for every 0 < δ ≤ 1 and every
s, w ∈ N such that s · w ≥ n, there exists an explicit AMε,δ(S,W)-streaming algorithm for
approximating P(σ); where S = O

(
sk ·polylog(m,n, δ−1)

)
, W = O

(
wk ·polylog(m,n, δ−1)

)
,

and the randomness complexity is polylog(m,n, δ−1).

Proof. Let 0 ≤ ε < 1/2. Let P be a data stream problem such that for every m,n ∈ N there
exists a set of k = k(m,n) clauses {Ct}t∈[k] over m variables, and a function ψ : {0, 1}k → Z,
such that for every data stream σ = (a1, . . . , am) with alphabet [n],

(1− ε)P(σ) ≤
n∑
j=1

ψ
(
C1 ◦ χ(j), . . . , Ck ◦ χ(j)

)
≤ (1 + ε)P(σ). (4.1)

13

Assume that ψ and {Ct}t∈[k] are known to the verifier, and that there exists B ≤ poly(m,n)
such that ψ(x) < B for every x ∈ {0, 1}k. Observe that since ψ gets {0, 1} values as inputs,
we can think of ψ as a multilinear polynomial. Assume without loss of generality that k ≤ m
(otherwise the theorem follows trivially).

Let 0 < δ ≤ 1 and let s, w ∈ N such that s ·w ≥ n (assume for simplicity and without loss
of generality that s · w = n exactly). We show that there exists an explicit AMε,δ(S,W)-
streaming algorithm for approximating P(σ); where

S = O
(
sk · polylog(m,n, δ−1)

)
,

W = O
(
wk · polylog(m,n, δ−1)

)
,

and the randomness complexity is polylog(m,n, δ−1).

Let σ = (a1, . . . , am) be a data stream with alphabet [n]. The first step is representing
the middle term of (4.1) as a summation of a low degree polynomial over some domain.
Specifically, we represent the element indicators {χi}i∈[m] as bivariate polynomials over a
finite field.

Let p be a sufficiently large (to be determined later) prime number of order

1

δ
· poly(m,n)

such that: p > 2nB > P(σ). Let Ds(Fp) be any efficiently enumerable subset, of cardinality
s, of the field Fp (e.g., the lexicographically first elements in some representation of the
field Fp). Likewise, let Dw(Fp) be any efficiently enumerable subset, of cardinality w, of
the field Fp. Note that since n = w · s, there exists a one-to-one mapping between the
domain [n] and the domain Dw(Fp) × Ds(Fp). Fix such (efficiently computable) mapping
π : [n]→ Dw(Fp)×Ds(Fp) (e.g., according to the lexicographic order).

For every i ∈ [m] we can view χi : [n] → {0, 1} as a bivariate polynomial χ̃i : F2
p → Fp

of degree w − 1 in the first variable (which we denote by x), and degree s− 1 in the second
variable (which we denote by y), such that for every j ∈ [n] we have χ̃i ◦ π(j) = χi(j). If we
denote (αi, βi) := π(ai), then the extension χ̃i : F2

p → Fp is given explicitly by the Lagrange
interpolation polynomial:

χ̃i(x, y) =

∏
a∈Dw(Fp)
a6=αi

(x− a)
∏

b∈Ds(Fp)
b 6=βi

(y − b)

∏
a∈Dw(Fp)
a6=αi

(αi − a)
∏

b∈Ds(Fp)
b 6=βi

(βi − b)
(4.2)

Note that for every ξ ∈ Ds(Fp), the degree of the univariate polynomial χ̃i(·, ξ) : Fp → Fp is
at most w − 1.

Let χ̃ : F2
p → Fmp be the polynomial extension of the element indicator of σ, defined by

χ̃(x, y) =
(
χ̃1(x, y), . . . , χ̃m(x, y)

)
.

14

Plugging-in the polynomial extensions of the element indicators to (4.1) yields that

P̃(σ) :=
∑

x∈Dw(Fp)

∑
y∈Ds(Fp)

ψ
(
C1 ◦ χ̃(x, y), . . . , Ck ◦ χ̃(x, y)

)
(4.3)

(where the summation is over Z) approximates P(σ) within a multiplicative factor of 1± ε.
Later, we will give analogous expressions of P(σ) (mod q) for prime numbers q = O(log p).

Next, we replace each clause in (4.3) with a low degree polynomial (over a small finite
field) that approximates it. Towards this end, we show the following lemma (originated in
[Raz87, Smo87]):

Lemma 4.2. Let δ′ > 0, let q be a prime number, and let {Ct}t∈[k] be a set of k clauses
over m variables. Using polylog(m, k, δ′−1) random coin flips, we can construct a set of
polynomials {pt : Fmq → Fq}t∈[k] of degree O(q log k/δ′) each, such that for every x ∈ {0, 1}m,

Pr [∀t ∈ [k] pt(x) = Ct(x)] ≥ 1− δ′

(where the probability is taken over the random coin flips performed during the construction
of {pt}t∈[k]).

Proof. Consider C := {Ct}t∈[k], where for every t ∈ [k], Ct is a clause over m variables. We
approximate each Ct ∈ C by a polynomial pt : Fmq → Fq. Recall that every clause in C is an
m-variate disjunction gate that operates on literals, which are either a variable, or a negation
of a variable, or one of the constants {0, 1}.

In order to construct a polynomial approximation of a clause Ct ∈ C, we first replace each
negation gate over a variable x in Ct, with the polynomial 1− x. Note that this polynomial
computes the negation exactly (i.e., no approximation).

Next, we use the method of [Raz87, Smo87] to approximate the m-variate disjunction
gate of Ct, by constructing an approximation polynomial in the following way: let ECC :
Fmq → F100m

q be a linear error correcting code with relative distance 1/3. Fix

L = O

(
log k + log

1

δ′

)
,

such that (
2

3

)L
≤ δ′

k
,

and choose independently and uniformly at random ι1, . . . , ιL ∈ [100m]. We build a low
degree polynomial approximation for the Boolean disjunction function. Consider η : Fmq →
Fq, defined by

η(z1, . . . , zm) = 1−
L∏
l=1

(
1−

(
ECC(z1, . . . , zm)ιl

)q−1
)
.

15

Since ECC is linear, η is a polynomial of degree O(L · q) in the variables z1, . . . , zm. Observe
that the linearity and the relative distance of ECC, together with Fermat’s little theorem
implies that for every (x1, . . . , xm) ∈ {0, 1}m,

Pr

[
η(x1, . . . , xm) 6=

m∨
i=1

xi

]
≤
(

2

3

)L
≤ δ′

k
(4.4)

(where the probability is taken over the random choices of ι1, . . . , ιL ∈ [100m]). Note that
we use the same polynomial η for all of the clauses in C. Thus, the total number of coin
flips that we use is polylog(m, k, δ′−1). The last step of the construction is defining pt as the
composition of the disjunction polynomial η and the literals in the clause Ct.

Note that applying the approximation procedure that we described above to all of the
clauses in C, results with a set of k polynomials {pt : Fmq → Fq}t∈[k], where for every t ∈ [k]
the degree of pt is O(q log k/δ′). We conclude the proof of the lemma by noticing that (4.4)
together with a union bound imply that for every x ∈ {0, 1}m,

Pr [∀t ∈ [k] pt(x) = Ct(x)] ≥ 1− δ′

(where the probability is over the random choices of ι1, . . . , ιL ∈ [100m]).

Observe that by applying Lemma 4.2 with δ′ = δ and p as the prime number, we can
represent (4.3) as a summation over a polynomial. However, the degree of this polynomial
(which is dominated by p), is too high for our needs. Instead, we approximate (4.3) by
O(log p) low degree polynomials.

We start by introducing the necessary notations. Let Q = {q1, . . . , qρ(c log p)} (where
ρ : N→ N is the prime counting function) be the set of all prime numbers that are smaller
or equal to c log p, where c is a constant such that∏

q∈Q

q > p.

For every q ∈ Q denote Hq := Fqλq , where λq is the minimum integer that satisfies
qλq > p. Since q = O(log p), and by the minimality of λq, we have |Hq| < pq = O(p log p).
Furthermore,

P̃(σ) (mod q) =
∑

x∈Dw(Fp)

∑
y∈Ds(Fp)

ψ
(
C1 ◦ χ̃(x, y), . . . , Ck ◦ χ̃(x, y)

)
(mod q) (4.5)

(where we can think of the summation over Z modulo q, as summation over Fq). Denote

P̃q(σ) := P̃(σ) (mod q).

Analogously to the definitions for Fp; for every prime q ∈ Q we define efficiently enumer-
able subsets Ds(Hq), Dw(Hq) of Hq, with cardinality s, w (respectively), and a one-to-one
mapping πq : [n] → Dw(Hq) × Ds(Hq). For every i ∈ [m], we can view χi : [n] → {0, 1} as

16

a bivariate polynomial χ̃qi : H2
q → Hq of degree w − 1 in the first variable (which we denote

by x), and degree s − 1 in the second variable (which we denote by y), such that for every
j ∈ [n] we have χ̃qi ◦ πq(j) = χi(j). Let χ̃q : H2

q → Hm
q be defined by

χ̃q(x, y) =
(
χ̃q1(x, y), . . . , χ̃qm(x, y)

)
.

Moreover, we can think of the multilinear polynomial ψ : {0, 1}k → Z as a multilinear
polynomial ψ̃ : Fkp → Fp (recall that ψ(x) < B < p for every x ∈ {0, 1}k). Let ψ̃q : Fkq → Fq
be the polynomial function defined by the formal polynomial (i.e., a summation of monomials
multiplied by coefficients) ψ̃, where we take each coefficient of ψ̃ modulo q. Since Fq is a
subfield of Hq, we can also view ψ̃q as a multilinear polynomial from Hk

q to Hq.

Thus, we can express (4.5) as follows:

P̃q(σ) =
∑

x∈Dw(Hq)

∑
y∈Ds(Hq)

ψ̃q
(
C1 ◦ χ̃q(x, y), . . . , Ck ◦ χ̃q(x, y)

)
(4.6)

(where the summation is over Hq, which in this case is equal to summation over Fq, hence
the modulo q).2

For every q ∈ Q, we apply Lemma 4.2 with δ′ = δ
2nc log p

, and q as the prime number. We
get a set of polynomials {

pt : Fmq → Fq
}
t∈[k]

(for every q ∈ Q), of degree O
(
q log kn log p

δ

)
each, such that for every x ∈ {0, 1}m,

Pr [∀t ∈ [k] pt(x) = Ct(x)] ≥ 1− δ

2nc log p
(4.7)

(where the probability is taken over the random coin flips performed during the construction
of {pt}t∈[k]).

Since Fq is a subfield of Hq, we can view pt : Fmq → Fq as a polynomial p̃t : Hm
q → Hq (for

every t ∈ [k]). Then, for every x ∈ Fmq we have p̃t(x) = pt(x). Thus, we get the following set
of polynomials: {

p̃t : Hm
q → Hq

}
t∈[k]

,

where for every t ∈ [k], the degree of p̃t is O
(
q log kn log p

δ

)
.

Applying a union bound, and using (4.7) yields:

Pr

P̃q(σ) =
∑

x∈Dw(Hq)

∑
y∈Ds(Hq)

ψ̃q
(
p̃1 ◦ χ̃q(x, y), . . . , p̃k ◦ χ̃q(x, y)

) ≥ 1− δ

2c log p
(4.8)

2Since for every x ∈ Dw(Hq) and y ∈ Ds(Hq) we have
(
C1 ◦ χ̃q(x, y), . . . , Ck ◦ χ̃q(x, y)

)
∈ {0, 1}k, then

each summand is in Fq. Hence we can think of the summation as summation over Fq.

17

(where the probability is taken over the random coin flips performed during the construction
of {pt}t∈[k], and the summation is over Hq).3

Next, we define the polynomial ωq : Hq → Hq by

ωq(x) =
∑

y∈Ds(Hq)

ψ̃q
(
p̃1 ◦ χ̃q(x, y), . . . , p̃k ◦ χ̃q(x, y)

)
(where the summation is over Hq). Note that for every t ∈ [k], the composition of p̃t and χ̃q
is a polynomial of degree

O

(
wq log

kn log p

δ

)
in x (the first variable). Hence, by the multilinearity of ψ̃,

deg(ωq) = O

(
wkq log

kn log p

δ

)
. (4.9)

By (4.8) we have,

Pr

P̃q(σ) =
∑

x∈Dw(Hq)

ωq(x)

 ≥ 1− δ

2c log p
(4.10)

(where the probability is taken over the random coin flips performed during the construction
of {pt}t∈[k], and the summation is over Hq).

Once we established the above, we can finally describe Merlin’s proof stream. The proof
stream ϕ consists of all the proof polynomials {ωq}q∈Q. We send each polynomial by its list
of coefficients, thus we need at most

O

(
|Q|wk log(p) log

(
kn log p

δ

)
· log(p log p)

)

bits in order to write down the proof stream. Since |Q| < c log p, we conclude:

Claim 4.3. the total size of Merlin’s proof stream ϕ is

O
(
wk · polylog

(
m,n, δ−1

))
.

Observe that it is possible to reconstruct P̃ (σ) from the polynomials given in Merlin’s
proof. We formalize this claim as follows:

Claim 4.4. Given the set of values {
∑

x∈Dw(Hq) ωq(x)}q∈Q, it is possible to compute P̃ (σ) with
probability 1− δ/2 (over the random coin tosses that were performed during the construction
of {ωq}q∈Q).

3Again, since for every x ∈ Dw(Hq) and y ∈ Ds(Hq) we have
(
p̃1 ◦ χ̃q(x, y), . . . , p̃k ◦ χ̃q(x, y)

)
∈ {0, 1}k,

then each summand is in Fq. Hence, the summation is modulo q.

18

Proof. Note that for every q ∈ Q we have

Pr

 ∑
x∈Dw(Hq)

ωq(x) = P̃(σ) (mod q)

 ≥ 1− δ

2c log p
.

Hence,

Pr

∀q ∈ Q ∑
x∈Dw(Hq)

ωq(x) = P̃(σ) (mod q)

 ≥ 1− δ

2
.

By the Chinese remainder theorem, given {P̃(σ) (mod q)}q∈Q we can calculate

P̃(σ) (mod
∏
q∈Q

q).

Since we’ve chosen Q such that
∏

q∈Q q > p, the claim follows.

Another important property of the polynomials {ωq}q∈Q in the proof stream, is that given
a sequential, one-pass access to the input stream, it is possible to efficiently evaluate each
polynomial at a specific point. Formally, we show:

Lemma 4.5. For every q ∈ Q, there exists a streaming algorithm Aq with an access to the
common random string r, such that given a point in the finite field ξ ∈ Hq, and a sequential,
one-pass access to the input stream σ, the streaming algorithm Aq can evaluate ωq(ξ) using
O
(
sk · polylog(m,n, δ−1)

)
bits of space.

Proof. First, recall that the descriptions of {Ct}t∈[k] and ψ are known to the verifier. Note
that in order to compute ωq(ξ) it is sufficient to compute and store the values of{

p̃t
(
χ̃q1(ξ, y), . . . , χ̃qm(ξ, y)

)}
t∈[k],y∈Ds(Hq)

,

where {p̃t}t∈[k] are the approximation polynomials of the clauses {Ct}t∈[k] over Hq. Given
these values we can compute{

ψ̃q

(
p̃1

(
χ̃q1(ξ, y), . . . , χ̃qm(ξ, y)

)
, . . . , p̃k

(
χ̃q1(ξ, y), . . . , χ̃qm(ξ, y)

))}
y∈Ds(Hq)

monomial-by-monomial according to the description of ψ, and then compute ωq(ξ) by sum-
ming term-by-term.

Before we describe the algorithm, recall that during the construction of {pt}t∈[k] we
defined an error correcting code ECC : Fmq → F100m

q with relative distance 1/3. Note that
since ECC is a linear function, we can extend it (via the linear extension) to Hq. We fixed

L = O

(
log k + log

1

δ′

)
= O

(
log k + log

n log p

δ

)
,

19

and chose independently and uniformly ι1, . . . , ιL ∈ [100m], using the common random string
r. Finally we approximated each of the ∨ gates by the following polynomial,

η(z1, . . . , zm) = 1−
L∏
l=1

(
1− (ECC(z1, . . . , zm)ιl)

q−1
)
. (4.11)

Note that in order to compute

p̃t
(
χ̃q1(ξ, y), . . . , χ̃1

m(ξ, y)
)

for all t ∈ [k] and y ∈ Ds(Hq), it is sufficient to compute

ECC(`t1(ξ, y), . . . , `tm(ξ, y))ιl

(where for every i ∈ [m] and t ∈ [k] the value `ti(ξ, y) is either χ̃qi (ξ, y), or 1 − χ̃qi (ξ, y), or
one of the constants {0, 1}; depending on the clause Ct), for all ιl ∈ {ι1, . . . , ιL}, t ∈ [k], and
y ∈ Ds(Hq). Then we can compute p̃t

(
χ̃q1(ξ, y), . . . , χ̃qm(ξ, y)

)
according to (4.11).

Since ECC is a linear error correcting code, we can compute each

ECC(`t1(ξ, y), . . . , `tm(ξ, y))ιl

incrementally. That is, we read the data stream σ element-by-element. At each step, when
the i’th element arrives (i ∈ [m]), for every y ∈ Ds(Hq) we compute χ̃qi (ξ, y) according to
(4.2), and then `ti(ξ, y) according to the description of Ct. By the linearity of ECC we can
compute ECC(`t1(ξ, y), . . . , `tm(ξ, y))ιl by incrementally adding each

ECC(0, . . . , 0, `ti(ξ, y), 0, . . . , 0)ι1

at the i’th step.

Observe that during the run over σ, the entire computation is performed element-by-
element, and that we used at most O (|Ds(Hq)| · k · L · log p) bits of space. Thus the overall
space complexity is

O
(
sk · polylog

(
m,n, δ−1

))
.

The last lemma helps us to show that with high probability Merlin cannot cheat Arthur
by using maliciously chosen proof polynomials. We show that by evaluating the actual
proof polynomials at a randomly chosen point, Arthur can detect a false proof with high
probability. Formally:

Lemma 4.6. For every q ∈ Q, given a polynomial ω̂q : Hq → Hq of degree at most
O
(
wkq log kn log p

δ

)
,4 if ω̂q 6= ωq then:

Pr[ω̂q(ξ) = ωq(ξ)] ≤
δ

2
,

where the probability is taken over uniformly choosing at random an element ξ ∈ Hq.
4More precisely, the degree is exactly as in 4.9.

20

Proof. Let ξ be an element uniformly chosen from Hq. By the Schwartz-Zippel Lemma, we
have

Pr[ω̂q(ξ) = ωq(ξ)] ≤
max { deg(ωq), deg(ω̂q) }

|Hq|
≤ δ

2
,

where in order to get the last inequality we fix p to be a sufficiently large prime number, of
order

1

δ
· poly(m,n).

Finally, building upon the aforementioned lemmas, we can present the AM algorithm
for the approximation of P(σ):

21

The prover (Merlin):

1. Choose ι1, . . . , ιL ∈ [100m] using the common random string r.

2. Construct ϕ that consists of all the proof polynomials {ωq}q∈Q.

3. Send (via streaming) ϕ = {ωq}q∈Q to the verifier.

The verifier (Arthur):

1. For every q ∈ Q, select uniformly at random ξq ∈ Hq (where the selection uses Arthur’s
private random coin tosses).

2. Read Merlin’s proof stream ϕ = {ω̂q}q∈Q and (incrementally) compute:

(a) {ω̂q(ξq)}q∈Q.

(b)
{∑

x∈Dw(Hq) ω̂q(x)
}
q∈Q

.

3. Run {Aq}q∈Q in parallel, in order to compute {ωq(ξq)}q∈Q.

4. If there exists q ∈ Q for which ωq(ξq) 6= ω̂q(ξq), return ⊥.

5. Otherwise, use
{∑

x∈Dw(Hq) ω̂q(x)
}
q∈Q

to extract and return P̃(σ).

Figure 1: The Canonical AM streaming algorithm

Last, we show that the aforementioned algorithm is an AMε,δ(S,W)-streaming algorithm
for P(σ), where

• S = O
(
sk · polylog(m,n, δ−1)

)
,

• W = O
(
wk · polylog(m,n, δ−1)

)
.

Indeed, given ε ≥ 0, δ > 0, a common random string r, and a data stream problem P ,
our algorithm is a probabilistic data stream algorithm (denote it by A), which has an oracle
access to r. The algorithm simultaneously gets two streams: an input stream σ and a proof
stream ϕ, to both it has a sequential, one pass access. According to Claim 4.3:

W = O
(
wk · polylog(m,n, δ−1)

)
.

As for the space complexity of A, note that A stores O(log p) random values {ξq}q∈Q
of size O(log p) each, which takes polylog(m,n, δ−1)) bits of space. In addition it uses
polylog(m,n, δ−1)) bits of space for computing

1. {ω̂q(ξq)}q∈Q.

2.
{∑

x∈Dw(Hq) ω̂q(x)
}
q∈Q

.

22

Observe that these values can be computed incrementally using a sequential, one-pass ac-
cess to ϕ, simply by evaluating the polynomials monomial-by-monomial. According to
Lemma 4.5, each of the O(log p) algorithms {Aq}q∈Q we run in parallel takes

O
(
sk · polylog(m,n, δ−1)

)
bits of space. Thus the total space complexity is S = O

(
sk · polylog(m,n, δ−1)

)
.

Recall that the only time that the algorithm used the common random string r, is while
building the approximation polynomial for the disjunction in each {ωq}q∈Q. Since we con-
structed |Q| such polynomials, and by Lemma 4.2, the total number of random bits we read
from r is polylog(m,n, δ−1). Furthermore, A also uses only polylog(m,n, δ−1) private ran-
dom coin tosses, as the only randomness it needs is for the selection of random ξq ∈ Hq for
every q ∈ Q. Thus, the total randomness complexity of the algorithm is polylog(m,n, δ−1).

We finish the proof by showing the correctness of the algorithm:

1. Completeness: Assuming Merlin is honest, i.e., ωq = ω̂q for every q ∈ Q; then by
Claim 4.4 we can calculate P̃(σ) with probability 1 − δ/2 over the common random
string r, and by (4.3) we have

(1− ε)P(σ) ≤ P̃(σ) ≤ (1 + ε)P(σ).

Hence:

Pr

[∣∣∣∣A(σ, ϕ)

P(σ)
− 1

∣∣∣∣ ≤ ε

]
≥ 1− δ

2

2. Soundness: If Merlin is dishonest, i.e., there exists q ∈ Q for which ωq 6= ω̂q, then by
Lemma 4.6,

Pr[A(σ, ϕ) 6= ⊥] ≤ δ

2
,

where the probability is taken over the private random coin tosses that A performs.

5 The MA Communication Complexity of Gap Hamming Distance

In this section we show that every MA communication complexity protocol for the Gap
Hamming Distance problem (GHD) that communicates T bits and uses a proof of length W ,
must satisfy T ·W = Ω(n), and therefore T +W = Ω(

√
n).

In Section 6, we will use the lower bound on theMA communication complexity of GHD
to show a lower bound on the M̂A streaming complexity of the Distinct Elements problem.
We note that the lower bound on theMA communication complexity of GHD also implies

23

a lower bound on the M̂A streaming complexity of computing the empirical entropy of a
data stream (see [CBM06] for a formal definition of the Empirical Entropy problem).

For completeness, we show an MA communication complexity protocol for GHD that
communicates O(T log n) bits and uses a proof of length O(W log n), for every T ·W ≥ n.
Thus we have a tight bound (up to logarithmic factors) of T ·W = Ω̃(n).

5.1 Lower bound

In order to prove our lower bound on theMA communication complexity of Gap Hamming
Distance, we first show a lower bound on the MA communication complexity of Gap Or-
thogonality, a problem wherein each party gets a vector in {−1, 1}n and needs to tell whether
the vectors are nearly orthogonal, or far from being orthogonal. We then apply the reduc-
tion from the Gap Orthogonality problem to the Gap Hamming Distance problem (following
[She11]), and obtain our lower bound.

Formally, the Gap Orthogonality problem is defined as follows:

Definition 5.1. Let n be an integer, and let ζ0, ζ1 > 0. The Gap Orthogonality problem is
the communication complexity problem of computing the partial Boolean function ORTn,ζ0,ζ1 :
{−1, 1}n × {−1, 1}n → {0, 1} given by

ORTn,ζ0,ζ1(x, y) =

{
1 if |〈x, y〉| < ζ1

0 if |〈x, y〉| > ζ0

.

Denote ORT = ORT
n,

√
n
4
,
√
n
8

.

We restate the following theorem from [She11], which given two finite sets X, Y , guar-
anties that if the inner product of a random vector from X and a random vector from Y is
highly concentrated around 0, then X × Y must be a small rectangle.

Theorem 5.2. Let δ > 0 be a sufficiently small constant, and let X, Y ⊆ {−1, 1}n be two
sets, such that

Pr

[
|〈x, y〉| >

√
n

4

]
< δ

(where the probability is taken over selecting independently and uniformly at random x ∈ X
and y ∈ Y), then

4−n|X||Y | = e−Ω(n).

Denote the uniform distribution on {−1, 1}n×{−1, 1}n by µ. We get the next immediate
corollary of Theorem 5.2,

Corollary 5.3. There exists a (sufficiently small) constant δ > 0 such that for every rect-
angle R ⊆ {−1, 1}n × {−1, 1}n with µ(R) > 2−δn we have

µ
(
R ∩ ORT−1(0)

)
≥ δµ(R).

24

Proof. Assume by contradiction that there exists a rectangle R := X × Y ⊆ {−1, 1}n ×
{−1, 1}n with µ(R) > 2−δn that satisfies

µ
(
R ∩ ORT−1(0)

)
< δµ(R). (5.1)

Observe that

Pr

[
|〈x, y〉| >

√
n

4

]
=
µ
(
R ∩ ORT−1(0)

)
µ(R)

(where the probability is taken over selecting independently and uniformly at random x ∈ X
and y ∈ Y). Hence we can write (5.1) as

Pr

[
|〈x, y〉| >

√
n

4

]
< δ. (5.2)

Note that

µ(R) =
|X|
2n
· |Y |

2n
= 4−n|X||Y |.

If we choose δ to be sufficiently small, then (5.2) guaranties the precondition of Theorem 5.2,
and we get that µ(R) = e−Ω(n), in contradiction to the assumption that µ(R) > 2−δn.

In particular, Corollary 5.3 implies that every rectangle R ⊆ {−1, 1}n×{−1, 1}n satisfies

µ
(
R ∩ ORT−1(0)

)
≥ δµ(R)− 2−δn. (5.3)

Next, using well known techniques (cf. [RS04]), we show a lower bound on the MA
communication complexity of ORT, relying on Corollary 5.3. Formally, we prove

Theorem 5.4. Let ε be a positive constant such that ε < 1
2
. For everyMAε(T,W) commu-

nication complexity protocol for ORT we have T ·W = Ω(n), hence T +W = Ω(
√
n).

Proof. Fix n. Denote R = {−1, 1}n × {−1, 1}n. Assume that there exists an MAε(T,W)
communication complexity protocol for ORT; denote it by P . By a simple amplification
argument we get that there exists an MAε′(k,W) communication complexity protocol for
ORT, where k = O(T ·W) and ε′ = 2−CW (for an arbitrary large constant C); denote it by
P ′.

Assume by contradiction that k = o(n). We will show that our assumption that k is
asymptotically smaller than n implies that the error probability of P ′ is greater than 2−CW ,
in contradiction.

Denote Merlin’s proof, a binary string of size at most W bits, by w. Denote the random
string that P ′ uses by s. Denote by Rs,w,h ⊆ R the set of all input pairs (x, y) ∈ R such
that the history of (x, y, s, w) is h.5 We state the following Lemma from [RS04]:

5For any input pair (x, y) ∈ R and any assignment s to the random string of P ′ and any assignment w
to the proof supplied to the players, the string of communication bits exchanged by the two players on the
inputs (x, y), using the random string s and the proof w, is called the history of (x, y, s, w).

25

Lemma 5.5. For every s, w, h we have Rs,w,h = Xs,w,h × Ys,w,h (where Xs,w,h ⊆ {−1, 1}n
and Ys,w,h ⊆ {−1, 1}n), and for every s, w the family {Rs,w,h}h∈{0,1}k is a partition of R.

Denote the answer that P ′ gives on (x, y, s, w) by P ′(x, y, s, w). Since the answer of P ′ on
inputs in Rs,w,h does not depend on x and y, then for every input pair in Rs,w,h the answer
P ′(x, y, s, w) is the same; denote it by P ′(s, w, h). Next, define H0 ⊆ R to be the set of all
input pairs (x, y) ∈ R such that

|〈x, y〉| >
√
n

4
,

and define H1 ⊆ R to be the set of all input pairs (x, y) ∈ R such that

|〈x, y〉| <
√
n

8
.

Note that if we choose x = (x1, . . . , xn) ∈ {−1, 1}n and y = (y1, . . . , yn) ∈ {−1, 1}n indepen-
dently and uniformly at random, then for every i ∈ [n] the product xi · yi is also uniformly
distributed. Thus, if we choose z = (z1, . . . , zn) ∈ {−1, 1}n uniformly at random, then

µ(H1) = Pr
(x,y)∈R

[
|〈x, y〉| <

√
n

8

]
= Pr

z∈{−1,1}n

[∣∣∣∣∣
n∑
i=1

zi

∣∣∣∣∣ <
√
n

8

]
≥ c, (5.4)

for some universal constant c.

Next, for every rectangle R ⊆ R, denote by α(R) the measure of R in R. Denote by
β0(R) the measure of R ∩ H0 in H0, and denote by β1(R) the measure of R ∩ H1 in H1.
Under these notations, we see that (5.3) implies that there exists a universal constant δ > 0
such that for any rectangle R ⊆ R we have

β0(R) ≥ δ · α(R)− 2−δn.

According to Equation 5.4, we know that H1 is a set of probability at least c in R. Hence for
every rectangle R ⊆ R we have β1(R) ≤ 1/c ·α(R). Therefore we have the following corollary,

Corollary 5.6. There exist universal constants δ, δ′ > 0 such that every rectangle R ⊆ R
satisfies

β0(R) ≥ δ′ · β1(R)− 2−δn.

For any s, w, denote by A0(s, w) ⊆ R the union of all sets Rs,w,h such that P ′(s, w, h) = 0,
and denote by A1(s, w) ⊆ R the union of all sets Rs,w,h such that P ′(s, w, h) = 1. Observe
that A0(s, w) and A1(s, w) are disjoint, and that A0(s, w) ∪ A1(s, w) = R.

Since each of A0(s, w) and A1(s, w) is a union of at most 2k of the sets Xs,w,h × Ys,w,h,
we see that Corollary 5.6 implies

β0(A1(s, w)) ≥ δ′ · β1(A1(s, w))− 2k · 2−δn ≥ δ′ · β1(A1(s, w))− o(2−W). (5.5)

26

Recall that β1(A1(s, w)) is the fraction of inputs (x, y) in H1 such that P ′(x, y, s, w) = 1,
and that H1 is the set of ones of the problem. Thus for every input (x, y) in H1 there exists
w such that (x, y) ∈ A1(s, w) with probability of at least (1 − ε′) over s. Since the number
of possible proofs w is at most 2W , by an averaging argument we get that there exists a
proof that corresponds to at least 2−W fraction of the inputs in H1. Formally speaking,
there exists at least one binary string w of size at most W , and a set H ′1 ⊆ H1 that satisfies
β1(H ′1) ≥ 2−W , such that that for every (x, y) ∈ H ′1,

Pr
s

[(x, y) ∈ A1(s, w)] ≥ 1− ε′.

Therefore, there exists a constant c0, such that with constant probability (over the random
string s),

β1(A1(s, w)) > 2−(W+c0).

Hence, by (5.5), with constant probability (over the random string s),

β0(A1(s, w)) ≥ δ′ · 2−W−c0 − o(2−W) ≥ c1δ
′ · 2−W .

for some constant c1. However, recall that β0(A1(s, w)) is the fraction of inputs (x, y) in H0

for which P ′(x, y, s, w) returns 1. Thus there exists a constant c2 such that,

Pr [P ′(x, y, s, w) = 1] ≥ c2δ
′ · 2−W

(where the probability is taken over both the random string s, and the uniform selection of
(x, y) ∈ H0). But H0 is the set of zeros of the problem, so for every (x, y) ∈ H0 the protocol
answers 1 with probability at most ε′ ≤ 2−CW (for an arbitrary large constant C), which is
a contradiction.

We established that for everyMAε(T,W) communication complexity protocol for ORT
we have T · W = Ω(n). According to the duplication argument in [She11], Theorem 5.4
implies the following corollary for slightly different parameters of the orthogonality problem.

Corollary 5.7. Let ε be a positive constant such that ε < 1
2
. For every MAε(T,W)

communication complexity protocol for ORTn,2√n,√n(x, y) we have T · W = Ω(n), hence
T +W = Ω(

√
n).

Next, we state the following reduction from [She11] (repharsed):

Lemma 5.8. Let n ∈ N be a perfect square. For every input x ∈ {−1, 1}n denote by xm
(m ∈ N) the string of length n ·m that is composed of x concatenated to itself m− 1 times.
Then, for every (x, y) ∈ ORT−1

n,2
√
n,
√
n
(0) ∪ ORT−1

n,2
√
n,
√
n
(1) we have

ORTn,2√n,√n(x, y) = ¬GHD10n+15
√
n,
√
n,
√
n

(
x10(−1)15

√
n, y10(+1)15

√
n
)

∧ GHD10n+15
√
n,
√
n,
√
n

(
x10(+1)15

√
n, y10(+1)15

√
n
)
.

27

Note that due to the symmetry of the gap Hamming distance problem, a protocol
for GHD10n+15

√
n,
√
n,
√
n implies a protocol for ¬GHD10n+15

√
n,
√
n,
√
n. Hence, if we assume

by contradiction that there exists an MAε(T,W) communication complexity protocol for
GHD10n+15

√
n,
√
n,
√
n, where 0 < ε < 1

4
and T ·W = o(n) (which in turn implies that there

exists an MAε(T,W) communication complexity protocol for ¬GHD10n+15
√
n,
√
n,
√
n, where

0 < ε < 1
4
and T ·W = o(n)), then by applying Lemma 5.8 we get anMA2ε(T,W) commu-

nication complexity protocol for ORTn,2√n,√n(x, y) such that T ·W = o(n), in contradiction
to Corollary 5.7. Thus we get the following corollary,

Corollary 5.9. Let ε be a positive constant, such that ε < 1
4
. For every MAε(T,W)

communication complexity protocol for GHD10n+15
√
n,
√
n,
√
n we have T · W = Ω(n), hence

T +W = Ω(
√
n).

Finally, we note that in previous work [CR11] provided a toolkit of simple reductions
that can be used to generalize a lower bound on the communication complexity of gap
Hamming distance for every reasonable parameter settings. Specifically, a lower bound for
GHD10n+15

√
n,
√
n,
√
n implies a lower bound for GHD = GHDn,

√
n,
√
n. Moreover, we note that

their reduction is directly robust forMA communication complexity; thus we conclude,

Theorem 5.10. Let ε be a positive constant, such that ε < 1
4
. For every MAε(T,W)

communication complexity protocol for GHD we have T ·W = Ω(n), hence T +W = Ω(
√
n).

5.2 Upper bound

In their seminal paper, Aaronson and Widgerson [AW09] showed an MA communication
complexity protocol for the disjointness problem, wherein the communication complexity is
O(
√
n log n), and the size of the proof is also O(

√
n log n).

We modify their protocol in order to show anMA communication complexity protocol
for GHD, wherein the communication complexity is O(T log n), and the size of the proof is
O(W log n), for every T ·W ≥ n.

Theorem 5.11. Let T,W ∈ N such that T · W ≥ n. Then, there exists an explicit
MA1/3(T log n,W log n) communication complexity protocol for GHD.

Proof. Let T,W ∈ N such that T · W ≥ n. Assume for simplicity and without loss of
generality that T ·W = n exactly. Let a := (a1, . . . , an) ∈ {−1, 1}n be the input of Alice,
and b := (b1, . . . , bn) ∈ {−1, 1}n be the input of Bob. Let each player define a bivariate
function that represents its input; more precisely, let Alice define fa : [W] × [T] → {−1, 1}
by

fa(x, y) = a(x−1)T+y,

and similarly, let Bob define fb : [W]× [T]→ {−1, 1} by

fb(x, y) = b(x−1)T+y.

28

Fix a prime q ∈ [6n, 12n]. Note that fa and fb have unique extensions f̃a : F2
q → Fq and

f̃b : F2
q → Fq (respectively) as polynomials of degree (W − 1) in the first variable, and degree

(T − 1) in the second variable. Next, define the polynomial s : Fq → Fq by

s(x) =
∑
y∈[T]

f̃a(x, y)f̃b(x, y).

Note that the degree of s is at most 2(W − 1). Denote the Hamming distance of a and b by
HD(a, b). Then,

HD(a, b) =
n−

∑
x∈[W] s(x)

2
. (5.6)

Thus, it is sufficient for one of the players to know s in order to compute the Hamming
distance. We define the followingMA communication complexity protocol:

1. Merlin sends Alice a message that consists of the coefficients of a polynomial s′ : Fq → Fq of
degree at most 2(W − 1), for which Merlin claims that s′ = s.

2. Bob uniformly picks r ∈ Fq, and sends Alice a message that consists of r and

f̃b(r, 1), . . . , f̃b(r, T).

3. Alice computes s(r) =
∑

y∈[T] f̃a(r, y)f̃b(r, y) and s′(r). If s(r) = s′(r), Alice computes

HD(a, b) =
n−

∑
x∈[W] s

′(x)

2 and returns the result. Otherwise, Alice rejects the proof and
returns ⊥.

Figure 2: MA Communication Complexity Protocol for GHD

Note that Merlin sends the coefficients of a polynomial of degree at most 2(W − 1) over
a finite field of cardinality O(n). Hence the size of the proof is O(W log n). In addition,
note that the entire communication between Alice and Bob consists of sending the element
r and the T evaluations of f̃b (in step 2 of the algorithm). Hence the total communication
complexity is O(T log n).

If Merlin is honest, then Alice can directly compute HD(a, b) with probability 1, as
according to (5.6) the Hamming distance of a and b can be inferred from s. Otherwise, if
s′ 6= s then by the Schwartz-Zippel Lemma

Pr[s(r) = s′(r)] ≤ 2(W − 1)

q
≤ 1

3
,

(where the probability is taken over the random selection of r ∈ Fq). Thus the test fails with
probability at least 2/3.

29

6 The AM Streaming Complexity of Distinct Elements

In this section we show an application of the canonical AM streaming algorithm for the
Distinct Elements problem. In the regular data stream model (without any probabilistic
proof system), it is well known (cf. [Mut05]) that the space complexity of the Distinct
Elements problem is lower bounded by the size of the alphabet of the data stream (for
sufficiently long data streams). In contrast, using the canonical AM streaming algorithm
we show that by allowing AM proofs, we can obtain a tradeoff between the space complexity
and the size of the proof.

Furthermore, we then rely on our lower bound on theMA communication complexity of
the GHD problem, in order to show a matching lower bound on the M̂A streaming complexity
of Distinct Elements.

6.1 Upper Bound

We show that for every s, w ∈ N such that s · w ≥ n (where n is the size of the alphabet)
there exists an AM streaming algorithm for the Distinct Elements problem that uses a proof
of size Õ(w) and a space complexity Õ(s). For example, by fixing w = n, we have an AM
streaming algorithm for the Distinct Elements problem that uses only a polylogarithmic (in
the size of the alphabet and the length of the stream) number of bits of space.

Formally, we show:

Theorem 6.1. For every s, w ∈ N such that s · w ≥ n, there exists an explicit AM0,1/3

(
s ·

polylog(m,n), w · polylog(m,n)
)
streaming algorithm for the Distinct Elements problem,

given a data stream σ = (a1, . . . , am) with alphabet [n].

The idea behind the proof of Theorem 6.1 is simply noting that we can indicate whether
an element j appears in the stream, by the disjunction of the element indicators of j ∈ [n] in
all of the positions of the stream (i.e., χ1(j), . . . , χm(j)). Then we can represent the number
of distinct elements as a sum of disjunctions, and use the canonical AM streaming algorithm
in order to solve the Distinct Elements problem. Formally,

Proof. Recall that the Distinct Elements problem is the data stream problem of computing
(exactly) the following function:

F0(σ) = |{i ∈ [n] : ∃j ∈ [m] aj = i}| .

Observe that for every data stream we can write F0(σ) as
n∑
j=1

(
χ1(j) ∨ χ2(j) ∨ . . . ∨ χm(j)

)
.

Let σ = (a1, . . . , am) be a data stream with alphabet [n]. Let s, w ∈ N such that
s · w ≥ n, let ε = 0, and let δ = 1/3. By Theorem 4.1 we have an explicit AMε,δ(S,W)-
streaming algorithm for computing F0(σ), where S = O

(
s · polylog(m,n)

)
and W = O

(
w ·

polylog(m,n)
)
.

30

6.2 Lower bound

In the rest of this section we consider the M̂A model. As we mentioned in Section 3 the
M̂A model, wherein the verifier has a free access to the proof, is stronger than the MA
model, wherein the proof is being streamed. Hence the lower bound we prove holds for both
models.

As implicitly shown in [IW03], the communication complexity problem of GHD reduces to
the data stream problem of Distinct Elements. We note that the foregoing reduction can be
adapted in order to reduce theMA communication complexity problem of GHD to the M̂A
problem of approximating the number of distinct elements in a stream within a multiplicative
factor of 1± 1/

√
n. Together with our lower bound on theMA communication complexity

of GHD, this implies the following:

Theorem 6.2. Let δ < 1
4
. For every M̂A 1√

n
,δ(S,W) streaming algorithm for approximating

the number of distinct elements in a data stream σ = (a1, . . . , am) (over alphabet [n]) we
have S ·W = Ω(n), hence S +W = Ω(

√
n).

Proof. Let Alice hold a string x ∈ {−1, 1}n and Bob hold y ∈ {−1, 1}n. Alice can convert her
string x = (x1, . . . , xn) to a data stream over the alphabet Σ =

{
(i, b) | i ∈ [n], b ∈ {−1, 1}

}
in the following manner:

σA =
(
(1, x1), (2, x2), . . . , (n, xn)

)
.

Similarly, Bob can convert y = (y1, . . . , yn) to

σB =
(
(1, y1), (2, y2), . . . , (n, yn)

)
.

Observe that all of the elements in σA are distinct, and that all of the elements in σB are
also distinct. In addition, note that the only way in which an element can appear twice in
the concatenation of the streams is if xi = yi for some i ∈ [n]. In fact, if we denote the
number of distinct elements in σA ◦ σB by d, and denote the Hamming distance of x and y
by HD(x, y), then we have the following relation:

d = n+ HD(x, y). (6.1)

Alice and Bob can simulate running an M̂A streaming algorithm on the concatenation
of their inputs by using a one-way MA communication complexity protocol, such that
the number of the bits that are being communicated during the execution of the protocol
is exactly the same as the number of bits of space that are used by the simulated M̂A
streaming algorithm. Details follow.

Say we have an M̂A 1√
n
,δ(S,W) streaming algorithm A for approximating the number

of distinct elements in σA ◦ σB. Alice can run A on σA, using a proof w of size W . After
the algorithm finished processing the last element of σA, Alice sends the current state of her
memory (which consists of at most S bits) to Bob. Next, Bob sets his memory to the state

31

that Alice had sent, uses the proof w, and completes the run of A over σB. Note that the
total communication during the execution of the aforementioned protocol is at most S bits,
as the data stream algorithm uses at most S bits of space during its execution.

As a conclusion, if there exists such A then by the reduction above there exists anMA
communication protocol that outputs a 1 ± 1/

√
n multiplicative approximation of d. By

(6.1) we can compute H̃D(x, y), such that

HD(x, y)−
√
n− HD(x, y)√

n
< H̃D(x, y) < HD(x, y) +

√
n+

HD(x, y)√
n

,

or

HD(x, y)− 2
√
n < H̃D(x, y) < HD(x, y) + 2

√
n.

Thus we can solve GHDn,2
√
n,2
√
n while communicating at most O(S) bits and using a proof

of at most O(W) bits. Hence, using the toolkit of reductions provided in [CR11] (see Sec-
tion 5.1) we can solve GHD, while communicating at most O(S) bits and using a proof of at
most O(W) bits. Thus, by Theorem 5.10 we have S ·W = Ω(n), hence S+W = Ω(

√
n).

Note that in particular, Theorem 6.2 implies a lower bound (with the same parameters)
on the M̂A streaming complexity of computing the exact number of distinct elements in a
stream.

Last, we also note that by a straightforward adaptation of the reduction from the com-
munication complexity problem of GHD to the data stream problem of Empirical Entropy
(see [CCM07]), our MA lower bound on GHD also implies an M̂A lower bound on the
Empirical Entropy problem.

References

[AMS96] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approxi-
mating the frequency moments. In Proceedings of the twenty-eighth annual ACM
symposium on Theory of computing, STOC ’96, pages 20–29, New York, NY,
USA, 1996. ACM.

[AW09] Scott Aaronson and Avi Wigderson. Algebrization: A new barrier in complexity
theory. ACM Trans. Comput. Theory, 1:2:1–2:54, February 2009.

[BC09] Joshua Brody and Amit Chakrabarti. A multi-round communication lower
bound for gap hamming and some consequences. In IEEE Conference on Com-
putational Complexity, pages 358–368, 2009.

[BHR+07] Kevin S. Beyer, Peter J. Haas, Berthold Reinwald, Yannis Sismanis, and Rainer
Gemulla. On synopses for distinct-value estimation under multiset operations.
In SIGMOD Conference, pages 199–210, 2007.

32

[BYJK+02] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan.
Counting distinct elements in a data stream. In RANDOM, pages 1–10, 2002.

[CBM06] Amit Chakrabarti, Khanh Do Ba, and S. Muthukrishnan. Estimating en-
tropy and entropy norm on data streams. In In Proceedings of the 23rd In-
ternational Symposium on Theoretical Aspects of Computer Science (STACS.
Springer, 2006.

[CCM07] Amit Chakrabarti, Graham Cormode, and Andrew Mcgregor. A near-optimal
algorithm for computing the entropy of a stream. In In ACM-SIAM Symposium
on Discrete Algorithms, pages 328–335, 2007.

[CCM09] Amit Chakrabarti, Graham Cormode, and Andrew Mcgregor. Annotations in
data streams. In Proceedings of the 36th International Colloquium on Automata,
Languages and Programming: Part I, ICALP ’09, pages 222–234, Berlin, Hei-
delberg, 2009. Springer-Verlag.

[CKLR11] Kai-Min Chung, Yael Tauman Kalai, Feng-Hao Liu, and Ran Raz. Memory
delegation. In CRYPTO, pages 151–168, 2011.

[CMT10] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Streaming graph
computations with a helpful advisor. CoRR, abs/1004.2899, 2010.

[CMT11] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Practical verified
computation with streaming interactive proofs. CoRR, May 2011.

[CR11] Amit Chakrabarti and Oded Regev. An optimal lower bound on the communi-
cation complexity of gap-hamming-distance. In Proceedings of the 43rd annual
ACM symposium on Theory of computing, STOC ’11, pages 51–60, New York,
NY, USA, 2011. ACM.

[FM83] Philippe Flajolet and G. Nigel Martin. Probabilistic counting. In FOCS, pages
76–82, 1983.

[GKG05] Sumit Ganguly, Iit Kanpur, and Minos Garofalakis. Join-distinct aggregate
estimation over update streams. In In Proc. ACM PODS, 2005.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating com-
putation: interactive proofs for muggles. In STOC, pages 113–122, 2008.

[IW03] Piotr Indyk and David P. Woodruff. Tight lower bounds for the distinct elements
problem. In FOCS, pages 283–, 2003.

[KNW10] Daniel M. Kane, Jelani Nelson, and David P. Woodruff. An optimal algorithm
for the distinct elements problem. In PODS, pages 41–52, 2010.

[Mut05] S. Muthukrishnan. Data streams: algorithms and applications. Now Publishers,
2005.

33

[Raz87] A. Razborov. Lower bounds for the size of circuits of bounded depth with basis
{∧,⊕}. Notes of the Academy of Science of the USSR: 41(4) : 333-338, 1987.

[RS04] Ran Raz and Amir Shpilka. On the power of quantum proofs. Computational
Complexity, Annual IEEE Conference on, 0:260–274, 2004.

[She11] Alexander A. Sherstov. The communication complexity of gap hamming dis-
tance. Electronic Colloquium on Computational Complexity (ECCC), 18:63,
2011.

[Smo87] R. Smolensky. Algebraic methods in the theory of lower bounds for boolean
circuit complexity. In Proceedings of the nineteenth annual ACM symposium
on Theory of computing, STOC ’87, pages 77–82, New York, NY, USA, 1987.
ACM.

[Vid11] Thomas Vidick. A concentration inequality for the overlap of a vector on
a large set, with application to the communication complexity of the gap-
hamming-distance problem. Electronic Colloquium on Computational Complex-
ity (ECCC), 18:51, 2011.

[Yao83] Andrew C. Yao. Lower bounds by probabilistic arguments. In Proceedings of the
24th Annual Symposium on Foundations of Computer Science, pages 420–428,
Washington, DC, USA, 1983. IEEE Computer Society.

34

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

