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Abstract

We study the complexity of computing Boolean functions on general Boolean domains by
polynomial threshold functions (PTFs). A typical example of a general Boolean domain is
{1, 2}n. We are mainly interested in the length (the number of monomials) of PTFs, with
their degree and weight being of secondary interest. We show that PTFs on general Boolean
domains are tightly connected to depth two threshold circuits. Our main results in regard to
this connection are:

• PTFs of polynomial length and polynomial degree compute exactly the functions computed
by THR ◦MAJ circuits.

• An exponential length lower bound for PTFs that holds regardless of degree, thereby
extending known lower bounds for THR ◦MAJ circuits.

• We generalize two-party unbounded error communication complexity to the multi-party
number-on-the-forehead setting, and show that communication lower bounds for 3-player
protocols would yield size lower bounds for THR ◦ THR circuits.

We obtain several other results about PTFs. These include relationships between weight
and degree of PTFs, and a degree lower bound for PTFs of constant length. We also consider
a variant of PTFs over the max-plus algebra. We show that they are connected to PTFs over
general domains and to AC0 ◦ THR circuits.
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1 Introduction

Let f : Xn → {−1, 1} be a Boolean function on a domain X ⊆ Rn. We say that a real n-variate
polynomial P is a polynomial threshold function (PTF) computing f if for all x ∈ X it holds that

f(x) = sgn(P (x)) .

Other terminology has been used in the literature for the same notion. We may alternatively say
that P is a sign representation of f , or that P is a voting polynomial computing f . Polynomial
threshold function have been studied intensively for decades. Much of this work was motivated
by questions in computer science [27], and PTFs are now an important object of study in areas
such as Boolean circuit complexity [4, 11, 2, 19], learning theory [16, 17], and communication
complexity [28]. The main motivation of this paper is Boolean circuit complexity. A major and
long-standing open problem is to obtain an explicit super-polynomial lower bound for depth two
threshold circuits. A long line of research have established lower bounds for several subclasses of
depth two threshold circuits. The largest subclass for which super-polynomial lower bounds are
known is the class THR ◦MAJ of depth two threshold circuits, where all gates except the output
gate is required to compute threshold functions with polynomially bounded weights [9]. We shall
see that PTFs on general Boolean domains are tightly connected to both these classes of circuits.

For a PTF P we will be interested in the several measures of complexity. The length of P ,
denoted by len(P ), is the number of monomials of P . The degree of P , denoted by deg(P ), is the
usual total degree of P . Finally, note that in the case that X is a finite domain, without loss of
generality one may assume that the coefficients of P are integers, and can thus speak of the weight
of P , meaning the largest magnitude of a coefficient of P .

We restrict our focus to the case of computing Boolean functions with Boolean inputs. More
precisely we only consider the case when the domain X is a Boolean n-cube, X = {a, b}n, for
distinct a, b ∈ R. Such sign representations of Boolean functions have been studied intensively due
to their fundamental nature and vast number of applications. This research has almost exclusively
focused on the two Boolean n-cubes, {0, 1}n and {−1, 1}n, sometimes denoted as the “standard
basis” and the “Fourier basis”, respectively. Indeed, most often the notion of PTFs is defined
specifically for the case of the domain {−1, 1}n. This choice is, however, of little consequence
when one disregards the length as a parameter and focuses on the degree, as is the case in many
applications of PTFs. Note also that for these two domains any PTF can without loss of generality
be assumed to be multilinear, meaning that all variables have individual degree at most 1.

Focusing on the length of a PTF rather than the degree, the choice of domain becomes crucial
already for the case of the two domains {0, 1}n and {−1, 1}n. This was studied in depth by Krause
and Pudlák [19]. Minksy and Papert [20] has shown that the parity function requires exponential
length over the domain {0, 1}n (cf. [10, 1]), whereas it can be computed by a PTF of length 1
over the domain {−1, 1}n. Conversely, Krause and Pudlák construct a PTF on domain {0, 1}n of

length
√
n that require length 2n

Ω(1)
on domain {−1, 1}n. For this construction, large weight is

crucial. Indeed, Krause and Pudlák also show that any function computed by a polynomial length
and polynomial weight PTF on the domain {0, 1}n can also be computed by a polynomial length
and polynomial weight PTF on the domain {−1, 1}n.

A notable exception to the focus on the domains {0, 1}n and {−1, 1}n is the work of Basu et al. [1]
that consider representing the parity function (or rather, a natural generalization of the parity
function) on domains of the form X = An, for a set A ⊆ Z. They especially focus on the cases
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A = {0, 1, . . . ,m} andA = {1, 2, . . . ,m}, wherem > 2. It is important to note that on most Boolean
domains {a, b}n, it is not without loss of generality to assume that polynomials are multilinear. One
may easily convert a given PTF into a multilinear PTF computing the same function, but such a
conversion may change both the length as well as the weight significantly. Indeed, Basu et al. show
that the parity function provides such an example. Namely they show that on the domain {1, 2}n
there is a PTF of length n+1 and degree n2 computing the parity function, whereas any multilinear
PTF computing the same function must have length 2n. Thus evaluating PTFs on general Boolean
domains has the effect that allowing high degree (meaning polynomial, exponential, or perhaps
even higher), may help to greatly reduce the length needed to compute a given Boolean function.

In this paper our aim is to investigate in detail the computational power of PTFs of polynomial
length over a general Boolean domain of the form {a, b}n, a 6= b. Some of these domains essentially
corresponds to the two usual domains {0, 1}n and {−1, 1}n, namely those that are simple scalings
{0, a}n and {a,−a}n, and we shall hence not consider these further. In particular we shall by
general Boolean domains, refer to any other Boolean domain {a, b}. For most of our results it
turns out the precise choice of general domain does not matter (in fact all our results hold when
sgn(a) = sgn(b)), and we shall henceforth develop our results in terms of the domain {1, 2}n.

1.1 Our results

Over the usual Boolean domains {0, 1}n and {−1, 1}n PTFs are basic extensions of linear threshold
functions that are still very limited in expressive power. Indeed, in these cases PTFs require
exponential length to compute simple functions such as symmetric Boolean functions [4, 18]. Over
a general Boolean domain the situation changes drastically. We show that in this case PTFs of
just constant length can actually compute interesting classes of functions (see Proposition 1 and
Proposition 4). More importantly, when moving to polynomial length PTFs obtain computational
power right at the frontier of known circuit lower bounds for threshold circuits. Namely we show in
Theorem 5 that PTFs of polynomial length and polynomial degree compute exactly the functions
computed by polynomial size THR ◦ MAJ circuits. This circuit class is the largest depth two
threshold circuit class for which superpolynomial lower bounds are known. These lower bounds
were obtained by sign rank lower bounds of matrices, or equivalently lower bounds for unbounded
error communication complexity [9], and this is still the only lower bound method known for this
class of circuits. In Section 3.2 we show that this lower bound method applies to PTFs, even with
no degree restriction. We tend to believe that allowing exponential or perhaps even larger degree
allows for more Boolean functions to be computed by PTFs, and we relate this in Proposition 10 to
a question about simulating large weights by small weights in threshold circuits in a very strong way.
This in turn also gives an indication that the power of the sign rank lower bound method extends
beyond THR ◦ MAJ circuits. Let us also note in the passing that polynomial length PTFs over
domains {0, 1}n and {−1, 1}n also correspond to circuit classes, namely the subclass of THR ◦AND
circuits with no negations of inputs in the case of domain {0, 1}n and THR ◦ XOR circuits in the
case of domain {−1, 1}n. These are thus strictly less powerful than PTFs of polynomial length and
polynomial degree over a general Boolean domain.

Our study of PTFs on general Boolean domains leads also to a possible way to approach the
major open problem of proving lower bounds for THR◦THR circuits. Just as is the case of THR◦MAJ
circuits, most lower bounds for classes of threshold circuits have been obtained using various models
of communication complexity [12, 15, 11, 23, 9, 29, 26]. In Section 3.3 and Section 6 we generalize the
notion of sign complexity to higher order tensors and unbounded error communication complexity
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to the multiparty number-on-the-forehead setting, and we show that sufficiently good lower bounds
for these (for order 3 tensors, or equivalently, 3-party communication protocols) would yield circuit
lower bounds for THR ◦ THR circuits. An important technical ingredient in this connection is a
previous result showing that the threshold gates at the second level can be exchanged with exact
threshold gates [14]. While we currently know no lower bounds for this communication model1,
we feel this relation is significant, given the previous successes of communication complexity for
lower bounds for threshold circuit classes, and deserves further study. Multi-party communication
complexity have been used earlier for threshold circuit classes, but in the bounded error setting. In
particular, lower bounds have been obtained for depth 3 unweighted threshold circuits with small
bottom fanin [15]. In the unbounded error setting we can additionally address depth 3 weighted
threshold circuits with small bottom fanin.

The above relations between PTFs on general Boolean domains and threshold circuits further
motivate an in-depth study of PTFs, besides them being a fundamental way to represent Boolean
functions. For instance, it is tempting to conjecture that PTFs can only compute functions com-
putable by constant depth threshold circuits. It seems that before such questions can be addressed,
one needs more insight into PTFs. We currently don’t know how large PTF degree can be useful
for computation. In Section 4 we show that the minimal degree of a PTF within a given length
bound can be bounded in terms of its integer weights, and conversely the integer weights can be
bounded in terms of its degree. These bounds are obtained by setting up suitable linear programs
and integer linear programs, where the variables are exponents or weights respectively, and then
using known bounds on feasible basic solutions and small integer feasible solutions.

In addition to PTFs on general domains we also consider a max-plus version of PTFs. The max-
plus algebra works over the max-plus semiring, which is the set of integers with the max operation
playing the role of addition and the usual addition playing the role of multiplication [30, 6]. This
setting arises as a “limit” case in several areas of mathematics and turns out to be helpful. In our
case it turns out that max-plus PTFs are connected with PTFs over the the general domains and
are moreover connected to the hierarchy of AC0 ◦ THR circuits.

Finally we study the relations between PTFs over different general domains. Though we are
unable to completely resolve the questions arising here, we still can prove some nontrivial relations.
For example, we show that PTFs over domains {1, 2}n and PTFs over {1,−2}n are essentially
equivalent.

2 Preliminaries

2.1 Polynomial threshold functions

For given length bound l(n) and degree bound d(n), we let PTFa,b(l(n), d(n)) denote the class of
Boolean functions on domain {a, b}n computed by polynomial threshold functions of length l(n)
and degree d(n). That is f ∈ PTFa,b(l(n), d(n)) if and only if there is a polynomial p(x) ∈ Z[x]
with l(n) monomials of degree at most d(n) and such that for all x ∈ {a, b}n we have f(x) = 1 if
and only if p(x) > 0. Of particular interest is the case when l(n) is a polynomial in n. For this
reason we will abbreviate PTFa,b(poly(n), d(n)) by PTFa,b(d(n)). If we do not wish to impose a
degree bound we write this as PTFa,b(l(n),∞) and PTFa,b(∞), respectively. As mentioned in the

1Unlike the case of bounded error communication complexity, even obtaining non-explicit lower bounds pose a
challenge, since counting arguments fail [24].
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introduction we state our results in terms of the specific domain {1, 2}n. We remark that in most
of our results one may replace {1, 2} be any other domain {a, b}, where |a| 6= |b|, and a, b 6= 0. The
exceptions to this are our results about PTFs of constant length2, namely Propositions 1, 4, and
16 as well as Theorem 17. These results hold instead assuming sgn(a) = sgn(b). See Section 7 for
further discussion of differences and equivalences between domains.

2.2 Exponential form of PTFs

We shall find it convenient to switch back to the standard domain {0, 1}n even when considering
PTFs over the domain {1, 2}n. Given variables y1, . . . , yn ∈ {1, 2}, we define corresponding variables
x1, . . . , xn ∈ {0, 1} by xi = log2(yi). Correspondingly we have yi = 2xi . Under this change of
variables monomials turn into exponential functions, ya1

1 . . . yann = 2a1x1+...+anxn and more generally

a polynomial P (y) =
∑l

j=1 cj
∏n
i=1 y

aij
i , turns into a weighted sum of exponential functions:

P (y) =
l∑

j=1

cj2
∑n
i=1 aijxi ,

where aij > 0 are the non-negative integer exponents of the polynomial. Rewriting a PTF in this
way, we shall say it is in exponential form. We shall in general allow also for negative integer coef-
ficients aij in the exponents. By simply multiplying the entire expression with the term 2

∑n
i=1 bixi ,

where bi = max(0,maxj −aij) we can make all the coefficients to be positive. This in turn requires us

to redefine the degree of the polynomial to be maxj(
∑n

i=1 max(0, a
(j)
i ))+maxj(

∑n
i=1 max(0,−a(j)

i )).
At times it may also be convenient to move the absolute value of the coefficients |cj | to the expo-
nents as an additive term log2(|cj |) in order to have all coefficients of the exponential form be of
magnitude 1.

2.3 Boolean functions and Circuit classes

We give here briefly for the most part standard definitions of Boolean functions and circuit classes.
As is usual, when considering a Boolean function f : {0, 1}n → {0, 1}, unless otherwise specified
we always have a family of such functions in mind, one for each input length.

The functions of most importance for this work are linear threshold functions defined by linear
inequalities and their relatives defined by linear equations [14]. Let x1, . . . , xn ∈ {0, 1} be Boolean
variables. For w = (w1, . . . , wn) ∈ Rn and t ∈ R, we define the function THRw,t by THRw,t(x) = 1
if and only if

∑n
i=1wixi > t. Similarly we define the function ETHRw,t by ETHRw,t(x) = 1 if and

only if
∑n

i=1wixi = t. We call w the weights and t the threshold. The case when all weights are 1
and the threshold is n/2 is of special interest. Define the function MAJ by MAJ(x) = 1 if and only
if
∑n

i=1 xi > n/2 and the function EMAJ by EMAJ(x) = 1 if and only if
∑n

i=1 xi = dn/2e. Besides
these functions we consider the usual AND, OR, and XOR functions of n Boolean variables.

Let THR and ETHR denote the class of THRw,t and ETHRw,t functions for all w and t. Let MAJ,
EMAJ, AND, OR, XOR denote the class of all MAJ, EMAJ, AND, OR and XOR functions. We may
by adding a subscript to these functions and classes denote the number of inputs to them, e.g. by
ANDk we denote the Boolean AND function of k Boolean variables. By ANY we denote the class

2Note that the XOR function can be computed by a length 1 PTF over the domain {1,−2} but not over the
domain {1, 2}.
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of all Boolean functions. This latter class will only be used with a subscript specifying a constant
number of inputs, and is hence in this case equivalent to constant sized Boolean combinations.

From these Boolean functions we define unbounded fan-in Boolean circuits. Inputs are allowed
to be Boolean variables or their negation, as well as the Boolean constants 0 and 1. As with Boolean
functions we always have a family of Boolean circuits in mind, one for each input length n. The size
of a Boolean circuit is the number of wires. Unless otherwise specified, we consider circuit families
of polynomial size. A class of Boolean functions immediately define a class of Boolean circuits as
families of single gate circuits. Given two classes of circuits C1 and C2 we denote by C1 ◦C2 the class
of circuits consisting of circuits from C1 that is fed as inputs the output of circuits from C2.

3 PTFs and threshold circuits

3.1 Circuit characterizations

We first note that PTFs already of length 2 on domain {1, 2}n can compute the class of linear
threshold functions, and this is in fact an exact characterization. Furthermore, the case of polyno-
mial degree corresponds to the case of polynomial weights.

Proposition 1. PTF1,2(2,∞) = THR and PTF1,2(2, poly(n)) = MAJ.

Proof. Consider first the linear threshold function THRw,t given by the linear inequality
∑n

i=1wixi−
t > 0. By raising each side of the inequality to the power of 2 immediately results in the exponential
form of the desired length 2 PTF.

Conversely, consider a length 2 PTF defined by the exponential form inequality c12
∑n
i=1 aixi +

c22
∑n
i=1 bixi > 0. If sgn(c1) = sgn(c2) the Boolean function is constant, and hence is trivially a linear

threshold function. So assume sgn(c1) 6= sgn(c2). Without loss of generality let c1 > 0 and c2 < 0.
The inequality is then equivalent to the linear inequality

∑n
i=1(ai− bi)xi + log2 c1− log2(−c2) > 0,

defining a linear threshold function. The specialization to polynomial degree of the PTF and
polynomial weights of the linear threshold function follows immediately.

We can generalize one direction of Proposition 1 as follows.

Lemma 2. Any function computed by an ANDk ◦ THR circuit or an ORk ◦ THR circuit can be
computed by a PTF on domain {1, 2}n of length k + 1. Similarly, any function computed by an
ANDk ◦MAJ circuit or an ORk ◦MAJ circuit can be computed by a PTF on domain {1, 2}n of length
k + 1 and degree poly(n).

Proof. We prove the case of ORk ◦ THR circuits. The case of ANDk ◦ THR circuits then follow by
using De Morgan’s rules. Let the k threshold functions be given by the sign of the linear expressions
l1(x), . . . , lk(x), all with integer coefficients. Let c = dlog2 ke+ 2, and define new linear expressions
l̂1(x), . . . , l̂k(x) by l̂i(x) = c(li(x) + 1). We can then define the PTF by the exponential form

E(x) = 2l̂1(x) + · · ·+ 2l̂k(x) − 2k .

In case there exist i such that li(x) > 0, then l̂i(x) > c, and hence E(x) > 2c − 2k > 0. In case for
all i we have li(x) < 0, then we also have l̂i(x) 6 0 for all i, and hence E(x) 6 k − 2k < 0. Again
the specialization to polynomial degree of the PTF and polynomial weights of the linear threshold
functions follows immediately.
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A basic closure property of PTFs, being sign representations, is that the parity of PTFs is also
a PTF.

Lemma 3. If the Boolean functions f1, . . . , fk are computed by PTFs on domain {1, 2}n of length
s, then XOR(f1, . . . , fk) is computed by a PTF on domain {1, 2}n of length sk. Furthermore, if
each of the k given PTFs are of degree at most d, the resulting PTF is of degree at most kd.

Proof. If E1(x), . . . , Ek(x) are the exponential forms of the PTFs computing the Boolean func-
tions f1, . . . , fk then −

∏k
j=1(−Ej(x)) is an exponential form of a PTF computing the function

XOR(f1(x), . . . , fk(x)).

Remark. We note that classes THR ◦ THR, MAJ ◦MAJ and so on are also closed under the parity
function of constant fan-in. To see this, one can switch to ETHR and EMAJ gates on the bottom
level and use the fact that they are closed under ANDk using results of [14].

We can now characterize the Boolean functions computed by constant length PTFs on domain
{1, 2}n as the class of constant size Boolean combinations of linear threshold functions. This class
of functions was considered earlier in the setting of learning in [16].

Proposition 4. PTF1,2(O(1),∞) = ANYO(1) ◦ THR, and PTF1,2(O(1), poly(n)) = ANYO(1) ◦MAJ

Proof. Consider a function g(f1(x), . . . , fk(x)), where each fi is a linear threshold function. First
express g(y) as a k-variate polynomial p(y) over Z2. By Lemma 2, the function of x defined by each
monomial of p can be computed by a PTF of length k + 1. Using Lemma 3 we may now express
the sum over Z2 of these at most 2k functions by a PTF of length (k + 1)2k .

Conversely, we will show how to evaluate the sign of a PTF of length k by a constant size
Boolean combination of linear threshold functions. We will describe this evaluation by a decision
tree, where each decision node is determined by a linear threshold function. Consider the PTF in
its exponential form

s12l1(x) + · · ·+ sk2
lk(x)

where si ∈ {−1, 1}, and the coefficients of every li, except possibly for the constant term, are
integer. Define c = dlog2 ke, and consider an input x. First we determine using a decision tree of
depth O(k), indices i1 and i2 such that

li1(x) > li2(x) > lj(x)

for all j /∈ {i1, i2}. In case li1(x) > c + li2(x) the sign of E(x) is precisely si1 . Otherwise we have
that li1(x) = d + li2 for some number 0 6 d < c. Note that there are at most c such possible d,
since the coefficients of li1(x) and li2(x) are, except possibly for the constant term, integer. We
may consider each of these at most c cases separately after using a depth dlog2 ce decision tree. For
such a fixed d we may now rewrite the exponential form as

(si12d + si2)2li2 (x) +
∑

j /∈{i1,i2}

sj2
lj(x) = s2l(x) +

∑
j /∈{i1,i2}

sj2
lj(x)

for appropriate s and l, depending on si1 , si2 , and li2 , but otherwise independent of the specific x.
Since this is an expression of the same type, but of length k − 1 we may continue as above. Doing
this we obtain a decision tree of depth O(k2) that determines the sign of the expression. This
gives in turn a Boolean combination of 2O(k2) linear threshold functions. Again, the specialization
to polynomial degree of the PTF and polynomial weights of the linear threshold functions follows
immediately.
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In the case of polynomial degree we can characterize the Boolean functions computed by poly-
nomial length PTFs on domain {1, 2}n as a class of depth 2 threshold functions with polynomially
bounded weights on the bottom level.

Theorem 5.
PTF1,2(poly(n)) = THR ◦MAJ

Proof. We first construct a PTF given a THR◦MAJ circuit. Suppose that the output threshold gate
is given by the inequality (

∑s
k=1wkyk)−t > 0. Let l1(x), . . . , ls(x) be the linear expressions defining

the s majority gates with integer coefficients. Let p(n) be a polynomial such that |lk(x)| 6 p(n) for
all x ∈ {0, 1}n and all k.

Let m = 2p(n) + 1 and define the m × m matrix A = (aij) by aij = 2(i−p(n)−1)(j−1) for
i, j = 1, . . . ,m. Note that A is a Vandermonde matrix with distinct rows, and hence A is invertible.
Define u = (0, . . . , 0︸ ︷︷ ︸

p(n)

, 1, . . . , 1︸ ︷︷ ︸
p(n)+1

)T, and let v = A−1u. We now define PTFs by the exponential forms

E1(x), . . . , Es(x) given by

Ek(x) =
m∑
j=1

vj2
(j−1)lk(x) . (1)

By construction we have Ek(x) = ulk(x)+p(n)+1. In other words, whenever lk(x) < 0 we have
Ek(x) = 0 and whenever lk(x) > 0 we have Ek(x) = 1. We then obtain a PTF for the entire circuit
by the exponential form E(x) = (

∑s
k=1wkEk(x))− t.

Conversely consider a PTF given by its exponential form E(x) =
∑s

k=1 ck2
lk(x), where the

coefficients of lk(x) are positive integers of polynomial magnitude. Thus there is a polynomial p(n)
such that 0 6 lk(x) 6 p(n) for all x ∈ {0, 1}n and all k. We now construct a THR ◦ EMAJ circuit is
follows. For every k ∈ {1, . . . , s} and for every j ∈ {0, . . . , p(n)}, we take an EMAJ gate deciding
whether l(x) = j, and then feed the output of this gate into the output THR gate with weight ck2

j .
This THR ◦ EMAJ circuit is then easily converted into a THR ◦MAJ circuit [14].

As a byproduct of this result we get the following interesting structural result about depth 2
threshold circuits.

Lemma 6. Any polynomial size circuit in THR ◦MAJ is equivalent to a polynomial size circuit of
the same form such that all majority gates on the bottom level are monotone.

Proof. Starting with THR ◦ MAJ circuit we first switch to a PTF in exponential form, then by
multiplying the whole expression by a large enough term 2c

∑
i xi we make all coefficients in the

exponents positive and then we switch back to THR◦MAJ circuit. Note that the proof of Theorem 5
gives the circuit with monotone bottom level.

The previous lemma can be actually proved directly by the same techniques as in the proof of
Theorem 5. This direct proof actually gives also the analogous result for MAJ ◦MAJ circuits. We
present this in Appendix A.

3.2 Lower bounds for PTFs

The sign rank of a real matrix A = (aij) with nonzero entries is the minimum possible rank of a real
matrix B = (bij) of same dimensions as A satisfying sgn(aij) = sgn(bij) for all i, j. We are interested
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in the sign rank of matrices defined from Boolean functions. Let f : {0, 1}n × {0, 1}n → {−1, 1}
be a Boolean function of 2n bits partitioned in two blocks each of n bits. We associate with f
a 2n × 2n matrix Mf , the “communication matrix”, indexed by x, y ∈ {0, 1}n and defined by
(Mf )x,y = f(x, y).

Lemma 7. Assume f : {0, 1}n × {0, 1}n → {−1, 1} is computed by a PTF on domain {1, 2}n ×
{1, 2}n of length s. Then the matrix Mf has sign rank at most s.

Proof. Consider the PTF computing f in exponential form E(x, y) =
∑s

j=1 cj2
lj(x,y). For each j,

define the 2n × 2n matrix Bj , indexed by x, y ∈ {0, 1}n, defined by (Bj)x,y = 2lj(x,y). From this
definition we immediately have that the matrix B =

∑s
j=1 cjBj is a sign representation of Mf . Now

note that we can write lj(x, y) = l
(1)
j (x) + l

(2)
j (y). Hence Bj is an outer product, Bj = b

(1)
j b

(2)
j

T
,

where b
(1)
j , b

(2)
j ∈ {0, 1}n are defined by (b

(1)
j )x = 2l

(1)
j (x) and (b

(2)
j )y = 2l

(2)
j (y). It follows that Bj is

of rank at most 1, and hence rank(B) 6
∑s

j=1 rank(Bj) 6 s.

Thus lower bounds on the sign rank of communication matrices of Boolean functions directly
implies length lower bounds for PTFs on domain {1, 2}n not depending on the degree and weights.
Strong lower bounds are now known for several of Boolean functions. We mention two of particular
interest. Forster [8] proved that the sign rank of the 2n × 2n matrix corresponding to the inner
product mod 2 function, IP2(x, y), has sign rank 2

n
2 . Razborov and Sherstov [26] proved that the

sign rank of the 2m
3×2m

3
matrix corresponding to the Boolean function fm(x, y) =

∧m
i=1

∨m2

j=1(xij∧
yij) is 2Ω(m). Combining these results with Lemma 7 we have the following.

Corollary 8. Any PTF on domain {1, 2}n × {1, 2}n computing IP2 requires length 2
n
2 . Any PTF

on domain {1, 2}m3 × {1, 2}m3
computing fm requires length 2Ω(m).

Sign rank was previously used to give the first lower bounds for THR ◦MAJ circuits and sign
rank remains the only known method for obtaining such lower bounds. Since PTFs can compute
all functions computed by THR ◦ MAJ circuits already with polynomial degree by Theorem 5,
Corollary 8 indicates that the lower bound technique of sign rank is applicable to more general
models of computation. Showing that these models are indeed stronger would require a different
lower bound method for THR ◦ MAJ circuits. Instead we will relate the question whether PTFs
with no degree restrictions are more expressive than PTFs of polynomial degree to a question about
threshold circuits.

For this we will need the following lemma.

Lemma 9. For any s we have THRs ◦ ETHR ⊆ PTF1,2(s+ 1,∞) ◦ AND2.
In particular, THR ◦ THR ⊆ PTF1,2(∞) ◦ AND2.

Proof. From [14] we have THR ◦ THR = THR ◦ ETHR, so the second statement follows from the
first. Consider a THRs ◦ ETHR circuit C with ETHR gates g1, . . . , gs defined by integer linear
expressions l1(x), . . . , ls(x), and suppose the output THR gate is given by sgn(

∑s
j=1wjyj − t),

where wj 6= 0 for all j. Let 0 < m 6 miny∈{0,1}s |
∑s

j=1wjyj − t| be such that m/(2s|wj |) < 1

for all j, and let also mj = min{x∈{0,1}n|lj(x) 6=0} lj(x)2. Define polynomials p1, . . . , ps by pj(x) =

blog2(m/(2s|wj |))/mjclj(x)2. Then when lj(x) = 0 we have 2pj(x) = 1 and when lj(x) 6= 0 we have
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2pj(x) 6 m/(2s|wj |). Let x ∈ {0, 1}n and define y ∈ {0, 1}s be yj = 1 if and only if lj(x) = 0. Then
we have |yj − 2pj(x)| 6 m/2s|wj | and further∣∣∣∣∣∣

s∑
j=1

wjyj −
s∑
j=1

wj2
pj(x)

∣∣∣∣∣∣ 6 m

2
.

from which it follows that the sign of the expression
∑s

j=1wj2
pj(x) − t corresponds to the output

of the circuit. On the other hand, it is easy to see that after opening the brackets in the exponents
this expression corresponds to a PTF1,2(s+ 1,∞) ◦ AND2 circuit.

Proposition 10. PTF1,2(poly(n)) ( PTF1,2(∞) unless THR ◦ THR ⊆ THR ◦MAJ ◦ AND2.

Proof. Assume PTF1,2(poly(n)) = PTF1,2(∞). Then

THR ◦ THR ⊆ PTF1,2(∞) ◦ AND2 = PTF1,2(poly(n)) ◦ AND2 = THR ◦MAJ ◦ AND2,

where the first inclusion follows from Lemma 9 and the last equality follows from Theorem 5.

We tend to consider the inclusion THR ◦ THR ⊆ THR ◦MAJ ◦ AND2 as being unlikely to hold.
Note that this would also mean THR ◦ THR ◦ AND = THR ◦MAJ ◦ AND.

3.3 Sign complexity of tensors and depth 2 threshold circuits

In this section we define the notion of sign complexity of an arbitrary order tensor, generalizing sign
rank of matrices. The definition is made with the aim of capturing the notion of k-party unbounded
error communication complexity given in Section 6. For simplicity we give the definition for the
special case of order 3 tensors. The extension to tensors of any order k is direct.

Let A = (aijk) be an order 3 tensor. We say that A is a cylinder tensor if there is an order 2
tensor A′ = (a′ij) such either aijk = a′jk, for all i, j, k, aijk = a′ik for all i, j, k, or aijk = a′ij , for all
i, j, k. In other words an order 3 tensor is a cylinder tensor if there are two indices such that every
entry depends only on the value of these two indices. An order 3 tensor A is a cylinder product if
it can be written as a Hadamard product A1 �A2 �A3 where A1,A2, and A3 are cylinder tensors.

That is, aijk = a
(1)
jk a

(2)
ik a

(3)
ij , for all i, j, k, where A1 = (a

(1)
jk ),A2 = (a

(2)
ik ), A3 = (a

(3)
ij ).

The sign complexity of an order 3 tensor A = (aijk) is the minimum r such that there exist

cylinder product tensors B1, . . . , Br, with B` = (b
(`)
ijk), such that sgn(aijk) = sgn

(
b
(1)
ijk + · · ·+ b

(r)
ijk

)
,

for all i, j, k. The uniform sign complexity is defined in the same way, except we require that each
cylinder product tensor B1, . . . , Br is a Hadamard product of cylinder tensors in which all entries
have the same sign.

Remark. Recalling that the rank of a matrix A is also the minimum number r such that A can be
written as a sum of r matrices of rank 1, we see that the sign complexity of a tensor specializes to
sign rank for matrices.

In Section 6 we generalize unbounded error communication complexity to the multi-party
number-on-the-forehead setting, and show that uniform sign complexity of tensors precisely cap-
tures communication complexity in this setting, in the same way that sign rank captures the
communication complexity in the two-party setting. This also means that the sign complexity
essentially captures communication complexity in this setting.
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Lemma 11. The uniform sign complexity an order 3 tensor is at most 8 times its sign complexity
(for a tensor of general order k the factor is 2k).

Proof. Simply rewrite each Hadamard product of cylinder tensors A1�A2�A3 into a sum of 8 such
products by expanding (A+

1 −A
−
1 )�(A+

2 −A
−
2 )�(A+

3 −A
−
3 ), where A+

` , A
−
` > 0 with A` = A+

` −A
−
`

for ` = 1, 2, 3.

We are interested in the sign complexity of tensors defined from Boolean functions. Namely, for
a Boolean function f : {0, 1}n×{0, 1}n×{0, 1}n → {−1, 1} we associate with f a 2n×2n×2n tensor
Tf , the “communication tensor”, indexed by x, y, z ∈ {0, 1}n and defined by (Tf )xyz = f(x, y, z).

Proposition 12. Assume that f : {0, 1}n × {0, 1}n × {0, 1}n → {−1, 1} is computed by a THRs ◦
ETHR circuit. Then the sign complexity of Tf is at most s+ 1.

Proof. From Lemma 9 we have that

sgn

s+1∑
j=1

wj2
pj(x,y,z)

 = f(x, y, z) ,

for all x, y, z ∈ {0, 1}n, where pj(x, y, z) are degree 2 polynomials. Now notice that we can rewrite

each pj as pj(x, y, z) = p
(1)
j (y, z) + p

(2)
j (x, z) + p

(3)
j (x, y) and we can rewrite the above as

sgn

s+1∑
j=1

wj2
p

(1)
j (y,z)2p

(2)
j (x,z)2p

(3)
j (x,y)

 = f(x, y, z) .

Since each of the exponential expressions wj2
p

(1)
j (y,z), 2p

(2)
j (x,z), and 2p

(3)
j (x,y) define 2n × 2n × 2n

cylinder tensors, this shows that the sign complexity of Tf is at most s+ 1.

Using the result of [14] that THR ◦ THR = THR ◦ ETHR this translates to a statement about
THR ◦ THR circuits. Inspection of the proof of [14, Theorem 7] shows that a THR ◦ THR circuit
where the output gate has fan-in s may be converted to an equivalent THR◦ETHR circuit where the
output gate has fan-in O(sn3 log n). From this, Proposition 12 above, and the results of Section 6
we obtain the following.

Corollary 13. Assume that f : {0, 1}n×{0, 1}n×{0, 1}n → {−1, 1} has unbounded error 3-player
NOF communication complexity c. Then every THR ◦ ETHR computing f must contain 2c/poly(n)
THR gates.

Remark. The above result can be generalized to THR ◦ THR ◦ ANDk circuits by considering com-
munication protocols with 2k + 1 parties. If lower bounds for such circuits could be obtained for
increasing k, they could using the switching lemma be generalized to THR ◦ THR ◦ AND circuits,
or even THR ◦ THR ◦ AC0 circuits (cf. [25, 13]).
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4 Weights and Degree

In this section we among other things address the question of the minimal degree of a PTF com-
puting a given Boolean function. Currently we are unable to give an upper bound on the degree
required to compute a Boolean function given a bound on the length. That is, we don’t know
if PTF1,2(poly(n), d(n)) = PTF1,2(∞) for any function d(n), and in particular we don’t know if
PTF1,2(poly(n)) = PTF1,2(∞), though as we have indicated we believe the latter to be false. We
first show that the degree can be bounded in terms of the weight, and conversely the weight can
be bounded in terms of the degree. We currently know of no method to bound the degree and
weight simultaneously in terms of the length. Note that the proof of Proposition 4 together with
the upper bound nO(n) on the weight of linear threshold functions [21] imply that for any PTF
P of constant length there is another PTF P ′ of constant length and degree nO(n) computing the
same function. However the precise length of P ′ is exponential in the length of P . We are able to
avoid the exponential increase only for length 3, and we feel the proof of this gives some indications
about the difficulty of the general problem. The final result of this section is an exponential degree
lower bound for PTFs of constant length.

4.1 Relationship between minimal weight and minimal degree

The proof by Muroga, Toda and Takasu [22] (cf. [21]), showing that linear threshold functions needs
integer weights of magnitude no more than (n+ 1)(n+1)/2/2n can readily be adapted to PTFs on
domain {1, 2}n to give a bound on weight in terms of degree.

Proposition 14. Suppose P is a PTF of degree d and length s. Then there is another PTF P ′

of degree d and length s having weight at most ss/22ds such that sgn(P (x)) = sgn(P ′(x)) for all
x ∈ {1, 2}n. Furthermore the set of monomials of P ′ is the same of P .

Proof. Suppose P (x) =
∑s

j=1wj
∏n
i=1 x

aij
i . We construct system of linear inequalities in variables

w′1, . . . , w
′
s, with an inequality for each x ∈ {1, 2}n. Let P ′(x) =

∑s
j=1w

′
j

∏n
i=1 x

aij
i . For each

x ∈ {1, 2}n, if P (x) > 0 we take the inequality P ′(x) > 1, and if P (x) < 0 we take the inequality
P ′(x) 6 −1. This set of inequalities has a solution (namely any sufficiently large multiple of w),
and any solution of the inequalities gives a set of weights defining an equivalent PTF P ′. Let w′

be a solution that maximizes the number of inequalities satisfied with equality. Then it is easy to
see that w′ is uniquely determined by these equalities. In other words, w′ is a solution to a linear
system Aw′ = b, where A is a s × s matrix with entries from {0, 1, . . . , 2d} and b ∈ {−1, 1}s. By
Cramer’s rule, w′j = det(Aj)/det(A), where Aj is obtained from A by replacing column j by b. By

Hadamard’s inequality |det(Aj)| 6 ss/22ds, and we can now just clear the common denominator
obtaining the claimed integer weights.

A more complicated proof can give us a bound in another direction.

Proposition 15. Suppose P is a PTF having integer coefficients, weight W and length s with n
variables. Then there is another PTF P ′ of weight W and length s having degree at most

(sn+ 1)(sn)sn/2dlog2 s+ log2W esn

such that sgn(P (x)) = sgn(P ′(x)) for all x ∈ {1, 2}n. Furthermore the (multi)set of weights of P ′

is the same of P .
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Proof. Consider P in its exponential form
∑s

j=1wj2
lj(x), where lj(x) = a1jx1 + · · · + anjxn, with

aij > 0, and wj ∈ Z with |wj | 6 W . We construct a system of linear inequalities and equations
in variables a′ij , with a number of inequalities and equations produced for each x ∈ {0, 1}n. Let

l′j(x) = a′1jx1 + · · ·+a′njxn, and P ′ be the PTF given by the exponential form
∑s

j=1wj2
l′j(x). Define

c = dlog2 s+ log2W e.
Consider a fixed x ∈ {0, 1}n. We will consider the values l1(x), l2(x), . . . , ls(x) in sorted order.

For simplicity of notation, assume that in fact we have

l1(x) > l2(x) > . . . > ls(x) .

We partition this ordered sequence into blocks of consecutive values. Let 1 = i1 6 i2 6 . . . 6 im 6
im+1 = s+ 1 be the endpoint of m such blocks, where block k consists of the indices ik 6 j < ik+1.
We choose the partition in such a way that

lj(x) < lj+1(x) + c ,

for ik 6 j < ik+1 − 1 with 1 6 k 6 m, and

lik−1(x) > lik(x) + c ,

for 1 < k 6 m. In other words, in each block the difference between consecutive values is less than
c, whereas the difference between the endpoints values of different blocks is at least c.

We form an equality for consecutive values from the same block and an inequality otherwise.
For ik 6 j < ik+1 − 1 we take the equality

l′j(x)− l′j+1(x) = lj(x)− lj+1(x) ,

and for 1 < k 6 m we take the inequality

l′ik−1(x)− l′ik(x) > c .

In total this gives a system of 2n(s− 1) equations and inequalities in sn variables. We add to this
positivity constraints, a′ij > 0. All coefficients are either −1 or 1, and the right-hand sides are all
integers in the range {0, 1, . . . , c}. Let A be the (2n(s − 1) + sn) × sn matrix of coefficients and
let b ∈ Z2n(s−1)+sn be the right-hand sides. We know already that the system of equations and
inequalities has an integer solution, namely that given by P . Furthermore, any integer solution gives
a set of coefficients to the linear forms defining an equivalent PTF. To see this, note the inequalities
guarantee that for any block, when its contribution is nonzero it is guaranteed to dominate the
contribution of all following blocks. We can now use a bound of von zur Gathen and Sieveking [31]
to estimate an integer solution with small entries. For this let M be the maximum magnitude of
a m ×m minor of the matrix

[
A b

]
, where m 6 sn. Then the system has an integer solution a′

with a′ij 6 (sn+ 1)M . By Hadamard’s inequality, M 6 (sn)sn/2csn, and hence the entries of a′ are

bounded by (sn+ 1)(sn)sn/2csn.

From Propositions 14 and 15 we for example have that for a PTF of length poly(n), if the

degree is at most 2poly(n) then the weight can be assumed to be 22poly(n)
, and vise versa.
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4.2 Exponential upper bound for the degree of size 3 threshold gates.

Proposition 16. Any PTF of length 3 over the domain {1, 2}n is equivalent to a length 3 PTF
with degree nO(n).

Proof. Consider a PTF of length 3 in its exponential form

E(x) = w12l1(x) + w22l2(x) + w32l3(x)

When all wi’s have the same sign, the Boolean function computed is constant, so assume this is
not the case. Thus either 1 or 2 of the wi’s are positive. We consider the case when 2 are positive.
The other case is analogous. We can thus rewrite E(x) in the form

E(x) = 2A(x)+α + 2B(x)+β − 2C(x)+γ

where the A(x),B(x), and C(x) are affine linear forms with positive integer coefficients, and 0 6
α, β, γ < 1. In fact, by dividing by 2γ , we may assume γ = 0.

For each x ∈ {0, 1}n we produce a number of linear equations and inequalities. We have 3
cases. In case A(x) > C(x) or B(x) > C(x) we take that inequality. Note that A(x) > C(x) or
B(x) > C(x) alone implies that E(x) > 0.

In case both A(x) 6 C(x)− 2 and B(x) 6 C(x)− 2 we take both these inequalities. Note that
A(x) 6 C(x)− 2 and B(x) 6 C(x)− 2 together implies that E(x) < 0.

The last case is that either A(x) = C(x)− 1 or B(x) = C(x)− 1. Consider first the subcase of
A(x) = C(x)− 1. We may then rewrite

E(x) = 2B(x)+β − 2C(x)(1− 2α−1)

Thus E(x) > 0 if and only if
2B(x) > 2C(x)(1− 2α−1)2−β

which holds if and only if
B(x) > C(x) + log2(1− 2α−1)− β .

Since the coefficients of B(x) and C(x) are integer, this holds if and only if

B(x) > C(x) + dlog2(1− 2α−1)− βe .

Note that dlog2(1− 2α−1)−βe might be of large magnitude, and thus we do not want to have such
a number in our system. Instead we introduce a new integer variable kA and add to our system
the equality A(x) = C(x)− 1 and the inequalities B(x) > C(x)− kA and kA > 1.

The sub-case of B(x) = C(x)− 1 is similar, and E(x) > 0 if and only if

A(x) > C(x) + dlog2(1− 2β−1)− αe .

We add here in a similar way the equality B(x) = C(x)− 1 and the inequalities A(x) > C(x)− kB
and kB > 1.

Finally we add positivity constraints to all coefficients of variables in exponents. In this way we
end up with a system of at most 2 · 2n + 3n+ 2 equations and inequalities in 3(n+ 1) + 2 = 3n+ 5
variables. Similarly as in the proof of Proposition 15 we may find an integer solution with entries
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of bounded magnitude. The bound we can achieve here by the result of von zur Gathen and
Sieveking [31] is (3n+ 6)(3n+ 5)(3n+5)/223n+5 = nO(n).

Given such an integer solution A′(x), B′(x), C ′(x), k′A, k
′
B we now wish to find α′ and β′ solving

the equations

−kA = dlog2(1− 2α
′−1)− β′e

−kB = dlog2(1− 2β
′−1)− α′e

(2)

or equivalently

2−kA−1 < (1− 2α
′−1)2−β

′
6 2−kA

2−kB−1 < (1− 2β
′−1)2−α

′
6 2−kB

(3)

This can be done as follows. First, let log2(3)−1 6 α0, β0 < 1 be given by α0 = log2(1−2−kA−1)+1
and β0 = log2(1− 2−kB−1) + 1. Then we have 1− 2α0−1 = 2−kA−1 and 1− 2β0−1 = 2−kB−1. Choose
0 < ε < min(1−α0, 1−β0), and let α′ = log2(1− 2−kA−ε) + 1 and β′ = log2(1− 2−kB−ε) + 1. Then
we have 1 − 2α

′−1 = 2−kA−ε and 1 − 2β
′−1 = 2−kB−ε. Note also that α′ < α0 and β′ < β0 which

implies 0 < α′, β′ < 1− ε. Combining this we see that α′ and β′ satisfies the equations (3).

Remark. One may in fact solve the equations (2) without the ceiling operation except when exactly
one of kA and kB is 1. In case kA = kB = 1 we have the solution α′ = β′ = 0. In case kA, kB > 1
we have the solution

α′ = log2

(
2− 22−kA

1− 22−kA−kB

)
β′ = log2

(
2− 22−kB

1− 22−kA−kB

)
.

4.3 Exponential lower bound for the degree of constant-size threshold gates

The ODD-MAX-BIT function (abbreviated here by OMB) was defined by Beigel [3] as
OMB(x1, . . . , xn) = 1 if and only if (max{i | xi = 1} mod 2) = 1. In this section we prove a
degree lower bound of the form 2Ω(nε) for any PTF of constant length s computing OMB, where ε
depends on s.

By Proposition 4 we have PTF1,2(O(1),∞) = ANYO(1) ◦ THR. Inspecting the proof we can
observe that a PTF of individual degree at most d and length k is in fact turned into a Boolean
combination of 2O(k2) threshold functions, where these threshold functions have integer weights of
magnitude at most d. We can rewrite this Boolean combination of linear threshold functions by a
constant size DNF, i.e. we obtain an OR

22O(k2) ◦ AND2O(k2) ◦ THR circuit where all threshold gates

are computed with integer weights of magnitude at most d. We can thus just give weight lower
bounds for ORO(1) ◦ ANDO(1) ◦ THR circuits.

Theorem 17. Any circuit in the class ORk ◦ANDl ◦THR computing OMB function on n variables
require weights of size 2Ω(n1/kl).

Proof. In this proof we will identify inputs x ∈ {0, 1}n to the function OMB with the subsets
X ⊆ [n] given by X = {i | xi = 1}, and vice versa.

Define m = n1/kl. In the course of the proof we will construct a sequence of disjoint subsets
A0, A1, . . . , Am ⊆ [n] such that a0 < . . . < am whenever a0 ∈ A0, . . . , am ∈ Am. In addition
to these we will identify a particular THR gate in the circuit such that on inputs of the form
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Xi = A0 ∪Ai ∪Ai−1 ∪Ai−3 ∪Ai−5 ∪ . . ., the THR-gate is 1 for odd i and is 0 for even i. With this
sequence in hand we will be able to prove the weight lower bound in a standard way.

Break the set [n] into m equal-sized blocks B1, . . . , Bm of consecutive elements. Let A0 = ∅.
Consider the first AND gate in the circuit and the first of its THR gates. Let us denote it by
t1. We shall attempt to find the sequence of sets A1, . . . , Am for t1. We shall choose these one
by one, i = 1, . . . ,m, until we either succeed or fail for some i. When i is odd we wish to find
Ai ⊆ Bi such that OMB(Xi) = 1 and t1(Xi) = 1. When i is even we wish to find Ai ⊆ Bi such
that OMB(Xi) = 0 and t1(Xi) = 0. If on each step we can find such Ai we are done.

Suppose that on some step i we fail to find Ai. We shall then add to A0 the sets
Ai−1, Ai−3, Ai−5, . . . and repeat the whole argument restricted to block Bi, which we divide into
m new blocks. The point is that before doing this we may simplify the circuit. Namely, when i is
odd, we have for all Ai ⊆ Bi for which OMB(Xi) = 1 that t1(Xi) = 0. Thus we may eliminate t1
together with its parent AND gate from the circuit when restricting input to Bi and the bits in the
set A0. Since the circuit actually computes the OMB function there will still be other AND ◦ THR
sub-circuits remaining. Similarly, when i is even, we have for all Ai ⊆ Bi for which OMB(Xi) = 0
that t1(Xi) = 1. Thus we may eliminate t1 from the circuit when restricting input to Bi and the
bits in the set A0. Since the circuit actually computes the OMB function there will still be another
THR gate in the circuit that is a sibling of t1.

We need to proceed to the sub-block at most kl−1 times since each time we reduce the number
of threshold gates by at least 1. It is not hard to see that by the choice of parameters we finally
get the sequence of sets as desired. Let us now consider the threshold gate corresponding to this
sequence. Suppose it is given by the inequality

∑
j wjxj > t, where the variables range only over

the proper block, and all variables outside are fixed. Define WAi =
∑

j∈Ai wj , where i = 1, . . . ,m.
Then from the inputs X1, . . . , Xm we get the sequence of inequalities

WA1 > t, WA2 +WA1 < t, WA3 +WA2 > t,

WA4 +WA3 +WA1 < t, . . . ,

and from these inequalities the desired lower bound 2Ω(n1/kl) follows easily.

5 Max-plus PTFs

In this section we introduce one more complexity class which is a “limit” class of our PTF classes
in the flavor of max-plus algebra. It turns out this class is related to the Boolean circuits of the
form AC0 ◦ THR.

Consider some integer polynomial p(x) ∈ Z[x] and consider some domain {1, b}. This polynomial
computes some function in PTF1,b(l, d), where l is the length of p and d is the degree of p. We
start with some preliminary work to make p be in “general position”. First we can assume that
p(x) 6= 0 for all x ∈ {1, b}n. For this just consider 2p(x) + 1 instead of p(x). Next by varying the
coefficients of p by small rational numbers and multiplying the whole polynomial by large enough
integer to make the coefficients integer again we can assume that for each x ∈ {1, b}n none of the
two monomials are equal.

Now consider the exponential form of p

P (x) =

l1∑
i=1

bLi(x) −
l2∑
j=1

bMj(x), Li(x) =

n∑
k=1

vkixk + v0i, Mj(x) =

n∑
k=1

ukjxk + u0j .

15



Note that here we put the coefficients of the polynomial to the exponents.
Suppose now that we start to increase b (for convenience assume that b is positive). Then the

function computed by p might start changing. Since all linear forms are different for all inputs
x ∈ {0, 1}n it is easy to see that for large enough b and for any x the sign of P (x) is equal to the
sign of the largest monomial. That is, P (x) > 0 if and only if

max
i=1,...,l1

(Li(x)) > max
j=1,...,l2

(Mj(x)) (4)

Definition 1. By max-plus PTFs we denote expressions of the form (4). The length of the PTF (4)
is l1 + l2, the degree is the maximal sum of absolute values of all coefficients of L1, . . . , Ll1 and
M1, . . . ,Ml2 except the constant term. Note that max-plus PTFs are essentially just polynomial
inequalities in the max-plus algebra.

We let mpPTF(l(n), d(n)) to be the set of Boolean functions computable by max-plus PTFs of
length l(n) and degree d(n). As before we denote by mpPTF(d(n)) the set of Boolean functions
computable by max-plus PTFs of length poly(n) and degree d(n). Here d(n) might be ∞.

It turns out that the class mpPTF(∞) is related to the circuits of the form AC0 ◦ THR. More
specifically, we can consider the hierarchy of polynomial size circuits of the form Σd ◦ THR and
Πd ◦ THR, where Σd and Πd are the classes of depth d circuits of interchanging layers of AND and
OR gates of unbounded fan-in, Σd having OR gate at the top and Πd having AND gate at the
top. In this hierarchy lower bounds are known only for the case d = 1, that is for the circuits of
the form AND ◦ THR and OR ◦ THR (the standard proof of the lower bound on the size of DNF
for the parity function works). For the circuits of the form AND ◦OR ◦ THR and OR ◦ AND ◦ THR
no superpolynomial lower bounds for explicit functions are known. It turns out that the class
mpPTF(∞) lies between these two levels of the hierarchy.

First we note some trivial property of max-plus PTF classes.

Proposition 18. mpPTF(∞) and mpPTF(poly(n)) are closed under negation.

Proof. This follows directly from the definition of max-plus PTFs and the fact that any max-plus
PTF can be easily reconstructed in such a way that for all x ∈ {0, 1}n the equality does not hold
in (4).

Lemma 19. AND ◦ THR,OR ◦ THR ⊆ mpPTF(∞), and
mpPTF(∞) ⊆ AND ◦ OR ◦ THR,OR ◦ AND ◦ THR

Proof. Assume that we have a circuit of the form OR◦THR and l1 > 0, . . . , lk > 0 are the threshold
gates on the bottom level. Then it is clear that the max-plus PTF

max(l1, . . . , lk) > 0

computes the same function. For the class AND ◦ THR an analogous proof works. Alternatively,
the inclusion follows from Proposition 18.

Now consider the max-plus PTF (4). It is true if and only if there is i ∈ [l1] such that for all
j ∈ [l2] it is true that Li(x) >Mj(x). That is, this PTF is equivalent to the formula

l1∨
i=1

l2∧
j=1

(Li(x) >Mj(x)) ,
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which is clearly in the class OR ◦AND ◦THR. Again, the inclusion in AND ◦OR ◦THR follows from
Proposition 18.

Now we show that min-plus PTFs are not stronger than usual PTFs.

Lemma 20. For all b > 1 there is a constant C such that mpPTF(l(n), d(n)) ⊆ PTF1,b(l(n), C ·
d(n) log l(n)).

Proof. Suppose we are given a max-plus PTF (4). First note that we can change the linear forms
in such a way that for each x ∈ {0, 1}n equality does not hold. For this we can just for each i
consider 2Li+ 1 instead of Li and for each j consider 2Mj instead of Mj . This increases the degree
at most by a constant factor.

After that we can consider the PTF P in exponential form over {1, b}:

P (x) =

l1∑
i=1

bC log l(n)Li(x) −
l2∑
j=1

bC log l(n)Mj(x) .

It is easy to see that if C is such that bC log l(n) > l(n) then for each x ∈ {0, 1}n the absolute value
of the largest monomial in P (x) is greater than the absolute value of the sum of all monomials of
the opposite sign. Thus the sign of P (x) is equal to the sign of the largest monomial in it and
P (x) > 0 if and only if (4) is true.

From the lemma above and Corollary 8 we immediately obtain the following corollary.

Corollary 21. Any max-plus PTF computing IP2 requires length 2
n
2 . Any max-plus PTF comput-

ing fm requires length 2Ω(m).

Thus mpPTF(∞) is an intermediate class in the AC0 ◦ THR hierarchy for which we do know a
lower bound. On the other hand the class is still rather strong. We show that it contains some
functions which are complicated for other complexity classes.

Lemma 22. PARITY ∈ mpPTF(poly(n)), OMB ◦ THR ⊆ mpPTF(∞).

Proof. The fact that the parity is computable by mpPTF follows already from the analysis of Basu
et al. [1] (Theorem 4.1). For the sake of completeness we sketch the construction below. Define
X = x1 + . . .+ xn and let

Li(x) = li(X) = i(X − i) + Ci

for i = 0, . . . n, where C0 = 0 and other Ci are defined recursively by Ci = li−1(i) + 1/2. Linear
forms Li are arranged in such a way that on the input with i ones Li is the largest of the forms
being by 1/2 greater than the previous linear form. Then if we put all Li with odd i on the left-hand
side of (4) and all Li with even i on the right-hand side, it is not hard to see that the resulting
max-plus PTF computes PARITY.

Suppose now we have a function f ∈ OMB ◦THR and l1 > 0, . . . , lk > 0 are the threshold gates
on the bottom level. That is f(x) = 1 if and only if the largest i such that li(x) > 0 is odd (if there
is no such i the function is 0). First as usual we can assume that all li never evaluate to zero. Let

B = max
i=1,...,k, x∈{0,1}n

|li(x)|.
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Consider l′i(x) = Bi−1li(x), a then the max-plus PTF for which on the left-hand side we have all
l′i for odd i and on the right-hand side we have all l′i for even i and in addition a constant zero
linear form. It is not hard to see that for any x the positive linear form with the greatest number is
greater than all other linear forms and thus we have constructed a max-plus PTF for the function
f .

We note that Buhrman et al. [5] proved that the function OMB ◦AND2 is not in the complexity
class MAJ ◦MAJ. Thus we have the following corollary.

mpPTF(∞) * MAJ ◦MAJ.

Besides max-plus PTFs which are just polynomial inequalities in the max-plus algebra, we can
consider systems of max-plus polynomial inequalities. Clearly they can be expressed by AND’s of
max-plus PTFs. Using the results above we can precisely characterize the power of the systems of
max-plus PTFs in terms of AC0 ◦ THR circuits.

Corollary 23. The functions computed by systems of max-plus PTFs are exactly those computed
by AND ◦ OR ◦ THR circuits.

Proof. Functions computed by systems of max-plus PTFs are also computed by AND ◦ OR ◦ THR
circuits, since by Lemma 19 each function computed by a PTF is computed by a AND ◦OR ◦THR
circuit, and the system is just an AND of its PTFs. On the other hand, systems of max-plus PTFs
can compute every function computed by AND ◦ OR ◦ THR circuits since, again by Lemma 19 we
can represent OR◦THR circuits by PTFs and then we can simulate the AND gate by a system.

6 Sign complexity of tensors and multi-party NOF communication
complexity

We show here how the notion of unbounded error two-party communication complexity of Paturi
and Simon [24] and its matrix characterization can be extended from the two-party setting to the
multi-party number-on-the-forehead setting introduced by Chandra, Furst, and Lipton [7]. Once
a suitable definition of one-way protocols together with the definition of sign complexity from
Section 3.3 is in place, the extension is rather straightforward, following Paturi and Simon [24]. For
simplicity, as was similarly done in Section 3.3, we give the definitions for the special case of three
parties. The extension to any number of parties k is direct.

In the three-party communication model it is the goal of three players A, B, and C to compute
a Boolean function f(x, y, z). The input to f is distributed between the players such that player
A receives x, player B receives y and player C receives z. Here we are in the number-on-the-
forehead model, meaning that each player can see all inputs except his own. Also we are in the
unbounded error model, meaning that each player has access to private3 randomness. The players
can communicate by broadcasting messages. The communication should proceed according to a
fixed protocol P . The protocol specifies for each sequence of bits sent by the players so far (and
depending only on these) the following information: Whether the protocol is over, and in that case
the output P (x, y, z) of the protocol. In case the protocol is not over, which player is to send the
next bit of communication as well as the distribution of this bit. This distribution depends on

3In case of public randomness the model becomes trivial [24].
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the inputs visible to the player, the sequence of bits sent by the players so far, and it is sampled
using private randomness to give the actual bit sent by the player. The protocol P computes the
Boolean function f if Pr[P (x, y, z) = f(x, y, z)] > 1

2 , where the probability is taken over the internal
randomness of the players. A transcript of the protocol P is the concatenation of messages sent
during an execution of the protocol. The communication complexity c(P ) of the protocol P is the
length of the largest possible transcript for any possible input (x, y, z).

By a one-way protocol P ′ we mean the following restricted type of protocols. At first, player
A sends a message. His possible messages MP ′ are divided into two sets M0

P ′ and M1
P ′ , intuitively

describing the intended output by player A. Suppose the message of player A is m ∈ M b
P ′ . Then

players B and C each send a single bit independently of each other, intuitively indicating whether
they agree with the intended output. If both these bits are 1, the output P ′(x, y, z) of the protocol
is b, and otherwise the output of the protocol is 1− b. The communication complexity c(P ′) of the
one-way protocol P ′ is the largest possible length of the message sent by player A.

Analogously to two-party case it turns out that in the unbounded error setting, one way proto-
cols very precisely captures the power of general protocols.

Lemma 24. For any protocol P there is a one way protocol P ′ computing the same function and
such that c(P ′) 6 c(P ) + 1.

Proof. Let TP denote the possible transcripts of the protocol P . Divide this set of transcripts
into the transcripts T 0

P with output 0 and the transcripts T 1
P with output 1. For α ∈ TP we

denote by ΠA(P, α, y, z) the probability that α is consistent with the messages of A during a run
of the protocol on inputs y, z. We define ΠB and ΠC analogously. It is then not hard to see that
ΠA(P, α, y, z)ΠB(P, α, x, z)ΠC(P, α, x, y) is exactly the probability with which the transcript α is
produced by the protocol on input (x, y, z). For b ∈ {0, 1}, define dby,z =

∑
α∈T bP

ΠA(P, α, y, z) and

let d = maxy,z d
1
y,z.

We are now ready to construct the one-way protocol P ′. The set of messages of player A
consists of TP together with a new message γ /∈ TP . That is MP ′ = TP ∪ {γ}. We let M0

P ′ = T 0
P

and M1
P ′ = T 1

P ∪ {γ}.
For β ∈ MP ′ we denote by ΠA(P ′, β, y, z) the probability that player A sends the message β.

We denote by ΠB(P ′, β, x, z) and ΠC(P ′, β, x, y) the probability that player B and C send the bit
1 upon seeing message β. We define these probabilities as follows:

ΠA(P ′, α, y, z) =
1

2d
ΠA(P, α, y, z) for α ∈ T 1

P

ΠA(P ′, γ, y, z) =
1

2

(
1−

d1
y,z

d

)

ΠA(P ′, α, y, z) =

(
1

2d0
x

)
ΠA(P, α, y, z) for α ∈ T 0

P

ΠB(P ′, α, x, z) = ΠB(P, α, x, z) for α ∈ T 1
P

ΠB(P ′, γ, x, z) = 0

ΠB(P ′, α, x, z) =
1

2d
for α ∈ T 0

P

ΠC(P ′, α, x, y) = ΠC(P, α, x, y) for α ∈ T 1
P

ΠC(P ′, γ, x, y) = 0
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ΠC(P ′, α, x, y) = 1 for α ∈ T 0
P

With these in place we can now compute the probability that P ′ gives as output 1 in terms of
the probability that P gives as output 1.

Pr[P ′(x, y, z) = 1] =
∑

β∈M1
P ′

ΠA(P ′, β, y, z)ΠB(P ′, β, x, z)ΠC(P ′, β, x, y)

+
∑

β∈M0
P ′

ΠA(P ′, β, y, z)
(
1−ΠB(P ′, β, x, z)ΠC(P ′, β, x, y)

)
=
∑
α∈T 1

P

1

2d
ΠA(P, α, y, z)ΠB(P, α, x, z)ΠC(P, α, x, y)

+
∑
α∈T 0

P

(
1

2d0
y,z

)
ΠA(P, α, y, z)

(
1− 1

2d

)

=
Pr[P (x, y, z) = 1]

2d
+

1

2

(
1− 1

2d

)
=

1

2
+

Pr[P (x, y, z) = 1]− 1
2

2d

The complexity of P ′ is at most by one larger than the complexity of P as claimed, since the
number of possible messages is one larger than the number of possible transcripts.

Next we characterize the one-way communication complexity of a Boolean function f in terms
of the uniform sign complexity of the communication tensor Tf as defined in Section 3.3.

Proposition 25. Let f : {0, 1}n×{0, 1}n×{0, 1}n → {−1, 1} be a non-constant Boolean function.
Let s be the uniform sign complexity of the associated communication tensor Tf and let c be the
one-way unbounded error communication complexity of f . Then

dlog2 se 6 c 6 dlog2(s+ 1)e.

Proof. Assume first that we are given a one way communication protocol P of communication
complexity c. With each message α ∈ MP we associate a cylinder product tensor Aα in the
following way. Define non-negative cylinder tensors Aα1 (x, y, z) = ΠA(P, α, y, z), Aα2 (x, y, z) =
ΠB(P, α, x, z), Aα3 (x, y, z) = ΠC(P, α, x, y) and let Aα(x, y, z) = Aα1 (x, y, z)Aα2 (x, y, z)Aα3 (x, y, z).
Then it is not hard to see that

Tf = sgn

 ∑
α∈M1

P

Aα − 1

2
1

,
where by 1 we denote the tensor in which all entries are 1. Since the messages of A form a prefix free
set from {0, 1}c the set MP consists of at most 2c messages. Furthermore, since f is non-constant
there should be at least one message in M0

P . It follows that Tf is the sum and difference of at most
2c non-negative cylinder tensors, and hence s 6 2c.
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In the other direction, suppose we are given a representation

Tf = sgn((−1)t1B1 + . . .+ (−1)tsBs),

where Bl(xyz) = Dl
1(y, z)Dl

2(x, z)Dl
3(x, y), tl ∈ {0, 1}, and Dl

1,Dl
2, and Dl

3 are non-negative order
2 tensors.

Observe that we can assume that for each (x, y, z)

s∑
l=1

Dl
2(x, z) =

s∑
l=1

Dl
3(x, y) = 1.

Indeed, if this is not true for one of the sums we can multiply all its terms by the same
number, and this does not change the sign. Next define E0(y, z) =

∑
l : tl=0D

l
1(y, z) and

E1(y, z) =
∑

l : tl=1D
l
1(y, z). By the same observation as above we can further assume that

max{E0(y, z), E1(y, z)} = 1/2.
Now we are ready to construct the protocol. The messages of player A will be chosen from the

set {0, 1, . . . , s}. On input (y, z) Player A sends message l > 0 with probability Dl
1(y, z), and send

message 0 with the remaining probability 1− E0(y, z)− E1(y, z). If E0(y, z) < 1/2 we let t0 = 0,
otherwise we let t0 = 1. The intended output of message l is 1− tl.

Upon receiving the message l > 0, player B sends 1 with probability Dl
2(x, z) and player C

sends 1 with probability Dl
3(x, y). Upon receiving message 0, player B and player C send 1 with

probability 1.
By direct computation it is not hard to see that the probability of output 1 is equal to 1/2 +∑
l(−1)tlBl(x, y, z). Since the protocol requires A to send at most s + 1 different messages the

complexity of the protocol is at most dlog2(s+ 1)e.

7 Relations between the domains

Though we can not completely solve the problem of the relations between the domains, we still have
some partial result in this direction. In particular we show that the domains {1, 2} and {1,−2} are
essentially equivalent. We start with simple observations.

Proposition 26. For all a, b ∈ R such that a, b 6= 0 and |a| 6= |b| we have that PTFa,b(poly(n)) =
PTF1,2(poly(n)).

Proof. This is a direct corollary of Theorem 5 (note that the proof of this theorem works for all
specified domains).

Proposition 27. For all a, b ∈ R such that a, b 6= 0 and |a| 6= |b| we have that PTFa,b(l(n), d(n)) =
PTF1, b

a
(l(n), d(n))

Proof. Just note that if y ∈ {a, b} then z = y/a is the corresponding variable over {1, ba}.

Lemma 28. For all a, b ∈ R such that a, b 6= 0 and |a| 6= |b| and for any natural number k we have
PTFa,b(∞) = PTFak,bk(∞).
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Proof. Note that PTFak,bk(∞) ⊆ PTFa,b(∞) since everything that can be computed over {ak, bk}
can be computed over {a, b}. Indeed, just consider the same polynomial but increase all powers by
the factor of k.

To prove the other direction first note that by Proposition 27 we can safely assume that a = 1.
Next noting that for y ∈ {1, b} defining x ∈ {0, 1} to be x = log|b|(|y|) we have that y = bx. So

we can consider exponential forms analogously to the case of {1, 2} domain.
Consider some function f from PTF1,b and consider the polynomial p computing it over {1, b}.

We will show how to construct the polynomial q such that p(x) = q(x) for all x ∈ {1, b}n, all degrees
in all monomials of q are divisible by k and finally the length of q are greater than the length of
p by at most polynomial factor. For this consider one of the monomials C of p in the exponential
form:

C = ba1x1+a2x2+...+anxn .

Here all coefficients ai are integer. Denote by ri the residue of ai modulo k and let qi = (ai− ri)/k.
Then

C = br1x1+r2x2+...+rnxn ·
(
bk
)q1x1+q2x2+...+qnxn

. (5)

Denote the first multiplier by D. Note that the degree of D is polynomially bounded, more precisely
it is at most kn. By repeating the argument of the first part of the proof of Theorem 5 we can
construct a polynomial pC ∈ Z[x] of polynomial size and polynomial degree such that if we consider
it as a PTF over {1, bk} and consider it’s exponential form p′C , then p′C(x) = D(x) for all x ∈ {0, 1}n.
More precisely, for this we construct the polynomial in the same way as in (1) but we let the base
of the exponent be bk in the matrix A and we let u be the vector of possible values of D.

Substituting p′C instead of D in (5) we obtain a representation of C over {1, bk}. Repeating this
argument for each monomial we prove the lemma.

From this in particular we can deduce that

PTF1,2(∞) = PTF1,22(∞) = PTF1,(−2)2(∞) = PTF1,−2(∞).
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A Threshold circuits with monotone gates

Lemma 29. Any polynomial size circuit in MAJ ◦MAJ is equivalent to a polynomial size circuit
of the same form such that all majority gates on the bottom level are monotone (and we allow the
output majority gate to negate some of its inputs).

Proof. The proof is analogous to the proof of Theorem 5 and simplifies to the following. Consider
some MAJ ◦ MAJ circuit and consider a majority gate l(x) =

∑
i aixi + a0 > 0 on the bottom

level. We will express this majority gate as a linear combination of polynomially many monotone
majority gates with polynomially bounded coefficients. For this denote by A(x) the sum of the
positive monomials in l(x) and by B(x) the negated sum of the negative monomials in l(x). That
is l(x) = A(x) − B(x) and all coefficients in A and B are positive. The coefficients in A and
B are polynomially bounded and thus these two polynomials obtain at most polynomially many
different values on {0, 1}n. Define c = maxx∈{0,1}n A(x) and let us consider linear form M(x) =
A(x)+c(2B(x)+1) this linear form also obtains at most polynomial number of values and moreover
it is easy to see that if for some x, x′ ∈ {0, 1}n (A(x), B(x)) 6= (A(x′), B(x′)) then M(x) 6= M(x′).
Now consider all possible values of the pair (A(x), B(x)) such that l(x) > 0 and let t1, . . . , tk be
the corresponding values of M . It is easy to see that l(x) > 0 if and only if for exactly one i we
have M(x) − ti = 0. That is, we have expressed our majority gates as a sums of exact majority
gates M(x) − t1 = 0, . . . ,M(x) − tk = 0. Finally noting that the value of exact majority gate
with integer coefficients N(x) = 0 is equal to the difference of two majority gates N(x) > 0 and
N(x) > 1/2 we obtain the desired result.

We note that the same proof works also for THR ◦MAJ circuits.
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