
Strong LTCs with inverse poly-log rate and constant soundness

Michael Viderman∗

Computer Science Department
Technion — Israel Institute of Technology

Haifa, 32000, Israel.
viderman@cs.technion.ac.il

February 5, 2013

Abstract

An error-correcting code C ⊆ Fn is called (q, ε)-strong locally testable code (LTC) if there
exists a tester that makes at most q queries to the input word. This tester accepts all codewords
with probability 1 and rejects all non-codewords x /∈ C with probability at least ε · δ(x,C),
where δ(x,C) denotes the relative Hamming distance between the word x and the code C. The
parameter q is called the query complexity and the parameter ε is called soundness.

In this paper we solve an open question raised by Goldreich and Sudan (J.ACM 2006)
and construct binary linear strong LTCs with query complexity 3, constant relative distance,
constant soundness and inverse polylogarithmic rate.

Our result is based on the previous paper of the author (Viderman, ECCC TR12-168), which
presented binary linear strong LTCs with query complexity 3, constant relative distance, and
inverse polylogarithmic soundness and rate. We show that the “gap amplification” procedure
of Dinur (J.ACM 2007) can be used to amplify the soundness of these strong LTCs from inverse
polylogarithmic up to a constant, while preserving the other parameters of these codes.

∗The research has received funding from the European Community’s Seventh Framework Programme (FP7/2007-
2013) under grant agreement number 259426.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 22 (2013)

1 Introduction

To explain the results of this work, we start from the necessary definitions. For the introduction
we refer a reader to the previous work of the author [9].

A code over a finite alphabet Σ is a subspace C ⊆ Σn. A linear code over a finite field F is a
linear subspace C ⊆ Fn. In this case, n is the blocklength of the code C, denoted by blocklength(C).
The dimension of a linear code C, denoted by dim(C), is its dimension as a vector space and is
equal to log|F| |C|. The dimension of a non-linear code C over the alphabet Σ is defined to be
dim(C) = log|Σ| |C|.

The rate of a code C, denoted by rate(C), is defined to be dim(C)
blocklength(C) = dim(C)

n . We define the

distance between two words x, y ∈ Fn to be ∆(x, y) = |{i | xi 6= yi}| and the relative distance to

be δ(x, y) = ∆(x,y)
n . The distance of C is defined by ∆(C) = min

x 6=y∈C
∆(x, y) and its relative distance

is defined by δ(C) = ∆(C)
n . For x ∈ Fn and C ⊆ Fn, let δ(x, C) = min

y∈C
{δ(x, y)} denote the relative

distance of x from the code C. If δ(x, C) ≥ ρ, we say that x is ρ-far from C and otherwise x is
ρ-close to C.

Let [n] be the set {1, . . . , n}. For w ∈ Fn, let supp(w) = {i ∈ [n] | wi 6= 0} and |w| = | supp(w)|.
For u = (u1, u2, . . . , un), v = (v1, v2, . . . , vn) ∈ Fn let 〈u, v〉 denote the bilinear function from Fn×Fn

to F defined by 〈u, v〉 =
n∑
i=1

uivi. The dual code is defined by C⊥ = {u ∈ Fn | ∀c ∈ C : 〈u, c〉 = 0}.

Similarly, we define C⊥≤t =
{
u ∈ C⊥ | |u| ≤ t

}
. For w ∈ Fn and S = {j1, j2, . . . , jm} ⊆ [n] we

let w|S = (wj1 , wj2 , . . . , wjm), where j1 < j2 < . . . < jm, be the restriction of w to the subset
S. Similarly, we let C|S = {c|S | c ∈ C} denote the projection of the code C onto S. We define
C|−S = C|[n]\S , i.e., projection of the code C to all coordinates besides S. For A ⊆ N and b ∈ N we
let A+ b = b+A = {a+ b | a ∈ A}.

For the distribution D over the subsets of [n] we let D(I) to denote the probability that a
subset I ⊆ [n] is selected by D and supp(D) = {I ⊆ [n] | D(I) > 0}. For i ∈ [n] we let ND(i) =
{I ∈ supp(D) | i ∈ I}.

Now we define testers and LTCs (see [7, 9] for the justification of this definition).

Definition 1.1 (LTCs and Testers). A q-query tester for a code C ⊆ Fn is a distribution D over
subsets I ⊆ [n] such that |I| ≤ q. A q-query tester D is a (q, ε, ρ)-weak tester if for all w ∈ Fn,
δ(w, C) ≥ ρ we have Pr

I∼D
[w|I /∈ C|I] ≥ ε. A q-query tester D is a (q, ε)-strong tester if for all w ∈ Fn

we have Pr
I∼D

[w|I /∈ C|I] ≥ ε · δ(w, C).
A code C ⊆ Fn is a (q, ε, ρ)-weak LTC if it has a (q, ε, ρ)-weak tester. A code C ⊆ Fn is a

(q, ε)-strong LTC if it has a (q, ε)-strong tester.

Remark 1.2. Although the tester in Definition 1.1 does not output accept or reject, the way a
standard tester does, it can be converted to output accept, reject as follows. Whenever the task is
to test whether w ∈ C and a subset I ⊆ [n] is selected by the tester, the tester can output accept if
w|I ∈ C|I and otherwise output reject. In this manner, the tester always accepts the codewords of
C.

2

1.1 Main Result

In this paper we resolve the following question raised by Goldreich and Sudan [7].

Question 1.3 ([7]). Are there exist constants q ∈ N+, d, ε, γ > 0 and a constant size alphabet Σ
such that for infinitely many n ∈ N+ we have a code C ⊆ Σn, where

• C is a (q, ε)-strong LTC,

• δ(C) ≥ γ and rate(C) ≥ 1
logd(n)

.

Although the requested range of parameters was achieved for the weak LTCs [4, 5, 8], strong
LTCs with these parameters were not obtained and this question remained to be a basic open
question in the area of LTCs.

Our main theorem (Theorem 1.4) answers positively on Question 1.3.

Theorem 1.4 (Main Theorem). There exist constants d, ε, γ > 0 such that for infinitely many
n ∈ N+ we have a linear code C ⊆ Fn2 , where

• C is a (3, ε)-strong LTC,

• δ(C) ≥ γ and rate(C) ≥ 1
logd n

.

We notice that 3 queries are necessary to test non-trivial linear codes [2].1

To prove Theorem 1.4, we first present the main observation of this work (Observation 2.4) and
its corollary (Corollary 2.5) in Section 2. Then, in Section 3 we recall the main result of [9] and make
some immediate corollaries. Finally, in Section 4 we show that a well known “gap amplification”
technique of Dinur [5] and its version corresponding to linear codes [8] (see also [3]) can be applied
to the codes of [9]2 to obtain relaxed LTCs (see Definition 2.2), which can be converted to the
strong LTCs with a desired range of parameters using Corollary 2.5.

2 The Main Observation of this work

Before we present our main observation, we recall some concept used in [9].

Definition 2.1 (A core of the code). Let C ⊆ Σn be a code. A core of the code C, denoted by
A(C), is a nonempty subset of [n] such that if A(C) 6= [n] then any assignment to the entries of A(C)
uniquely determines the entries of [n] \A(C) and vice versa. I.e., if A(C) 6= [n] then for any c ∈ C
there is no c′ ∈ C such that c|A(C) = c′|A(C) and c|[n]\A(C) 6= c′|[n]\A(C), or c|[n]\A(C) = c′|[n]\A(C)

and c|A(C) 6= c′|A(C).
Clearly, there might be many options for A(C), and in this case we fix only one such option. If

A(C) = [n] then for any w,w′ ∈ Σn we let δ(w|[n]\A(C), w
′|[n]\A(C)) = δ(w|[n]\A(C), C|[n]\A(C)) = 0.

Our first novelty is the following concept of a relaxed LTC (rLTC).

1By “non-trivial” codes we mean codes with a constant relative distance and non-constant dimension.
2The codes presented in [9] were very similar to the codes of [8].

3

Definition 2.2 (Relaxed LTC). A q-query tester D is a (q, ε1, ε2)-rLTC tester for a linear code
C ⊆ Fn with a core A(C), if for every w ∈ Fn there exists c ∈ C such that Pr

I∼D
[w|I /∈ C|I] ≥

max
{
ε1 · δ(w|A(C), c|A(C)), ε2 · δ(w|−A(C), c|−A(C))

}
. A code C ⊆ Fn with a core A(C) is a (q, ε1, ε2)-

rLTC if it has a (q, ε1, ε2)-rLTC tester.
The parameter q is called the query complexity, ε1 is called the first soundness parameter and

ε2 is called the second soundness parameter.

Intuitively, think that ε1 is a constant, but ε2 is sub-constant.

Remark 2.3. We note that if C ⊆ Fn is a (q, ε)-strong LTC and D is its tester, then setting
A(C) = [n] it holds that C is a (q, ε, 1)-rLTC with regards to the same tester D because for every
w ∈ Fn we have

Pr
I∼D

[w|I /∈ C|I] ≥ ε · δ(w,C) = max
{
ε · δ(w|[n], C|[n]), 1 · 0

}
=

= max
{
ε · δ(w|A(C), C|A(C)), 1 · δ(w|−A(C), C|−A(C))

}
.

Our main observation is that a relaxed LTC with sub-constant second soundness parameter can
be easily converted to a strong LTC with a constant soundness.

Observation 2.4 (Main observation). Let q ≥ 2 and C ⊆ Fn be a linear (q, ε1, ε2)-rLTC with
a core A(C). Then there exists a linear (q, ε1/6)-strong LTC C ′ ⊆ Fn′, where n ≤ n′ ≤ 12

ε2
· n,

dim(C ′) = dim(C), rate(C ′) ≥ ε2
12 · rate(C) and δ(C ′) ≥ 0.9 · δ(C|A(C)). Moreover, the construction

of C ′ from C is explicit and done in time O(n′).

Proof. Let D be the corresponding tester for C. Without loss of generality assume that A(C) is
the first |A(C)| indexes, i.e., A(C) = [|A(C)|]. If A(C) = [n] then C is a (q, ε1)-strong LTC with
regards to the same tester D and we are done. Thus we assume for the rest of the proof that
A(C) ([n] and thus n− |A(C)| 6= 0.

Let h =
⌈

10
ε2
· n
|A(C)|

⌉
and note that h ≥ 1. Then 10

ε2
· n ≤ h · |A(C)| ≤ 11

ε2
· n. Now, let C ′ be a

linear code obtained from C by concatenating the symbols of C|A(C) to C exactly h times. I.e., for

every c′ ∈ C ′ we have c′ = (c, (

h︷ ︸︸ ︷
c|A(C), c|A(C), . . . , c|A(C))) for some c ∈ C. In particular, C = C ′|[n]

and for every j ∈ [h] we have C ′|n+(j−1)·|A(C)|+[|A(C)|] = C|A(C). We set A(C ′) = A(C).

We notice that dim(C ′) = dim(C) and the blocklength of C ′ is n′ = n+h · |A(C)| ≤ n+ 11
ε2
·n ≤

12
ε2
· n. It can be verified that δ(C ′) ≥ (h+1)·|A(C)|·δ(C|A(C))

n′ ≥ 0.9 · δ(C|A(C)). Note also that

rate(C ′) = dim(C)
n′ ≥ ε2

12 · rate(C).

Let D′ be a tester for C ′ that on the input word w ∈ F(n′):

• picks r ∈ {0, 1}

• if r = 1 then picks random j1 ∈ A(C) and j2 ∈ [h] and outputs {j1, n+ (j2 − 1) · |A(C)|+ j1}

• otherwise (r = 2), samples D on w|[n] and returns its output

4

We argue that C ′ is a (q, ε1/6)-strong LTC with respect to its tester D′. Clearly, D′ is a q-query
tester. Let w ∈ Fn′ be an input word. We show that

Pr
I∼D′

[
w|I /∈ C ′|I

]
≥ ε1

6
· δ(w,C ′).

Let β be the fraction of bits in w|[n′]\[n] that is not equal to the corresponding bits of w|A(C), i.e.,
β = Pr

j1∈A(C),j2∈[h]

[
w|j1 6= w|n+(j2−1)·|A(C)|+j1

]
. We know that

Pr
I∼D′

[
w|I /∈ C′|I

]
≥ β

2
+

PrI∼D
[
(w|[n])|I /∈ C|I

]
2

. (1)

By assumption, C is a (q, ε1, ε2)-rLTC and hence there exists a codeword c ∈ C such that
Pr
I∼D

[
(w|[n])|I /∈ C|I

]
≥ max

{
ε1 · δ((w|[n])|A(C), c|A(C)), ε2 · δ((w|[n])|−A(C), c|−A(C))

}
. Therefore

δ((w|[n])|A(C), c|A(C)) ≤
PrI∼D

[
(w|[n])|I /∈ C|I

]
ε1

(2)

and

δ((w|[n])|−A(C), c|−A(C)) ≤
PrI∼D

[
(w|[n])|I /∈ C|I

]
ε2

. (3)

Let c′ ∈ C ′ be the corresponding codeword to c (i.e., c′|[n] = c). Then (by (1), (2) and (3))

δ(w, c′) ≤ β +
δ((w|[n])|A(C), c|A(C)) · |A(C)| · (h+ 1) + δ((w|[n])|−A(C), c|−A(C)) · (n− |A(C)|)

n′
≤

≤ β +
(1/ε1) · |A(C)| · (h+ 1) + (1/ε2) · n

n′
· Pr
I∼D

[
(w|[n])|I /∈ C|I

]
≤

≤ β +
(1/ε1) · 12

ε2
· n+ (1/ε2) · n
n′

· Pr
I∼D

[
(w|[n])|I /∈ C|I

]
≤

≤ β +
(1/ε1) · 12

ε2
· n+ (1/ε2) · n

(10/ε2) · n
· Pr
I∼D

[
(w|[n])|I /∈ C|I

]
≤

≤ β +
3

ε1
· Pr
I∼D

[
(w|[n])|I /∈ C|I

]
≤ 6

ε1
·

(
β

2
+

PrI∼D
[
(w|[n])|I /∈ C|I

]
2

)
≤ 6

ε1
· Pr
I∼D′

[
w|I /∈ C ′|I

]
.

That means δ(w, c′) ≤ 6
ε1
·PrI∼D′ [w|I /∈ C ′|I], where c′ ∈ C ′. We conclude that

Pr
I∼D′

[
w|I /∈ C′|I

]
≥ ε1

6
· δ(w,C ′).

This proves that C ′ is a (q, ε1/6)-strong LTC with respect to its tester D′, and completes the proof
of Observation 2.4.

Although Observation 2.4 might seem naive, it implies the following corollary that will play a
crucial role in the proof of Theorem 1.4.

Corollary 2.5. Assume that for constants q ≥ 2, ε > 0 and infinitely many n ∈ N+ we have a
linear code C ⊆ Fn2 with a core A(C) such that C is a (q, ε, 1

polylog(n))-rLTC, δ(C|A(C)) = Ω(1)

and rate(C) = 1
polylog(n) . Then, there exists C ′ ⊆ Fn′2 such that n ≤ n′ ≤ n · polylog(n), C ′ is a

(q, ε/6)-strong LTC, δ(C ′) = Ω(1) and rate(C ′) = 1
polylog(n′) (i.e., Question 1.3 is solved).

Proof. The construction of the required C ′ follows immediately from Observation 2.4.

5

3 The main result of [9] and its corollaries

In this section we recall the main result of [9]. Then we make some corollaries that will be used
later.

Theorem 3.1 ([9]). For some constant d ∈ N+ and infinitely many n ∈ N+ there exists a linear
code C ⊆ Fn2 and its tester D such that

• C is a (3, 1
logd n

)-strong LTC with respect to D,

• δ(C) = Ω(1),

• rate(C) = 1
logd n

,

• | supp(D)| ≤ n logd n and for every u ∈ supp(D) it holds that D(u) ≤ logd n
n , and

• for every i ∈ [n] we have |ND(i)| ≤ logd n.

Remark 3.2. Although in [9] two last bullets were not proved, but one could verify that these
bullets hold. The construction in [9] begins from a constant blocklength code C1 and contained
3 procedures: the star product, the random projection and the distance amplification. These 3
procedures were applied iteratively Θ(log log n) times. Each iteration i is executed on the code Ci
that had a blocklength ni and a tester Di. The output of each iteration i is the code Ci+1.

Initially, the base code C1 ⊆ Fn1
2 and its tester D1 satisfied the last two bullets with respect to

its blocklength n1 = O(1). Each iteration, the star product, the random projection and the distance
amplification procedures were applied. The random projection does not affect the properties listed
in these bullets, but only rearranges the coordinates of the given code in some way. The star product
and the distance amplification procedure do affect the properties listed in these bullets, but only by
fixed multiplicative constants. E.g., each time the star product and the distance amplification are
applied, | supp(Di)|

ni
is increased by a fixed multiplicative constant. If for every u ∈ supp(Di) it holds

that Di(u) ≤ h
ni

, then after the both operations are applied on Ci, for every u ∈ supp(Di+1) we have

Di+1(u) ≤ h·c
ni+1

for a fixed constant c (independent of i). Similarly, |NDi(·)| is increased at most

by a fixed multiplicative constant each iteration by both procedures. Therefore, after Θ(log log n)

iterations the values | supp(Di)|
ni

and |NDi(·)| are changed at most by a polylog(n) factor.

We pay attention that one can turn the strong LTCs of Theorem 3.1 to the strong LTCs with
a uniform distribution over the tests, and the soundness parameter, roughly speaking, will be
preserved.

Corollary 3.3. For some constant d ∈ N+ and infinitely many n ∈ N+ there exist a linear code
C ′ ⊆ Fn2 and its tester D′ which is a uniform distribution over supp(D′) such that

• C ′ is a (3, 1
logd n

)-strong LTC with respect to D′,

• δ(C ′) = Ω(1),

• rate(C ′) ≥ 1
logd n

,

• | supp(D′)| ≤ n logd n, and

6

• for every i ∈ [n] we have |ND′(i)| ≤ logd n.

Proof. Corollary 3.3 follows from Theorem 3.1 by letting C ′ = C and D′ be a uniform distribution
over supp(D). Note that supp(D′) = supp(D) and for every u ∈ supp(D′) we have

D′(u) =
1

| supp(D)|
≥ 1

n logd n
=

1

log2d n
· logd n

n
≥ 1

log2d n
· D(u).

Then, for any w ∈ Fn2 we have

Pr
u∼D′

[〈u,w〉 6= 0] ≥ 1

log2d n
· Pr
u∼D

[〈u,w〉 6= 0] ≥ 1

log2d n
· 1

logd n
· δ(w,C) =

1

log3d n
· δ(w,C).

Now, in Corollary 3.4 we show that the 3-query strong LTCs over F2 from Corollary 3.3 can be
easily converted to the 2-query rLTCs over F3

2 with a similar range of parameters.3 This conversion
is standard (for the case of LTCs, PCPs and assignment testers) and was explained, e.g., in [5, 8].

Corollary 3.4. For some constant d ∈ N+ and infinitely many n′′ ∈ N+ there exist a code C ′′ ⊆
(F3

2)(n′′) and its tester D′′ which is a uniform distribution over supp(D′′) such that

• C ′′ is linear over F2,

• C ′′ is a (2, 1
3 logd n′′

, 1
log3d n′′

)-rLTC with respect to its core A(C ′′) and D′′,

• δ(C ′′|A(C′′)) = Ω(1),

• rate(C ′′) ≥ 1
logd n′′

,

• | supp(D′′)| ≤ 3 · n′′, and

• for every i ∈ [n′′] we have |ND′′(i)| ≤ logd n′′.

Proof. Corollary 3.3 implies the existence of a constant d ∈ N+, a linear code C ′ ⊆ Fn2 for arbitrary
large n and its tester D′ such that C ′ is a (3, 1

logd n
)-strong LTC with respect to D′, δ(C ′) = Ω(1),

rate(C ′) ≥ 1
logd n

, | supp(D′)| ≤ n logd n, and for every i ∈ [n] we have |ND′(i)| ≤ logd n.

Let every element of F3
2 be associated with a tuple of 3 bits. Let also every bit (an element

of F2) be viewed as an element of F3
2. Let us create a separate code symbol X(i1,i2,i3) for every

3-query test {i1, i2, i3} of the original code (similarly, we create X(i1,i2) and X(i1) for every 2-query
and 1-query tests). Call the new code C ′′. A new tester D′′ for C ′′ samples an original tester D′,
and if D′ queries i1, i2, i3, then the tester D′′ queries the entry X(i1,i2,i3) and a random coordinate
ij ∈ {i1, i2, i3}, and accepts iff three bits of X(i1,i2,i3) are summed to 0 and the corresponding bit
of X(i1,i2,i3) is equal to ij .

We let A(C ′′) = [n] and note that C ′′ ⊆ (F3
2)(n′′). One can easily verify that C ′′ is linear over

F2, δ(C ′′|A(C′′)) = δ(C ′) = Ω(1), rate(C ′′) ≥ 1
2 log2d n′′

, | supp(D′′)| ≤ 3 ·n′′, where n′′ ≤ n+n · logd n.

Moreover, for every i ∈ [n′′] we have |ND′′(i)| ≤ logd n′′.

3During this paper we associate F3
2 with F23 .

7

We prove that C ′′ is a (2, 1
3 logd n′′

, 1
log2d n′′

)-rLTC with respect to its core A(C ′′) and D′′. Let

w ∈ (F3
2)(n′′). Since C ′ is a (3, 1

logd n
)-strong LTC with respect to D′, there exists c′ ∈ C ′ such that

Pr
I∼D′

[
(w|[n])|I /∈ C ′|I

]
≥ 1

logd n
· δ(w|[n], c

′).

Let c′′ ∈ C ′′ be a corresponding codeword to c′, i.e., c′′|[n] = c′′|A(C′′) = c′. Then,

Pr
I∼D′′

[
w|I /∈ C ′′|I

]
≥ 1

3
· Pr
I∼D′

[
(w|[n])|I /∈ C ′|I

]
≥ 1

3 logd n
·δ(w|[n], c

′) =
1

3 logd n
·δ(w|A(C′′), c

′′|A(C′′)).

On the other hand,

δ(w|−A(C′′), c
′′|−A(C′′)) ≤ Pr

I∼D′′

[
w|I /∈ C ′′|I

]
+ (logd n) · δ(w|[n], c

′′|[n]) ≤

≤ Pr
I∼D′′

[
w|I /∈ C ′′|I

]
+ (logd n) · (3 logd n) · Pr

I∼D′′

[
w|I /∈ C ′′|I

]
≤ (log3d n) · Pr

I∼D′′

[
w|I /∈ C ′′|I

]
,

where the last inequality holds for sufficiently large n. Note that we used the fact that every entry
indexed by [n] of C ′′ affects at most logd n entries indexed by [n′′] \ [n]. Thus

Pr
I∼D′′

[
w|I /∈ C ′′|I

]
≥ max

{
1

3 logd n
· δ(w|A(C′′), c

′′|A(C′′)),
1

log3d n
· δ(w|−A(C′′), c

′′|−A(C′′))

}
.

4 Proof of Theorem 1.4

In this section we prove Theorem 1.4.
Dinur [5] suggested the gap amplification procedure to increase the rejection probability of

verifiers for PCPs and explained that this procedure fits also for the assignment testers [6] (or
alternatively, PCPs of proximity [1]). Then, Meir [8] explained that exploring the fact that the
Hadamard code is 3-query strong LTC and 2-query locally correctable one can use it (instead of
the PCP composition) to reduce the alphabet size in the composition stage of the gap amplification
procedure. In this case the gap amplification procedure can be applied to the linear codes and
preserve their linearity. Let us denote by Amplify(·) this version of the gap amplification procedure.

Our contribution here is that we observe that when Amplify(·) is invoked on a relaxed LTC,
it improves the first soundness parameter, while does not destroy the second soundness parameter
too much. First, we summarize the known affect of Amplify(·) on F2-linear codes with 2-query
testers in Theorem 4.1. Before we state Theorem 4.1. We need to define some auxiliary concepts.

Let C ⊆ Fn be a code. Let m ∈ [n] and J = {1, 2, . . . ,m}. Assume that given a message
first of all we compute the values for all coordinates indexed by J , and then based on their values
we compute the rest of the coordinates. That means for every i ∈ [n] \ J there exists a function
gi : Fdi → F and j1, j2, . . . , jdi ∈ J such that for every c ∈ C it holds that c|i = gi(c|j1 , c|j2 , . . . , c|jdi).
In this case we say that the index i depends only on j1, j2, . . . , jdi . Also, for k ∈ [di] we say that i
depends on jk. We say that i depends on at most d entries of J if di ≤ d. In the given case, for
any k ∈ [di] we say that jk affects i. We say that each entry in J of C affects at most h entries in
[n] \ J if for all j ∈ J it holds that j affects at most h entries in [n] \ J .

8

Theorem 4.1 (Implicit in [5] and [8]). Let F = F23. There exist constants h ∈ N+ and γ > 0 such
that the following holds. Let C ⊆ Fn be a code (linear over F2) with a 2-query tester D (uniform
over its support) such that for every i ∈ [n] we have |ND(i)| ≤ g for some g > 0 (g may depend
on n). Then letting C ′ = Amplify(C) ⊆ Fn′ and D′ be its tester (uniform over its support), where
n ≤ n′ ≤ (g · h) · n we have

• C ′ is a code (linear over F2) and supp(D′) = O(g · n′),

• For all i ∈ [n′] we have |ND′(i)| ≤ h,

• All old entries are preserved: C ′|[n] = C and all new entries are computed from the old entries:
dim(C ′) = dim(C),

• Every entry indexed by [n] affects at most h · g entries indexed by [n′] \ [n] in the code C ′,

• All new entries are added as a sequence of blocks (small Hadamard codes) such that all these
blocks are of the same constant size and are (3, 1

2)-strong LTCs,

• For every w ∈ Fn′: if PrI∼D
[
(w|[n])|I /∈ C|I

]
≥ ε, then we have PrI∼D′ [w|I /∈ C ′|I] ≥

min {10 · ε, γ}.
(Note: a single iteration of gap amplification procedure can improve the rejection probability
by any multiplicative constant.)

Now we conclude the following theorem that summarizes the affect of Amplify(·) on the relaxed
LTCs.

Theorem 4.2 (Gap Amplification for relaxed LTCs). Let F = F23. There exist fixed constants
γ, d > 0 such that the following holds. Let C ⊆ Fn be a (2, ε1, ε2)-rLTC (linear over F2), where
ε2 ≤ ε1, with regards to its core A(C) and its tester D (uniform over its support), such that for every
i ∈ [n] we have |ND(i)| ≤ g for some g > 0 (g may depend on n). Then letting C ′ = Amplify(C)
and A(C ′) = A(C) we have

• C ′ ⊆ Fn′ is a (2,min {2ε1, γ}, ε2
3d·g)-rLTC with regards to its core A(C ′) and its new tester D′′

(uniform over its support),

• for all i ∈ [n′] we have |ND′′(i)| ≤ d,

• C ′|[n] = C and thus δ(C ′|A(C′)) = δ(C|A(C)), and

• rate(C ′) = Ω(g · rate(C)).

Proof. Theorem 4.1 says that C ′|[n] = C. The fact that A(C ′) = A(C) implies that δ(C ′|A(C′)) =
δ(C|A(C)). Theorem 4.1 also claims that dim(C ′) = dim(C) and n ≤ n′ ≤ (g · h) · n for some
constant h ∈ N+. Hence rate(C ′) = Ω(g · rate(C)).

Let w′ ∈ Fn′ and w = w′|[n] ∈ Fn. We know that there exists c ∈ C such that letting
ε̂ = max

{
ε1 · δ(w|A(C), c|A(C)), ε2 · δ(w|−A(C), c|−A(C))

}
we have

Pr
I∼D

[w|I /∈ C|I] ≥ ε̂.

9

Let c′ = Amplify(c), i.e., the codeword c′ ∈ C ′ is produced from c by Amplify(·). Note that
c′|[n] = c. Theorem 4.1 implies that

Pr
I∼D′

[
w′|I /∈ C ′|I

]
≥ min {γ, 10 · ε̂} ≥ min

{
γ, 10ε1 · δ(w′|A(C′), c|A(C′))

}
,

where D′ is a tester for C ′ guaranteed by Theorem 4.1.
Note that all new coordinates that are added form a sequence of the Hadamard blocks of the

equal constant size, and each old entry (indexed by [n]) affects at most d · g new entries (indexed
by [n′] \ [n]). Thus we can define a new tester D′′ for C ′ that invokes the original tester D′ with
probability 1

2 , and otherwise pick a random Hadamard block and test it. One can verify that for all
i ∈ [n′] we have |ND′′(i)| ≤ d, and that D′′ is uniform over its support (by considering its support
as a multiset).

We claim that

Pr
I∼D′′

[
w′|I /∈ C ′|I

]
≥ 1

2
· Pr
I∼D′

[
w′|I /∈ C ′|I

]
≥ min

{
1

2
· γ, 2ε1 · δ(w′|A(C′), c

′|A(C′))

}
and

Pr
I∼D′′

[
w′|I /∈ C ′|I

]
≥ ε2

3d · g
· δ(w′|[n′]\A(C′), c

′|[n′]\A(C′)).

The last inequality holds due to the guarantee of the tester D′, and due to the fact that the
Hadamard code has soundness parameter 1

2 . Thus C ′ is a (2,min {2ε1, γ′}, ε2
3d·g)-rLTC, where γ′ =

γ/2, with regards to its core A(C ′) and its tester D′′.

We are ready to prove Theorem 1.4.

Proof of Theorem 1.4. Let d ∈ N+ and C1 ⊆ (F3
2)n be a code from Corollary 3.4. Now we execute

the following algorithm.

• For each i = 1, . . . , d · log logn do

– Ci+1 := Amplify(Ci)

– A(Ci+1) := A(Ci) := [n]

Theorem 4.2 implies that if Ci is a (2, 2i

logd n
, α)-rLTC then Ci+1 is a (3, 2i+1

logd n
, αb)-rLTC for

a fixed constant b > 0 (besides the first iteration, where b might be polylog(n)). Moreover,
δ(Ci+1|A(Ci+1)) = δ(Ci|A(Ci)) = δ(C), dim(Ci+1) = dim(Ci) and rate(Ci+1) ≥ β · rate(Ci) for

some constant β (besides the first iteration, where rate(C2) ≥ 1
polylog(n) · rate(C1)).

Let C ′ = Cd·log logn and A(C ′) = A(Cd·log logn). Then C ′ is a (2, γ, 1
polylog(n))-rLTC, rate(C ′) =

1
polylog(n) and δ(C ′|A(C′)) ≥ Ω(1).

We claim that C ′ can be obtained as binary linear (3, γ)-strong LTC. Observe that the alphabet
reduction stage in the gap amplification procedure is done by the encoding every node’s assignment
of the underlying graph by the binary Hadamard code which is a binary linear 3-query strong LTC.
Thus if we don’t convert this C ′ to the 2-query LTC over F3

2, it will stay binary linear strong LTC
(for more details see [8]).

Corollary 2.5 implies the required construction of binary linear (3, γ/6)-strong LTCs from C ′.

10

References

[1] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vadhan. Robust
PCPs of Proximity, Shorter PCPs, and Applications to Coding. SIAM Journal on Computing,
36(4):889–974, 2006.

[2] Eli Ben-Sasson, Oded Goldreich, and Madhu Sudan. Bounds on 2-Query Codeword Testing.
In Proceedings of Approximation, Randomization, and Combinatorial Optimization (APPROX-
RANDOM), volume 2764 of Lecture Notes in Computer Science, pages 216–227. Springer, 2003.

[3] Eli Ben-Sasson, Prahladh Harsha, Oded Lachish, and Arie Matsliah. Sound 3-Query PCPPs
Are Long. TOCT, 1(2), 2009.

[4] Eli Ben-Sasson and Madhu Sudan. Simple PCPs with poly-log rate and query complexity. In
Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC), Baltimore,
MD, USA, May 22-24, 2005, pages 266–275. ACM, 2005.

[5] Irit Dinur. The PCP theorem by gap amplification. Journal of the ACM, 54(3):12:1–12:44,
June 2007.

[6] Irit Dinur and Omer Reingold. Assignment Testers: Towards a Combinatorial Proof of the PCP
Theorem. SIAM Journal on Computing, 36(4):975–1024, 2006.

[7] Oded Goldreich and Madhu Sudan. Locally testable codes and PCPs of almost-linear length.
Journal of the ACM, 53(4):558–655, July 2006.

[8] Or Meir. Combinatorial Construction of Locally Testable Codes. SIAM J. Comput, 39(2):491–
544, 2009.

[9] Michael Viderman. Strong LTCs with inverse polylogarithmic rate and soundness. Electronic
Colloquium on Computational Complexity (ECCC), 19:168, 2012.

11

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

