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Abstract

An error-correcting code C ⊆ Fn is called (q, ε)-strong locally testable code (LTC) if there
exists a tester that makes at most q queries to the input word. This tester accepts all codewords
with probability 1 and rejects all non-codewords x /∈ C with probability at least ε · δ(x,C),
where δ(x,C) denotes the relative Hamming distance between the word x and the code C. The
parameter q is called the query complexity and the parameter ε is called soundness.

In this paper we resolve an open question raised by Goldreich and Sudan (J.ACM 2006)
and construct binary linear strong LTCs with query complexity 3, constant relative distance,
constant soundness and inverse polylogarithmic rate.

Our result is based on the previous paper of the author (Viderman, ECCC TR12-168), which
presented binary linear strong LTCs with query complexity 3, constant relative distance, and
inverse polylogarithmic soundness and rate. We show that the “gap amplification” procedure
of Dinur (J.ACM 2007) can be used to amplify the soundness of these strong LTCs from inverse
polylogarithmic up to a constant, while preserving the other parameters of these codes.

Furthermore, we show that under a conceivable conjecture, there exist asymptotically good
strong LTCs with poly-log query complexity.

∗The research has received funding from the European Research Council as part of the ERC project CaC (grant
259426).
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1 Introduction

Probabilistically Checkable Proof (PCP) systems [2, 3, 31] (a.k.a. Holographic Proofs [5]) are proof
systems that allow efficient probabilistic verification of a claim by reading few symbols of the proof.
The celebrated PCP theorem [2, 3] is one of the main breakthrough results in complexity theory.
This theorem asserts that for every language in NP there exists a polynomial-time PCP verifier
that queries the proof in a constant number of locations. The verifier is guaranteed to always
accept valid proofs of true statements, and to accept any claimed proof of false assertions with low
probability. The theorem has found many applications in theoretical computer science, especially
in establishing lower bounds for approximation algorithms [8, 6, 31, 40].

Informally, most of the PCP constructions were achieved using error-correcting codes, possessing
nice properties. Let us first give some auxiliary definitions regarding error-correcting codes.

A code over a finite alphabet Σ is a subspace C ⊆ Σn. A linear code over a finite field F is a
linear subspace C ⊆ Fn. In this case, n is the blocklength of the code C, denoted by blocklength(C).
The dimension of a linear code C, denoted by dim(C), is its dimension as a vector space and is
equal to log|F| |C|. The dimension of a non-linear code C over the alphabet Σ is defined to be

dim(C) = log|Σ| |C|. The rate of a code C, denoted by rate(C), is defined to be dim(C)
blocklength(C) = dim(C)

n .

We define the distance between two words x, y ∈ Fn to be ∆(x, y) = |{i | xi 6= yi}| and the

relative distance to be δ(x, y) = ∆(x,y)
n . The distance of C is defined by ∆(C) = min

x 6=y∈C
∆(x, y) and

its relative distance is defined by δ(C) = ∆(C)
n . We note that if C is linear then ∆(C) = min

c∈C\{0}
{|c|}.

One is typically interested in codes whose distance is linear to the blocklength of C, i.e., Ω(n).
For x ∈ Fn and C ⊆ Fn, let δ(x, C) = min

y∈C
{δ(x, y)} denote the relative distance of x from the

code C. If δ(x, C) ≥ ρ, we say that x is ρ-far from C and otherwise x is ρ-close to C.

1.1 Locally Testable Codes

Most of the PCP constructions (e.g., [10, 19, 27, 36]) are tightly related to a special kind of error-
correcting codes possessing some testability properties. These codes are called locally testable.

In other words, locally testable codes (LTCs) are error correcting codes that have a tester, which
is a randomized algorithm with oracle access to the received word x. The tester reads a sublinear
amount of information from x and based on this “local view” decides if x ∈ C or not. It should
accept codewords with probability one, and reject words that are far (in Hamming distance) from
the code with noticeable probability. Such codes are of interest in computer science due to their
numerous connections to probabilistically checkable proofs (PCPs) and property testing (see the
surveys [53, 33] for more information). LTCs were implicit already in [5] (cf. [33, Sec. 2.4]) and
they were explicitly studied by Goldreich and Sudan [36].

By now several different constructions of LTCs are known including codes based on low-degree
polynomials over finite fields and affine-invariant codes [1, 2, 26, 17, 12, 25, 38, 43, 45, 42, 52],
constructions based on PCPs of proximity/assignment testers [10, 29, 27]1, sparse random linear
codes [23, 44, 49] and tensor products of codes [30, 22, 21, 50, 54].

Basically, there are two kinds of LTCs: weak and strong. A code C is said to be (q, ε, ρ)-weak
LTC if there exists a randomized algorithm T , called tester, that makes at most q queries to the

1As was pointed out in [36], not all PCP constructions are known to yield LTCs, but some of them (e.g., PCPs of
proximity/assignment testers) can be adapted to yield LTCs.
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input word w. If w ∈ C then T accepts w with probability 1, but if w is ρ-far from C the tester T
rejects w with probability at least ε. Let us notice that the tester is not required to reject when
0 < δ(w, C) < ρ. This is the reason why such codes are called weak LTCs.

In contrast to weak LTCs, the testers for strong LTCs are required to reject all non-codewords
with corresponding probability. More formally, a code C is called (q, ε)-strong LTC if there exists
a tester T that makes at most q queries to the input word w. If w ∈ C then T accepts w with
probability 1, but if w /∈ C then T rejects w with probability at least ε · δ(w, C). The parameter q
is called the query complexity and the parameter ε is called soundness.

Informally, we say that a code C is a weak LTC if it has a linear distance and there exist
constants q, ε > 0 and ρ ≤ δ(C)/3 such that C is a (q, ε, ρ)-weak LTC. 2 Similarly, we say that a
code C is a strong LTC if it has a linear distance and there exist constants q, ε > 0 such that C is a
(q, ε)-strong LTC.

The best known strong LTCs are due to Goldreich and Sudan [36], who presented probabilistic
construction of strong LTCs. These LTCs achieve constant query complexity, constant soundness

and rate
1

exp(Õ(
√

log n))
, where n denotes the blocklength.

Later, other constructions of LTCs [19, 27, 50] succeeded to obtain the rate
1

polylog(n)
together

with constant query complexity and soundness, however these codes were weak LTCs. It can be
verified that every strong LTC is also a weak LTC, but some weak LTCs are not strong LTCs [55].
So, strong LTCs are strictly stronger objects than weak LTCs. In the journal version of [36], the
authors pointed out that all known LTCs that achieve inverse polylogarithmic rate are weak LTCs,
and asked about the existence of strong LTCs with polylogarithmic rate [36, Section 6]. As was
pointed out by Goldreich [32], strong LTCs correspond to proximity oblivious testers [35] whereas
weak LTCs are even weaker than ordinary testers, i.e., the testers for weak LTCs are supposed to
work only for a fixed value of the proximity parameter.

The previous paper of the author [55] showed a probabilistic construction of binary linear
3-query strong LTCs with inverse polylogarithmic rate, inverse polylogarithmic soundness and
constant relative distance. In this paper (Section 1.3), we show how to amplify the soundness
parameter of these codes from inverse polylogarithmic to constant, while preserving the other
parameters of these codes, therefore resolving an open question raised by Goldreich and Sudan
[36]. To increase the soundness parameter we apply the gap amplification technique of Dinur [27].

An interesting point is that the gap amplification was known to improve the soundness parame-
ter of weak LTCs [27, 50], however it was not known to preserve the strong testability requirement,
where all non-codewords are rejected with corresponding probability and not only words that are
sufficiently far from the code. In more details, the gap amplification procedure outputs a code
accompanied with a probabilistically checkable proof that could be translated to a weak LTC.

In [55] we conjectured that it should be possible to modify this procedure to preserve this
stronger property. Surprisingly, it turns out that no modification is needed (besides adapting the
gap amplification to preserve the linearity of the underlying codes, as was done in [50, Section 6.4]).
In Section 1.3 we present formally our main result (Theorem 1.4) and explain the ideas that lead
to its proof.

2The parameter ρ is required to be less than δ(C)/2 to avoid trivial solutions like claiming that every perfect
code C is a (0, 1, δ(C)/2)-weak LTC. Recall that a code C ⊆ Fn is called perfect if there are no words in Fn that are
(δ(C)/2)-far from C. So, in this case one could say that no queries are needed and all (δ(C)/2)-far words are rejected
with probability 1 vacuously.
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1.1.1 Asymptotically good LTCs

The main open question in the area of LTCs is whether there exists a family of asymptotically
good LTCs with constant query complexity and soundness, i.e., LTCs over a constant size alphabet
that have constant query complexity, constant soundness parameter, constant rate and constant
relative distance [36]. A possible approach to refute the existence of such codes was suggested in
[24]. In fact, [24] conjectures that such codes do not exist and proves this conjecture under quite
“strong” assumptions. It is worth to mention that during last years a non-trivial effort was made
in studying the limitations of LTCs, and in particular: LTCs testable with 2 queries [11, 39, 48, 47]
(which is a severe restriction), random low density parity check (LDPC) codes [15], cyclic codes
[4], symmetric codes [16, 20, 37, 46], LTCs with small redundancy among its tests [13] and dense
LTCs [28, 24]. Nevertheless, it seems that we are very far from resolving this problem.

Let us suppose that asymptotically good LTCs with constant query complexity and constant
soundness do not exist. In this case, the most intriguing question would be “What are the best
LTCs we could obtain?”. To address this question we should decide how to compare different
LTCs. Informally, in this subject and in the area of error-correcting codes in general, we always
require a constant relative distance since otherwise even a tiny fraction of errors could modify one
codeword into another. Hence we want a constant relative distance and do not allow to relax
this requirement. Given that we consider only LTCs with constant relative distance, we have 3
parameters that describe the “goodness” of LTCs: the query complexity, the soundness parameter
and the rate.

Constant Soundness. It is not hard to show that LTCs with sub-constant soundness parameter
ε and query complexity q could be converted to LTCs with soundness 1

2 and query complexity
q ·
⌈

1
ε

⌉
(see Claim 6.2). Hence, for the sake of this discussion we can require constant soundness

parameter and compare different LTCs only according to their query complexity and the rate.

Constant Query Complexity. Recall that in Theorem 1.4 we show that when query complexity
is required to be constant, the rate can be inverse polylogarithmic. Informally, under assumption
that asymptotically good LTCs with constant query complexity and soundness do not exist, this
is the best achievable rate when query complexity, relative distance and soundness parameter are
required to be constant.

Constant Rate. Indeed, one of the most natural questions is what is the minimal query com-
plexity if the rate and the soundness parameter of an LTC are required to be constant as well
as the relative distance. In other words, what is the minimal query complexity required for the
asymptotically good code to be testable. 3 For the current state of the art, we know that for every
constant ε > 0 there exist asymptotically good strong LTCs with query complexity nε and constant
soundness parameter, where n is the blocklength of the code [18, 21, 54].

In Section 1.3.1 we show that under a conceivable conjecture there exist asymptotically good
strong LTCs with query complexity polylog(n) and constant soundness parameter. Informally, this
is the minimal query complexity we can hope for, under conjecture that asymptotically good LTCs
with constant query complexity and soundness do not exist [24].

3We think that this question is pretty much known in the area, but we do not aware if it was explicitly asked in
the literature.
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1.2 Preliminaries

Let [n] be the set {1, . . . , n}. For w ∈ Fn, let supp(w) = {i ∈ [n] | wi 6= 0} and |w| = | supp(w)|. For
u = (u1, u2, . . . , un), v = (v1, v2, . . . , vn) ∈ Fn let 〈u, v〉 denote the bilinear function from Fn × Fn

to F defined by 〈u, v〉 =
n∑
i=1

uivi. The dual code is defined by C⊥ = {u ∈ Fn | ∀c ∈ C : 〈u, c〉 = 0}.

Similarly, we define C⊥≤t =
{
u ∈ C⊥ | |u| ≤ t

}
. For w ∈ Fn and S = {j1, j2, . . . , jm} ⊆ [n] we

let w|S = (wj1 , wj2 , . . . , wjm), where j1 < j2 < . . . < jm, be the restriction of w to the subset
S. Similarly, we let C|S = {c|S | c ∈ C} denote the projection of the code C onto S. We define
C|−S = C|[n]\S , i.e., projection of the code C to all coordinates besides S. For A ⊆ N and b ∈ N we
let A+ b = b+A = {a+ b | a ∈ A}.

For the distribution D over the subsets of [n] we let D(I) to denote the probability that a
subset I ⊆ [n] is selected by D and supp(D) = {I ⊆ [n] | D(I) > 0}. For i ∈ [n] we let ND(i) =
{I ∈ supp(D) | i ∈ I}.

Now we define testers and LTCs (see [36, 55] for the justification of this definition).

Definition 1.1 (LTCs and Testers). A q-query tester for a code C ⊆ Fn is a distribution D over
subsets I ⊆ [n] such that |I| ≤ q. A q-query tester D is a (q, ε, ρ)-weak tester if for all w ∈ Fn,
δ(w, C) ≥ ρ we have Pr

I∼D
[w|I /∈ C|I ] ≥ ε. A q-query tester D is a (q, ε)-strong tester if for all w ∈ Fn

we have Pr
I∼D

[w|I /∈ C|I ] ≥ ε · δ(w, C).
A code C ⊆ Fn is a (q, ε, ρ)-weak LTC if it has a (q, ε, ρ)-weak tester. A code C ⊆ Fn is a

(q, ε)-strong LTC if it has a (q, ε)-strong tester.

Remark 1.2. Although the tester in Definition 1.1 does not output accept or reject, the way a
standard tester does, it can be converted to output accept, reject as follows. Whenever the task is
to test whether w ∈ C and a subset I ⊆ [n] is selected by the tester, the tester can output accept if
w|I ∈ C|I and otherwise output reject. In this manner, the tester always accepts the codewords of
C.

1.3 Main Results

In this paper we resolve the following question raised by Goldreich and Sudan [36].

Question 1.3 ([36]). Are there exist constants q ∈ N+, d, ε, γ > 0 and a constant size alphabet Σ
such that for infinitely many n ∈ N+ we have a code C ⊆ Σn, where

• C is a (q, ε)-strong LTC,

• δ(C) ≥ γ and rate(C) ≥ 1
logd(n)

.

Although the requested range of parameters was achieved for the weak LTCs [19, 27, 50],
strong LTCs with these parameters were not obtained and this question remained to be a basic
open question in the area of LTCs.

Our main theorem (Theorem 1.4) answers affirmatively on Question 1.3.

Theorem 1.4 (Main Theorem). There exist constants d, ε, γ > 0 such that for infinitely many
n ∈ N+ we have a linear code C ⊆ Fn2 , where
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• C is a (3, ε)-strong LTC,

• δ(C) ≥ γ and rate(C) ≥ 1
logd n

.

We notice that 3 queries are necessary to test non-trivial linear codes [11].4

The key ideas behind the proof of Theorem 1.4. The proof of Theorem 1.4 contains three
stages.

Relaxed LTCs. First, we present in Section 2 a new notion of relaxed LTCs. Intuitively,
relaxed LTCs have two kind of coordinates: those with good testability and those which worse
(but non-trivial) testability (see Definition 2.2). Then, we present the first observation of this work
(Observation 2.4) and its corollary (Corollary 2.5) in Section 2 saying that such relaxed LTCs can
be easily converted to strong LTCs. Hence, all we need to resolve Question 1.3 is to construct
relaxed LTCs with a corresponding range of parameters.

Relaxed LTCs to start with. We want to construct sufficiently nice relaxed LTCs. To
achieve the required relaxed LTCs, our starting point is the main result of [55].5 However, we
cannot use directly the codes and the testers as that were suggested in [55], i.e., they should be
slightly modified before the use. So, in Section 3 we recall the main result of [55] and make some
immediate corollaries to conclude the relaxed LTCs (with inverse polylogarithmic soundness) we
will use as a starting point in the proof of Theorem 1.4.

Gap Amplification can be applied to relaxed LTCs. We recall the well known “gap
amplification” technique of Dinur [27] in Section 4. In Section 5 we show that the gap amplification
and in particular, its version corresponding to linear codes [50] (see also [14]) can be applied to
the linear relaxed LTCs to obtain linear relaxed LTCs with higher first soundness parameter (see
Definition 2.2). The crucial observation here is that while the first soundness parameter is amplified
by the gap amplification procedure, the second soundness parameter of these relaxed LTCs will not
be reduced too much. This observation gives us a possibility to apply the gap amplification many
times and to obtain linear relaxed LTCs, where the first soundness parameter is constant and
the second soundness parameter is inverse polylogarithmic. Finally, these relaxed LTCs can be
converted to the strong LTCs with a constant soundness and inverse polylogarithmic rate using
Corollary 2.5.

1.3.1 Asymptotically Good LTCs with poly-log queries

We start this section by introducing a specific kind of junta with respect to a linear code. Intuitively,
an (n′, h)-junta with respect to a linear code C ⊆ Fn2 is a junta of size n′ such that every code
symbol outside this junta is determined by at most h code symbols of the junta.

Definition 1.5 (Junta). Let C ⊆ Fn2 be a linear code and T ⊆ [n] be a subset. We say that T is
an (n′, h)-junta with respect to C if n′ = |T | and for every j ∈ [n] \ T we have uj ∈ C⊥ such that
j ∈ supp(u), supp(uj) \ {j} ⊆ T and |supp(uj) \ {j}| ≤ h.

4By “non-trivial” codes we mean codes with a constant relative distance and non-constant dimension.
5The codes presented in [55] were very similar to the codes of [50].
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We notice that every linear code C has a (dim(C),dim(C))-junta. To see this assume without
loss of generality that the generating matrix of C has a systematic form6 and let T = [dim(C)].

Recall that Theorem 1.4 shows the existence of strong LTCs with constant query complexity,
soundness, relative distance and inverse polylogarithmic rate. The following conjecture argues that
strong LTCs with poly-log query complexity and inverse poly-log rate can be accompanied with a
(O(dim(C)), polylog(n))-junta.

Conjecture 1.6 (strong LTC with a junta). There exists a linear code C ⊆ Fn2 (for arbitrary large
n ∈ N+) such that C is a (polylog(n), 1

2)-strong LTC, δ(C) = Ω(1), rate(C) ≥ 1
polylog(n) and a

(Θ(dim(C)), polylog(n))-junta T with respect to C.

Remark 1.7. The construction of strong LTCs presented in [55, Corollary 3.2] seems close to
resolve Conjecture 1.6, but doesn’t resolve it. Informally, this construction was obtained by
execution Θ(log log(n)) iterations (see Remark 3.2) and gave a (polylog(n), 1

2)-strong LTC C
with δ(C) = Ω(1) and rate(C) ≥ 1

polylog(n) . Each iteration 3 procedures were applied: the
star product, the distance amplification and the random projection. A natural candidate for a
(Θ(dim(C)), polylog(n))-junta would be the core A(C) of the code C ⊆ Fn2 constructed in [55],
which had a size |A(C)| = Θ(dim(C)), i.e., blocklength(C|A(C)) = Θ(dim(C)). The problem is
that only 2 procedures: the star product and the distance amplification preserved the required
property, i.e., there exists a fixed constant r ∈ N+ such that if a core A(C) of the input code C
is a (Θ(dim(C)), h)-junta then the core A(C ′) of the code C ′ obtained by these procedures is a
(Θ(dim(C)), r · h)-junta. Unfortunately, the random projection procedure does not preserve this
property. However, if there exists a way to make this procedure preserving the “junta” property as
another two procedures, then after the execution of Θ(log log(n)) iterations we would get not only
a (polylog(n), 1

2)-strong LTC C, but also a (Θ(dim(C)),polylog(n))-junta A(C).

Under Conjecture 1.6 it is not hard to prove the existence of asymptotically good strong LTCs
with polylogarithmic query complexity.

Theorem 1.8 (Asymptotically good LTCs with poly-log queries). Under Conjecture 1.6, there
exists a linear (polylog(n′), 1

2)-strong LTC C ′ ⊆ Fn′2 (for arbitrary large n′) such that δ(C ′) = Ω(1)
and rate(C ′) = Ω(1).

The proof of Theorem 1.8 appears in Section 6.

2 Relaxed LTCs

Before we present Observation 2.4, we recall some concept used in [55].

Definition 2.1 (A core of the code). Let C ⊆ Σn be a code. A core of the code C, denoted by
A(C), is a nonempty subset of [n] such that if A(C) 6= [n] then any assignment to the entries of A(C)
uniquely determines the entries of [n] \A(C) and vice versa. I.e., if A(C) 6= [n] then for any c ∈ C
there is no c′ ∈ C such that c|A(C) = c′|A(C) and c|[n]\A(C) 6= c′|[n]\A(C), or c|[n]\A(C) = c′|[n]\A(C)

and c|A(C) 6= c′|A(C).
Clearly, there might be many options for A(C), and in this case we fix only one such option. If

A(C) = [n] then for any w,w′ ∈ Σn we let δ(w|[n]\A(C), w
′|[n]\A(C)) = δ(w|[n]\A(C), C|[n]\A(C)) = 0.

6Such generating matrix yields codewords whose first dim(C) symbols are message symbols.
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Our first novelty is the following concept of a relaxed LTC (rLTC).

Definition 2.2 (Relaxed LTC). A q-query tester D is a (q, ε1, ε2)-rLTC tester for a linear code
C ⊆ Fn with a core A(C), if for every w ∈ Fn there exists c ∈ C such that Pr

I∼D
[w|I /∈ C|I ] ≥

max
{
ε1 · δ(w|A(C), c|A(C)), ε2 · δ(w|−A(C), c|−A(C))

}
. A code C ⊆ Fn with a core A(C) is a (q, ε1, ε2)-

rLTC if it has a (q, ε1, ε2)-rLTC tester.
The parameter q is called the query complexity, ε1 is called the first soundness parameter and

ε2 is called the second soundness parameter.

Intuitively, think that ε1 is a constant, but ε2 is sub-constant.

Remark 2.3. We note that if C ⊆ Fn is a (q, ε)-strong LTC and D is its tester, then setting
A(C) = [n] it holds that C is a (q, ε, 1)-rLTC with regards to the same tester D because for every
w ∈ Fn we have

Pr
I∼D

[w|I /∈ C|I ] ≥ ε · δ(w,C) = max
{
ε · δ(w|[n], C|[n]), 1 · 0

}
=

= max
{
ε · δ(w|A(C), C|A(C)), 1 · δ(w|−A(C), C|−A(C))

}
.

Our first observation in this work is that a relaxed LTC with sub-constant second soundness
parameter can be easily converted to a strong LTC with a constant soundness.

Observation 2.4 (A conversion of rLTCs to strong LTCs). Let q ≥ 2 and C ⊆ Fn be a linear
(q, ε1, ε2)-rLTC with a core A(C). Then there exists a linear (q, ε1/6)-strong LTC C ′ ⊆ Fn′, where
n ≤ n′ ≤ 12

ε2
· n, dim(C ′) = dim(C), rate(C ′) ≥ ε2

12 · rate(C) and δ(C ′) ≥ 0.9 · δ(C|A(C)). Moreover,
the construction of C ′ from C is explicit and done in time O(n′).

Proof. Let D be the corresponding tester for C. Without loss of generality assume that A(C) is
the first |A(C)| indexes, i.e., A(C) = [|A(C)|]. If A(C) = [n] then C is a (q, ε1)-strong LTC with
regards to the same tester D and we are done. Thus we assume for the rest of the proof that
A(C) ( [n] and thus n− |A(C)| 6= 0.

Let h =
⌈

10
ε2
· n
|A(C)|

⌉
and note that h ≥ 1. Then 10

ε2
· n ≤ h · |A(C)| ≤ 11

ε2
· n. Now, let C ′ be a

linear code obtained from C by concatenating the symbols of C|A(C) to C exactly h times. I.e., for

every c′ ∈ C ′ we have c′ = (c, (

h︷ ︸︸ ︷
c|A(C), c|A(C), . . . , c|A(C))) for some c ∈ C. In particular, C = C ′|[n]

and for every j ∈ [h] we have C ′|n+(j−1)·|A(C)|+[|A(C)|] = C|A(C). We set A(C ′) = A(C).

We notice that dim(C ′) = dim(C) and the blocklength of C ′ is n′ = n+h · |A(C)| ≤ n+ 11
ε2
·n ≤

12
ε2
· n. It can be verified that δ(C ′) ≥ (h+1)·|A(C)|·δ(C|A(C))

n′ ≥ 0.9 · δ(C|A(C)). Note also that

rate(C ′) = dim(C)
n′ ≥ ε2

12 · rate(C).

Let D′ be a tester for C ′ that on the input word w ∈ F(n′):

• picks r ∈ {0, 1}

• if r = 1 then picks random j1 ∈ A(C) and j2 ∈ [h] and outputs {j1, n+ (j2 − 1) · |A(C)|+ j1}

• otherwise (r = 2), samples D on w|[n] and returns its output

9



We argue that C ′ is a (q, ε1/6)-strong LTC with respect to its tester D′. Clearly, D′ is a q-query
tester. Let w ∈ Fn′ be an input word. We show that

Pr
I∼D′

[
w|I /∈ C ′|I

]
≥ ε1

6
· δ(w,C ′).

Let β be the fraction of bits in w|[n′]\[n] that is not equal to the corresponding bits of w|A(C), i.e.,
β = Pr

j1∈A(C),j2∈[h]

[
w|j1 6= w|n+(j2−1)·|A(C)|+j1

]
. We know that

Pr
I∼D′

[
w|I /∈ C′|I

]
≥ β

2
+

PrI∼D
[
(w|[n])|I /∈ C|I

]
2

. (1)

By assumption, C is a (q, ε1, ε2)-rLTC and hence there exists a codeword c ∈ C such that
Pr
I∼D

[
(w|[n])|I /∈ C|I

]
≥ max

{
ε1 · δ((w|[n])|A(C), c|A(C)), ε2 · δ((w|[n])|−A(C), c|−A(C))

}
. Therefore

δ((w|[n])|A(C), c|A(C)) ≤
PrI∼D

[
(w|[n])|I /∈ C|I

]
ε1

(2)

and

δ((w|[n])|−A(C), c|−A(C)) ≤
PrI∼D

[
(w|[n])|I /∈ C|I

]
ε2

. (3)

Let c′ ∈ C ′ be the corresponding codeword to c (i.e., c′|[n] = c). Then (by (1), (2) and (3))

δ(w, c′) ≤ β +
δ((w|[n])|A(C), c|A(C)) · |A(C)| · (h+ 1) + δ((w|[n])|−A(C), c|−A(C)) · (n− |A(C)|)

n′
≤

≤ β +
(1/ε1) · |A(C)| · (h+ 1) + (1/ε2) · n

n′
· Pr
I∼D

[
(w|[n])|I /∈ C|I

]
≤

≤ β +
(1/ε1) · 12

ε2
· n+ (1/ε2) · n
n′

· Pr
I∼D

[
(w|[n])|I /∈ C|I

]
≤

≤ β +
(1/ε1) · 12

ε2
· n+ (1/ε2) · n

(10/ε2) · n
· Pr
I∼D

[
(w|[n])|I /∈ C|I

]
≤

≤ β +
3

ε1
· Pr
I∼D

[
(w|[n])|I /∈ C|I

]
≤ 6

ε1
·

(
β

2
+

PrI∼D
[
(w|[n])|I /∈ C|I

]
2

)
≤ 6

ε1
· Pr
I∼D′

[
w|I /∈ C ′|I

]
.

That means δ(w, c′) ≤ 6
ε1
·PrI∼D′ [w|I /∈ C ′|I ], where c′ ∈ C ′. We conclude that

Pr
I∼D′

[
w|I /∈ C′|I

]
≥ ε1

6
· δ(w,C ′).

This proves that C ′ is a (q, ε1/6)-strong LTC with respect to its tester D′, and completes the proof
of Observation 2.4.

Although Observation 2.4 might seem naive, it implies the following corollary that will play a
crucial role in the proof of Theorem 1.4.

Corollary 2.5. Assume that for constants q ≥ 2, ε > 0 and infinitely many n ∈ N+ we have a
linear code C ⊆ Fn2 with a core A(C) such that C is a (q, ε, 1

polylog(n))-rLTC, δ(C|A(C)) = Ω(1)

and rate(C) = 1
polylog(n) . Then, there exists C ′ ⊆ Fn′2 such that n ≤ n′ ≤ n · polylog(n), C ′ is a

(q, ε/6)-strong LTC, δ(C ′) = Ω(1) and rate(C ′) = 1
polylog(n′) (i.e., Question 1.3 is solved).

Proof. The construction of the required C ′ follows immediately from Observation 2.4.
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3 The main result of [55] and its corollaries

In this section we recall the main result of [55]. Then we make some corollaries that will be used
later.

Theorem 3.1 ([55]). For some constant d ∈ N+ and infinitely many n ∈ N+ there exists a linear
code C ⊆ Fn2 and its tester D such that

• C is a (3, 1
logd n

)-strong LTC with respect to D,

• δ(C) = Ω(1),

• rate(C) = 1
logd n

,

• | supp(D)| ≤ n logd n and for every u ∈ supp(D) it holds that D(u) ≤ logd n
n , and

• for every i ∈ [n] we have |ND(i)| ≤ logd n.

Remark 3.2. Although in [55] two last bullets were not proved, but one could verify that these
bullets hold. The construction in [55] begins from a constant blocklength code C1 and contained
3 procedures: the star product, the random projection and the distance amplification. These 3
procedures were applied iteratively Θ(log log n) times. Each iteration i is executed on the code Ci
that had a blocklength ni and a tester Di. The output of each iteration i is the code Ci+1.

Initially, the base code C1 ⊆ Fn1
2 and its tester D1 satisfied the last two bullets with respect to

its blocklength n1 = O(1). I.e., | supp(D1)| ≤ n1 · O(1) and for every u ∈ supp(D1) it holds that

D1(u) ≤ O(1)
n1

. Moreover, for every i ∈ [n1] we have |ND1(i)| ≤ O(1).
Each iteration, the star product, the random projection and the distance amplification proce-

dures were applied. The random projection does not affect the properties listed in these bullets,
but only rearranges the coordinates of the given code in some way. The star product and the
distance amplification procedure do affect the properties listed in these bullets, but only by fixed
multiplicative constants.

More formally, there exists a fixed constant h > 0 such that the following occur. Suppose
that in the iteration i for some hi > 0 we have the code Ci ⊆ Fni and its tester Di such that
supp(Di) ≤ hi · ni, for every u ∈ supp(Di) it holds that Di(u) ≤ hi

ni
, and for every j ∈ [ni]

it holds that |NDi(j)| ≤ hi. Then, after the star product (or distance amplification) is applied,
resulting in the code Ci+1 ⊆ Fni+1 and its tester Di+1, we have supp(Di+1) ≤ h · hi ·ni+1, for every
u ∈ supp(Di+1) it holds thatDi+1(u) ≤ h·hi

ni+1
, and for every j ∈ [ni+1] it holds that |NDi+1(j)| ≤ h·hi.

Therefore, after Θ(log log n) iterations we obtain the code C ⊆ Fn and its tester D such that

| supp(D)| ≤ n · polylog(n), for every u ∈ supp(D) it holds that D(u) ≤ polylog(n)
n , and for every

j ∈ [n] it holds that |ND(j)| ≤ polylog(n).

We pay attention that one can turn the strong LTCs of Theorem 3.1 to the strong LTCs with
a uniform distribution over the tests, and the soundness parameter, roughly speaking, will be
preserved.

Corollary 3.3. For some constant d ∈ N+ and infinitely many n ∈ N+ there exist a linear code
C ′ ⊆ Fn2 and its tester D′ which is a uniform distribution over supp(D′) such that

• C ′ is a (3, 1
logd n

)-strong LTC with respect to D′,
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• δ(C ′) = Ω(1),

• rate(C ′) ≥ 1
logd n

,

• | supp(D′)| ≤ n logd n, and

• for every i ∈ [n] we have |ND′(i)| ≤ logd n.

Proof. Corollary 3.3 follows from Theorem 3.1 by letting C ′ = C and D′ be a uniform distribution
over supp(D). Note that supp(D′) = supp(D) and for every u ∈ supp(D′) we have

D′(u) =
1

| supp(D)|
≥ 1

n logd n
=

1

log2d n
· logd n

n
≥ 1

log2d n
· D(u).

Then, for any w ∈ Fn2 we have

Pr
u∼D′

[〈u,w〉 6= 0] ≥ 1

log2d n
· Pr
u∼D

[〈u,w〉 6= 0] ≥ 1

log2d n
· 1

logd n
· δ(w,C) =

1

log3d n
· δ(w,C).

Now, in Corollary 3.4 we show that the 3-query strong LTCs over F2 from Corollary 3.3 can be
easily converted to the 2-query rLTCs over F3

2 with a similar range of parameters.7 This conversion
is standard (for the case of LTCs, PCPs and assignment testers) and was explained, e.g., in [27, 50].

Corollary 3.4. For some constant d ∈ N+ and infinitely many n′′ ∈ N+ there exist a code C ′′ ⊆
(F3

2)(n′′) and its tester D′′ which is a uniform distribution over supp(D′′) such that

• C ′′ is linear over F2,

• C ′′ is a (2, 1
3 logd n′′

, 1
6 log2d n′′

)-rLTC with respect to its core A(C ′′) and D′′,

• δ(C ′′|A(C′′)) = Ω(1),

• rate(C ′′) ≥ 1
2 log2d n′′

,

• | supp(D′′)| ≤ 3 · n′′, and

• for every i ∈ [n′′] we have |ND′′(i)| ≤ logd n′′.

Proof. Corollary 3.3 implies the existence of a constant d ∈ N+, a linear code C ′ ⊆ Fn2 for arbitrary
large n and its tester D′ such that C ′ is a (3, 1

logd n
)-strong LTC with respect to D′, δ(C ′) = Ω(1),

rate(C ′) ≥ 1
logd n

, | supp(D′)| ≤ n logd n, and for every i ∈ [n] we have |ND′(i)| ≤ logd n.

Let every element of F3
2 be associated with a tuple of 3 bits. Let also every bit (an element

of F2) be viewed as an element of F3
2. Let us create a separate code symbol X(i1,i2,i3) for every

3-query test {i1, i2, i3} of the original code (similarly, we create X(i1,i2) and X(i1) for every 2-query
and 1-query tests). Call the new code C ′′. A new tester D′′ for C ′′ samples an original tester D′,
and if D′ queries i1, i2, i3, then the tester D′′ queries the entry X(i1,i2,i3) and a random coordinate

7During this paper we associate F3
2 with F23 .
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ij ∈ {i1, i2, i3}, and accepts iff three bits of X(i1,i2,i3) are summed to 0 and the corresponding bit
of X(i1,i2,i3) is equal to ij .

We let A(C ′′) = [n] and note that C ′′ ⊆ (F3
2)(n′′). One can easily verify that C ′′ is linear

over F2, δ(C ′′|A(C′′)) = δ(C ′) = Ω(1), rate(C ′′) = dim(C′′)
n′′ = dim(C′)

n′′ ≥ dim(C′)

n+n logd n
≥ 1

2 log2d n′′
,

| supp(D′′)| ≤ 3·n′′, where n′′ ≤ n+n·logd n. Moreover, for every i ∈ [n′′] we have |ND′′(i)| ≤ logd n′′.
We prove that C ′′ is a (2, 1

3 logd n′′
, 1

log2d n′′
)-rLTC with respect to its core A(C ′′) and D′′. Let

w ∈ (F3
2)(n′′). Note that w|[n] can be viewed as a word in Fn2 . Since C ′ is a (3, 1

logd n
)-strong LTC

with respect to D′, there exists c′ ∈ C ′ such that

Pr
I∼D′

[
(w|[n])|I /∈ C ′|I

]
≥ 1

logd n
· δ(w|[n], c

′).

Let c′′ ∈ C ′′ be a corresponding codeword to c′, i.e., c′′|[n] = c′′|A(C′′) = c′. Then,

Pr
I∼D′′

[
w|I /∈ C ′′|I

]
≥ 1

3
· Pr
I∼D′

[
(w|[n])|I /∈ C ′|I

]
≥ 1

3 logd n
·δ(w|[n], c

′) ≥ 1

3 logd n′′
·δ(w|A(C′′), c

′′|A(C′′)),

where we used the fact that every constraint selected by D′ contains at most 3 symbols (e.g.,
{i1, i2, i3} for i1, i2, i3 ∈ [n]), and hence if it is not satisfied (w|{i1,i2,i3} /∈ C ′|{i1,i2,i3}), then at least
one of the corresponding 3 constraints selected by D′′ is not satisfied. Hence the first soundness
parameter is decreased by 1

3 .
On the other hand,

δ(w|−A(C′′), c
′′|−A(C′′)) ≤ 3 · Pr

I∼D′′

[
w|I /∈ C ′′|I

]
+ (logd n) · δ(w|[n], c

′′|[n]).

To see this, we recall that the code C ′′ was constructed from C ′ by adding the entries indexed by
[n′′]\[n] that simulates the constraints checked by D′. Thus an entry of w|−A(C′′) should be modified
only if it contains a non-consistent value, i.e., it does not correspond to the symbols contained by
the constraint it simulates (the fraction of such entries is at most 3 · PrI∼D′′ [w|I /∈ C ′′|I ]) or this
entry simulates a constraint containing a symbol of w|[n] that should be modified (the fraction of

such entries is at most (logd n) · δ(w|[n], c
′′|[n])). Here we used the fact that a change of a symbol

indexed by [n] of C ′′ might yield a change of at most logd n entries (that simulates constraints)
indexed by [n′′] \ [n] since for every i ∈ [n] we have |ND′(i)| ≤ logd n with respect to the code C ′

and its tester D′.
Furthermore,

3 · Pr
I∼D′′

[
w|I /∈ C ′′|I

]
+ (logd n) · δ(w|[n], c

′′|[n]) ≤

3 · Pr
I∼D′′

[
w|I /∈ C ′′|I

]
+ (logd n) · (3 logd n) · Pr

I∼D′′

[
w|I /∈ C ′′|I

]
≤ (6 log2d n) · Pr

I∼D′′

[
w|I /∈ C ′′|I

]
,

where the last inequality holds for n ≥ 2. Thus

Pr
I∼D′′

[
w|I /∈ C ′′|I

]
≥ max

{
1

3 logd n′′
· δ(w|A(C′′), c

′′|A(C′′)),
1

6 log2d n′′
· δ(w|−A(C′′), c

′′|−A(C′′))

}
.
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4 Gap Amplification Procedure for LTCs

In this section we describe the main result of Dinur [27] and its affect on the locally testable codes.
We notice that two interesting alternatives were proposed. Radhakrishnan [51] suggested another
option for the amplification lemma [27], where he used lazy random walks in the constraints graph.
In particular, this suggestion improves some of the constants inside the Dinur’s results. Goldreich
and Meir [34] pointed out on a small gap in the proof of the amplification of assignment testers in
[27]. Namely, while Dinur [27] argued that every an execution of the gap amplification costs a linear
blowup for the underlying graph size, Goldreich and Meir [34] showed that sometimes this blowup
can be larger and showed how one can easily correct this to have always only a linear blowup.

Nevertheless, in our paper we don’t need the mentioned suggestions/corrections and we address
the original work of Dinur [27]. The only modification we need is that the linearity of the underlying
code can be preserved if the alphabet reduction stage in the gap amplification will be done by the
concatenation with the Hadamard code [50, Section 6.4.3], and not by a general assignment testers
composition as in [27]. Now we recall the gap amplification procedure [27] and describe how it is
applied on the linear codes, and in particular to the 2-query linear relaxed LTCs.

A 2-query LTC can be associated with a constraints graph. In this section let F = F3
2.

Assume C ⊆ Fn has a 2-query tester D. Let G = (V,E) be an undirected graph, where V = [n]
and {i, j} ∈ E if and only if D({i, j}) > 0. The degree of a symbol i of the code C is associated to
the degree of the node i in the graph G, and equal to |{j ∈ [n] | D({i, j}) > 0}|.

The gap amplification for a relaxed LTC. Let us recall how the gap amplification would be
applied on a relaxed LTC. This will be almost identical to the execution of the gap amplification
on the assignment testers [27], where a single modification is that the alphabet reduction is done
by the concatenation with the Hadamard code as was explained in [50, Section 6.4.3]. Assume
that the input is the relaxed LTC C ⊆ Fn and its 2-query tester D such that D is uniform over
supp(D). Assume that A(C) ⊆ [n] is the core of the code C and without loss of generality assume
that A(C) = [|A(C)|], i.e., the core of the code is the first |A(C)| coordinates. It is important to
note that during the execution of the gap amplification the symbols of the core will be preserved
in every stage of this procedure.

Let G be the graph corresponding to the code C and its 2-query tester D. The gap amplification
procedure contains the following three stages.

First stage - Preprocessing (described in [27, Section 4]) Assume that a coordinate
i in C has degree di with respect to the tester D. Let d = maxi∈[n] di. The code C ⊆ Fn and its

tester D are transformed to the new code C ′ ⊆ Fn′ and its tester D′ such that n ≤ n′ ≤ d · n and
C ′|[n] = C, i.e., all old code entries are preserved and some new code entries are added. It also holds
that D′ is uniform over a new collection of 2-query constraints, i.e., D′ is uniform over supp(D′).
The new entries are added by duplicating some original entries. The number of 2-query tests in D′
is | supp(D′)| = O(d · | supp(D)|). The degree of every index i in the code C ′ with respect to the
tester D′ is a fixed constant (independent of any parameters). If the code C ′ is associated with a
graph G′, then G′ is a constant degree expander graph (see [27, Section 4]).

We set the core of the code C ′ to be A(C ′) = A(C) and note that C|A(C) = C ′|A(C′), i.e., the
core symbols are preserved. Similarly to the proof presented by Dinur [27], one could verify that if
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for every w ∈ Fn it holds that PrI∼D[w|I /∈ C|I ] ≥ ε1 · δ(w|A(C), C|A(C)), then for every w ∈ Fn′ it
holds that PrI∼D′ [w|I /∈ C ′|I ] ≥ (ε1/d) · δ(w|A(C′), C

′|A(C′)). In particular, this means that if C is
a (2, ε1, ·)-rLTC with respect to its tester D and its core A(C), then C ′ is a (2, ε1/d, ·)-rLTC with
respect to its tester D′ and its core A(C ′). I.e., the decrease in the first soundness parameter is
bounded by a maximal degree of a code coordinate.

Notice that if all degrees of the code coordinates are upper-bounded by a fixed constant, then
the soundness will be decreased be only by a constant.

Second Stage - Amplification (described in [27, Sections 1 and 6]) The input of this
stage is the code C ′ ⊆ Fn′ and its 2-query tester D′ which is uniform over its support. We recall
that A(C ′) ⊆ [n] is a core of the code C ′ such that A(C ′) = [|A(C ′)|]. We also know that the degree
of every index of C ′ (after the first stage) with respect to D′ is equal to a fixed constant d ∈ N+.
In this stage we associate the code C ′ and the tester D′ with a graph G′. Then the graph G′ is
transformed to the graph (G′)t for sufficiently large constant t ∈ N+, where (G′)t has the same
vertexes as G′ and the edge set (E′)t contains k parallel edges between i1 and i2 if and only if the
number of t-step walks from i1 to i2 is exactly k. The graph (G′)t defines the code C ′′ and its tester
D′′ which is uniform over all edges of the graph (G′)t, but the first |A(C ′)| symbols are exactly the
first |A(C ′)| symbols of C ′, i.e., the core coordinates are preserved. We set A(C ′′) = A(C ′). The

underlying field of the code C ′′ is Fddt/2e , but the symbols indexed by A(C ′′) belong to F. Note that
C ′′ is linear over F. In particular, the blocklength of C ′′ is n′ and | supp(D′′)| ≤ | supp(D′)| · dt.

In [27] it is shown that the first soundness parameter is increased in t′ = Ω(
√

(t)), where the
constant inside Ω(·) is independent of t, and hence t is picked to be sufficiently large constant such
that, e.g., t′ ≥ 10. As we mentioned, Radhakrishnan [51] improved the dependency on t, but we
don’t use his result in this paper.

That means if for every w ∈ Fn′ it holds that PrI∼D′ [w|I /∈ C ′|I ] ≥ ε1 · δ(w|A(C′), C|A(C′)), then

for every w ∈ Fn′′ it holds that PrI∼D′′ [w|I /∈ C ′′|I ] ≥ (ε1 · t′) · δ(w|A(C′′), C
′|A(C′′)). Namely, if C ′

was a (2, ε1, ·)-rLTC with respect to A(C ′) and D′ then C ′′ is a (2, t′ · ε1, ·)-rLTC with respect to
A(C ′′) and D′′, where ε1 is less than some fixed constant γ > 0.

Third Stage - Alphabet Reduction (described in [27, Sections 1 and 5]) and [50,
Section 6.4.3] In this stage, we will use the suggestion of Meir [50, Section 6.4.3], where the
alphabet reduction is done by the concatenation with the binary Hadamard code. In this stage,
every code symbol, which is an element of Fdt for some d, t ∈ N+, is encoded by the Hadamard code
over the field F2. The required testability is preserved due to the fact that the Hadamard code is a
3-query strong LTC and a 2-query locally correctable code (LCC) (see Section A). The output of
this stage is a code C ′′′ ⊆ Fn′′′ and its 2-query tester D′′′ which is uniform over its support. The core
of the code is preserved again, and we set A(C ′′′) = A(C ′′) and note that C ′′|A(C′′) = C ′′′|A(C′′′).

As was explained in [50, Section 6.4.3], this reduction decreases rejection probability by a
fixed constant g > 0 (independent of the parameters of the code), i.e., if for every w ∈ Fn′′ it
holds that PrI∼D′′ [w|I /∈ C ′′|I ] ≥ ε1 · δ(w|A(C′′), C|A(C′′)), then for every w ∈ Fn′′′ it holds that
PrI∼D′′′ [w|I /∈ C ′′′|I ] ≥ (ε1/g) · δ(w|A(C′′′), C

′|A(C′′′)). Namely, if C ′′ was a (2, ε1, ·)-rLTC with
respect to A(C ′′) and D′′ then C ′′′ is a (2, ε1/g, ·)-rLTC with respect to A(C ′′′) and D′′′.

An interesting point is that there are two options:

1. to obtain the binary linear code C ′′′, where D′′′ is a 3-query tester. As was said, this is done
simply by the concatenation with the binary Hadamard code (see [50, Section 6.4.3]).
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2. to obtain the code C ′′′ over the field F, where D′′′ is a 2-query tester. This can be done by
applying the first bullet and then turn the 3-query rLTC over F2 to the 2-query rLTC over
F = F3

2 using the standard technique (as in Corollary 3.4).

This gap amplification procedure will be applied a number of times. Each iteration, besides the
last one, we use the second bullet, i.e., we obtain a 2-query rLTC over F (which is linear over F2).
This code can be passed to the new iteration of gap amplification. However, in the last iteration
we choose the first bullet and obtain a binary linear 3-query rLTC.

Overall, the output of the gap amplification procedure is the code C ′′′ and its tester D′′′.

5 Proof of Theorem 1.4

In this section we state and prove Theorem 1.4.
Recall that Dinur [27] suggested the gap amplification procedure to increase the rejection proba-

bility of verifiers for PCPs and explained that this procedure fits also for the assignment testers [29]
(or alternatively, PCPs of proximity [10]). Then, Meir [50] explained that exploring the fact that
the Hadamard code is 3-query strong LTC and 2-query locally correctable one can use it (instead
of the PCP composition) to reduce the alphabet size in the alphabet reduction stage of the gap
amplification procedure. Hence, as we recall in Section 4, the gap amplification procedure can be
applied to the linear codes and preserve their linearity. Let us denote by Amplify(·) this version of
the gap amplification procedure.

Our contribution here is that we observe that when Amplify(·) is invoked on a relaxed LTC,
it improves the first soundness parameter, while does not destroy the second soundness parameter
too much. First, we summarize the known affect of Amplify(·) on F2-linear codes with 2-query
testers in Theorem 5.1. Before we state Theorem 5.1. We need to define some auxiliary concepts.

Let C ⊆ Fn be a code. Let m ∈ [n] and J = {1, 2, . . . ,m}. Assume that given a message
first of all we compute the values for all coordinates indexed by J , and then based on their values
we compute the rest of the coordinates. That means for every i ∈ [n] \ J there exists a function
gi : Fdi → F and j1, j2, . . . , jdi ∈ J such that for every c ∈ C it holds that c|i = gi(c|j1 , c|j2 , . . . , c|jdi ).
In this case we say that the index i depends only on j1, j2, . . . , jdi . Also, for k ∈ [di] we say that i
depends on jk. We say that i depends on at most d entries of J if di ≤ d. In the given case, for
any k ∈ [di] we say that jk affects i. We say that each entry in J of C affects at most h entries in
[n] \ J if for all j ∈ J it holds that j affects at most h entries in [n] \ J .

Theorem 5.1 (Implicit in [27] and [50]). Let F = F23. There exist constants h ∈ N+ and γ > 0
such that the following holds. Let C ⊆ Fn be a code (linear over F2) with a 2-query tester D
(uniform over its support) such that for every i ∈ [n] we have |ND(i)| ≤ g for some g > 0 (g may
depend on n). Then letting C ′ = Amplify(C) ⊆ Fn′ and D′ be its tester (uniform over its support),
where n ≤ n′ ≤ (g · h) · n we have

• C ′ is a code (linear over F2) and supp(D′) = O(g · n′),

• For all i ∈ [n′] we have |ND′(i)| ≤ h,

• All core entries are preserved: C ′|[n] = C and all new entries are computed from the original
entries: dim(C ′) = dim(C),

• Every entry indexed by [n] affects at most h · g entries indexed by [n′] \ [n] in the code C ′,
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• All new entries are added as a sequence of blocks (small Hadamard codes) such that all these
blocks are of the same constant size and each block is a (3, 1

2)-strong LTC,

• For every w ∈ Fn′: if PrI∼D
[
(w|[n])|I /∈ C|I

]
≥ ε, then we have PrI∼D′ [w|I /∈ C ′|I ] ≥

min {10 · ε, γ}.
(Note: a single iteration of gap amplification procedure can improve the rejection probability
by any multiplicative constant.)

Now we conclude the following theorem that summarizes the affect of Amplify(·) on the relaxed
LTCs.

Theorem 5.2 (Gap Amplification for relaxed LTCs). Let F = F23. There exist fixed constants
γ, d > 0 such that the following holds. Let C ⊆ Fn be a (2, ε1, ε2)-rLTC (linear over F2), where
ε2 ≤ ε1, with regards to its core A(C) and its tester D (uniform over its support), such that for every
i ∈ [n] we have |ND(i)| ≤ g for some g > 0 (g may depend on n). Then letting C ′ = Amplify(C)
and A(C ′) = A(C) we have

• C ′ ⊆ Fn′ is a (2,min {2ε1, γ}, ε2
3d·g )-rLTC with regards to its core A(C ′) and its new tester D′′

(uniform over its support),

• for all i ∈ [n′] we have |ND′′(i)| ≤ d,

• C ′|[n] = C and thus δ(C ′|A(C′)) = δ(C|A(C)), and

• rate(C ′) = Ω(g · rate(C)).

Proof. Theorem 5.1 says that C ′|[n] = C. The fact that A(C ′) = A(C) implies that δ(C ′|A(C′)) =
δ(C|A(C)). Theorem 5.1 also claims that dim(C ′) = dim(C) and n ≤ n′ ≤ (g · h) · n for some
constant h ∈ N+. Hence rate(C ′) = Ω(g · rate(C)).

Let w′ ∈ Fn′ and w = w′|[n] ∈ Fn. We know that there exists c ∈ C such that letting
ε̂ = max

{
ε1 · δ(w|A(C), c|A(C)), ε2 · δ(w|−A(C), c|−A(C))

}
we have

Pr
I∼D

[w|I /∈ C|I ] ≥ ε̂.

Let c′ = Amplify(c), i.e., the codeword c′ ∈ C ′ is produced from c by Amplify(·). Note that
c′|[n] = c. Theorem 5.1 implies that

Pr
I∼D′

[
w′|I /∈ C ′|I

]
≥ min {γ, 10 · ε̂} ≥ min

{
γ, 10ε1 · δ(w′|A(C′), c|A(C′))

}
,

where D′ is a tester for C ′ guaranteed by Theorem 5.1.
Note that by Theorem 5.1, all new coordinates that are added form a sequence of the Hadamard

blocks of the equal constant size, and each original entry (indexed by [n]) affects at most d · g new
entries (indexed by [n′] \ [n]). Thus we can define a new tester D′′ for C ′ that invokes the original
tester D′ with probability 1

2 , and otherwise pick a random Hadamard block and test it. One can
verify that for all i ∈ [n′] we have |ND′′(i)| ≤ d, and that D′′ is uniform over its support (by
considering its support as a multiset).

We claim that

Pr
I∼D′′

[
w′|I /∈ C ′|I

]
≥ 1

2
· Pr
I∼D′

[
w′|I /∈ C ′|I

]
≥ min

{
1

2
· γ, 2ε1 · δ(w′|A(C′), c

′|A(C′))

}
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and
Pr
I∼D′′

[
w′|I /∈ C ′|I

]
≥ ε2

3d · g
· δ(w′|[n′]\A(C′), c

′|[n′]\A(C′)).

The last inequality holds due to the guarantee of the tester D′, the fact that each original entry
affects at most d · g new entries and due to the fact that the Hadamard code is a (3, 1

2)-strong LTC
(see Section A). Thus C ′ is a (2,min {2ε1, γ′}, ε2

3d·g )-rLTC, where γ′ = γ/2, with regards to its core

A(C ′) and its tester D′′.

We are ready to prove Theorem 1.4.

Proof of Theorem 1.4. Let d ∈ N+ and C1 ⊆ (F3
2)n be a code from Corollary 3.4. Now we execute

the following algorithm.

• For each i = 1, . . . , d · log logn do

– Ci+1 := Amplify(Ci)

– A(Ci+1) := A(Ci) := [n]

Theorem 5.2 implies that if Ci is a (2, 2i

logd n
, α)-rLTC then Ci+1 is a (3, 2i+1

logd n
, αb )-rLTC for

a fixed constant b > 0 (besides the first iteration, where b might be polylog(n)). Moreover,
δ(Ci+1|A(Ci+1)) = δ(Ci|A(Ci)) = δ(C), dim(Ci+1) = dim(Ci) and rate(Ci+1) ≥ β · rate(Ci) for

some constant β (besides the first iteration, where rate(C2) ≥ 1
polylog(n) · rate(C1)).

Let C ′ = Cd·log logn and A(C ′) = A(Cd·log logn). Then C ′ is a (2, γ, 1
polylog(n))-rLTC, rate(C ′) =

1
polylog(n) and δ(C ′|A(C′)) ≥ Ω(1).

We claim that the resulting code C ′ can be a binary linear (3, γ)-rLTC. Observe that the
alphabet reduction stage in the gap amplification procedure is done by the encoding every node’s
assignment of the underlying graph by the binary Hadamard code which is a binary linear 3-query
strong LTC. Thus, as was explained in Section 4, if we don’t convert this C ′ to the 2-query LTC over
F3

2, then it will stay binary linear (3, γ)-rLTC such that rate(C ′) = 1
polylog(n) and δ(C ′|A(C′)) ≥ Ω(1).

Corollary 2.5 implies the required construction of binary linear (3, γ/6)-strong LTCs from C ′.

6 Proof of Theorem 1.8

First, we state Lemma 6.1. Then we prove Theorem 1.8.

Lemma 6.1. Let C ⊆ Fn2 be a linear (q, ε)-strong LTC such that δ(C) = Ω(1). Assume that T ⊆ [n]
is (n′, h)-junta with respect to C such that dim(C|T ) = dim(C) and δ(C|T ) = Ω(1).

Then C|T ⊆ Fn′2 is a linear
(
q · h ·

⌈
n

ε·|T |

⌉
, 1

2

)
-strong LTC, δ(C|T ) = Ω(1) and rate(C|T ) =

dim(C)
n′ .

The proof of Lemma 6.1 appears in Section 6.1. We are ready to prove Theorem 1.8.

Proof of Theorem 1.8. Conjecture 1.6 yields a linear (polylog(n), 1
2)-strong LTC C ⊆ Fn2 (for arbi-

trary large n ∈ N+) such that δ(C) = Ω(1), rate(C) ≥ 1
polylog(n) and a (Θ(dim(C)),polylog(n))-

junta T with respect to C.
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If rate(C) > δ(C)
100 = Ω(1), then C ′ = C is the required code whose blocklength is n′ = n, and

we are done. Otherwise, assume that rate(C) ≤ δ(C)
100 .

Proposition B.1 shows the existence of a subset S ⊆ [n], |S| ≤ 30 dim(C)
δ(C) such that δ(C|S) ≥

δ(C)/2 and dim(C|S) = dim(C). It holds that T ′ = T ∪ S is a (Θ(dim(C)), polylog(n))-junta
such that dim(C|T ′) = dim(C) and δ(C|T ′) = Ω(1). Let n′ = |T ′| and C ′ = C|T ′ and note that
n
n′ ≤ polylog(n′). By Lemma 6.1, we conclude that C ′ ⊆ Fn′2 is a linear (polylog(n′), 1

2)-strong LTC
such that δ(C ′) = Ω(1) and rate(C ′) = Ω(1). Finally, note that n′ can be arbitrary large since
n′ = |T ′| ≥ |S| ≥ dim(C) and dim(C) ≥ n

polylog(n) , where n can be arbitrary large.

6.1 Proof of Lemma 6.1

We first state and prove the following folklore claim.

Claim 6.2 (Folklore). If C ⊆ Fn is a (q, ε)-strong LTC, then it is also a (q ·
⌈

1
ε

⌉
, 1

2)-strong LTC.

Proof. Let D be a (q, ε)-strong tester for C. Let D′ be a tester for C defined as follows: D′ samples
D on the input word

⌈
1
ε

⌉
times and rejects if and only if at least one invocation of D rejected.

Clearly, D′ always accepts the codewords and the query complexity of D′ is upper-bounded by
q ·
⌈

1
ε

⌉
.

Let w ∈ Fn. We know that Pr
I∼D

[w|I ∼ C|I ] ≥ ε·δ(w,C). The testerD′ accepts w with probability

at most (1− ε · δ(w,C))1/ε and rejects w with probability at least 1− (1− ε · δ(w,C))1/ε. We argue

that 1− (1− ε · δ(w,C))1/ε > 1
2 · δ(w,C) and this yields the Claim.

It holds that
(

(1− ε · δ(w,C))1/ε
) 1
δ(w,C)

= (1− ε · δ(w,C))
1/ε

δ(w,C) ≤ e−1 <
1

2
and

1− (1− ε · δ(w,C))
1

ε·δ(w,C) >
1

2
. On the other hand,

1− (1− ε · δ(w,C))
1/ε

δ(w,C) ≤ 1

δ(w,C)
·
(

1− (1− ε · δ(w,C))(1/ε)
)
,

where we used the fact that 1 − pl ≤ l · (1 − p) for p ≤ 1 and l ∈ N+.8 The required inequality

is obtained by replacing p with (1− εδ(w,C))1/ε and l with 1
δ(w,C) (we assume without loss of

generality that 1
δ(w,C) is an integer because otherwise we could use

⌈
1

δ(w,C)

⌉
).

We conclude that
1

2
<

1

δ(w,C)
·
(

1− (1− ε · δ(w,C))1/ε
)

and
δ(w,C)

2
< 1−(1− ε · δ(w,C))1/ε .

Now we prove Lemma 6.1.

Proof of Lemma 6.1. By definition, C|T ⊆ F|T |2 is a linear code such that δ(C|T ) = Ω(1) and

rate(C|T ) = dim(C|T )
|T | = dim(C)

n′ . We prove that C|T is a (q · h, ε · |T |n )-strong LTC. By definition, for

every j ∈ [n] \ T there exists uj ∈ C⊥≤h such that j ∈ supp(uj) and supp(uj) \ {j} ⊆ T . Fix these
vectors uj .

Let D be a tester for C and let us define a tester DT for the code C|T .

8The fact is true since 1− pl = (1− p) · (1 + p+ p2 + . . .+ pl−1) ≤ (1− p) · l for p ≤ 1 and l ∈ N+.
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• Input: w ∈ Fn′2

• Sample D and let
{
jq, j2, . . . , jq′

}
be the output of D (q′ ≤ q)

• For every jm, if jm ∈ T then let Jm = {jm}, and otherwise let Jm = (supp(ujm) \ {jm}).

• Output J1 ∪ J2 ∪ . . . ∪ Jq′

Clearly, the query complexity ofDT is at most q·h. We need to prove that PrI∼DT [w|I /∈ (C|T )|I ] ≥
ε · |T |n · δ(w,C|T ). Let w′ ∈ Fn2 be reconstructed from w, i.e., w′|T = w and for every j ∈ [n] \ T we

have that w′|j =
∑

i∈supp(uj)\{j}

w′|i. We know that

δ(w,C|T ) =
∆(w,C|T )

|T |
≤ ∆(w′, C)

|T |
=

∆(w′, C)

n
· n
|T |

= δ(w′, C) · n
|T |

.

We have PrI∼DT [w|I /∈ (C|T )|I ] ≥ PrI∼D[w′|I /∈ C|I ] ≥ ε · δ(w′, C) ≥ ε · |T |n · δ(w,C).

Thus C|T is a (q · h, ε · |T |n )-strong LTC with respect to the tester DT . Claim 6.2 proves that

C|T is a (q′, 1
2)-strong LTC, where q′ = q · h ·

⌈
1

ε· |T |
n

⌉
.

7 Open Questions and Discussions

This work leaves two open questions. The first one is obtaining asymptotically good strong LTCs
with poly-log query complexity and constant soundness. In Theorem 1.8 we argued their existence
under Conjecture 1.6. One can try to prove this conjecture. Our feel is that it might be possible to
implement the random projection operation [50, 55] to preserve the “junta” property (see Remark
1.7). E.g., it might be possible to argue that there exists some invariant feature that is preserved
each iteration in the construction of [55] and use this feature to re-implement the random projection
operation. Resolving this task would yield an unconditional proof for Theorem 1.8.

The second open question, mentioned in [36, 50], is the explicit construction of strong LTCs with
inverse polylogarithmic rate, constant relative distance, constant query complexity and constant
soundness. Recall that our construction of strong LTCs in Theorem 1.4 is based on the construction
of [55] (which is almost identical to [50]), where the construction of [55] was probabilistic. One
of possible approach to provide an explicit construction of such strong LTCs is by applying the
arguments of [55] and the arguments used in this paper to the construction of Ben-Sasson and Sudan
[19]. While the work [19] yields weak LTCs, the underlying construction has some similarities to
the constructions of [50, 55] discussed [50, Sectioin 7.2]. On the other hand, the ideas presented in
[55] seem fairly general and it might that these ideas can be applied to [19] to conclude the explicit
construction of strong LTCs with the required range of parameters.
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A The Hadamard code

Let us first define locally correctable codes (LCCs).

Definition A.1 (LCCs). Let C ⊆ Fn2 be a linear code of dimension k = dim(C). Then C is a
(q, ε, α)-LDC (where ε < 1

|F2| = 1
2) if there exists a local corrector Cor that reads at most q symbols

from the input word and the following condition holds.

• For all c ∈ C and i ∈ [n] we have Pr[Corc[i] = ci] = 1.

• For all c ∈ C, i ∈ [n] and ĉ ∈ Fn2 such that δ(c, ĉ) ≤ α we have Pr
[
Corĉ[i] 6= ci

]
≤ ε.

The following fact regarding the testability of the Hadamard code is known due to the works
[26, 9, 7, 41], while the fact saying that the Hadamard code is a 2-query LCC is a folklore.

Theorem A.2. Let H ⊆ F2k−1
2 be the Hadamard code and note that k = dim(H). Then, H is a

(3, 1
2)-strong LTC and a (2, 2α, α)-LCC for every 0 ≤ α ≤ 1/4.

B Auxiliary probabilistic claims

The following proposition appeared in [50, Theorem 4.7]. We reproduce it for the sake of complete-
ness.

Proposition B.1 ([50]). Let C ⊆ Fn2 be a linear code such that rate(C) ≤ δ(C)
100 . Let h = 30·dim(C)

δ(C) .
Then,

Pr
S⊆[n],|S|≤h

[
δ(C|S) ≥ δ(C)

2
and dim(C|S) = dim(C)

]
≥ 1− exp(−dim(C)),

where the probability is taken over a uniform selection of S ⊆ [n] such that |S| ≤ h.

Proof. To prove that C|S has relative distance at least δ(C)
2 and that dim(C|S) = dim(C), we use

a standard probabilistic argument. Fix a non-zero codeword c ∈ C, and let S ⊆ [n] be a uniformly
chosen set such that |S| ≤ h. The relative weight of c is at least δ(C), and therefore the expected
relative weight of c|S is at least δ(C). Applying the Chernoff Bound (Claim B.2), it follows that

the probability that the relative weight of c|S is less than δ(C)
2 is at most exp

(
−

1
4
·δ(C)·h

3

)
.

By taking a union bound over all the codewords of C, the probability that there exists a non-zero
codeword c ∈ C such that c|S has relative weight less than δ(C)

2 is bounded by

2dim(C) · exp(− 1

12
· δ(C) · h) ≤ exp(−dim(C)).

For the sake of completeness we state the particular version of Chernoff’s inequality that we
use.

Claim B.2 (Chernoff Bound). If X =
∑m

i=1Xi is a sum of independent {0, 1}-valued random
variables, where Pr[Xi = 1] = γ, then

Pr

[
X

m
< (1− σ)γ

]
≤ exp(−σ

2γm

3
) and Pr

[
X

m
> (1 + σ)γ

]
≤ exp(−σ

2γm

3
).
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