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ABSTRACT. The approximate degree of a Boolean function f is the least degree of a real
polynomial that approximates f within 1=3 at every point. We prove that the functionVn

iD1

Wn
j D1 xij , known as the AND-OR tree, has approximate degree ˝.n/: This lower

bound is tight and closes a line of research on the problem, the best previous bound being
˝.n

0:75
/. More generally, we prove that the function

Vm
iD1

Wn
j D1 xij has approximate

degree ˝.

p
mn/; which is tight. The same lower bound was obtained independently by

Bun and Thaler (2013) using related techniques.

1. INTRODUCTION

Over the past two decades, representations of Boolean functions by real polynomials
have played an important role in theoretical computer science. The surveys [7], [31], [11],
[32], [1] provide a fairly comprehensive overview of this body of work. Several kinds of
representation have been studied [25, 24, 5, 7, 26], depending on the intended application.
For our purposes, a real polynomial p represents a Boolean function f W f0; 1gn ! f0; 1g if

jf .x/ � p.x/j 6 1

3

for every x 2 f0; 1gn: In other words, we are interested in the pointwise approximation of
Boolean functions by real polynomials. The least degree of a real polynomial that approxi-
mates f pointwise within 1=3 is called the approximate degree of f; denoted dege.f /: The
constant 1=3 is chosen for aesthetic reasons and can be replaced by any other in .0; 1=2/
without affecting the theory in any way.

The formal study of the approximate degree began in 1969 with the seminal work of
Minsky and Papert [24], who famously proved that the parity function in n variables can-
not be approximated by a polynomial of degree less than n: Since then, the approximate
degree has been used to solve a vast array of problems in algorithm design and complexity
theory. The earliest use of the approximate degree was to prove circuit lower bounds and
oracle separations of complexity classes [28, 40, 5, 21, 22, 35]. For the past decade, the ap-
proximate degree has been used many times to prove tight lower bounds on quantum query
complexity, e.g., [6, 9, 2, 19]. The approximate degree has enabled remarkable progress in
communication complexity, with complete resolutions of problems that were once consid-
ered hopelessly hard, e.g., [10, 29, 12, 36, 30, 32]. The results listed up to this point are
of negative character, i.e., they are lower bounds in relevant computational models. More
recently, the approximate degree has found important algorithmic applications. In com-
putational learning theory, the approximate degree was used to obtain the fastest known
algorithms for PAC-learning DNF formulas [41, 20] and read-once formulas [4] and the
fastest known algorithm for agnostically learning disjunctions [18]. Another well-known
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Bound Reference

O.n/ Høyer, Mosca, and de Wolf [16]

˝.
p
n/ Nisan and Szegedy [26]

˝.
p
n logn/ Shi [39]

˝.n0:66:::/ Ambainis [3]

˝.n0:75/ Sherstov [34]

˝.n/ This paper

TABLE 1. Approximate degree of the AND-OR tree.

use of the approximate degree is an algorithm for approximating the inclusion-exclusion
formula based on its initial terms [23, 17, 33, 14].

These applications motivate the study of the approximate degree as a complexity mea-
sure in its own right. As one would expect, methods of approximation theory have been
instrumental in determining the approximate degree for specific Boolean functions of in-
terest [8, 26, 39, 2, 3, 33, 38]. In addition, quantum query algorithms have been used
to prove upper bounds on the approximate degree [16, 14, 4], and duality-based methods
have yielded lower bounds [27, 34, 37]. Nevertheless, our understanding of this complexity
measure remains fragmented, with few general results available [26, 38].

The limitations of known techniques are nicely illustrated by the so-called AND-OR
tree,

f .x/ D
n^

iD1

n_
j D1

x
ij

:

Despite its seeming simplicity, it has been a frustrating function to analyze. Its approximate
degree has been studied for the past 19 years [26, 39, 16, 3, 34] and was recently re-posed
as an open problem by Aaronson [1]. Table 1 gives a quantitative summary of this line of
research. The best lower and upper bounds prior to this paper were ˝.n0:75/ and O.n/,
respectively. Our contribution is to close this gap by improving the lower bound to ˝.n/.
We obtain the following more general result.

THEOREM (Main result). The function f .x/ D V
m

iD1

W
n

j D1

x
ij

has approximate degree

dege.f / D ˝.
p
mn/:

This lower bound is tight for all m and n; see Remark 3.3.

Proof overview. The problem of approximating a given function f pointwise to within
error " by polynomials of degree at most d can be viewed as a search for a point in the in-
tersection of two convex sets, namely, the "-neighborhood of f and the set of polynomials
of degree at most d . As a result, the nonexistence of an approximating polynomial for f is
equivalent to the existence of a so-called dual polynomial for f; whose defining properties
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are orthogonality to degree-d polynomials and large inner product with f: Geometrically,
the dual polynomial is a separating hyperplane for the two convex sets in question.

Our proof is quite short (barely longer than a page). We view f .x/ D V
m

iD1

W
n

j D1

x
ij

as the componentwise composition of the functions AND
m

and OR
n

. We use the dual
polynomial for OR

n

to prove the existence of an operator L with the following properties:
(i) L linearly maps functions f0; 1gm⇥n ! Œ�1; 1ç to functions f0; 1gm ! Œ�1; 1ç;

(ii) L decreases the degree of the function to which it is applied by a factor of˝.
p
n/;

(iii) Lf ⇡ AND
m

pointwise.
The existence of L directly implies our main result. Indeed, for any polynomial p that
approximates f pointwise, the polynomial Lp has degree ˝.

p
n/ times smaller and ap-

proximates AND
m

pointwise; since the latter approximation task is known [26] to require
degree ˝.

p
m/; the claimed lower bound of ˝.

p
mn/ on the degree of p follows.

What makes the construction of L possible is the following very special property of any
dual polynomial for OR

n

: it maintains the same sign on OR�1

n

.0/ and has almost half of its
`

1

norm there. We call such dual polynomials one-sided. This property was proved several
years ago by Gavinsky and the author in [15], where it was used to obtain lower bounds
for nondeterministic and Merlin-Arthur communication protocols.

Independent work by Bun and Thaler. In an upcoming paper, Bun and Thaler [13]
independently prove an ˝.

p
mn/ lower bound on the approximate degree of f .x/ DV

m

iD1

W
n

j D1

x
ij

: The proof in [13] and ours are based on the same idea—discovered and
used for the first time in [15]—that OR

n

has a one-sided dual polynomial. The two papers
differ in how they use this idea to prove an ˝.

p
mn/ lower bound on the approximate

degree. The treatment in this paper is a combination of the dual view (one-sided dual
polynomial for OR

n

) and the primal view (construction of an approximating polynomial
for AND

m

). The treatment in [13] is a refinement of [34] and uses exclusively the dual view
(construction of a dual polynomial for f using dual polynomials for AND

m

and OR
n

). In
our opinion, the proof in this paper has the advantage of being shorter and simpler. On the
other hand, the approach in [13] has the advantage of giving an explicit dual polynomial
for f; which is of interest because explicit dual polynomials have found several uses in
communication complexity [32].

2. PRELIMINARIES

For a function f WX ! R on a finite set X; we let kf k1 D max
x2X

jf .x/j: The total
degree of a multivariate real polynomial pWRn ! R is denoted degp: We use the terms
degree and total degree interchangeably in this paper. For a function f WX ! R on a finite
set X ⇢ Rn, the "-approximate degree deg

"

.f / of f is defined as the least degree of a
real polynomial p with kf � pk1 6 ": Throughout this paper, we will work with the
"-approximate degree for a small constant " > 0: For Boolean functions f WX ! f0; 1g;
the choice of constant 0 < " < 1=2 affects the quantity deg

"

.f / by at most a constant
factor:

c deg
1=3

.f / 6 deg
"

.f / 6 C deg
1=3

.f /; (2.1)

where c D c."/ and C D C."/ are positive constants. By convention, one studies " D 1=3

as the canonical case and reserves for it the special symbol dege.f / D deg
1=3

.f /: A dual
characterization [36, 37] of the approximate degree is as follows.
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FACT 2.1. Let f WX ! R be given, for a finite set X ⇢ Rn. Then deg
"

.f / > d if and
only if there exists a function  WX ! R such that

X
x2X

j .x/j D 1;

X
x2X

 .x/f .x/ > ";

and
P

x2X

 .x/p.x/ D 0 for every polynomial p of degree less than d:

We adopt the usual definitions of the Boolean functions AND
n

;OR
n

W f0; 1gn ! f0; 1g.
Their approximate degree was determined by Nisan and Szegedy [26].

THEOREM 2.2 (Nisan and Szegedy). The functions AND
n

and OR
n

obey

deg
1=3

.AND
n

/ D deg
1=3

.OR
n

/ D ⇥.
p
n/:

By combining the above two theorems, Gavinsky and the author [15, Thm. 5.1] obtained
the following result, which plays a key role in this paper.

THEOREM 2.3 (Gavinsky and Sherstov). Fix any constant 0 < " < 1. Then there exists a
constant ı D ı."/ > 0 and a real function  W f0; 1gn ! R such that

X
x2f0;1gn

j .x/j D 1; (2.2)

 .0; 0; : : : ; 0/ < �1 � "
2

; (2.3)

and X
x2f0;1gn

 .x/p.x/ D 0 (2.4)

for every polynomial p of degree less than ı
p
n:

For the sake of completeness, we include the proof.

Proof of Theorem 2.3 (adapted from [15]). Recall from Theorem 2.2 that deg
1=3

.OR
n

/ D
˝.

p
n/: Thus, (2.1) shows that deg 1�"

2
.OR

n

/ > ı
p
n for a sufficiently small constant

ı D ı."/ > 0: Now the dual characterization of the approximate degree (Fact 2.1) provides
a function  W f0; 1gn ! R that obeys (2.2), (2.4), and

X
x2f0;1gn

 .x/OR
n

.x/ >
1 � "
2

: (2.5)

It remains to verify (2.3):

 .0; 0; : : : ; 0/ D
X

x2f0;1gn

 .x/.1 � OR
n

.x//

D �
X

x2f0;1gn

 .x/OR
n

.x/ by (2.4)

< �1 � "
2

by (2.5).
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For probability distributions � and � on finite sets X and Y , respectively, we let � ⇥ �
denote the probability distribution on X ⇥ Y given by .� ⇥ �/.x; y/ D �.x/�.y/: The
support of a probability distribution � is defined to be supp� D fx W �.x/ > 0g:

3. MAIN RESULT

We are now in a position to prove our main result.

THEOREM. The Boolean function f .x/ D V
m

iD1

W
n

j D1

x
ij

obeys

deg
1=3

.f / D ˝.
p
mn/: (3.1)

Proof. Let " be an absolute constant to be named later, 0 < " < 1. Then by Theorem 2.3,
there exists a constant ı D ı."/ > 0 and a function  W f0; 1gn ! R that obeys (2.2)–(2.4).
Let � be the probability distribution on f0; 1gn given by �.x/ D j .x/j: Let �

0

and �
1

be
the probability distributions induced by � on the sets fx W  .x/ < 0g and fx W  .x/ > 0g;
respectively. Since

P
x2f0;1gn  .x/ D 0; the sets fx W  .x/ < 0g and fx W  .x/ > 0g are

weighted equally by �. As a consequence,

� D 1

2
�

1

C 1

2
�

0

; (3.2)

 D 1

2
�

1

� 1

2
�

0

: (3.3)

Consider the linear operator L that maps functions �W .f0; 1gn/m ! R to functions
L�W f0; 1gm ! R according to

.L�/.´/ D E
x1⇠�´1

� � � E
xm⇠�´m

�.x
1

; : : : ; x
m

/:

Fix a real polynomial p with

kf � pk1 6 ": (3.4)

CLAIM 3.1. kAND
m

� Lf k1 < ":

CLAIM 3.2. degp > ı
p
n degLp:

Before settling the claims, we finish the proof of the theorem. The linearity of L yields

kAND
m

� Lpk1 6 kAND
m

� Lf k1œ
<"

C kL.f � p/k1ö
6"

< 2";

where we have used (3.4) and Claim 3.1 in bounding the marked quantities. For " D 1=6;

we arrive at kAND
m

� Lpk1 6 1=3 and therefore degLp D ˝.
p
m/ by Theorem 2.2.

Now Claim 3.2 implies that degp D ˝.
p
mn/:

Proof of Claim 3.1. By (2.3), we have .x/ > 0 only when OR
n

.x/ D 1:Hence supp�
1

✓
OR�1

n

.1/ and

.Lf /.1; 1; : : : ; 1/ D E
�1⇥���⇥�1

Œf ç D
mY

iD1

E
�1

ŒOR
n

ç D 1:

It remains to prove that j.Lf /.´/j < " for every ´ ¤ .1; 1; : : : ; 1/: We have

.Lf /.´/ D E
�´1

⇥���⇥�´m

Œf ç D
mY

iD1

E
�´i

ŒOR
n

ç D
mY

iD1

.1 � �
´i
.0; 0; : : : ; 0//;
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whence

0 6 .Lf /.´/ 6 1 � �
0

.0; 0; : : : ; 0/: (3.5)

We know from (2.3) that  .0; 0; : : : ; 0/ < �.1 � "/=2; which means in particular that
.0; 0; : : : ; 0/ 2 supp�

0

. Therefore

�
0

.0; 0; : : : ; 0/ D 2�.0; 0; : : : ; 0/ D 2j .0; 0; : : : ; 0/j > 1 � ";
where the first step uses (3.2). By (3.5), we conclude that 0 6 .Lf /.´/ < ".

Proof of Claim 3.2. By the linearity of L, it suffices to consider factored polynomials p of
the form p.x/ D Q

m

iD1

p
i

.x
i;1

; x
i;2

; : : : ; x
i;n

/: In this case we have the convenient formula

.Lp/.´/ D
mY

iD1

E
�´i

Œp
i

ç:

By (2.4) and (3.3), polynomials p
i

of degree less than ı
p
n obey E

�0
Œp

i

ç D E
�1
Œp

i

ç and
therefore do not contribute to the degree of Lp: As a result,

degLp 6 jfi W degp
i

> ı
p
ngj 6 degp

ı
p
n
:

REMARK 3.3. It is shown in [38] that for any Boolean functions f and g; the composition
f .g; g; : : : ; g/ has approximate degree O.deg

1=3

.f / deg
1=3

.g//: Since AND
m

and OR
n

have approximate degree ⇥.
p
m/ and ⇥.

p
n/; respectively, the lower bound (3.1) is tight

for all m and n:
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