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Abstract

We study the problem of constructing explicit extractors for independent general weak
random sources. Given weak sources on n bits, the probabilistic method shows that there
exists a deterministic extractor for two independent sources with min-entropy as small as
log n + O(1). However, even to extract from a constant number of independent sources, previ-
ously the best known extractors require the min-entropy to be at least nδ for any constant δ > 0
[Rao06, BRSW06, Li13]. For sources on n bits with min-entropy k, previously the best known
extractor needs to use O(log(log n/ log k)) +O(1) independent sources [Li13].

In this paper, we construct the first explicit extractor for a constant number of independent
sources on n bits with min-entropy k ≥ polylog(n). Thus, for the first time we get extractors
for independent sources that are close to optimal. Our extractor is obtained by improving the
condenser for structured somewhere random sources in [Li13], which is based on a connection
between the problem of condensing somewhere random sources and the problem of leader election
in distributed computing.

∗Supported by a Simons postdoctoral fellowship.

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 25 (2013)



1 Introduction

Randomness extractors are functions that transform defective random sources into nearly uniform
distributions. The original motivation for such objects comes from the fact that randomness plays
an important role in computation, while real world random sources rarely satisfy the requirements
of these applications. Indeed, these applications (e.g., algorithms, distributed computing and cryp-
tography) typically require the random bits to be uniform, while in the real world random sources
are almost always biased. In addition, even original uniform random bits used in cryptographic
applications can be compromised as a result of side channel attacks. Therefore, it is important to
study how to run these applications with imperfect randomness. Here we model imperfect ran-
domness as an arbitrary distribution with a certain amount of entropy, and we use the standard
min-entropy to measure the randomness in a random source X.

Definition 1.1. The min-entropy of a random variable X is

H∞(X) = min
x∈supp(X)

log2(1/Pr[X = x]).

For X ∈ {0, 1}n, we call X an (n,H∞(X))-source, and we say X has entropy rate H∞(X)/n.

Randomness extractors provide us a way to bridge the above gap. Ideally, one would like to
construct a deterministic algorithm such that given any imperfect random source with a certain
amount of entropy as the input, the algorithm outputs a distribution that is almost uniform.
However, this is easily shown to be impossible. Given this negative result, the study of randomness
extractors has been pursued in two different directions.

In [NZ96], Nisan and Zuckerman introduced the notion of seeded extractors. These extractors
are given an additional independent truly uniform random string as the seed. Typically the length
of the seed is much shorter than the length of the input source, say d = O(log n). With the help
of the seed randomness extraction becomes possible. We note that seeded extractors are useful
even in situations where uniform random bits are not available, for example simulating randomized
algorithms using weak sources, just by trying all possible values of the seed. Seeded extractors are
related to many other areas in computer science, and today the constructions of such extractors
are nearly optimal [LRVW03, GUV09, DW08].

However, in many other applications such as distributed computing and cryptography, it is not
clear how to use seeded extractors with the above trick. Instead, we need extractors that only
use weak random sources as inputs. Since it is impossible to extract from a single weak random
source, one natural direction is to try to build extractors for multiple independent weak random
sources. After all, it does not seem much stronger to assume that we have several independent
weak sources in nature than that we have one such source. These extractors are called independent
source extractors. Formally, we have the following definition.

Definition 1.2 (Independent Source Extractor). A function IExt : ({0, 1}n)t → {0, 1}m is an
extractor for independent (n, k) sources that uses t sources and outputs m bits with error ε, if for
any t independent (n, k) sources X1, X2, · · · , Xt, we have

|IExt(X1, X2, · · · , Xt)− Um| ≤ ε,

where | · | denotes the statistical distance.
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The study of independent source extractors has a long history. For example, the well known
Lindsey’s lemma gives an extractor for two independent (n, k) sources with k > n/2. These extrac-
tors are indeed used in applications in distributed computing and cryptography, for example the
network extractor protocols in [KLRZ08, KLR09]. To get a sense of what kind of parameters one
can achieve, it is easy to show by the probabilistic method that a deterministic extractor exists
for just two independent sources with logarithmic min-entropy. In fact, most random functions are
very good two-source extractors. Thus, constructing explicit independent source extractors is also
closely related to the general problem of derandomization.

Another important reason for studying such extractors is their close connection to Ramsey
graphs. For example, any function with two n-bit inputs gives a bipartite graph with N = 2n

vertices on each side, where two vertices are connected if and only if the first bit of the output is 1.
In this view, a two-source extractor for (n, k) sources gives a bipartite graph with N = 2n vertices
on each side, such that there is no bipartite clique or independent set of size K = 2k. The bipartite
Ramsey graph can also be converted to a regular Ramsey graph. More generally, extractors that
use a few (say a constant) number of sources give Ramsey hypergraphs.

However, despite considerable efforts on finding explicit independent source extractors, the
known constructions are far from optimal, and the problem of constructing better independent
source extractors is a major open problem in the area of pseudorandomness. Below we review some
of the previous constructions.

The formal study of extractors for independent sources started with Chor and Goldreich [CG88],
where they constructed explicit extractors for two independent (n, k) sources with k ≥ (1/2+δ)n for
any constant δ > 0. After that there had been essentially no progress until Barak, Impagliazzo and
Wigderson [BIW04] showed how to extract from a constant number (poly(1/δ)) of independent
(n, δn) sources, for any constant δ > 0. Their work was based on new techniques developed in
additive combinatorics, e.g., sum-product theorems and incidence theorems. Following this work,
more involved constructions appeared. Barak et al. [BKS+05] constructed extractors for three
independent (n, δn) sources for any constant δ > 0, and this was later improved by Raz [Raz05]
to given an extractor that works for three independent sources where only one is required to be
an (n, δn) source while the other two can have entropy as small as k ≥ polylog(n). In the same
paper Raz also gave an extractor for two independent sources where one is required to have entropy
k ≥ (1/2 + δ)n for any constant δ > 0, and the other can have entropy as small as k ≥ polylog(n).

Using more techniques from additive combinatorics, Bourgain [Bou05] gave an extractor that
works for two independent sources with entropy k ≥ (1/2− δ)n for some universal constant δ > 0,
and this is currently the best known two-source extractor.

By using ideas related to somewhere random sources, Rao [Rao06] and subsequently Barak et
al. [BRSW06] constructed extractors for general (n, k) sources that use O(log n/ log k) independent
sources. Thus for any constant δ > 0 and entropy k ≥ nδ their extractors use only a constant number
of sources. Li [Li11] constructed extractors for three independent sources with entropy k ≥ n1/2+δ

for any constant δ > 0, and this is currently the best known three-source extractor.
Recently, Li [Li13] constructed a new extractor for independent (n, k) sources that uses only

O(log(log n/ log k)) + O(1) sources. This improves the results of [Rao06, BRSW06] exponentially.
However, similar as in [Rao06, BRSW06], to extract from a constant number of sources this ex-
tractor still needs the entropy of the source to be at least nδ for some constant δ > 0. Therefore, a
natural open problem is to see if we can construct extractors for a constant number of independent
sources with sub-polynomially small min-entropy.
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1.1 Our results

In this paper, we significantly improve all previous results. In fact, we build extractors for inde-
pendent sources with nearly optimal parameters. We construct extractors for a constant number
of independent sources with poly-logarithmic min-entropy. Our main result is as follows.

Theorem 1.3. For every constant η > 0 and all n, k ∈ N with k ≥ log2+η n, there exists an explicit

function IExt : ({0, 1}n)t → {0, 1}m with m = Ω(k) and t = O
(

1
η

)
+O(1) such that if (X1, · · · , Xt)

are t independent (n, k) sources, then

|IExt(X1, · · · , Xt)− Um| ≤ ε,

where ε = 1/poly(n) + 2−k
Ω(1)

.

We also have the following two corollaries.

Corollary 1.4. For all n, k ∈ N with k ≥ log3 n, there is an explicit extractor that uses O(1)

independent (n, k) sources and outputs m = Ω(k) bits with error 1/poly(n) + 2−k
Ω(1)

.

Corollary 1.5. For every constant 0 < η < 1 and all n, k ∈ N with k ≥ log2+η n, there is an

explicit extractor that uses O
(

1
η

)
independent (n, k) sources and outputs m = Ω(k) bits with error

1/poly(n) + 2−k
Ω(1)

.

Table 1 summarizes our results compared to previous constructions of independent source ex-
tractors.

Construction Number of Sources Min-Entropy Output Error

[CG88] 2 k ≥ (1/2 + δ)n, any constant δ Θ(n) 2−Ω(n)

[BIW04] poly(1/δ) δn, any constant δ Θ(n) 2−Ω(n)

[BKS+05] 3 δn, any constant δ Θ(1) O(1)

[Raz05] 3
One source: δn, any constant δ. Other
sources may have k ≥ polylog(n).

Θ(1) O(1)

[Raz05] 2
One source: (1/2 + δ)n, any constant δ.
Other source may have k ≥ polylog(n)

Θ(k) 2−Ω(k)

[Bou05] 2
(1/2− α0)n for some small universal
constant α0 > 0

Θ(n) 2−Ω(n)

[Rao06] 3
One source: δn, any constant δ. Other
sources may have k ≥ polylog(n).

Θ(k) 2−k
Ω(1)

[Rao06] O(log n/ log k) k ≥ polylog(n) Θ(k) k−Ω(1)

[BRSW06] O(log n/ log k) k ≥ polylog(n) Θ(k) 2−k
Ω(1)

[Li11] 3 k = n1/2+δ, any constant δ Θ(k) k−Ω(1)

[Li13] O(log( logn
log k )) +O(1) k ≥ polylog(n) Θ(k) k−Ω(1)

This work O(1) k ≥ polylog(n) Θ(k)
n−Ω(1)+

2−k
Ω(1)

Table 1: Summary of Results on Extractors for Independent Sources.
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2 Overview of The Constructions and Techniques

Here we give a brief overview of our constructions and the techniques. To give a clear description
of the ideas, we shall be informal and imprecise sometimes.

2.1 The high level idea

Similar as in [Rao06, BRSW06, Li13], our extractor is obtained by repeatedly condensing somewhere
random sources. A somewhere random source (SR-source for short) is a random N × m matrix
such that at least one row of the matrix is uniform. Given any (n, k) weak source X, if we take
a strong seeded extractor with seed length d = O(log n) and apply the extractor to X using all
possible choices of the seed, then the matrix obtained by concatenating all outputs of the seeded
extractor is close to an SR-source with N = 2d = poly(n) rows.

The general idea of the condenser is to reduce the number of the rows in the SR-source in each
step, while consuming a constant number of additional independent sources. When the number of
rows is small enough (say kO(1)), extraction becomes easy with another constant number of indepen-
dent (n, k) sources by using the extractor in [Rao06, BRSW06]. The condenser in [Rao06, BRSW06]
reduces the number of the rows in the SR-source from N to roughly N/k0.9 in each step, while con-
suming a constant number of additional independent sources. Thus their extractor needs a total of
O(log n/ log k) sources, and this performance is inherently limited by their techniques. Recently, Li
[Li13] constructed a new condenser for SR-sources that breaks this limit. His condenser can reduce
the number of the rows in the SR-source from N to roughly N3/4 in each step, while consuming
one additional independent source. Thus, Li obtained an extractor that uses O(log( logn

log k )) + O(1)
sources. Our condenser follows the general paradigm suggested in [Li13]. Thus, we first describe
the high-level ideas of the condenser in [Li13].

The condenser in [Li13] is based on a connection between the problem of condensing SR-sources
and the problem of selecting a small committee in leader election. Namely, we can associate a
player with each row in the SR-source. The players associated with uniform random rows can be
viewed as honest players, and the players associated with the other rows can be viewed as faulty
players, since their random bits can depend arbitrarily on the uniform random bits of the honest
players. In this view the problem of reducing the number of rows in the SR-source is exactly the
same as the problem of selecting a small committee of the players with enough honest players.
Now suppose that a large fraction of the rows in the SR-source are uniform and independent, then
this task can be done by using Feige’s lightest bin protocol [Fei99]: pick r bins and each player
(each row in the SR-source) uses his random bits to select a bin randomly. The players (rows) that
select the lightest bin form the selected committee (the new SR-source). Note that in the setting
of leader election the faulty players can wait to see all the honest players’ choices before making
their choices, thus their random bits can indeed depend arbitrarily on the honest players’ bits.

The idea of this simple and elegant protocol is as follows. Assume that the random bits of the
honest players are uniform and independent, then by a Chernoff bound with high probability the
honest players are roughly distributed evenly into each bin. When this happens, no matter how the
faulty players make their choices, the lightest bin must contain at least roughly the same fraction of
honest players as in the original set of players. In the leader election problem, assuming that there
are at least a linear fraction of honest players whose random bits are uniform and independent, then
in each step the number of players can be decreased from N to roughly logN by using N/ logN bins.
In the next step the new set of players will use fresh random bits to perform the protocol again. In
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the condenser problem, once we have selected a number of rows we take a strong seeded extractor
and use the bits in the selected rows as seeds to extract random bits from another independent
source. By the property of the strong extractor, as long as the length of the output is relatively
short, with high probability the outputs of the “good” rows will remain uniform and independent,
even conditioned on the previous SR-source. Thus, this new SR-source servers as fresh random bits
for the players and we can run the lightest bin protocol again.

By applying a seeded extractor to a weak source and concatenating the outputs of all possible
seeds, we can indeed obtain an SR-source such that a large fraction of the rows are (close to)
uniform. However, they are not necessarily independent (in fact, it is impossible to make them all
independent). Li [Li13] solved this problem by observing that for the lightest bin protocol to work,
it suffices to have bounded independence instead of full independence. For example, if the uniform
rows are pair-wise independence, then instead of using Chernoff’s bound, one can use Chebysev’s
inequality to argue that again, with high probability the honest players are roughly distributed
evenly into each bin, although we have to pick less bins in this case. By using a connection to non-
malleable extractors and non-malleable condensers and the recent construction of non-malleable
condensers for arbitrary min-entropy in [Li12a], Li indeed obtained an SR-source such that a large
fraction of rows are (close to) pair-wise independent and uniform, from a constant number of
independent sources. The pair-wise independence guarantees that the condenser can reduce the
number of the rows in the SR-source from N to roughly N3/4 in each step.

Given the above discussion, one natural way to improve the condenser is to try to use higher
orders of independence in the SR-source. Indeed, the more independent the uniform rows in the
SR-source are, the faster the number of rows decreases in the condenser. In this paper, we indeed
achieve this. Using a constant number of independent (n, k) sources, we obtain an SR-source such
that a large fraction of the rows are (close to) h-wise independent and uniform with h = kα for
some constant 0 < α < 1. Note that this is almost as good as possible, since the total entropy of
the constant number of independent sources is O(k), and the length of each row in the SR-source
has to be at least log n in order to be used in a seeded extractor. Thus h cannot be larger than say
k/ log n. Once we have such an SR-source, we show that in each step the condenser can reduce the

number of rows in the SR-source from N to roughly N4/
√
h, while consuming one more independent

source. Thus, it only takes a constant number of independent sources for the number of rows to
decrease to say k2, even for entropy as small as k = polylog(n).

2.2 Obtaining the h-wise independent SR-source

Thus, the remaining problem is to construct an SR-source such that a large fraction of the rows
(at least a linear fraction) are (close to) h-wise independent and uniform. Note that we set h = kα

for some constant 0 < α < 1.
To do this, our first step is to control the error. We take a constant number of independent

sources X1, · · · , XC and a seeded extractor Ext with seed length d = O(log n), output length
m = 0.9k and error 1/poly(n), such as the extractor in [GUV09]. For every i, we apply Ext to Xi

using all possible seeds and concatenate the outputs to obtain a source X̄i with N = 2d = poly(n)
rows such that 1 − ε fraction of the rows are ε-close to uniform, for some ε = 1/poly(n). Now we
compute the xor of all the X̄i’s and obtain a source Y . Note that there are at least 1− Cε fraction
of the rows in Y such that the corresponding rows in all the Xi’s are ε-close to uniform. Thus
these rows in Y are εC-close to uniform. Since ε = 1/poly(n) we can choose a constant C such that
εC < 1/N2. Thus we have that Y is NεC < 1/N -close to an SR-source such that at least 1 − Cε
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fraction of the rows are truly uniform. We can now treat Y as if it is this SR-source with a large
fraction of truly uniform rows. This only adds error at most 1/N = 1/poly(n) to our extractor.

Next, we take one more independent source X and we will obtain an SR-source Z such that a
large fraction of the rows are (close to) h-wise independent and uniform, from X and Y . To do this,
our starting point is the following alternating extraction protocol, which has been used a lot in recent
constructions of non-malleable extractors and non-malleable condensers [DW09, Li12b, Li12a].

Specifically, assume that we have a weak source X and a uniform string Y 1 independent of
X. Take the first ` bits of Y 1 to be S1

1 , we compute the following random variables: R1
1 =

Ext(X,S1
1), S1

2 = Ext(Y,R1
1), R1

2 = Ext(X,S1
2), · · · , S1

t = Ext(Y,R1
t−1), R1

t = Ext(X,S1
t ). Here Ext is

a strong extractor that uses ` random bits to extract from a weak source and outputs ` bits as well,
for some parameter ` that we will choose later. Thus in the above alternating extraction protocol,
the size of each S1

i and R1
i is `. Now assume that we have h − 1 random variables Y 2, · · · , Y h

(not necessarily uniform) which may be arbitrarily correlated with Y . If we run the alternating
extraction protocol with X and each Y i, and for each i obtain t outputs (Ri1, · · · , Rit), then one can
show that as long as X is independent of (Y 1, · · · , Y h) and ` is small (roughly when the entropy
of X and the size of Y is bigger than ht`), for any 1 ≤ j ≤ t, we have that R1

j is close to uniform

conditioned on {Ri1, · · · , Rij−1, i = 2, · · · , h}.
Given this property, first consider the simple case where the SR-source Y we obtained above

has only h rows. This is of course impossible since the number of rows in Y is actually N =
poly(n) >> k > h. Nevertheless, this simple hypothetical case would be illustrative to show our
ideas. In this case, we can achieve (close to) true independence and uniform in the “good” rows of
the source Z obtained from X and Y , as follows. For each row Y i, run the alternating extraction
protocol using (X,Y i) and output h variables Ri1, · · · , Rih. Let Zi = Rii and Z = Z1 ◦ · · · ◦Zh. Now
consider the rows which are uniform in Y . Their indexes can be ordered as i1 < i2 < · · · < it for
some t ≤ h. Note that every row Y ij is uniform, thus by the property of the alternating extraction,
for any 1 ≤ j ≤ t we have that Zij is close to uniform conditioned on (Zi1 , · · · , Zij−1). Therefore,
(Zi1 , · · · , Zit) is close to uniform.

It is now natural to generalize the above approach to the case where Y has N rows. However,
the simple generalization does not work, since for each row it would require us to output N variables
Ri1, · · · , RiN and there is not enough entropy in X or Y to make there R’s independent and uniform.
On the other hand, we also do not need this since it implies that the good rows in Z will be
completely independent and uniform, while we only need h-wise independent. We solve this problem
as follows. Note that the solution for the case where Y has h rows only consumes entropy roughly
h2` (since we repeat h times and each time produce h random variables of size `). Thus, for the
alternating extraction to work it suffices to take a slice of each Y i with size roughly h2`. We will
call this slice Y i1. As above for each row i we will use Y i1 and X to run an alternating extraction
protocol to produce h outputs Ri11 , · · · , Ri1h . Now for each i, we divide the string that corresponds
to i’s binary expression into equal blocks of size log h (padding 0’s at the end if the last block does
not have enough bits). Thus we get some b = O(log n/ log k) blocks. For each block we obtain an
integer Indij that corresponds to this block’s binary expression. Now, for each row i we will choose
Ri1Indi1 as the output of the first step.

Now consider any h uniform rows in Y . If their indexes in the first block happen to be all
distinct then we are in good shape, since by the argument before we have that the corresponding
Ri1Indi1 ’s will be independent and uniform. However, the indexes in the first block may not be all

distinct. We have two observations here. First, for any row v of these h rows, Rv1
Indv1

is close to
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uniform conditioned on all the Ri1Indi1 ’s where the first block of i is less than the first block of

v. Second, we can fix all the Y i1’s of the h rows, and conditioned on this fixing, all Ri1Indi1 ’s are

deterministic functions of X, and each Y i still has a lot of entropy (assuming that k >> h3`). We
will now take a strong seeded extractor Ext and for each row i, use Ri1Indi1 as a seed to extract from

Y i, where we obtain Y i2 = Ext(Y i, Ri1Indi1) with size roughly h2`. The crucial observation here is

that, we can now fix all Ri1Indi1 ’s, and conditioned on this fixing, all Y i2’s are deterministic functions

of Y , and X still has a lot of entropy. Moreover, if for some row v of these h rows, Rv1
Indv1

is close to

uniform conditioned on all the Ri1Indi1 ’s with i ∈ Sv for some subset of the rows Sv, then Y v2 will be

close to uniform conditioned on all the Y i2’s with i ∈ Sv, as long as the size of each Y i2 is not too
large. Thus, at this point for each row i we can use Y i2 and X to run another alternating extraction
protocol to produce h outputs Ri21 , · · · , Ri2h , and choose Ri2Indi2 as the output of the second step.

The crucial observation here is that, since Y v2 is close to uniform conditioned on all the Y i2’s
with i ∈ Sv (where Sv is the set of all i’s such that the first block of i is less than the first block of
v), we can first fix all the Y i2’s with i ∈ Sv. Conditioned on this fixing, Y v2 is still close to uniform.
Moreover, conditioned on this fixing all the Ri2Indi2 ’s with i ∈ Sv are deterministic functions of X.

Thus we can further fix them. Conditioned on this fixing we have that Y v2 is still close to uniform,
X still has a lot of entropy, and X is still independent of the joint distribution of the unfixed
Y i2’s (since they are deterministic functions of Y ). Therefore by the property of the alternating
extraction, Rv2

Indv2
will now be close to uniform even further conditioned on all the Ri2Indi2 ’s where

the first block of i is equal to the first block of v but the second block of i is less than the second
block of v. Note that we have already fixed those Ri2Indi2 ’s where the first block of i is less than the
first block of v before. Therefore we conclude that after the second step, for any row v of these h
rows, Rv2

Indv2
is close to uniform conditioned on all the Ri2Indi2 ’s where the integer corresponding to

the first two blocks of i is less than the integer corresponding to the first two block of v.
Now we can repeat the above procedure and use the third block to get Ri3Indi3 , use the fourth

block to get Ri4Indi4 and so on. When we reach the last block we will use RibIndib for the final block

as our final output: Zi = RibIndib . Since the integer corresponding to all the b blocks of i is just i,

we now have that for any row v of these h rows, RvbIndvb is close to uniform conditioned on all the

RibIndib ’s where i < v. Therefore, the joint distribution of the Zi’s of the h rows is close to uniform,

as we desire. Note that this requires that k > bh3` roughly. We also need to control the error
in this process. For this we will choose ` = kβ for some constant 0 < β < 1 with β > α. By
using a seeded extractor with seed length O(log n + log(1/ε)) such as that in [GUV09], the total
error of this process can be bounded as ε = O(bh22−Ω(`)) = 2−Ω(`). By choosing α, β appropriately
we can ensure that ε << N−h, which is good enough for the lightest bin protocol. Note that
b = O(log n/ log k), h = kα and ` > log n, this implies that k > bh3` > log2 n. Thus our extractor
can only work for weak sources with min-entropy k ≥ log2+η n for any constant η > 0.

2.3 Comparison to the construction in [Li13]

As can be seen from the above discussion, the most technical part in our construction is to obtain
an SR-source such that a large fraction of the rows are close to h-wise independent and uniform.
This is also true for the construction in [Li13]. However, the SR-source in that construction only
achieves pair-wise independence. Here, we outline two key differences between our construction
and the construction in [Li13], which enable us to overcome the difficulties in [Li13] and finally
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achieve h-wise independence and uniform with h = kα for some constant 0 < α < 1, using only a
constant number of sources.

First, we deal with the error in a different way. The construction in [Li13] first uses ideas
related to non-malleable condensers to get an SR-source such that for a large fraction of the rows,
each pair is ε-close to being independent and uniform. Limited by the use of a seeded extractor
with seed length O(log n) (when we try all the possible seeds), the error ε is 1/poly(n) > 1/N .
However, for the lightest bin protocol to work the error needs to be roughly N−h in the case of
h-wise independence. The construction in [Li13] deals with this by preparing independent copies of
the pair-wise independent SR-sources and taking the xor of them. If we take t copies then the error
reduces to εt. This is enough for the pair-wise independence case since it only requires a constant
number of copies. However, if we want to generalize to h-wise independence then this approach
would require O(h) sources, which we cannot afford for a super constant h.

In this paper, we instead control the error before constructing the SR-source with h-wise in-
dependent property. We first take a constant number C of independent sources and from each of
them obtain an SR-source with N rows (without the h-wise independent property) such that a
large fraction of the rows are ε-close to uniform for some ε = 1/poly(n) > 1/N . We then take the
xor of these sources so that the error in the “good” rows reduces to εC < 1/N2. Now we can show
that the new SR-source Y is (globally) NεC = 1/poly(n)-close to an SR-source Y ′ where a large
fraction of the rows are truly uniform. Therefore, we can now treat Y as Y ′. This gives us uniform
bits in the good rows, so that we can use ` = kβ bits to achieve error 2−Ω(`). For a carefully chosen
β > α this error is good enough for the lightest bin protocol.

Second, the SR-source constructed in [Li13] is actually stronger than what we need. Indeed, by
using ideas related to non-malleable condenser, not only do we get pair-wise independence in the
good rows, but also the output of any good row is close to uniform conditioned on the output of any
other single row. This stronger property does not seem easy to generalize to h-wise independence
for large h. In this paper, instead, we only achieve h-wise independence in the good rows, which is
all we need for the lightest bin protocol to work. This allows us to use the alternating extraction
more directly. For example, in the hypothetical case where Y has only h rows, we use each row to
do the alternating extraction and produce h Ri’s. Now for each row i we pick Rii (i.e., the diagonal
elements). Since the alternating extraction guarantees that as long as the row Y i is uniform, Rii is

close to uniform conditioned on all the Rjj ’s with j < i, this ensures that the joint distribution of

all outputs of the good rows is close to uniform. On the other hand, it may not be true that Rii is

close to uniform conditioned on the output of a bad row Rjj if j > i.

Organization. The rest of the paper is organized as follows. We give some preliminaries in
Section 3. In Section 4 we define alternating extraction, an important ingredient in our construction.
We present our main construction of extractors in Section 5. Finally we conclude with some open
problems in Section 6.

3 Preliminaries

We often use capital letters for random variables and corresponding small letters for their instanti-
ations. Let |S| denote the cardinality of the set S. For ` a positive integer, U` denotes the uniform
distribution on {0, 1}`. When used as a component in a vector, each U` is assumed independent of
the other components. All logarithms are to the base 2.
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3.1 Probability distributions

Definition 3.1 (statistical distance). Let W and Z be two distributions on a set S. Their statistical
distance (variation distance) is

∆(W,Z)
def
= max

T⊆S
(|W (T )− Z(T )|) =

1

2

∑
s∈S
|W (s)− Z(s)|.

We say W is ε-close to Z, denoted W ≈ε Z, if ∆(W,Z) ≤ ε. For a distribution D on a set S
and a function h : S → T , let h(D) denote the distribution on T induced by choosing x according
to D and outputting h(x).

3.2 Somewhere Random Sources and Extractors

Definition 3.2 (Somewhere Random sources). A source X = (X1, · · · , Xt) is (t × r) somewhere-
random (SR-source for short) if each Xi takes values in {0, 1}r and there is an i such that Xi is
uniformly distributed.

Definition 3.3. (Seeded Extractor) A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a strong (k, ε)-
extractor if for every source X with min-entropy k and independent Y which is uniform on {0, 1}d,

(Ext(X,Y ), Y ) ≈ε (Um, Y ).

3.3 Average conditional min-entropy

Definition 3.4. The average conditional min-entropy is defined as

H̃∞(X|W ) = − log
(

Ew←W

[
max
x

Pr[X = x|W = w]
])

= − log
(

Ew←W

[
2−H∞(X|W=w)

])
.

Lemma 3.5 ([DORS08]). For any s > 0, Prw←W [H∞(X|W = w) ≥ H̃∞(X|W )− s] ≥ 1− 2−s.

Lemma 3.6 ([DORS08]). If a random variable B has at most 2` possible values, then H̃∞(A|B) ≥
H∞(A)− `.

3.4 Prerequisites from previous work

Sometimes it is convenient to talk about average case seeded extractors, where the source X has
average conditional min-entropy H̃∞(X|Z) ≥ k and the output of the extractor should be uniform
given Z as well. The following lemma is proved in [DORS08].

Lemma 3.7. [DORS08] For any δ > 0, if Ext is a (k, ε) extractor then it is also a (k+log(1/δ), ε+δ)
average case extractor.

For a strong seeded extractor with optimal parameters, we use the following extractor con-
structed in [GUV09].

Theorem 3.8 ([GUV09]). For every constant α > 0, and all positive integers n, k and any ε > 0,
there is an explicit construction of a strong (k, ε)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with
d = O(log n+ log(1/ε)) and m ≥ (1− α)k.
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Theorem 3.9 ([Rao06, BRSW06]). There exist constants c > 0 and c′ such that for every n, k
with k = k(n) > log2 n and ` ≤ poly(n) there exists a polynomial time computable function SRExt :
{0, 1}`k×{0, 1}un → {0, 1}m with m = Ω(k) and u ≤ c′ log `

log k s.t. if X1, X2 · · · , Xu are independent
(n, k) sources and Y is an independent `× k SR-source then

|SRExt(Y,X1, X2 · · · , Xu)− Um| < 2−k
c
.

The following standard lemma about conditional min-entropy is implicit in [NZ96] and explicit
in [MW97].

Lemma 3.10 ([MW97]). Let X and Y be random variables and let Y denote the range of Y . Then
for all ε > 0, one has

Pr
Y

[
H∞(X|Y = y) ≥ H∞(X)− log |Y| − log

(
1

ε

)]
≥ 1− ε.

We also need the following lemma.

Lemma 3.11. [Li12a] Let (X,Y ) be a joint distribution such that X has range X and Y has
range Y. Assume that there is another random variable X ′ with the same range as X such that
|X −X ′| = ε. Then there exists a joint distribution (X ′, Y ) such that |(X,Y )− (X ′, Y )| = ε.

Lemma 3.12. [BIW04] Assume that Y1, Y2, · · · , Yt are independent random variables over {0, 1}n
such that for any i, 1 ≤ i ≤ t, we have |Yi − Un| ≤ ε. Let Z = ⊕ti=1Yi. Then |Z − Un| ≤ εt.

4 Alternating Extraction

An important ingredient in our construction is the following alternating extraction protocol.

Quentin: Q,S1 Wendy: X

S1

S1

−−−−−−−−−−−−−→
R1

←−−−−−−−−−−−−− R1 = Extw(X,S1)

S2 = Extq(Q,R1)
S2

−−−−−−−−−−−−−→
R2

←−−−−−−−−−−−−− R2 = Extw(X,S2)

· · ·

St = Extq(Q,Rt−1)
St

−−−−−−−−−−−−−→
Rt = Extw(X,St)

Figure 1: Alternating Extraction.

Alternating Extraction. Assume that we have two parties, Quentin and Wendy. Quentin
has a source Q, Wendy has a source X. Also assume that Quentin has a uniform random seed S1

(which may be correlated with Q). Suppose that (Q,S1) is kept secret from Wendy and X is kept
secret from Quentin. Let Extq, Extw be strong seeded extractors with optimal parameters, such as
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that in Theorem 3.8. Let ` be an integer parameter for the protocol. For some integer parameter
t > 0, the alternating extraction protocol is an interactive process between Quentin and Wendy
that runs in t steps.

In the first step, Quentin sends S1 to Wendy, Wendy computes R1 = Extw(X,S1). She sends
R1 to Quentin and Quentin computes S2 = Extq(Q,R1). In this step R1, S2 each outputs ` bits.
In each subsequent step i, Quentin sends Si to Wendy, Wendy computes Ri = Extw(X,Si). She
replies Ri to Quentin and Quentin computes Si+1 = Extq(Q,Ri). In step i, Ri, Si+1 each outputs
` bits. Therefore, this process produces the following sequence:

S1, R1 = Extw(X,S1), S2 = Extq(Q,R1), · · · , St = Extq(Q,Rt−1), Rt = Extw(X,St).

Look-Ahead Extractor. Now we can define our look-ahead extractor. Let Y = (Q,S1) be a
seed, the look-ahead extractor is defined as

laExt(X,Y ) = laExt(X, (Q,S1))
def
= R1, · · · , Rt.

We first prove the following lemma.

Lemma 4.1. Let Y = (Q,S1) where Q is an (nq, kq) source and S1 is the uniform distribution over
` bits. Let Y2 = (Q2, S21), · · · , Yh = (Qh, Sh1) be another h − 1 random variables with the same
range of Y that are arbitrarily correlated to Y . Assume that X is an (n, k) source independent of
(Y, Y2, · · · , Yh), such that k > ht`+10`+2 log(1/ε) and kq > ht`+10`+2 log(1/ε). Assume that Extq
and Extw are strong seeded extractors that use ` bits to extract from (nq, 10`) sources and (n, 10`)
sources respectively, with error ε and ` = O(log(max{nq, n}) + log(1/ε)). Let (R1, · · · , Rt) =
laExt(X,Y ) and (Ri1, · · · , Rit) = laExt(X,Yi) for i = 2, · · · , h. Then for any 0 ≤ j ≤ t − 1, we
have

(Y, Y2, · · · , Yh, {Ri1, · · · , Rij , i = 2, · · · , h}, Rj+1) ≈ε1 (Y, Y2, · · · , Yh, {Ri1, · · · , Rij , i = 2, · · · , h}, U`),

where ε1 = O(tε).

Proof. For any i = 2, · · · , h, let {Sij , j = 1, · · · , t} denote the random variables corresponding to
{Sj} that are produced in laExt(X,Yi). For any j, 1 ≤ j ≤ t, let Sj = (S1, · · · , Sj) and Sij =
(Si1, · · · , Sij) for i = 2, · · · , h. Let Rj = (R1, · · · , Rj) and Rij = (Ri1, · · · , Rij) for i = 2, · · · , h.
We prove the following stronger claim.

Claim 4.2. For any j, we have that

(Rj , Sj , {Sij , i = 2, · · · , h}, Rj−1, {Ri(j−1), i = 2, · · · , h}, Y, Y2, · · · , Yh)

≈(4j−2)ε(U`, Sj , {Sij , i = 2, · · · , h}, Rj−1, {Ri(j−1), i = 2, · · · , h}, Y, Y2, · · · , Yh).

and

(Sj+1, Sj , {Sij , i = 2, · · · , h}, Rj , {Rij , i = 2, · · · , h})
≈(4j)ε(U`, Sj , {Sij , i = 2, · · · , h}, Rj , {Rij , i = 2, · · · , h}).

11



Moreover, conditioned on (Sj , {Sij , i = 2, · · · , h}, Rj−1, {Ri(j−1), i = 2, · · · , h}), (Rj , {Rij , i =
2, · · · , h}) are deterministic functions of X and the average conditional min-entropy of Q is at least
kq−hj`; conditioned on (Sj , {Sij , i = 2, · · · , h}, Rj , {Rij , i = 2, · · · , h}), (Q,Q2, · · · , Qh, Sj+1, {Si(j+1),
i = 2, · · · , h}) is independent of X and the average conditional min-entropy of X is at least k−hj`.

We prove the claim by induction on j. When j = 0, the statement is trivially true. Now we
assume that the statements hold for some j and we prove them for j + 1.

We first fix (Sj , {Sij , i = 2, · · · , h}, Rj , {Rij , i = 2, · · · , h}). Note that now (Q,Q2, · · · , Qh, Sj+1,
{Si(j+1), i = 2, · · · , h}) is independent of X. Moreover conditioned on this fixing Sj+1 is (4j)ε-
close to uniform on average. Note that the average conditional min-entropy of X is at least
k − hj` ≥ k − ht` > 10` + 2 log(1/ε). By Theorem 3.8 and Lemma 3.7 we have that Extw is
a (10`+ log(1/ε), 2ε) average case strong extractor. Thus

(Rj+1, Sj , {Sij , i = 2, · · · , h}, Rj , {Rij , i = 2, · · · , h}, Sj+1)

≈(4j+2)ε(U`, Sj , {Sij , i = 2, · · · , h}, Rj , {Rij , i = 2, · · · , h}, Sj+1).

Since (Q,Q2, · · · , Qh, Sj+1, {Si(j+1), i = 2, · · · , h}) is independent of X, and Rj+1 is a deter-
ministic function of X conditioned on Sj+1, we also have

(Rj+1, Sj+1, {Si(j+1), i = 2, · · · , h}, Rj , {Rij , i = 2, · · · , h}, Y, Y2, · · · , Yh)

≈(4j+2)ε(U`, Sj+1, {Si(j+1), i = 2, · · · , h}, Rj , {Rij , i = 2, · · · , h}, Y, Y2, · · · , Yh).

Moreover, conditioned on (Sj+1, {Si(j+1), i = 2, · · · , h}, Rj , {Rij , i = 2, · · · , h}), (Rj+1, {Ri(j+1), i =
2, · · · , h}) are deterministic functions of X, and the average conditional min-entropy of Q is at least
kq − hj`− h` = kq − h(j + 1)`.

Next, since conditioned on (Sj+1, {Si(j+1), i = 2, · · · , h}, Rj , {Rij , i = 2, · · · , h}), (Rj+1, {Ri(j+1), i =
2, · · · , h}) are deterministic functions of X, they are independent of (Q,Q2, · · · , Qh). Moreover
conditioned on this fixing Rj+1 is (4j + 2)ε-close to uniform on average. Note that the average
conditional min-entropy of Q is at least kq−h(j+1)` ≥ kq−ht` > 10`+2 log(1/ε). By Theorem 3.8
and Lemma 3.7 we have that Extq is a (10`+ log(1/ε), 2ε) average case strong extractor. Thus

(Sj+2, Sj+1, {Si(j+1), i = 2, · · · , h}, Rj , {Rij , i = 2, · · · , h}, Rj+1)

≈(4j+4)ε(U`, Sj+1, {Si(j+1), i = 2, · · · , h}, Rj , {Rij , i = 2, · · · , h}, Rj+1).

Since (Rj+1, {Ri(j+1), i = 2, · · · , h}) are independent of (Q,Q2, · · · , Qh), and Sj+2 is a deter-
ministic function of Q conditioned on Rj+1, we also have

(Sj+2, Sj+1, {Si(j+1), i = 2, · · · , h}, Rj+1, {Ri(j+1), i = 2, · · · , h})
≈(4j+4)ε(U`, Sj+1, {Si(j+1), i = 2, · · · , h}, Rj+1, {Ri(j+1), i = 2, · · · , h}).

Moreover, conditioned on (Sj+1, {Si(j+1), i = 2, · · · , h}, Rj+1, {Ri(j+1), i = 2, · · · , h}), (Sj+2, {Si(j+2), i =
2, · · · , h}) are deterministic functions of (Q,Q2, · · · , Qh). Thus (Q,Q2, · · · , Qh, Sj+2, {Si(j+2),
i = 2, · · · , h}) is independent of X. The average conditional min-entropy of X is at least k−hj`−
h` = k − h(j + 1)`.

Note that j ≤ t, thus the lemma is proved.
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5 The Extractor

In this section we give our main construction. The first step is to obtain a source that is close to
an SR-source such that a large fraction of the rows are uniform. We have the following algorithm.

Algorithm 5.1 (SR(X1, · · · , XC)).

Input: C–an integer constant. X1, · · · , XC — independent (n, k)-sources with k ≥ polylog(n).
Output: Y — a source that is close to an SR-source.

Sub-Routines and Parameters:
Let Ext be the strong extractor with optimal parameters from Theorem 3.8, with error ε′ =
1/poly(n) and seed length d = O(log n), set up to output 0.9k bits.

1. For every i = 1, · · · ,C do the following. For every r ∈ {0, 1}d compute Xj
i = Ext(Xi, r),

where j − 1 is the integer whose binary expression is r. Let Xi = X1
i ◦ · · · ◦ XN

i where
N = 2d = poly(n).

2. Compute Y =
⊕C

i=1Xi.

We have the following lemma.

Lemma 5.2. There exists a constant integer C > 1 and ε = 1/poly(n) such that Y is ε-close to
another source Y ′ = Y ′1 ◦ · · · ◦ Y ′N where each Y ′i has 0.9k bits, and the following holds. There
exists a subset S ⊂ [N ] with |S| > 0.9N such that for any i ∈ S, Y ′i is uniform.

Proof. By Theorem 3.8, for every Xi there exists a subset Si ⊂ [N ] with |Si| ≥ (1 − ε1)N such
that for any j ∈ Si, we have Xj

i = Ext(Xi, r) is ε1-close to uniform, where ε1 =
√
ε′ = 1/poly(n).

Since N = 2d = poly(n), there exists a constant integer C > 1 such that εC1 < 1/N2. Now take C
independent sources X1, · · · , XC and let Y = Y 1 ◦ · · · ◦ Y N be obtained as above. Thus for any
j ∈ [N ] we have Y =

⊕C
i=1X

j
i .

Let S = ∩Si. Thus |S| ≥ 1 − Cε1 > 0.9N . Note that for any j ∈ S, we have that ∀i,Xj
i

is ε1-close to uniform. Thus by Lemma 3.12, for any j ∈ S we have that Y j is ε2 = εC1 -close to
uniform. Now by Lemma 3.11, we can change {Y j , j ∈ S} one by one to the uniform distribution.
In each step we only change one Y j while keeping the joint distribution of all the other rows fixed.
In the end the source Y is changed into another source Y ′ = Y ′1 ◦ · · · ◦Y ′N such that for any i ∈ S,
Y ′i is uniform. Since in each step the statistical distance is at most ε2, the statistical distance
between Y and Y ′ is at most Nε2 < 1/N = 1/poly(n) by the triangle inequality.

The next step is to obtain an SR-source such that a large fraction of the rows are roughly h-wise
independent with h = kα for some constant 0 < α < 1. For this we have the following algorithm.
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Algorithm 5.3 (SSR(X,Y )).

Input: X— an (n, k)-source with k ≥ polylog(n). Y = Y 1 ◦ · · · ◦ Y N—an SR-source with
N = poly(n) rows and each row has 0.9k bits, independent of X.
Output: Z — a source that is close to an SR-source.

Sub-Routines and Parameters:
Let 0 < α < β < 1 be two constants to be chosen later. Let ` = kβ. Pick an integer h such
that kα ≤ h < 2kα and h = 2l for some integer l > 0. Let Extq,Extw be strong extractors
with optimal parameters from Theorem 3.8, set up to extract from ((h2 + 12)`, 10`) sources and
(n, 10`) sources respectively, with seed length `, error ε = 2−Ω(`) and output length `. These will
be used in laExt. Let Ext be a strong extractor with optimal parameters from Theorem 3.8, set
up to extract from (0.9k, 2(h2 + 12)`) sources, with seed length `, error ε = 2−Ω(`) and output
length (h2 + 12)`.

1. For every i = 1, · · · , N , use X and Y i to compute Zi as follows.

(a) Compute the binary expression of i− 1, which consists of d = logN = O(log n) bits.
Divide these bits sequentially from left to right into b = ddl e blocks of size l (the last
block may have less than l bits, then we add 0s at the end to make it l bits). Now
from left to right, for each block j = 1, · · · , b, we obtain an integer Indij ≤ 2l such
that the binary expression of Indij − 1 is the same as the bits in block j.

(b) Let Y i1 be the first (h+ 12)` bits of Y i. Set j = 1. While j < b do the following.

i. Compute (Rij1 , · · · , R
ij
h ) = laExt(X,Y ij), where Q = Y ij and S1 is the first ` bits

of Y ij .

ii. Compute Y i(j+1) = Ext(Y i, RijIndij ).

iii. Set j = j + 1.

(c) Finally, compute (Rib1 , · · · , Ribh ) = laExt(X,Y ib) and set Zi = RibIndib .

2. Let Z = Z1 ◦ · · · ◦ ZN .

We now introduce some notation. For any i ∈ [N ] and j ∈ [b], we let Y i(≤j) denote (Y i1, · · · , Y ij),

let R
i(≤j)
Indi(≤j)

denote (Ri1Indi1 , · · · , R
ij
Indij

) and let f j(i) denote the integer whose binary expression is

the concatenation of the binary expression of i− 1 from block 1 to block j. We have the following
lemma.

Lemma 5.4. Assume that k ≥ 2(bh+ 2)(h2 + 12)`. Fix any v ∈ [N ] such that Y v is uniform. Let
S ⊂ [N ] be any subset with |S| = h and v ∈ S. For any j ∈ [b], define Sjv = {i ∈ S : f j(i) < f j(v)}.
Then for any j ∈ [b], we have that

(RvjIndvj , {Y
i(≤j), i ∈ S}, {RijIndij , i ∈ S

j
v}, {R

i(≤j−1)
Indi(≤j−1)

, i ∈ S})

≈O(jhε)(U`, {Y i(≤j), i ∈ S}, {RijIndij , i ∈ S
j
v}, {R

i(≤j−1)
Indi(≤j−1)

, i ∈ S}).
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Moreover, conditioned on the fixing of ({Y i(≤j), i ∈ S}, {Ri(≤j−1)
Indi(≤j−1)

, i ∈ S}), we have that

1. X and Y are still independent.

2. (RijIndij , i ∈ S) are all deterministic functions of X.

3. The average conditional min-entropy of X is at least k−(j−1)h` and the average conditional
min-entropy of Y v is at least 0.9k − jh(h2 + 12)`.

Proof. We prove the lemma by induction on j. When j = 1, note that f j(i) = f1(i) = Indi1 − 1
and Y i(≤1) = Y i1. Note that S1

v contains all the i ∈ S such that Indi1 < Indv1. Thus the first part
of the lemma follows directly from Lemma 4.1 (note that t = h in Lemma 4.1). Moreover, since
{Y i1, i ∈ S} are deterministic functions of Y , conditioned on the fixing of them we have X and
Y are still independent, the average conditional min-entropy of Y v is at least 0.9k − h(h2 + 12)`
and the min-entropy of X is k. Note also that after this fixing, (Ri1Indi1 , i ∈ S) are all deterministic
functions of X. So the lemma holds for j = 1.

Now assume that the lemma holds for some j ≤ b− 1, we show that it also holds for j + 1. We

first fix ({Y i(≤j), i ∈ S}, {Ri(≤j−1)
Indi(≤j−1)

, i ∈ S}). By the induction hypothesis we have that conditioned

on this fixing, X and Y are still independent, the average conditional min-entropy of X is at least
k − (j − 1)h` and the average conditional min-entropy of Y v is at least 0.9k − jh(h2 + 12)`, and
that (RijIndij , i ∈ S) are all deterministic functions of X.

Now consider the set Sj+1
v = {i ∈ S : f j+1(i) < f j+1(v)}. It is easy to see that Sjv ⊆ Sj+1

v .

Let S
j
v = Sj+1

v \ Sjv. In other words, S
j
v contains all the i ∈ [S] such that the first j blocks of

i − 1’s binary expression are the same as the first j blocks of v − 1’s binary expression, but the
j + 1’th block of i − 1’s binary expression is smaller than the j + 1’th block of v − 1’s binary

expression. Note that it is possible that S
j
v = φ. However, if S

j
v 6= φ then for any i ∈ Sjv we have

that Indi(j+1) < Indv(j+1).

We now further fix (RijIndij , i ∈ Sjv). By the induction hypothesis, conditioned on this fixing

RvjIndvj is still O(jhε)-close to uniform on average. Moreover, (RijIndij , i ∈ S \ S
j
v) are still functions

of X and are thus independent of Y . Now conditioned on this fixing, we have that (Y i(j+1) =
Ext(Y i, RijIndij ), i ∈ S

j
v) are deterministic functions of Y . Thus we can further fix (Y i(j+1), i ∈ Sjv)

and conditioned on this fixing, X and Y are still independent. Moreover, the average conditional
min-entropy of Y v is at least 0.9k − jh(h2 + 12)` − |Sjv|(h2 + 12)` ≥ 0.9k − (j + 1)h(h2 + 12)` ≥
0.9k − bh(h2 + 12)` ≥ 2(h2 + 12)`. Thus by Theorem 3.8 and Lemma 3.7 we have that

(Y v(j+1), {Y i(j+1), i ∈ Sjv}, R
vj
Indvj

, {RijIndij , i ∈ S
j
v})

≈O(jhε)+2ε(U(h2+12)`, {Y i(j+1), i ∈ Sjv}, R
vj
Indvj

, {RijIndij , i ∈ S
j
v}).

Since conditioned on RvjIndvj , Y
v(j+1) is a deterministic function of Y , and (RijIndij , i ∈ S \S

j
v) are

functions of X, we also have that

(Y v(j+1), {Y i(j+1), i ∈ Sjv}, {R
ij
Indij

, i ∈ S})

≈O(jhε)+2ε(U(h2+12)`, {Y i(j+1), i ∈ Sjv}, {R
ij
Indij

, i ∈ S}).
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Now we fix all (RijIndij , i ∈ S). Since these are all deterministic functions of X, conditioned on
this fixing X and Y are still independent. Moreover, the average conditional min-entropy of X
is at least k − (j − 1)h` − h` = k − jh`. Note that conditioned on this fixing, all (Y i(j+1), i ∈
S) are deterministic functions of Y , and are thus independent of X. Note that we have fixed
(Y i(j+1), i ∈ Sjv) before. The equation above implies that conditioned on all these fixings, Y v(j+1)

is still O(jhε) + 2ε-close to uniform on average and independent of X. Next, note that after

these fixings, (R
i(j+1)
Indi(j+1)

, i ∈ Sjv) are all deterministic functions of X. Thus we can now further fix

(R
i(j+1)
Indi(j+1)

, i ∈ Sjv), and conditioned on this fixing, X and Y are still independent, thus X is also

independent of (Y i(j+1), i ∈ S \Sjv). Note that the average conditional min-entropy of X is at least

k− jh`− |Sjv|` ≥ k− (j + 1)h` ≥ k− bh` ≥ (h2 + 12)`. Note that if S
j
v 6= φ then for any i ∈ Sjv we

have that Indi(j+1) < Indv(j+1). Therefore by Lemma 4.1 we have that

(R
v(j+1)
Indv(j+1)

, {Ri(j+1)
Indi(j+1)

, i ∈ Sjv}, {Y i(j+1), i ∈ S \ Sjv})

≈O(jhε)+O(hε)+2ε(U`, {R
i(j+1)
Indi(j+1)

, i ∈ Sjv}, {Y i(j+1), i ∈ S \ Sjv}).

Since we have already fixed (Y i(j+1), i ∈ Sjv) and (R
i(j+1)
Indi(j+1)

, i ∈ Sjv) before, we have that (note

that Sj+1
v = Sjv ∪ S

j
v)

(R
v(j+1)
Indv(j+1)

, {Ri(j+1)
Indi(j+1)

, i ∈ Sj+1
v }, {Y i(j+1), i ∈ S})

≈O((j+1)h)ε)(U`, {R
i(j+1)
Indi(j+1)

, i ∈ Sj+1
v }, {Y i(j+1), i ∈ S}).

Since we have fixed ({Y i(≤j), i ∈ S}, {Ri(≤j−1)
Indi(≤j−1)

, i ∈ S}) before, we have that

(R
v(j+1)
Indv(j+1)

, {Y i(≤j+1), i ∈ S}, {Ri(j+1)
Indi(j+1)

, i ∈ Sj+1
v }, {Ri(≤j)Indi(≤j)

, i ∈ S})

≈O((j+1)hε)(U`, {Y i(≤j+1), i ∈ S}, {Ri(j+1)
Indi(j+1)

, i ∈ Sj+1
v }, {Ri(≤j)Indi(≤j)

, i ∈ S}).

In addition, conditioned on the fixing of ({Y i(≤j+1), i ∈ S}, {Ri(≤j)Indi(≤j)
, i ∈ S}), we have that

1. X and Y are still independent.

2. (R
i(j+1)
Indi(j+1)

, i ∈ S) are all deterministic functions of X.

3. The average conditional min-entropy of X is at least k − jh` and the average conditional
min-entropy of Y v is at least 0.9k − (j + 1)h(h2 + 12)`.

Thus the lemma is proved.

Now we have the following lemma.
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Lemma 5.5. Assume that k ≥ 2(bh + 2)(h2 + 12)`, X is an (n, k)-source and Y is an N × 0.9k
SR-source independent of X, with N = 2d = poly(n) such that there exists a subset S ⊂ [N ] with
|S| > 0.9N and for any i ∈ S, Y i is uniform. Let Z = Z1 ◦ · · · ◦ ZN = SSR(X,Y ). Then for any
subset S′ ⊂ S with |S′| = h, we have that

(Zi, i ∈ S′) ≈ε Uh`,

where ε = 2−Ω(`).

Proof. We order the elements in S′ to be i1 < i2 < · · · < ih. Since S′ ⊂ S, for any j ∈ [h] we have
that Y ij is uniform. We now apply Lemma 5.4 to the set S′. Note that f b(i) = i − 1, thus for
any v ∈ S′ we have S′bv = {i ∈ S′ : i < v}. Also note that Zi = RibIndib for any i ∈ [N ]. Thus by
Lemma 5.4, for any j ∈ [h] we have that

(Zij , Zi1 , · · · , Zij−1) ≈O(bh2−Ω(`)) (U`, Z
i1 , · · · , Zij−1).

Thus we have that

(Zi1 , · · · , Zih) ≈ε Uh`,

where ε = O(bh22−Ω(`)) = 2−Ω(`) since ` = kβ > kα, h < 2kα and b < log n = kO(1).

Now we can describe the lightest bin protocol, defined in [Li13].
Lightest bin protocol: Assume there are N strings {zi, i ∈ [N ]} where each zi ∈ {0, 1}m

with m > logN . The output of a lightest bin protocol with r < N bins is a subset T ⊂ [N ] that is
obtained as follows. Imagine that each string zi is associated with a player Pi. Now, for each i, Pi
uses the first log r bits of zi to select a bin j, i.e., if the first log r bits of zi is the binary expression
of j − 1, then Pi selects bin j. Now let bin l be the bin that is selected by the fewest number of
players. Then

T = {i ∈ [N ] : Pi selects bin l.}

To analyze the protocol we first need the following lemma.

Lemma 5.6. For any integer h, assume that X = (X1, · · · , Xn) and X ′ = (X ′1, · · · , X ′n) are two
distributions over {0, 1}n such that for any subset S ⊂ [n] with |S| = h, (Xi, i ∈ S) ≈ε (X ′i, i ∈ S).
Let X =

∑n
i=1Xi and X ′ =

∑n
i=1X

′
i. For any i ∈ [n], let µi = E[Xi] and µ′i = E[X ′i]. Let

µ =
∑n

i=1 µi = E[X] and µ′ =
∑n

i=1 µ
′
i = E[X ′]. Then we have∣∣∣E[(X − µ)h]− E[(X ′ − µ′)h]

∣∣∣ ≤ (h+ 2)nhε.

Proof. We prove the lemma by establishing the following two claims.

Claim 5.7. ∣∣∣E[(X − µ)h]− E[(X ′ − µ)h]
∣∣∣ ≤ 2nhε.

To show this claim, note that (X −µ)h = (
∑n

i=1(Xi−µi))h is the sum of nh terms, each of the
form Πn

i=1(Xi−µi)hi such that ∀i, hi ≥ 0 and
∑n

i=1 hi = h. Similarly, (X ′−µ)h = (
∑n

i=1(X ′i−µi))h
is also the sum of nh terms, each of the form Πn

i=1(X ′i−µi)hi such that
∑n

i=1 hi = h. By linearity of
expectation, E[(X−µ)h] is the sum of the expectations of these nh terms. By the triangle inequality,
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|E[(X−µ)h]−E[(X ′−µ)h]| is at most the sum of |E[Πn
i=1(Xi−µi)hi ]−E[Πn

i=1(X ′i−µi)hi ]| for these
nh terms. Now for any fixed (h1, · · · , hn), we consider |E[Πn

i=1(Xi − µi)hi ]− E[Πn
i=1(X ′i − µi)hi ]|.

Since
∑n

i=1 hi = h, the term Πn
i=1(Xi − µi)hi involves at most h Xi’s. Let S stand for the set

of the indexes of the Xi’s. Let XS = (Xi, i ∈ S) and X ′S = (X ′i, i ∈ S). Thus s = |S| ≤ h and
XS ≈ε X ′S . We have

∣∣∣E[Πn
i=1(Xi − µi)hi ]− E[Πn

i=1(X ′i − µi)hi ]
∣∣∣ =

∣∣∣∣∣∣
∑

x∈{0,1}s
(Pr[XS = x]− Pr[X ′S = x])Πi∈S(xi − µi)hi

∣∣∣∣∣∣
≤

∑
x∈{0,1}s

∣∣∣Πi∈S(xi − µi)hi
∣∣∣ ∣∣Pr[XS = x]− Pr[X ′S = x]

∣∣ .
For any x ∈ {0, 1}s, we have |Πi∈S(xi − µi)hi | ≤ 1. Thus

∣∣∣E[Πn
i=1(Xi − µi)hi ]− E[Πn

i=1(X ′i − µi)hi ]
∣∣∣ ≤ ∑

x∈{0,1}s

∣∣Pr[XS = x]− Pr[X ′S = x]
∣∣ ≤ 2ε.

Therefore ∣∣∣E[(X − µ)h]− E[(X ′ − µ)h]
∣∣∣ ≤ 2nhε.

Claim 5.8. ∣∣∣E[(X ′ − µ)h]− E[(X ′ − µ′)h]
∣∣∣ ≤ hnhε.

To show this claim, note that E[(X ′ − µ)h] =
∑

x∈{0,1}n Pr[X ′ = x](
∑
xi − µ)h and E[(X ′ −

µ′)h] =
∑

x∈{0,1}n Pr[X ′ = x](
∑
xi − µ′)h. Thus

∣∣∣E[(X ′ − µ)h]− E[(X ′ − µ′)h]
∣∣∣ =

∣∣∣∣∣∣
∑

x∈{0,1}n
Pr[X ′ = x]((

∑
xi − µ)h − (

∑
xi − µ′)h)

∣∣∣∣∣∣
≤

∑
x∈{0,1}n

Pr[X ′ = x]
∣∣∣(∑xi − µ)h − (

∑
xi − µ′)h

∣∣∣ .
Now note that (

∑
xi − µ)h = (

∑n
i=1(xi − µi))

h is the sum of nh terms, each of the form
Πn
i=1(xi−µi)hi such that

∑n
i=1 hi = h. Similarly, (

∑
xi−µ′)h = (

∑n
i=1(xi−µ′i))h is also the sum of

nh terms, each of the form Πn
i=1(xi − µ′i)hi such that

∑n
i=1 hi = h. Now for any fixed (h1, · · · , hn),

we consider |Πn
i=1(xi − µi)hi −Πn

i=1(xi − µ′i)hi |.
Note that for any i, |µi−µ′i| ≤ ε since Xi ≈ε X ′i. Thus for any i, we have |(xi−µi)−(xi−µ′i)| =

|µi − µ′i| ≤ ε. We have the following fact.

Fact 5.9. Assume that we have x1, x2, y1, y2 ∈ [−1, 1] such that |x1 − y1| ≤ ε1 and |x2 − y2| ≤ ε2.
Then

|x1x2 − y1y2| ≤ ε1 + ε2.
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Indeed, we have

|x1x2 − y1y2| = |x1(x2 − y2) + y2(x1 − y1)| ≤ |x1(x2 − y2)|+ |y2(x1 − y1))| ≤ ε1 + ε2.

Using this fact, we thus obtain that

|Πn
i=1(xi − µi)hi −Πn

i=1(xi − µ′i)hi | ≤
n∑
i=1

hiε = hε.

Therefore, for any x ∈ {0, 1}n, we have |(
∑
xi − µ)h − (

∑
xi − µ′)h| ≤ hnhε and thus∣∣∣E[(X ′ − µ)h]− E[(X ′ − µ′)h]

∣∣∣ ≤ ∑
x∈{0,1}n

Pr[X ′ = x]
∣∣∣(∑xi − µ)h − (

∑
xi − µ′)h

∣∣∣
≤ hnhε

∑
x∈{0,1}n

Pr[X ′ = x] = hnhε.

By the above two claims and the triangle inequality, the lemma is proved.

We now have the following lemma.

Lemma 5.10. For every constant 0 < γ < 1 there exists a constant C1 > 1 such that the following
holds. For any n, k,m,N ∈ N, any even integer h ≥ C1 and any ε > 0 with N ≥ h2, ε < N−6h,
k > 20h(log n+log(1/ε)) and m > 10(log n+log(1/ε)), assume that we have N sources {Zi1, i ∈ [N ]}
over m bits and a subset S ⊂ [N ] with |S| ≥ δN for some constant δ > 1/2, such that for any
S′ ⊂ S with |S′| = h, we have

(Zi1, i ∈ S′) ≈ε Uhm.

Let Z1 = Z1
1 ◦ · · · ◦ ZN1 . Use Z1 to run the lightest bin protocol with r = γ2

16hN
1− 2√

h bins1

and let the output contain N2 elements {i1, i2, · · · , iN2 ∈ [N ]}. Assume that X is an (n, k) source

independent of Z1. For any j ∈ [N2], let Zj2 = Ext(X,Z
ij
1 ) where Ext is the strong seeded extractor in

theorem 3.8 that has seed length m and outputs m2 = k/(2h) bits with error ε. Then with probability

at least 1 − N−
√
h/2 over the fixing of Z1, there exists a subset S2 ⊂ [N2] with |S2| ≥ δ(1 − γ)N2

such that for any S′2 ⊂ S2 with |S′2| = h, we have

(Zi2, i ∈ S′2) ≈ε2 Uhm2

with ε2 < N−6h
2 and m2 > 10(log n+ log(1/ε2)).

Proof. Note that the lightest bin contains N2 ≤ N/r = 16h
γ2 N

2√
h elements. We first show that with

high probability every bin contains at least δ(1− γ)N2 elements in S.
Consider a particular bin and consider the choices of the Zi1’s with i ∈ S. Let s = |S|. Let Vi

be the indicator variable of whether Zi1 chooses this bin and let V =
∑

i∈S Vi. Let pi = Pr[Vi = 1]
and qi = Pr[Vi = 0]. Then we have

1For simplicity, we assume that r is a power of 2. If not, we can always replace it with a power of 2 that is at
most 2r. This does not affect our analysis.
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E[V ] =
∑
i∈S

E[Vi] =
∑
i∈S

pi.

We know for any i ∈ S, Zi1 is ε-close to uniform. Thus Pr[Vi = 1] ≥ 1/r − ε. Therefore

E[V ] ≥ (1/r − ε)s.

Note that

Pr[V < 1/r(1− γ)s] ≤ Pr[|V − E[V ]| > γs/r − εs]
≤ Pr[|V − E[V ]| > γs/(2r)],

since εs < 1 and γ is a constant < 1.
Now since h is an even number, by Markov’s inequality we have

Pr[V < 1/r(1− γ)s] ≤ Pr[(V − E[V ])h > (γs/(2r))h] ≤ E[(V − E[V ])h]

(γs/(2r))h
.

We now estimate E[(V − E[V ])h]. First, if the Vi’s are truly h-wise independent, we have the
following claim by Bellare and Rompel [BR94].

Claim 5.11. [BR94] Assume that (V1, · · · , Vn′) are h-wise independent random variables over

{0, 1}n′. Let V =
∑n′

i=1 Vi and µ = E[V ]. When h is even, we have

E[(V − µ)h] ≤ 8(µh+ h2)h/2.

Thus, if the Vi’s are truly h-wise independent, we have that µ = E[V ] = s/r ≥ δN/r =
16δh
γ2 N

2√
h > 8h

γ2N
2√
h > h. Therefore µh > h2 and thus

E[(V − µ)h] ≤ 8(µh+ h2)h/2 < 8(2µh)h/2 = 8(2sh/r)h/2.

Now, since the Vi’s are actually h-wise ε-close to being independent, by Lemma 5.6 we have
that

E[(V − E[V ])h] < 8(2sh/r)h/2 + (h+ 2)shε < 9(2sh/r)h/2,

since s ≤ N and ε < N−6h.
Thus, we have that

Pr[V < 1/r(1− γ)s] ≤ E[(V − E[V ])h]

(γs/(2r))h
<

9(2sh/r)h/2

(γs/(2r))h
= 9

(
8rh

γ2s

)h
2

Note that s = δN with δ > 1/2 and r = γ2

16hN
1− 2√

h , we thus have

Pr[V < 1/r(1− γ)s] < 9

(
8rh

γ2s

)h
2

< 9(N
− 2√

h )
h
2 = 9N−

√
h.
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Thus by the union bound, we have that the probability that every bin contains at least 1/r(1−
γ)s elements in S is at least 1−9rN−

√
h = 1− 9γ2

16hN
1− 2√

h
−
√
h
> 1− 1

2N
−
√
h/2. When this happens,

let S2 be the set of elements in S in the lightest bin. Then we have |S2| ≥ 1/r(1−γ)s ≥ δ(1−γ)N2.
Next, we show that with high probability the new sources with indexes in S2 are h-wise close to

uniform. For this, consider any S′ ⊂ S with |S′| = h. Let S′ = {i1, · · · , ih} and for any j ∈ [h], let

W ij = Ext(X,Z
ij
1 ). Note that (Zi11 , · · · , Z

ih
1 ) ≈ε Uhm. First assume that (Zi11 , · · · , Z

ih
1 ) is indeed

uniform. Thus by Theorem 3.8 we have

(W i1 , Zi11 ) ≈ε (Um2 , Z
i1
1 ).

Next, note that for any j ∈ [h] with j ≥ 2, conditioned on the fixing of (Zi11 , · · · , Z
i(j−1)

1 ),

we have that Z
ij
1 is still uniform. Moreover, conditioned on this fixing, (W i1 , · · · ,W i(j−1)) is a

deterministic function of X. Thus we can further fix (W i1 , · · · ,W i(j−1)) and conditioned on this

fixing, Z
ij
1 is still independent of X. Moreover, the average conditional min-entropy of X is at least

k − (j − 1)m2 > k − hm2 = k/2. Thus by Theorem 3.8 and Lemma 3.7 (notice that k and m are
much bigger than log n+ log(1/ε)) we have

(W ij , Z
ij
1 ,W

i1 , Zi11 , · · · ,W
i(j−1) , Z

i(j−1)

1 ) ≈2ε (Um2 , Z
ij
1 ,W

i1 , Zi11 , · · · ,W
i(j−1) , Z

i(j−1)

1 ).

Note that for any j ∈ [h], conditioned on the fixing of Z
ij
1 , W ij is a deterministic function of X

and is thus independent of all {Zij1 }’s. Thus we have that

(W i1 , Zi11 , · · · , Z
ih
1 ) ≈ε (Um2 , Z

i1
1 , · · · , Z

ih
1 )

and for any j ≥ 2,

(W ij ,W i1 , · · · ,W i(j−1) , Zi11 , · · · , Z
ih
1 ) ≈2ε (Um2 ,W

i1 , · · · ,W i(j−1) , Zi11 , · · · , Z
ih
1 ).

This implies that

(W i1 , · · · ,W ih , Zi11 , · · · , Z
ih
1 ) ≈(2h−1)ε (Uhm2 , Z

i1
1 , · · · , Z

ih
1 ).

Adding back the error where (Zi11 , · · · , Z
ih
1 ) ≈ε Uhm, we have

(W i1 , · · · ,W ih , Zi11 , · · · , Z
ih
1 ) ≈2hε (Uhm2 , Z

i1
1 , · · · , Z

ih
1 ).

Therefore, with probability 1−2N−2h over the fixing of (Zi11 , · · · , Z
ih
1 ), we have that (W i1 , · · · ,W ih)

is N2hhε-close to uniform. Thus by the union bound (and noticing that s ≤ N), we have that with
probability at least 1 − 2N−h over the fixing of Z1, for any S′ ⊂ S with |S′| = h, (W i, i ∈ S′) is
ε2 = N2hhε-close to uniform. In particular, this implies that the new sources with indexes in S2

are h-wise close to uniform.
Note that ε < N−6h. Thus N2hhε < N−4hh. Since N ≥ h2 we have that N−4h+12

√
h < h−7h <

h−1(16h
γ2 )−6h for sufficiently large h. Thus ε2 = N2hhε < N−4hh < (16h

γ2 )−6hN−12
√
h ≤ N−6h

2 since

N2 ≤ N/r = 16h
γ2 N

2√
h . Also note that m2 = k/(2h) > 10(log n+ log(1/ε)) > 10(log n+ log(1/ε2)).

Note that 2N−h < 1
2N
−
√
h/2. By the union bound, the lemma is proved.
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We can now present our construction of extractors for independent sources.

Algorithm 5.12 (Independent Source Extractor IExt).

Input: X1, X2, · · · — independent (n, k)-sources with k ≥ polylog(n).
Output: W — a random variable close to uniform.

Sub-Routines and Parameters:
Let SR be the function in algorithm 5.1. Let SSR be the function in algorithm 5.3. Let SRExt
be the extractor in Theorem 3.9. Let Ext be the strong extractor in theorem 3.8. Let C be the
constant in Lemma 5.2. Let 0 < α, β, γ < 1 be three constants with α < β, to be chosen later.

1. Take C independent sources (X1, · · · , XC) and compute Y = SR(X1, · · · , XC).

2. Take another independent source XC+1 and compute Z1 = Z1
1 ◦ · · · ◦Z

N1
1 = SSR(XC+1, Y )

with N1 = poly(n), using parameters α and β.

3. Let h be the parameter in algorithm 5.3 with kα ≤ h < 2kα. Set t = 1. While Nt (the
number of rows in Zt) is bigger than h4 do the following:

(a) Run the lightest bin protocol with Zt and rt = γ2

16hN
1− 2√

h
t bins and let the output

contain Nt+1 elements {i1, i2, · · · , iNt+1 ∈ [Nt]}.
(b) Take a fresh independent (n, k) source XC+t+1 and for any j ∈ [Nt+1], compute

Zjt+1 = Ext(XC+t+1, Z
ij
t ) and output m2 = k/(2h) bits.

(c) Let Zt+1 = Z1
t+1 ◦ · · · ◦ Z

Nt+1

t+1 . Set t = t+ 1.

4. At the end of the above iteration we get a source Zt with at most h4 rows. Take
another c2 independent (n, k) sources XC+t+1, · · · , XC+t+c2 . The final output is W =
SRExt(Zt, XC+t+1, · · · , XC+t+c2).

We now have the following theorem.

Theorem 5.13. For every constant η > 0 there exists a constant C0 > 1 such that for any n, k ∈ N
with n ≥ C0 and k ≥ log2+η n, the above construction is an extractor that uses O

(
1
η

)
+ O(1)

independent (n, k) sources and outputs m = Ω(k) bits that are 1/poly(n)+2−k
Ω(1)

-close to uniform.

Proof. By Lemma 5.2, Y = SR(X1, · · · , XC) is 1/poly(n)-close to another source Y ′ = Y ′1◦· · ·◦Y ′N
where N = poly(n) and each Y ′i has 0.9k bits, such that there exists a subset S ⊂ [N ] with
|S| > 0.9N and for any i ∈ S, Y ′i is uniform. We will now proceed as if Y is the source Y ′. This
only adds 1/poly(n) to the final error.

We now want to apply Lemma 5.5 and Lemma 5.10. Before we do this, let us first set the
parameters α and β. Note that kα ≤ h < 2kα, ` = kβ and b < log n. To apply Lemma 5.5,
we need that k ≥ 2(bh + 2)(h2 + 12)`. To apply Lemma 5.10 for the first time, we need that
ε = 2−Ω(`) < N−6h, k > 20h(log n + log(1/ε)) and m = ` > 10(log n + log(1/ε)) (note that we
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only go into the iteration of the lightest bin protocol if N > h4). Altogether, it suffices to have
0 < α < β < 1 satisfy the following conditions.

k ≥ 3 log nh3`, 2−Ω(`) < N−6h and ` > 10(log n+ log(1/ε)).

These conditions are satisfied if the following conditions are satisfied.

k ≥ 24k3α+β log n and ` = kβ ≥ Ckα log n

for some constant C > 1.
Thus when k ≥ log2+η n, we can choose α = η

16(2+η) and β = 16+5η
16(2+η) . Now note that Z1 = Z1

1 ◦
· · · ◦ZN1

1 = SSR(XC+1, Y ) satisfies the conditions of Lemma 5.10. Thus we can apply Lemma 5.10.
Note that the lightest bin protocol stops only if the number of rows in Zt is at most h4. Thus

before the iteration stops, we always have Nt > h4 > h2. Thus by Lemma 5.10 the probability

of the “bad event” in each iteration is at most N
−
√
h/2

t < (h4)−
√
h/2 = h−2

√
h = 2−k

Ω(1)
. We now

compute the number of iterations needed to decrease the number of rows from N = poly(n) to h4.

In each iteration the number of rows in Zt decreases from Nt to Nt+1 ≤ 16h
γ2 N

2√
h

t . When

Nt ≥ h
√
h, we have that N

2√
h

t ≥ h2 > 16h
γ2 . Thus

Nt+1 ≤
16h

γ2
N

2√
h

t < N
4√
h

t .

Therefore, as long as Nt ≥ h
√
h, in each iteration the number of rows in Zt decreases from Nt

to Nt+1 ≤ N
4√
h

t . Since initially we have N1 = poly(n), the number of iterations needed to decrease

the number of rows from N = poly(n) to h
√
h is at most

log√h
4

logN√
h log h

=
log logN − 1

2 log h− log log h
1
2 log h− 2

= O

(
log log n

α log k

)
= O

(
1

α

)
= O

(
1

η

)
+O(1).

When η < 1, this number is O
(

1
η

)
. When η ≥ 1, it is O(1). In either case, as long as η > 0 is

a constant, it is a constant c′.

Once Nt ≤ h
√
h, in the next iteration we have

Nt+1 ≤
16h

γ2
N

2√
h

t ≤ 16h

γ2
h2 < h4.

Thus the number of iterations needed to decrease the number of rows from N = poly(n) to h4 is
at most c3 = c′+ 1, which is also a constant. Therefore, we can set γ = 1

5c3
= Ω( η

1+η ). This ensures
that in each Nt, the fraction of “good rows” is at least 0.9(1− γ)c3 > 0.9(1− c3γ) ≥ 0.8 · 0.9 > 1/2,
which satisfies the requirement of Lemma 5.10. Also note that there exists a constant C0 = C0(η)
such that whenever n ≥ C0 and k ≥ log2 n we have h ≥ kα ≥ C1 where C1 is the constant in
Lemma 5.10. Thus we are all good. Note that the number of independent sources used in the
iteration is also c3.
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Finally, since when the iteration stops Zt has at most h4 < 16k4α < 16k1/4 rows, by The-
orem 3.9 it suffices to take another constant c2 number of independent sources2 and output
W = SRExt(Zt, XC+c3+1, · · · , XC+c3+c2), which is 2−k

Ω(1)
-close to uniform. Therefore, altogether

the extractor uses C + c3 + c2 = O
(

1
η

)
+ O(1) independent (n, k) sources, and the error of the

extractor is 1/poly(n) + c32−k
Ω(1)

+ 2−k
Ω(1)

= 1/poly(n) + 2−k
Ω(1)

.

Remark 5.14. The condenser based on lightest bin protocol is highly efficient by making use of
the property of kα-wise independent. In fact, when k ≥ logc n for some big enough constant c > 2,

we will have N < h
√
h in the first place and thus the lightest bin protocol only takes one iteration.

On the other hand, as c approaches 2, the number of iterations increases.

Note that when n < C0, the extractor can be constructed in constant time just by exhaustive
search (in fact, we can get a two-source extractor in this way). Thus, we have the following theorem.

Theorem 5.15. For every constant η > 0 and all n, k ∈ N with k ≥ log2+η n, there is an explicit

extractor that uses O
(

1
η

)
+O(1) independent (n, k) sources and outputs m = Ω(k) bits with error

1/poly(n) + 2−k
Ω(1)

.

We also have the following two corollaries.

Corollary 5.16. For all n, k ∈ N with k ≥ log3 n, there is an explicit extractor that uses O(1)

independent (n, k) sources and outputs m = Ω(k) bits with error 1/poly(n) + 2−k
Ω(1)

.

Corollary 5.17. For every constant 0 < η < 1 and all n, k ∈ N with k ≥ log2+η n, there is an

explicit extractor that uses O
(

1
η

)
independent (n, k) sources and outputs m = Ω(k) bits with error

1/poly(n) + 2−k
Ω(1)

.

6 Conclusions and Open Problems

In this paper we construct explicit extractors for a constant number of independent weak random
sources with poly-logarithmic min-entropy. This dramatically improves all previous results and
brings the construction of independent source extractors close to optimal. The main technical
ingredient is the condenser for structured somewhere random sources, based on the connection
between condensing somewhere random sources and leader election, as suggested in [Li13]. The
condenser makes use of the property that a large fraction of the rows in the somewhere random
source are close to h-wise independent and uniform, and uses Feige’s lightest bin protocol to reduce
the number of rows in the somewhere random source. By achieving h = kα for some constant
0 < α < 1, the condenser in this paper is highly efficient and thus we obtain our extractor for a
constant number of independent sources, even with poly-logarithmic min-entropy.

Several natural open problems remain. First of all, how far can we push this construction? Our
ultimate goal is to construct two-source extractors for logarithmic min-entropy. Can we reduce the
number of independent sources used in our extractor from a constant number to two? There seems
to be some obstacles in the way. For example, in our construction we need to first use a constant
number of sources to reduce the error and obtain a source that is 1/poly(n)-close to a somewhere

2In fact, it suffices to take c2 = 2.
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random source which has a large fraction of truly uniform rows. Even using seeded extractors with
optimal parameters, this already requires at least three independent sources. However, we hope
that this constraint can be removed by combining other techniques used in various constructions
of extractors. More realistically, as a first step we may hope to construct two-source extractors for
arbitrarily linear min-entropy.

Second, it would be nice to achieve better error. Currently the error of our extractor is 1/poly(n)+

2−k
Ω(1)

and ideally we would want to remove the 1/poly(n) term and achieve error 2−k
Ω(1)

. This
kind of small error is important for cryptographic applications. We believe this should be possible.

Finally, can we apply the powerful techniques of condensing structured somewhere random
sources to constructing extractors and dispersers for other classes of sources, and more generally,
to constructing other pseudorandom objects? Since independent source extractors have been used
in the constructions of extractors and dispersers for various classes of sources (e.g., affine sources
and small space sources), this seems promising.
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