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Abstract

We show that, over C, if an n-variate polynomial of degree d = nO(1) is
computable by an arithmetic circuit of size s (respectively by an algebraic
branching program of size s) then it can also be computed by a depth three
circuit (i.e. a ΣΠΣ-circuit) of size exp(O(

√
d log d log n log s)) (respectively of

size exp(O(
√
d log n log s))). In particular this yields a ΣΠΣ circuit of size

exp(O(
√
d · log d)) computing the d × d determinant Detd. It also means that

if we can prove a lower bound of exp(ω(
√
d · log3/2 d)) on the size of any ΣΠΣ-

circuit computing the d × d permanent Permd then we get superpolynomial
lower bounds for the size of any arithmetic circuit computing Permd. We then
give some further results pertaining to derandomizing polynomial identity test-
ing and circuit lower bounds.

The ΣΠΣ circuits that we construct have the property that (some of) the
intermediate polynomials have degree much higher than d. Indeed such a coun-
terintuitive construction is unavoidable - it is known that in any ΣΠΣ circuit C
computing either Detd or Permd, if every multiplication gate has fanin at most
d (or any constant multiple thereof) then C must have size at least exp(Ω(d)).

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 26 (2013)



1 Introduction

Arithmetic Circuits. The most natural way to compute a polynomial function
f(x1, x2, . . . , xn) starting from its inputs x1, x2, . . . , xn is via a sequence of basic
arithmetic operations consisting of addition, multiplication and subtraction. Such
a computation can be visualized as an arithmetic circuit. We typically allow the in-
coming edges to a + gate to be labelled with constants from the underlying field F so
that a + gate can in fact compute an arbitary F-linear combination of its inputs. Two
relevant complexity measures for an arithmetic circuit are its size (the total number
of arithmetic operations involved) and its depth (the maximum length of a path from
an input to the output). The goal here is to understand the optimal complexity (in
terms of size and depth) of computing a given polynomial family. Two closely related
families of polynomials, the determinant and the permanent defined as

Detd =
∑
σ∈Sd

sign(σ) ·
d∏
i=1

xi,σ(i)

Permd =
∑
σ∈Sd

d∏
i=1

xi,σ(i)

are of particular interest as they feature in many different areas of mathematics and
computer science. Although these two polynomials look very similar, they have strik-
ingly different complexities. The determinant and permanent are in fact complete
problems for the classes VP and VNP respectively, which are algebraic analogues of
P and NP [Val79]. A grand challenge in this direction is to show that Permn cannot
be computed by arithmetic circuits of polynomial size.

Depth Reduction. Circuits with low depth correspond to computations which are
highly parallelizable and therefore it is natural to try to minimize the depth of a
circuit while allowing the size to increase somewhat. Csanky [Csa76] showed that
the determinant can be computed by circuits of size nO(1) having only (log n)O(1)

depth. Subsequently Valiant, Skyum, Berkowitz and Rackoff [VSBR83] discovered a
remarkable generalization. They showed that if a polynomial f of degree d can be
computed by a circuit of size s then it can in fact be computed by a circuit of depth
O(log d · log s) and size sO(1). Pushing this line of investigation of size-depth tradeoffs
further, recent work has considered reduction to circuits of even smaller depth while
allowing the addition and multiplication gates to have arbitrary (unbounded) fanin.
In this direction, the work of Agrawal and Vinay [AV08] and a subsequent strength-
ening by Koiran [Koi12] showed that if f has circuits of size s = dO(1) then f can

in fact be computed by depth four circuits of size 2O(
√
d·log2 d) 1. Despite the large

1A simple but nonconstructive counting argument shows that over any field F, most n-variate

polynomials of degree d require circuits of size
√(

n+d
d

)
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blowup, the reason that such reductions to constant depth circuits are interesting is
that these reductions ‘explain’ the lack of progress towards lower bounds even for
constant-depth arithmetic circuits. 2 Viewed optimistically, such a reduction entails
that one merely needs to prove a (good enough) lower bound for depth four circuits
in order to prove lower bounds for arbitrary circuits. Indeed, motivated by this, we
recently proved lower bounds for depth four circuits which comes very close to the
threshold required by Koiran3. In a similar spirit Raz [Raz10] showed that close-to-
optimal lower bounds for small degree tensors imply superpolynomial lower bounds
on formula size4.

Depth Three Circuits. Being the shallowest nontrivial subclass of arithmetic cir-
cuits, depth three arithmetic circuits, also denoted as ΣΠΣ circuits, have been in-
tensely investigated. Such a circuit C computes a polynomial in the following manner:

C(x) =
s∑
i=1

di∏
j=1

`ij(x), (1)

where each `ij(x) is an affine form over the input variables. ΣΠΣ circuits5 arise
naturally in the investigation of the complexity of polynomial multiplication and
matrix multiplication6. Moreover, the optimal formula/circuit for some well known
families of polynomials are in fact depth three circuits. In particular, the best known
circuit for computing the permanent Permd is known as Ryser’s formula [Rys63] which

2 Note that in contrast to arithmetic circuits, exponential lower bounds are known for constant
depth boolean circuits with ∧,∨ gates of unbounded fanin.

3 Specifically, [GKKS13] shows a lower bound of exp(
√
d) on the size of ΣΠ[

√
d]ΣΠ[

√
d] com-

puting Permd. In comparison, Koiran shows that a lower bound of exp(ω(
√
d log2 d)) on the size of

ΣΠ[
√
d]ΣΠ[

√
d] computing Permd entails superpolynomial lower bounds for general circuits computing

Permd.
4 Specifically, Raz showed that for d = d(n) ≤ logn

log logn , any explicit example of a tensor A :

[n]d 7→ C with tensor rank ≥ nd(1−o(1)) implies an explicit superpolynomial lower bound for the size
of general arithmetic formulas. Because of the restriction on the degree d, Raz’s result does not
seem to be applicable to the permanent

5More precisely a subclass of ΣΠΣ called tensors also known as set-multilinear ΣΠΣ circuits
6 For example it can be shown that the product of two n × n matrices can be computed with

Õ(nω) arithmetic operations if and only if the polynomial

Mn =
∑
i∈[n]

∑
j∈[n]

∑
k∈[n]

xij · yjk · zki

can be computed by a ΣΠΣ circuit where the top fanin s is at most Õ(nω).
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is a (homogeneous7) depth three circuit of size O(d2 ·2d)8. For more on ΣΠΣ circuits,
we refer the reader to the thesis of Shpilka [Shp01] and the references therein.

Circuit Lower bounds. While there has been significant progress in upper bounds,
progress in proving lower bounds for arithmetic circuits has been much slower. This is
generally considered to be one of the most challenging problems in computer science.
The difficulty of the problem has led researchers to focus on natural subclasses of
arithmetic circuits. We refer the interested reader to the recent surveys by Shpilka
and Yehudayoff [SY10] and Chen, Kayal and Wigderson [CKW11] for more on lower
bounds for various subclasses of arithmetic circuits. Bounded depth circuits being
one such natural subclass has received a lot of attention. The simplest nontrivial such
subclass is that of ΣΠΣ circuits. Nisan and Wigderson [NW97] showed that over any
field F, any homogeneous ΣΠΣ circuit computing the determinant Detd must be of size
2Ω(d). Grigoriev and Karpinski [GK98] showed that any ΣΠΣ arithmetic circuit over
any fixed finite field computing Detd must be of size at least 2Ω(d). Raz and Yehudayoff
give 2Ω(d) lower bounds for multilinear ΣΠΣ circuits9. But without any restrictions,
even a superpolynomial lower bound for ΣΠΣ circuits (over an infinite field) has
remained ellusive. The best known lower bound in the general ΣΠΣ case is the
quadratic lower bound due to Shpilka and Wigderson [SW01]. Avi Wigderson [Wig07]
highlighted this frontier in arithmetic complexity by concluding his plenary talk on
‘P, NP and mathematics’ at ICM 2006 with the problem of proving superpolynomial
lower bounds for ΣΠΣ circuits computing the determinant.

Our contribution. The 2Ω(d) lower bounds for various restrictions of ΣΠΣ circuits
mentioned above seemed to suggest (at least to us) that any ΣΠΣ circuit computing
the determinant Detd needs to be of size at least 2Ω(d). Surprisingly, we show that
this is not true - there do indeed exist much smaller ΣΠΣ circuits computing the
determinant. Specifically we show that over C, the field of complex numbers, there
exists a ΣΠΣ circuit of size 2O(

√
d·log d) computing the determinant. To the best of our

knowledge, no ΣΠΣ circuit of size smaller than even 2O(d·log d) was previously known.
More generally, we show:

Theorem 1.1. Let f(x) ∈ C[x] be an n-variate polynomial of degree d = nO(1)

computed by an arithmetic circuit of size s. Then it can also be computed by a ΣΠΣ

7 Recall that a multivariate polynomial is said to be homogeneous if all its monomials have the
same total degree. An arithmetic circuit is said to be homogeneous if the polynomial computed
at every internal node of the circuit is a homogeneous polynomial. It is a folklore result (cf. the
survey by Shpilka and Yehudayoff [SY10]) that as far as computation by polynomial-sized arithmetic
circuits of unbounded depth is concerned one can assume without loss of generality that the circuit
is homogeneous. Specifically, if a homogeneous polynomial f of degree d can be computed by an
(unbounded depth) arithmetic circuit of size s, then it can also be computed by a homogeneous
circuit of size O(d2 · s).

8 To the best of our knowledge, no ΣΠΣ circuit of size smaller than 2O(d log d) computing Detd
was previously known.

9 The results of Raz and Yehudayoff are more general.
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circuit of size 2O(
√
d logn log s log d). Further, if f can be computed by an ABP of size s

then it can also be computed by a 2O(
√
d logn log s) sized ΣΠΣ circuit.

Note that Detd can be computed by an ABP of size dO(1) (cf. [AJMV98]) and hence
we immediately get the ΣΠΣ circuit for it as mentioned above. We note here that
in particular, the above theorem shows that a ΣΠΣ lower bound of 2Ω(d logn) for any
explicit n-variate polynomial f of degree d entails a 2Ω(d logn) lower bound on the size
of any ABP (or arithmetic formula) computing f .

Comparison with prior work. Prior work by [AV08] and [Koi12] reduce the depth
to four and we build upon their work to reduce the depth even further to three. Most
closely related is the work by Raz [Raz10]. While both our work and [Raz10] have the
same high-level message, namely that strong enough lower bounds for ΣΠΣ circuits
imply more general superpolynomial lower bounds, we make here significant quanti-
tative improvements10. We state this from the perspective of obtaining lower bounds.
Firstly, Raz’s result would yield only superpolynomial formula lower bounds while
ours can yield circuit lower bounds. Secondly, Raz requires the degree of the output
polynomial to be rather small: d ≤ logn

log logn
while our results are valid for much larger

d, say d = nΩ(1). Most importantly, Raz requires almost optimal ΣΠΣ lower bounds
of about 2(d logn)·(1−o(1)) while for us a much weaker lower bound of 2ω(

√
d log3/2 n) will

suffice. ΣΠΣ circuits have been intensely investigated - initially for their connection
to tensor rank and more recently as a special case of the polynomial identity testing
problem. Given this intense investigation of ΣΠΣ circuits, it is natural to wonder as
to why these results were not obtained before. We feel that this may be because our
construction is significantly counterintuitive - the intermediate terms are of degree
much higher than the degree of the output polynomial and moreover we need the field
to be have zero or large characteristic and be algebraically closed. Finally, we remark
here that as a tool for proving lower bounds, our result is somewhat incomparable to
[Koi12] - while the reduction of the depth further should facilitate the task of proving
lower bounds, the fact that the resulting ΣΠΣ circuit is nonhomogeneous hinders it.
Overall, it is not clear to us as to which of these two kinds of circuits is a better
starting point.

Further Results. In section 5 we then present some further consequences and
reductions. Following [AV08] we show that a blackbox derandomization of polynomial
identity testing for ΣΠΣ circuits leads to a quasipolynomial identity test for general
circuits. We also explore the relation of ΣΠΣ circuits with a subclass of circuits that
arise in our proof.

10 The motivation of Raz’s work was somewhat different: Raz was interested in giving a tight
analysis of the blowup in size when a formula is homogenized.

4



2 Proof Overview

Quick Sketch. The depth reduction proceeds through a series of transformations
to the circuit - first decreasing the depth, then replacing the multiplication (×) gates
with exponentiation gates at the expense of increasing the depth slightly and then
decreasing the depth once again to three. We will flesh out this quick sketch after
introducing some relevant notation.

Notation. Bounded depth arithmetic circuits consist of alternating layers of addition
and multiplication gates. We will denote an arithmetic circuit of depth d by a sequence
of d symbols wherein each symbol (either Σ or Π) denotes the nature of the gates
at the corresponding layer and the leftmost symbol indicates the nature of the gate
at the output layer. For example, a ΠΣ circuit with n input variables computes a
polynomial in the following way:

C(x) =
∏
i∈[d]

∑
j∈[n]

aijxj + ai0

 where each aij ∈ F is a field element,

while a ΣΠΣ circuit computes a polynomial as in equation (1). Some of the interme-
diate circuits that we construct will have the feature that all the incoming edges to a
multiplication gate come from a single gate g (thus computing ge, if there are e wires
entering the multiplication gate). We will refer to such circuits as powering circuits
and use ∧ instead of Π to denote a layer of multiplication gates in such circuits. So
for example, a Σ∧Σ circuit computes a polynomial in the following manner:

C(x) =
∑
i∈[s]

`i(x)ei where each `i ∈ F[x] is an affine form.

In doing the transformations it is useful to keep track of the fanin to various gates,
especially multiplication gates. Towards this end, we extend the above notation and
allow integer superscripts on Π symbols (respectively Σ and ∧ symbols) which denotes
an upper bound on the fanin of any gate in the corresponding layer. So for example
a ΣΠ[a]ΣΠ[b] circuit computes a polynomial of the following form:

C =
∑
i∈[s]

∏
j∈[a]

Qij with degQij ≤ b for all i ∈ [s] and j ∈ [a]

while a Σ∧[a]Σ circuit computes a polynomial a following manner:

C(x) =
∑
i∈[s]

`i(x)ei where each ei ≤ a and each `i ∈ F[x] is an affine form.

With this notation in place we are ready to give a more detailed overview.
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Proof Overview. Let f(x) ∈ C[x] be a polynomial of degree d computed by an
arithmetic circuit C of size s. The first step is to obtain from C a depth-4 circuit
C1 computing f . Specifically, C1 is a ΣΠ[a]ΣΠ[d/a] circuit (for a suitably chosen a)
of size s1 = 2O(

√
d log d log s logn). This is achieved via Koiran’s [Koi12] strenghtening of

the Agrawal-Vinay [AV08] depth reduction.

The second step is to use C1 to obtain a depth-5 powering circuit C2. Specifically,
C2 is a Σ∧[a]Σ∧[d/a]Σ circuit of size s2 = 2O(

√
d log d log s logn). The main ingredient of

this step is a lemma of Fischer [Fis94] showing how a monomial can be computed
by a Σ∧Σ circuit. In other words, Fischer’s lemma shows to compute a product as
a sum of powers of sums. By applying this lemma to every multiplication gate, we
can convert the circuit C1 to a Σ∧Σ∧Σ circuit C2. It is worth noting that Fischer’s
lemma is not true over fields of small characteristic.

The final step is to convert the Σ∧Σ∧Σ circuit C2 to a ΣΠΣ circuit C3, and this
done by invoking the “duality trick” of Saxena [Sax08] and factorizing the result-
ing univariate polynomials over the algebraically closed underlying field11. In this
last step we increase the degree of the intermediate polynomials substantially - to
2O(
√
d log d logn log s). Our construction ensures that all the high (> d) degree mono-

mials so generated ultimately cancel out. The resulting ΣΠΣ circuit C3 is of size
s3 = 2O(

√
d log d logn log s).

3 Preliminaries

This section would deal with the preliminaries required for the rest of the paper. As
usual [n] denotes the set of first n positive integers. For the ease of book-keeping, we
define the size of a circuit as the number of wires12 in the circuit.

Algebraic Branching Programs (ABPs). An ABP is a layered graph with edges
going from layer i to i + 1. Every edge e is labelled by a linear polynomial `e. The
first layer has only one vertex called the source and the last layer has only one vertex
called the sink. For any path γ = (e1, . . . , ed) from source to sink, the weight of γ is
defined as wt(γ) = `e1 . . . `ed . The ABP is said to compute the polynomial

∑
γ wt(γ),

where γ runs over all source-sink paths.

11 In its original form the duality trick of Saxena is applicable only over fields of zero or large
characteristic. Forbes and Shpilka [FS12] have noted that a simple modification makes it applicable
over fields of small characteristic as well. Saxena applied this trick to derandomizing identity testing
of a certain subclass of circuits. It was noted by Kayal and Saptharishi (cf. the thesis by Saptharishi
[Sap12]) that this derandomization itself can be done in a much simpler and self-contained manner.

12 One could alternatively define the size of a circuit as the number of nodes but defining it this
way is more natural for us as it simplifies the bookkeeping - for example in tracking the size of an
exponentiation gate.
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An ABP is said to be homogeneous if all edge labels are homogeneous linear forms,
and naturally computes a homogeneous polynomial.

We shall say that a (possibly non-homogeneous) polynomial is computed by a homo-
geneous ABP if each of its homogeneous parts can be computed by a homogenous
ABP. It is a well-known fact (cf. [SY10]) if a degree d polynomial can be computed by
a size s (possibly non-homogeneous) ABP, then it can be computed by a homogeneous
ABP of size sd2.

The following conversion from circuits to ABPs is attributed by Koiran [Koi12] to
Malod and Portier [MP08] but can also be easily deduced directly from [VSBR83].

Lemma 3.1. Let f be a polynomial of degree d computed by a circuit of size s. Then
there is a homogeneous ABP of depth d and size s′ = 2O(log s·log d) computing f .

The following bound on a binomial coefficients is an easy consequence of Stirling’s
approximation.

Lemma 3.2. (cf. [AV08], lemma 2.2 for a proof) For any n, k such that k = O(n),(
n+ k

k

)
= 2O(k+k log(n/k))

4 The depth-reduction

Let us recall the statement of our main result as applicable for ABPs.

Theorem 1.1 (restated). Let f(x) ∈ C[x] be an n-variate polynomial of degree
d = nO(1) computed by an ABP of size s. Then it can also be computed by a ΣΠΣ
circuit of size 2O(

√
d logn log s).

We first observe that the corresponding depth reduction for general circuits (as given
in the statement of this theorem in section 1) follows immediately from the above
statement via an application of lemma 3.1 - we first convert the given circuit to a
slightly larger ABP and then apply the depth reduction for ABPs. The rest of this
section is devoted to the proof of the above theorem. So let f be an n-variate polyno-
mial of degree d computed by an arithmetic circuit of size s (respectively by an ABP
of size s). As mentioned in Section 2, the depth reduction roughly proceeds through
the following steps:
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Step 1: Algebraic Branching Programs −→ ΣΠ[a]ΣΠ[d/a] circuit (for a suitably
chosen a)

Step 2: ΣΠ[a]ΣΠ[d/a] circuit −→ Σ∧[a]Σ∧[d/a]Σ circuit

Step 3: Σ∧[a]Σ∧[d/a]Σ circuit −→ ΣΠΣ circuit

In the rest of this section we shall provide the details on how to perform each of the
above steps while keeping track of the loss in size incurred at each step.

4.1 Step 1: ABPs to ΣΠ[a]ΣΠ[d/a] circuit

The first step is a direct consequence of the depth-reduction result of Koiran [Koi12].

Theorem 4.1 ([Koi12]). Let f be an n-variate polynomial of degree d computed by
a homogeneous ABP of size s. Then, for all a there is an equivalent ΣΠ[a]ΣΠ[(d/a)]

circuit computing f of size sa + (s2d) ·
(
n+(d/a)

(d/a)

)
.

We present a proof of it here as the statement above is slightly different from Koiran’s
(though can be easily seen from his proof).

Proof. Since f is computed by an ABP, it can be computed as an entry of a product
of d many s× s matrices with entries being linear functions. Let MM

(i,j)
s,d (A1, . . . , Ad)

be the homogeneous degree d polynomial that is the (i, j)-th entry of the product

A1 . . . Ad of s × s matrices. Then, f is the appropriate projection MM
(1,1)
s,d where Ai

is replaced by the bipartite adjacency matrix between layer i and i+ 1.

Of course, MM
(i,j)
s,d can be computed by a ΣΠ[a]ΣΠ[(d/a)] circuit in the straightforward:

break the d matrices into a blocks of (d/a) matrices each, multiply the matrices in
each block, and finally multiply the product matrices together. Formally,

MM
(i,j)
s,d (A1, . . . , Ad) = MM(i,j)

s,a (Q1, . . . , Qa)

where Qi is the product matrix of the i-th block of (d/a) matrices. Representing
MM(i,j)

s,a as a ΣΠ[a] circuit, and each entry of Qk as a ΣΠ[d/a] circuit gives the required

ΣΠ[a]ΣΠ[(d/a)] circuit. It is trivial to check that such a circuit has size is at most
sa + (s2d)

(
n+(d/a)

(d/a)

)
.

Choosing a =
√

d logn
log s

(and using the bound of Lemma 3.2) gives:

Corollary 4.2. Let f be an n-variate degree d polynomial computed by a homogeneous

ABP of size s. Then, there is an equivalent ΣΠ[a]ΣΠ[d/a]
(

for a =
√

d logn
log s

)
circuit

C1 computing f of size s1 = exp
(
O(
√
d log n log s)

)
.

8



4.2 Step 2: ΣΠ[a]ΣΠ[(d/a)] circuit to Σ∧[a]Σ∧[d/a]Σ circuit

The next step relies on a construction of Fischer [Fis94] to write a monomial as a
sum of powers of linear functions which we describe below.

Lemma 4.3 ([Fis94]). For any n, the monomial x1 · · ·xn can be expressed as a linear
combination of 2n−1 powers of linear forms through the following:

2n−1 · n! · x1 . . . xn =
∑

(r2,...,rn)∈{±1}n−1

(x1 +
n∑
i=2

rixi)
n · (−1)wt(r)

where wt(r) = |{i : ri = −1}|.

Since any degree dmonomial is a projection of x1 . . . xd, a corollary of the above lemma
is that every degree d monomial can be expressed as a sum of 2d−1 powers of linear
forms. It is also worth noting that the above lemma is not true in low characteristic.
For example, in a field F of characteristic 2, (x+αy+β)2 = x2 +α2y2 +β2 and hence
the monomial x · y cannot be expressed as a sum of squares of affine forms. With this
lemma, we can now proceed to the transformation in step 2.

Lemma 4.4. Let f be an n-variate degree d polynomial computed by a ΣΠ[a]ΣΠ[b]

circuit of size s1. Then, there is an equivalent Σ∧[a]Σ∧[b]Σ circuit of size (s3
1an) · 2a+b

computing f .

Proof. A ΣΠ[a]ΣΠ[b] circuit C of size s1 computes a polynomial of the form

C =
∑
i∈[s1]

∏
j∈[a]

Qij with degQij ≤ b.

Since each of the Qij’s are degree b polynomials having at most s1 monomials, we
may apply Lemma 4.3 to each monomial and express Qij as a Σ∧[b]Σ circuit of size
(bs1n)·2b. Now applying Lemma 4.3 to each term Ti =

∏
j∈[a] Qij, we can express it as

a sum of at most 2a a-th powers of linear combinations of the Qij’s. Thus each Ti can
be expressed as a Σ∧[a]Σ∧[b]Σ circuit of size (a2a) · (s1) · (bs1n2b). Since there are at
most s1 terms Ti, we get overall a Σ∧[a]Σ∧[b]Σ circuit of size at most (s3

1abn)·2a+b.

Combining this with corollary 4.2 we immediately get:

Corollary 4.5. Let f be an n-variate polynomial of degree d computed by an ABP

of size s. Then there is an equivalent Σ∧[a]Σ∧[d/a]Σ (for a =
√

d logn
log s

) circuit C2

computing f of size s2 = exp
(
O(
√
d log n log s)

)
.
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4.3 Step 3: Σ∧[a]Σ∧[d/a]Σ circuits to ΣΠΣ circuits

The final step of the proof uses the duality trick of Saxena [Sax08] stated below.

Lemma 4.6 ([Sax08]). Over the field of complex numbers, for every m, d, there exists
univariate polynomials fij(u) ∈ C[u] with deg fij ≤ d such that

(u1 + · · ·+ um)d =
md+1∑
i=1

m∏
j=1

fij(uj)

In order to make our exposition self-contained we reproduce the following proof from
[Sax08].

Proof. Let

Ed(u)
def
= 1 +

u

1!
+
u2

2!
+ . . .+

ud

d!
.

Let α1, α2, . . . , αmd+1 ∈ C be any set of (md+ 1) distinct field elements. It suffices to
show that there exist field elements β1, β2, . . . , βmd+1 such that

(u1 + u2 + . . .+ um)d =
md+1∑
i=1

βi ·
∏
j∈[m]

Ed(αiuj).

Let `
def
= (u1 + u2 + . . .+ um). Then since

e`z = 1 +
`

1!
z + . . .+

`d

d!
zd + . . .

we have that `d

d!
equals the coefficient of zd in e`z. Therefore

`d = d! · {coeff of zd in e`z }
= d! · {coeff of zd in eu1z · eu2z · . . . · eumz }
= d! · {coeff of zd in Ed(u1z) · Ed(u2z) · . . . · Ed(umz) }

Now let F (u, z) := Ed(u1z) · Ed(u2z) · . . . · Ed(umz). Viewing F as a univariate
polynomial in z of degree (md), we see via interpolation that the coefficient of zd

in F can be obtained as a linear combination of F (u, α1), . . . , F (u, αmd+1). That is,
there exist δ1, . . . , δmd+1 such that

coeff of zd in F (u, z) =
∑

i∈[md+1]

δiF (u, αi).

Taking βi = δi · d! then completes the proof.
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With the above lemma, we can proceed to step 3.

Lemma 4.7. Let f be a polynomial computed by a Σ∧[a]Σ∧[b]Σ circuit of size s2

over C. Then, there is an equivalent ΣΠΣ circuit C3 over C of size s3 = O(s3
2a

2bn)
computing f . The circuit C3 has top fan-in O(s2

2a) and each multiplication gate of
C3 has fanin at most O(s2ab).

Proof. A Σ∧[a]Σ∧[b]Σ circuit C computes a polynomial of the form C = T1 + · · ·+Ts2
where each Ti =

(
`ei1i1 + · · ·+ `

eis2
is2

)di
for some linear forms `ij’s and each eij ≤ a and

each di ≤ b. Applying Lemma 4.6 to each such term T = (`e11 + · · · + `
es2
s2 )d, we can

write T as

T =

s2d+1∑
i=1

s2∏
j=1

fij
(
`
ej
j

)
=

s2d+1∑
i=1

s2∏
j=1

f ′ij (`j) where f ′ij(t)
def
= fij(t

ej)

Since each f ′ij(t) is a univariate polynomial of degree at most ba, it splits as a product
of linear factors over the algebraically closed base field, yielding a depth-3 circuit of
the form,

T =
sd+1∑
i=1

s∏
j=1

ab∏
k=1

(`j − αijk)

Thus, f can be computed by a ΣΠΣ circuit of top fan-in s2 · (s2a+ 1) = O(s2
2a) and

degree O(s2ab), thereby yielding an overall size of

s3 = s2 · (s2a+ 1) ·O(s2ab) · (n+ 1)

= O(s3
2a

2bn)

Combining the above lemma with corollary 4.5 we immediately get our main theorem.

5 Further Consequences

5.1 Depth reduction to PIT lift

Any depth reduction to a class C of circuits provides a framework for lifting a poly-
nomial time black-box PIT for the class C to black-box PITs for general circuits with
slightly worse running time. We now present such a lift in the context of the depth
reduction in Theorem 1.1 on exactly the same lines as in [AV08].

11



The following result roughly states that any black-box PIT for a class yields a lower
bound for the same class.

Lemma 5.1 ([HS80, Agr05]). Let {Cn} be any subclass of arithmetic circuits comput-
ing n-variate degree n polynomials, and suppose there is a black-box PIT running in
time nO(1) for the circuits of size n2 in Cn. Then, there is a family of multilinear poly-
nomials {qn} such that qn requires Cn-circuits of size 2Ω(n). Further, qn is computable
in time 2O(n).

The next lemma of Kabanets and Impagliazzo [KI03] states that given any family of
polynomials that require exponential sized general circuits to compute them, one can
construct a quasi-polynomial black-box PIT for general circuits.

Lemma 5.2 ([KI03]). Suppose {qn} is a family of multilinear polynomials computable

in exponential time such that qn requires arithmetic circuits of size 2n
Ω(1)

. Then, there
is a black-box PIT running in time 2(logn)O(1)

.

Suppose we did have a polynomial time black-box PIT for a class Cn, then Lemma 5.1
gives a family {qn} that requires 2Ω(n)-sized Cn-circuits. Lemma 5.2, however, requires
a family of polynomials {qn} that 2Ω(n)-sized general circuits. If we could say that

{qn} requiring 2Ω(n)-sized Cn-circuits implies {qn} requires 2n
Ω(1)

-sized general circuits,
then we would be done. Such a statement is precisely the contrapositive of reducing
a general circuit to a Cn-circuit.

Theorem 5.3. If there is a polynomial time black-box PIT for the class of depth-3
circuits, then there is a 2(logn)O(1)

time black-box PIT for general circuits computing
a low degree polynomial.

Proof. By Lemma 5.1, a polynomial time black-box PIT for depth-3 circuits imply
that there is a multilinear family of polynomials {qn} that require 2Ω(n)-sized depth-3

circuits. Theorem 1.1 that the family {qn} require general circuits of size 2n
Ω(1)

. Using

Lemma 5.2, we obtain a 2(logn)O(1)
time black-box PIT for general circuits.

5.2 Reduction from ΣΠΣ circuits to Σ∧Σ∧Σ circuits

In this section we show that, for the purpose of proving super-polynomial formula
lower bounds over C, we can equivalently work with any of ΣΠΣ or Σ∧Σ∧Σ circuits.
We will need the following families of symmetric polynomials

Symn(x1, . . . , xm)
def
=
∑
S⊆[m]
|S|=n

∏
i∈S

xi , Pown(x1, . . . , xm)
def
=
∑
j∈[m]

xnj .

Our proof relies on the following implication of Newton’s identities (cf. [Lit50]).
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Lemma 5.4. Let Symn(x1, . . . , xm) and Pown(x1, . . . , xm) denote the elementary sym-
metric and power symmetric polynomials of degree n respectively, as defined above.
Then,

Symn =
1

n!
·

∣∣∣∣∣∣∣∣∣∣∣

Pow1 1 0 · · ·
Pow2 Pow1 2 0 · · ·

...
. . . . . .

Pown−1 Pown−2 · · · Pow1 n− 1
Pown Pown−1 · · · Pow2 Pow1

∣∣∣∣∣∣∣∣∣∣∣
.

We now give a partial converse of Lemma 4.7.

Lemma 5.5. Let f be an N-variate degree n polynomial over any characteristic zero
field computed by a ΣΠΣ circuit with top fan-in s and product gates with fan-in at most
d. Then, there exists an equivalent Σ∧Σ∧Σ circuit of size poly(N, d, s) · 2O(

√
n·logn).

Proof. We are given that there exist s · d linear polynomials `ij’s such that

f =
s∑
i=1

d∏
j=1

`′ij.

As we are working over an infinite field, we can assume without loss of generality13

that each `′ij has a non-zero constant term. This is because constructing an depth-
5 powering circuit for an affine shift of f gives a depth-5 powering circuit for f of
polynomially larger size. Hence f has an expression of the form

f =
s∑
i=1

αi

d∏
j=1

(1 + `ij).

Let f [r] denote the degree-r homogeneous component of f . Then

f [r] =
s∑
i=1

αi · Symr(`i1, . . . , `id).

We now focus on a summand of the form Symr(`1, . . . , `d). From Lemma 5.4, there
exist scalars βa’s such that,

Symr(`1, . . . , `d) =
∑

a=(a1,...,ar)∈Zr≥0∑
i i·ai=r

βa ·
∏
i∈[r]

Powaii (`1, . . . , `d). (2)

13by taking a random affine shift
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The number of solutions of
∑

i∈[r] i · ai = r is exactly the number of ways to partition

the natural number r and hence is 2O(
√
r) by the Hardy-Ramanujan estimate for the

partition function [HR18]. Hence the number of terms in the above summation is
2O(
√
r).

The next step is to convert the product into a powering gate, similar to step 2 in the
depth reduction which used Fischer’s construction [Fis94]. However, we shall need
a more efficient way of converting a “low support” monomial into a sum of powers.
Such a construction is provided the following lemma of Ellison [Ell69].

Lemma 5.6 ([Ell69]). Over any field of zero characteristic, any homogeneous n-
variate degree d polynomial can be expressed as a linear combination of d-th powers
of linear forms. Further, the number of such powers of linear forms used is bounded
by (d+ 1)n−1 = 2O(n log d).

If yi
def
= Pi(`1, . . . , `d), then equation (2) can be written as

Symr(`1, . . . , `d) =
∑

a=(a1,...,ar)∈Zr≥0∑
i i·ai=r

βa ·
∏
i∈[r]

yaii .

Note that if
∑

i∈[r] i · ai = r then at most O(
√
r) of the ai’s are non-zero. Hence, each

of the monomials (in the yi’s) in the RHS of the above equation has support at most
O(
√
r) and degree at most r. Hence, applying Lemma 5.6 to each of the monomials

gives a representation of the form

Symr(`1, . . . , `d) =
∑

a=(a1,...,ar)∈Zr≥0∑
i i·ai=r

βa ·

2O(
√
r log r)∑
i=1

(αi1y1 + · · ·+ αiryr)
∑
aj


for some scalars αij, which is a Σ∧Σ circuit in the yi’s of size 2O(

√
r log r). Substituting

each yi by Pi(`1, . . . , `d), we get a Σ∧Σ∧Σ circuit for Symr(`1, . . . , `d) of size bounded
by poly(N, d) · 2O(

√
r log r). Since each f [r] is a linear combination of s such terms, and

f = f [0] + · · · + f [n], we have that f can be computed by a Σ∧Σ∧Σ circuit of size
poly(N, d, s) · 2O(

√
n logn).

6 Conclusion

We saw that powering circuits are useful as an intermediate step in doing depth
reduction of general circuits. We feel that proving lower bounds for powering circuits
will also be useful as a good intermediate step towards proving lower bounds for
general circuits. Towards this we recall a problem posed in [CKW11] in the form of
a more specific conjecture.
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Conjecture 6.1. Over any field F of characteristic 0, any depth-∆ powering circuit
with poly(d)-bounded degree computing the monomial x1 · · ·xd must be of size at least

2d
Ω(1/∆)

size.

Also, step 1 and step 2 of the depth-reduction reduces any ABP to a depth-5 pow-
ering circuit with formal degree bounded by the degree of the polynomial. It is
only step 3 that results in the blow-up in degree. Hence, proving a 2ω(

√
d log d) lower

bound for low (formal) degree depth-5 powering circuits computing Permd would
yield super-polynomial formula lower bound. Proving such a lower bound for homo-
geneous depth-5 powering circuits might be an easier task than proving lower bounds
for non-homogeneous depth-3 circuits (where we have no degree bound). We pose
the following problem as the next potential step towards proving super-polynomial
formula lower bounds for Permd.

Problem 6.2. Lower Bounds for homogeneous Σ∧Σ∧Σ circuits. Show that for
any expression of the form

Permd =
∑
i∈[s]

∑
j∈[t]

`
eij
ij

ri

with eij · ri ≤ d for all i, j, one must have s · t = dω(1).

For the setting where each eij ≤ n(1−δ) for any δ > 0, we already know of a 2O(nδ)

lower bound [GKKS13] on s, independent of d. But the approach of [GKKS13] does
not yield any non-trivial lower bound if eij = Ω(d) even if one assumes t = O(d).
Presumably, using the fact that each of the inner terms have a low partial derivative
space, we should be able to prove super-polynomial lower bounds. We believe that
any technique to solve Problem 6.2 would be very insightful towards the grander goal
of proving super-polynomial circuit lower bounds.

Summary. ΣΠΣ circuits have been intensely investigated. Some recent work led to
both structural results on ΣΠΣ identities as well as deterministic blackbox algorithms
for various subclasses of ΣΠΣ circuits. We also note here that the Sylvester-Gallai
configurations that arose in this line of work, has led to some beautiful and produc-
tive series of works in understanding such geometric configurations culminating in
essentially optimal upper and lower bounds on the dimension of such configurations.
Because of these developments, we are inclined towards interpreting theorem 1.1 in an
optimistic manner - of proving lower bounds for ΣΠΣ circuits as yet another potential
route to obtaining lower bounds for arbitrary arithmetic circuits.
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A Lower bounds for slightly non-homogeneous ΣΠΣ

circuits

Nisan and Wigderson [NW97] showed that the partial derivative method can be used
to prove lower bounds for homogeneous depth-3 circuits computing Permn. Their
method also works if the ΣΠΣ circuit was slightly non-homogeneous, in the sense that
the formal degree is O(n2−δ) for any constant δ > 0. This observation has not been
explicitly stated in the literature (to the best of our knowledge) and we note that
here.

Theorem A.1 ([NW97]). If C is a ΣΠΣ circuit of formal degree O(n2−δ) computing
Permn, then size(C) = exp

(
Ω(nδ)

)
.

Before we prove the theorem, we shall need the following lemmas for estimating
binomial coefficients.

Lemma A.2.
(
a
b

)
= 2Θ(a·H( ba)) · poly(ab) where H(x) = x ln 1

x
+ (1− x) ln

(
1− 1

x

)
.

Proof. Follows from Stirling’s approximation of n! ≈
(
n
e

)n√
2πn (cf. [Rom]).

Lemma A.3. For every 0 < x < 1, we have that x ln 1
x
≤ H(x) ≤ x ln 1

x
+ x

Proof of Theorem A.1. The proof shall proceed by bounding the dimension of the
k-th order partial derivatives (for a suitably chosen parameter k). Let ∂=k(f) denote
the vector space of k-th order partial derivatives of f .

Lower bounding dim∂=k(Permn): Any k-th order derivative of Permn is just a

(n−k)× (n−k) permanental minor. There are
(
n
k

)2
many such permanental minors,

and all of them are of course linearly independent. Hence dim∂=k(Permn) ≥
(
n
k

)2
.

Upper bounding dim∂=k(C): The circuit C computes a polynomial of the form

C = T1 + · · ·+ Ts

where each Ti is a product of at most d = O(n2−δ) linear polynomials. Also as
dim∂=k(C) ≤ s·max∂=k(Ti), it suffices to bound the dimension of partial derivatives
of one such term.

It is easy to observe that the k-th order partial derivative of T = `1 . . . `d is gener-
ated by linear combinations of the subterms

{
TS =

∏
i∈S `i : S ⊆ [d], |S| = d− k

}
.

Hence, ∂=k(T ) ≤
(
d
k

)
and hence dim∂=k(C) ≤ s ·

(
d
k

)
.
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If C computes Permn, then

s ·
(
d

k

)
≥

(
n

k

)2

=⇒ s ≥
(
n
k

)2(
d
k

) ≥ exp

(
2n ·H

(
k

n

)
− d ·H

(
k

d

)
−O(lnn)

)
(Lemma A.2)

≥ O

(
2n

(
k

n
ln
n

k

)
− d

(
k

d
ln
d

k
+
k

d

))
−O(lnn) (Lemma A.3)

= O

(
k ln

(
n2

kde

))
−O(lnn)

= Ω(nδ) for k = εnδ for a small enough ε > 0

Hence s = exp
(
Ω(nδ)

)
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