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Abstract

Propositional proof complexity is an area of complexity theory that addresses the question
of whether the class NP is closed under complement, and also provides a theoretical framework
for studying practical applications such as SAT solving. Some of the most well-studied contra-
dictions are random k-CNF formulas where each clause of the formula is chosen uniformly at
random from all possible clauses. If the clause-to-variable ratio is chosen appropriately, then
with high probability such a formula will be unsatisfiable, and the lack of structure in these
formulas makes them natural candidates for proving lower bounds on the size of refutations in
strong systems such as Frege systems where basically no nontrivial lower bounds are known.

In this work we prove exponential lower bounds on treelike resolution refutations of random
3-CNFs using new combinatorial techniques. The basic idea is to show that any formula with a
short refutation can be compressed in a way that a random formula cannot be by algorithmically
constructing such a short encoding. It is important to emphasize that the actual results in
the work are not new; exponential lower bounds for random k-CNFs are already known for
treelike resolution, and in fact for much stronger systems such as general resolution and the
RES(k) system. However, it is our hope that these new techniques generalize in a way that the
known combinatorial techniques based on size-width tradeoffs do not, and that we can use these
encoding techniques to attack stronger systems such as constant depth Frege systems where the
old techniques are not applicable.

1 Introduction

Propositional proof complexity is a sub-area of complexity theory concerned with the following type
of question: given a proof system P and a propositional tautology σ, what is the shortest proof of
σ in P? Here a propositional tautology is a formula made up of a finite set of boolean variables and
logical connectives such that regardless of how the variables are set to TRUE or FALSE, the formula
always evaluates to TRUE. For our purposes we can restrict attention to tautologies presented in
DNF form.

A propositional proof system can be formally defined as a polynomial time function P such that

∀σ ∈ T ∃y[P (σ, y) = 1]
∀τ 6∈ T ∀y[P (τ, y) = 0]
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where T is the set of all propositional tautologies encoded as strings. For σ ∈ T , we think of y
as a proof that σ is a tautology. This definition captures the intuitive features of a proof system:
the ability to prove anything that is true, the inability to prove anything that is false, and that
verifying whether a proof is correct should be an efficient process.

Note that there is no restriction on the size of a proof y, only that checking whether y is correct
can be done in polynomial time. If a proof system P has the additional feature that for any σ ∈ T ,
there exists a correct proof y of σ such that |y| ≤ p(|σ|) for some fixed polynomial p, we say
that the proof system P is polynomially bounded. Cook and Reckhow introduced this abstract
notion of a proof system, and they also established the following fundamental connection between
propositional proof complexity and the standard computational complexity.

Theorem 1.1 [CR79] NP = coNP if and only if there exists a polynomially bounded proof system.

It is generally conjectured that NP 6= coNP, in which case for every proof system P there exists
certain families of tautologies for which the shortest proofs in P must be of superpolynomial size.
This suggests a natural program: attempt to show that stronger and stronger proof systems P are
not polynomially bounded as progress towards showing that NP 6= coNP.

This program has practical implications as well, due to the importance of the satisfiability prob-
lem and its relationship to propositional tautologies. (A formula σ is a tautology if and only if its
negation is unsatisfiable). Because many important optimization problems can be efficiently en-
coded as satisfiability instances, an enormous amount of research has been invested into developing
SAT solvers that outperform the trivial exponential time brute force algorithm. Proof complexity
lower bounds can be used to lower bound the runtime of certain classes of these solvers. For instance,
many of the SAT solvers used in practice are variants of the DPLL algorithm [DLL62, DP60], a
simple branching algorithm based on setting a variable to either TRUE or FALSE and then recur-
sively considering the simplified formulas that result. It has been shown that from the execution of
a DPLL based SAT solver on an unsatisfiable formula σ, one can derive a resolution refutation of
σ that has size proportional to the runtime of the solver. This holds even for DPPL based solvers
that use sophisticated heuristics to choose the order on which to branch on variables and “clause
learning” to do more efficient backtracking [BKS04]. Thus, any resolution lower bounds immedi-
ately imply lower bounds for the runtime of these algorithms as well. By identifying a resolution
refutation of σ as a proof of the tautology ¬σ, we can think of resolution as a proof system in the
above framework. Resolution is one of the simplest and well-studied proof systems; there are expo-
nential lower bounds on the size of resolution refutations of many classes of unsatisfiable formulas,
which proves that any DPLL based SAT solver will have exponential runtime on these same classes
of formulas. This is a general principle; anytime we derive lower bounds for a propositional proof
system on a class of tautologies, as a byproduct we get lower bounds on the runtime of some class
of co-nondeterministic SAT solving algorithms on the negation of those same instances.

In this paper we focus on randomly generated 3-CNF formulas, where each clause is indepen-
dently and uniformly chosen at random from all possible clauses. If the clause to variable ratio is
slightly above the satisfiability threshold, then with high probability such a random formula will
be unsatisfiable. One main reason why random formulas are of interest is that they are candidates
to be hard to refute for any proof system. No proof system is known to have polynomial size refu-
tations of these instances, and intuitively they seem to be hard due to their lack of structure. For
strong proof systems such as Frege systems, which have rules for manipulating arbitrary formulas
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instead of just clauses, no superlinear lower bounds of any kind are known and there are few hard
candidates, so random formulas are a natural choice for attacking such systems.

However, the lack of structure that makes random formulas potentially useful for proving lower
bounds can be an impediment as well. Historically, lower bounds on random formulas have come
only after lower bounds on explicit formulas have already been proven. For instance, the first
resolution lower bounds were for classes of formulas capturing the idea of “counting” such as
Tseitin formulas and propositional encodings of the pigeonhole principle [Tse68, Hak85]. Later,
Szémeredi and Chvátal were able to adapt some of these techniques to work for random formulas
as well [CS88]. In the case of constant depth Frege systems, which are restricted versions of Frege
systems whose lines are constant depth formulas, we have exponential lower bounds for certain
explicit families of formulas like the pigeonhole principle [Ajt94, PBI93], but no superpolynomial
bounds are known for random formulas.

Another reason for focusing on random formulas in proof complexity is that they do not have
an analogue in circuit complexity. Progress on propositional proof complexity has run somewhat
parallel to circuit complexity, usually with breakthroughs in circuit complexity lower bounds coming
first and informing new lower bounds for proof complexity. For instance, the combinatorial lower
bounds for constant depth Frege systems rely on random restrictions and a switching lemma adapted
from the AC0 lower bounds of [FSS84, Has86]. Sometimes the connection to circuit complexity is
more direct; in the case of the cutting planes system, an algebraic proof system that manipulates
linear inequalities, the only known superpolynomial lower bounds for any class of formulas rely
on a reduction to the monotone circuit lower bounds of Razborov [Raz85]. Presently, progress in
propositional proof complexity lags slightly behind circuit complexity in the sense that we have
some lower bounds for constant depth circuits with mod gates [Raz87, Smo87, Wil11], but no
lower bounds for restrictions of Frege systems that work with such circuits. Proving circuit lower
bounds is notoriously difficult, and a number of barriers such as relativization, natural proofs, and
algebrization have been identified in that field [BGS75, RR97, AW08]. If a major breakthrough in
proof complexity is to occur anytime soon, such as superpolynomial lower bounds for Frege systems
or the even stronger Extended Frege systems, it is likely that there will have to be a departure from
the paradigm of adapting circuit complexity techniques.

Random formulas are intriguing in this respect because they highlight a major difference between
proof complexity and circuit complexity. In circuit complexity we are not interested in lower bounds
on the circuit size of arbitrary functions, as a trivial counting argument shows that a randomly
chosen function will have high circuit complexity. Instead, we try to prove lower bounds for explicit
functions (usually defined as functions in some complexity class such as NP). However, it is not
clear how to formulate the notion of a random function in a class like NP in a useful way. On
the other hand, no such trivial counting argument shows that a random formula must have large
proof complexity. This opens up the possibility of employing probabilistic methods and other
nonconstructive techniques to prove lower bounds for random formulas that perhaps cannot be
used in the circuit complexity setting.

In this paper we adopt this approach and prove treelike resolution lower bounds for random
3-CNF formulas using new encoding techniques. The high level idea is simple; we show that given a
short treelike resolution refutation of an unsatisfiable formula, the description of the formula can be
compressed more than one can compress a random formula, and therefore random formulas cannot
have short refutations. In essence we are using a counting argument that is specifically tailored to
work with random formulas.
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The results themselves are not particularly interesting; treelike resolution is a weak variant of
the resolution system and our bounds are weaker than those proven previously. (For the clause
density we choose the best known bounds are of the form 2Ω(n), and we derive bounds of 2n

ε
for some

ε). It is our hope however that the techniques introduced generalize better than current methods
and will be useful for attacking stronger proof systems for which no good methods currently exist.
Wigderson and Ben-Sasson showed that most of the known resolution lower bounds, including
those for random formulas, could be explained in terms of size-width tradeoffs [BSW01]. In this
framework, one shows that any short refutation can be transformed to another refutation where
the width of all clauses in the refutation (defined as the number of literals in the clause) is small.
Then one derives lower bounds on the size of refuting certain formulas by showing that any such
refutation must contain a clause of large width. This approach is very elegant, but is hard to
generalize since the notion of width is specific to clauses and does not apply to proof systems that
have greater expressive power than resolution. The basic framework we establish in this paper
can be applied to any proof system, and the lower bounds we derive for treelike resolution do not
directly refer to clause width at all.

One other way in which the methods here seem to be qualitatively different than previous
methods is that they are algorithmic in nature. At the most abstract level, in order to establish
that random formulas do not have short refutations, one must identify a property Q that random
formulas have but that formulas with short refutations do not have. The previous resolution lower
bounds use static properties Q based on the idea of expansion. Given a CNF formula, we can
form a bipartite graph where one set of vertices are all the clauses of the formula and the other
set of vertices are all the variables of the formula, and there is an edge between a clause and a
variable if the variable appears in the clause. For a random formula the resulting bipartite graph
will have some type of explictly statable expansion properties that formulas with short resolution
refutations provably cannot have. On the other hand, in our lower bound proof the property Q
is intrisically tied to the main coding algorithm of the proof. Our Q also is capturing some idea
related to expansion, but it seems impossible to extract it from the main algorithm and to state it
explicitly as a static property. Perhaps the ability to use these implicit properties will be useful in
dealing with more powerful proof systems.

2 Random Formulas and the General Framework

In this section we define random formulas and prove two simple lemmas that establish our general
framework applicable to any proof system.

Definition 2.1 A boolean variable is a variable that takes only the values TRUE or FALSE; we
will associate the value 1 with TRUE and the value 0 with FALSE. For a boolean variable x, the
positive literal x1 evaluates to 1 if and only if x = 1 and the negative literal x0 evaluates to
1 if and only if x = 0. A clause C is a disjunction of literals, i.e C = xj1i1 ∨ · · · ∨ x

jr
ir

, where each
jl ∈ {0, 1} and each xil is a boolean variable. We say that a clause C is simple if no variable appears
twice in C, and we say that two simple clauses C1 and C2 are equal if they contain the same literals.
lits(C) denotes the set of literals in C, and vars(C) denotes the set of variables in C, ignoring
the sign of the literal. A k-CNF formula ϕ is a conjunction of clauses, i.e. ϕ = C1 ∧ · · · ∧ Cr,
where each Ci is a clause that contains at most k literals. For a k-CNF formula ϕ, the size of ϕ,
denoted by |ϕ|, is the number of clauses in ϕ. We write φ ⊆ ϕ if φ is a subset of the clauses of ϕ.
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Definition 2.2 Let x1, . . . xn be a finite set of boolean variables. We define a random k-CNF
formula with n variables and clause density ∆ to be a formula chosen uniformly at random
from all k-CNF formulas F such that |F| = ∆n, each clause of F is simple and contains exactly k
literals, and no two clauses of F are equal. 1

It is known that there exists a constant ∆∗ ≤ 4.596 such that for large n, a random 3-CNF
formula with n variables and clause density ∆ > ∆∗ will be unsatisfiable with high probability
[JSV00].

Our first lemma establishes a simple counting method for proving that random formulas do not
have short refutations in a proof system.

Lemma 2.3 Let P be an arbitrary proof system, and c be a constant such that c > ∆∗. Let Φ be
the set of all 3-CNF formulas with at most n variables and exactly cn distinct clauses such that
each clause is simple and contains exactly three literals. Let Ψ ⊆ Φ be the set of all such formulas
that are unsatisfiable and have refutations of size at most t(n) in P. Let {0, 1}≤k be the set of all
binary strings of length at most k. If there exists an onto function η : {0, 1}≤k → Ψ with

k = log
((

8
(
n
3

)
cn

))
− ω(1)

then with high probability a random 3-CNF formula F with n variables and clause density c will be
unsatisfiable and have no P refutation of size at most t(n). 2

Proof: Because c > ∆∗, with high probability F will be unsatisfiable.
We have that

log |Φ| = log
((

8
(
n
3

)
cn

))

Therefore, given the assumption, |Ψ| � |Φ|, so with high probability F will be unsatisfiable
and have no P refutation of size at most t(n).

Lemma 2.3 shows that if we can “compress” any formula ψ that has a short refutation, then
we can get lower bounds on the size of refutations of random formulas. Our next lemma says
that we can focus our attention on finding some subset of the clauses of ψ that are compressible.
Suppose we encode a 3-CNF formula with cn clauses by individually encoding each clause (in other
words, writing down each of the three variables in the clause and the signs of the literals). Then
altogether the encoding would be of size about 3cn log n, since writing down a variable takes about
log n bits. Of course, by considering the clauses altogether instead of individually, we can save on

1This final condition, that no two clauses are equal, is not usually included in the definition of a random formula.
However, for large n and constant clause density, if we omit this last condition with high probability a random
formula will contain distinct clauses, and explicitly including this condition as part of our definition will help with
what follows.

2Again, we are identifying a refutation of an unsatisfiable formula σ with a proof of the tautology ¬σ, so these
lower bounds on the size of P refutations of unsatisfiable CNF formulas are equivalently lower bounds on the the size
of P proofs of tautological DNF formulas
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our encoding; as it turns out it is possible to encode an arbitary 3-CNF formula with cn clauses
using about 2cn log n bits, which is about 2 log n bits per clause. The following lemma says that if
given a formula ψ with a short refutation we are always able to find some subset of m > 0 clauses
of ψ that can be encoded using (2 − ε)m log n bits, then this suffices to get the lower bounds of
Lemma 2.3.

Lemma 2.4 Let P, c, n,Φ,Ψ,F be as in Lemma 2.3.
Let Φm be the set of all sets of m clauses.
Suppose there exists a constant ε > 0 and a family of functions {ρm}, 1 ≤ m ≤ cn, such that

1. ρm : {0, 1}(2−ε)m logn → Φm

2. For all ψ ∈ Ψ there exists ϕ ⊆ ψ and ρm such that ϕ is in the range of ρm

Then with high probability F will have no P refutation of size at most t(n).

Proof: By Lemma 2.3, it suffices to construct an onto function η : {0, 1}≤k → Ψ with

k = log
((

8
(
n
3

)
cn

))
− ω(1)

Let ψ ∈ Ψ. By assumption there exists 1 ≤ m ≤ cn and ϕ ⊆ ψ such that ρm(x) = ϕ for some
x ∈ {0, 1}(2−ε)m logn. Let ψ− be the clauses of ψ that are not in ϕ. The total number of 3-CNF
formulas with at most n variables and exactly cn − m distinct clauses such that each clause is
simple and contains exactly three literals is(

8
(
n
3

)
cn−m

)
Therefore ψ− can be uniquely represented by a binary string y of size

log
((

8
(
n
3

)
cn−m

))
We will define η(x ◦ y) = ψ, where ◦ is the concatenation function. η is well defined; as it turns

out, the larger m is the shorter the string x ◦ y will be, so the length of the string x ◦ y contains
the information about where the delimitation between x and y occurs.

Clearly η is onto, so all that remains is to show that

|x ◦ y| ≤ log
((

8
(
n
3

)
cn

))
− ω(1)

We have that

|x ◦ y| = log
((

8
(
n
3

)
cn−m

))
+ (2− ε)m log n

= log
((

8
(
n
3

)
cn−m

))
+ 2m log n− εm log n
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Therefore, it suffices to show that

log
((

8
(
n
3

)
cn

))
− log

((
8
(
n
3

)
cn−m

))
≥ 2m log n− o(m log n)

Let (n)k denote the falling factorial. We have that

log
((

8
(
n
3

)
cn

))
− log

((
8
(
n
3

)
cn−m

))
= log

(
((4/3)(n)3)!

(cn)!((4/3)(n)3 − cn)!

)
− log

(
((4/3)(n)3)!

(cn−m)!((4/3)(n)3 − cn+m)!

)
= log((cn−m)!) + log(((4/3)(n)3 − cn+m)!)− log((cn)!)− log(((4/3)(n)3 − cn)!)

= −
cn∑

i=cn−m+1

log i+
(4/3)(n)3−cn+m∑
i=(4/3)(n)3−cn+1

log i

≥ −m log(cn) +m log((4/3)(n)3 − cn+ 1)
= −m log n+ 3m log n− o(m log n)
= 2m log n− o(m log n)

3 Resolution and the DPLL system

Resolution is one of the simplest and well-studied proof systems; even so, proving resolution lower
bounds has been a difficult task.

A resolution refutation of an unsatisfiable CNF formula ϕ is a sequence of clauses C = C1, C2, . . . Ct,
where Ct = ∅, the empty clause, and each Ci is either a clause from ϕ or is derived from two clauses
Cj , Ck, with j, k < i, using the following resolution rule

A ∨ x1, B ∨ x0

A ∨B

Here Cj = A ∨ x1, Ck = B ∨ x0, Ci = A ∨ B, A and B are arbitrary sets of literals, and x is an
arbitrary boolean variable. Because the resolution rule is sound and the empty clause is trivially
unsatisfiable, such a sequence of clauses is a proof that ϕ is unsatisfiable. One can also show that
resolution is complete; any unsatisfiable 3-CNF formula has a resolution refutation of size at most
2n, where the size of a resolution refutation is defined to be the number of clauses in the sequence.

It is natural to represent a resolution refutation π of a formula ϕ as a rooted directed acyclic
graph π with nodes in π corresponding to the clauses in C. In this representation, the root of π is
the clause ∅, the leaves of π are clauses of ϕ, and there are edges going from Cj and Ck into Ci if
Ci was derived from Cj and Ck. (The graph π cannot necessarily be uniquely determined from C,
since it is possible that a clause from C can be legally derived in multiple ways). If there exists a
π corresponding to C such that the outdegree of every node in π other than the root is one, then
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we say that C is a treelike refutation. In some cases the shortest treelike resolution refutation of a
formula ϕ can be exponentially larger than the shortest general resolution refutation of ϕ [BSIW00].

Tseitsin proved the first superpolynomial resolution lower bounds for a restricted form of reso-
lution called regular resolution (a system strictly more powerful than treelike resolution) in the late
1960’s, using a class of contradictions based on the fact that the sums of degrees of an undirected
graph must be even [Tse68]. Almost two decades passed before Haken proved the first superpolyno-
mial bounds for general resolution, using a class of contradictions based on the pigeonhole principle
[Hak85]. Soon after, Szémeredi and Chvátal proved the first resolution lower bounds for random
CNFs using techniques adapted from Haken’s proof [CS88]. Later, Ben-Sasson and Wigderson
unified all of these previous results under the size-width tradeoff paradigm [BSW01]. The best
lower bounds for random 3-CNFs with n variables and clause density c > ∆∗ are of the form 2Ω(n),
which is tight up to the multiplicative factor in the exponent. There also exist exponential lower
bounds for random formulas when the clause density is non-constant, and for the proof system
RES(k), which is a generalization of resolution whose lines are k-DNFs instead of just clauses
[BSW01, Ale05]. (A clause is a 1-DNF and resolution is equivalent to RES(1). RES(k) for constant
k > 1 is strictly stronger than resolution, and strictly weaker than constant depth Frege systems).

We now describe the DPLL proof system.

Definition 3.1 A DPLL refutation π of an unsatisfiable 3-CNF formula ϕ is a binary rooted tree.
Each interior node of π is labeled with a variable x, and the two edges entering such a node are
respectively labeled with x0 and x1. For a given node a in π, we associate with a a set ρ(a) that
consists of the literals labeling the path from the root to a. Every leaf node b is labeled with a
clause from ϕ whose literals are a subset of ρ(b). 3 The size of π is the number of nodes in π.

We will make a couple of assumptions about the structure of a DPPL refutation.

Definition 3.2 Let π be a DPLL refutation of a formula ϕ. For a node a in π, let tree(a) be the
subtree of π with root a.

Suppose an interior node a is labeled with the variable x. Then child1(a) denotes the node
in π connected to a by an edge labeled with x1, and child0(a) denotes the node in π connected
to a by an edge labeled with x0. Also, tree1(a) denotes tree(child1(a)), the subtree rooted at
child1(a), and tree0(a) denotes tree(child0(a)), the subtree rooted at child0(a).

We say that π is in normal form if the following conditions are satisfied:

1. Along any path from the root of π to a leaf node, no two nodes are labeled with the same
variable

2. Let a be an interior node in π labeled by a variable x. Then there exists some leaf node
in tree1(a) labeled by a clause containing the literal x1, and there exists some leaf node in
tree0(a) labeled by a clause containing the literal x0.

Lemma 3.3 If there exists a DPLL refutation of a formula ϕ of size s, then there exists a normal
form DPLL refutation of ϕ of size at most s.

3In the usual setup a leaf node b is labeled with a clause that only contains literals whose negations are in ρ(b).
This corresponds more closely to the DPLL algorithm, where one branches on variables and backtracks after finding
a clause that is falsified by the current restriction of the variables. Our definition is equivalent and will ease notation.
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Proof: Let π be a DPLL refutation of a formula ϕ that is not in normal form. Suppose that
condition 1 is violated, so that along some path from the root to a leaf node there are two nodes
a and b, each labeled with a variable x. Without loss of generality, assume that a is above b in π,
and that b is in tree1(a). Then if we modify π by replacing the subtree tree(b) with the subtree
tree1(b), π will still be a valid DPLL refutation of ϕ, and the size of π will decrease. We can iterate
this process until condition 1 is satisfied.

Now suppose that condition 2 is violated. Let a be an interior node in π labeled by a variable
x, and without loss of generality suppose that there is no leaf node in tree1(a) that contains the
literal x1. Then if we modify π by replacing the subtree tree(a) with the subtree tree1(a), π will
still be a valid DPLL refutation of ϕ and the size of π will decrease. We can iterate this process
until condition 2 is satisfied.

Our interest in the DPLL system stems from the following connection to treelike resolution.
(See [Kra95] for instance)

Theorem 3.4 An unsatisfiable k-CNF formula ϕ has a DPLL refutation of size s if and only if
it has a treelike resolution refutation of size s.

Proof sketch: Given a graph π corresponding to a treelike refutation C of ϕ, we can create a
normal form DPLL refutation π′ of ϕ with the exact same node and edge structure as π. The leaf
nodes of π′ will be labeled the same as in π. Suppose an interior node a of π has edges entering it
from nodes b and c, and that a, b, and c correspond to the clauses Ca, Cb, and Cc in C respectively.
Furthermore, suppose that in C Ca is derived from Cb and Cc by resolving on the variable x, and
that x1 is in Cb and x0 is in Cc. Then in π′, a will be labeled with the variable x, the edge going
from b to a will be labeled with x1 and the edge going from c to a will be labeled with x0. If we
form π′ this way it will be a valid normal form DPPL refutation of ϕ.

Similarly, if π′ is a normal form DPLL refutation of ϕ, we can create a treelike resolution
refutation C of ϕ such that |C| = |π′|. We will build C inductively using the tree π′. For each leaf
node in π′ labeled with a clause C, we add C to C. Suppose an interior node a in π′ has edges
going into it from nodes b and c, and that Cb and Cc are the clauses already in C corresponding
to the nodes b and c. Furthermore, suppose a is labeled with the variable x. Then we add Ca to
C where Ca is the clause derived from Cb and Cc by resolving on x. If we form C this way, it will
be a valid treelike resolution refutation that has a corresponding graph π with the same node and
edge structure as π′.

4 Statement of the Main Theorem and the Coding Algorithm

We are now ready to state our main theorem.

Theorem 4.1 Let F be a random 3-CNF with n variables and clause density c > ∆∗ for some
constant c. There exists a δ such that with high probability F does not have a DPLL refutation of
size at most 2n

δ
.
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Corollary 4.2 Let F be a random 3-CNF with n variables and clause density c > ∆∗ for some
constant c. There exists a δ such that with high probability F does not have a treelike resolution
refutation of size at most 2n

δ
.

Proof of Theorem 4.1: By Lemma 2.4, we can reduce the proof to the following problem. We
are given some unsatisfiable 3-CNF formula ϕ that has at most n variables and exactly cn distinct
clauses where each clause is simple and contains exactly 3 literals. Furthermore, we are guaranteed
that ϕ has a DPLL refutation of size at most 2n

δ
. We must show that we can find some subset of m

clauses of ϕ, for 1 ≤ m ≤ cn, such that we can encode these m clauses using at most (2− ε)m log n
bits for some ε > 0. Our code must be independent of ϕ in the sense that we must use the same
code for any such input to our problem.

Let π be the lexicographically first normal form DPLL refutation of ϕ of size at most 2n
δ
. We

have no time constraints, so finding π is not an issue.
Our solution will be to design a coding algorithm ENCODE that traverses the tree π and always

outputs a transcript code that is of size at most (2 − ε)m log n bits and encodes m > 0 clauses of
ϕ. ENCODE will work by repeating the following steps:

ENCODE(π)
1 Get next clause C
2 Encode C
3 Make cache deletion decisions
4 Check halting condition

Let us first informally discuss the basic ideas behind ENCODE.
As part of the algorithm, each time ENCODE reaches line 1 it must produce a new clause to

encode. In order to do this, ENCODE will start at the root and perform a depth-first traversal of
π. Whenever there is a choice of whether to move to the left child or the right child, the traversal
will go in the direction of the subtree of smaller size, breaking ties arbitrarily. When the traversal
reaches a leaf node labeled by a clause C, if C has not yet been encoded previously during the
algorithm ENCODE will return this clause C (and continue the depth-first traversal from this point
the next time it must get a clause). Otherwise, ENCODE backtracks and continues the depth-first
traversal until a clause C ′ is found that has not yet been encoded previously.

Once a clause C has been found that has not previously been encoded, ENCODE must encode
C in line 2. Throughout its execution, ENCODE maintains a transcript code that will be the
output of the algorithm. ENCODE also maintains a “cache” of variables that starts off empty and
will be used to encode clauses. The following three types of operations are recorded in code:

1. Adding a new variable to the cache

2. Encoding a clause C of ϕ.

3. Deleting a variable from the cache

In order for ENCODE to encode the clause C, it first must ensure that all the variables in
var(C) are in the cache. Let X ⊆ var(C) be the variables that are not currently in the cache.
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ENCODE adds each x ∈ X to the cache one at a time and records this in code. To record entering
a variable x in the cache, ENCODE must write log n bits to code to describe x. 4

Once all the variable in var(C) are in the cache, ENCODE encodes the clause C by indexing the
three variables in var(C) in the cache and using three extra bits to specify whether each variable
appears as a positive or negative literal in C. To do this ENCODE must write 3 log |cache|+ 3 bits
to code, where |cache| is the current size of the cache.

Next, in step 3, ENCODE makes a decision about whether or not to delete some variables from
the cache. If ENCODE decides to delete a variable x from the cache, it does this and then records
this operation in code by writing log |cache| bits to code specifying x.

Finally, in step 4, ENCODE decides whether or not to halt. If it halts then the algorithm ends
and ENCODE outputs code. Otherwise, the algorithm continues again at step 1.

Note that at any time during the execution of ENCODE, the current state of code implicitly
defines cache, the variables that are in the cache at the current time, and clauses, the set of clauses
in ϕ that have already been encoded.

Let us now give some intuition behind how ENCODE can compress the description of a set of
clauses of ϕ. Suppose ENCODE only halts after it has traversed the entire tree π. Also, suppose
we are able to ensure that the size of cache stays small throughout the execution of ENCODE (let
us say |cache| ≤ O(log n)), and we can ensure that whenever a variable x is entered into the cache,
it is accessed twice during an encode operation before it is deleted from the cache.

Then, since every time a clause is encoded exactly three variables are accessed from the cache,
we get that the number of times a variable is added to the cache is at most (3/2)m, where m
is the number of clauses that are encoded. Also, because the cache never grows to be bigger
than O(log n), recording all the encode and deletion operations to code will together take at most
O(m log logn) = o(m log n) bits. Therefore, including the add variable operations, when ENCODE
halts and outputs code it will have length at most (3/2)m log n + o log(n) bits, which is at most
(2 − ε)m log n bits for an appropriately chosen ε. The assumptions we make here are unrealistic,
but this will be the intuition underlying how we define the cache deletion decisions and halting
condition of ENCODE.

In order to describe further details of ENCODE we will need some more definitions.

Definition 4.3 Let a be an interior node of π. If during the depth-first traversal of ENCODE a
has not yet been reached we say that a is unreached . If ENCODE is in the process of traversing
either tree0(a) or tree1(a) but has not yet traversed the other subtree, we say that a is in phase
1 . If ENCODE is in the process of traversing either tree0(a) or tree1(a) and has already finished
traversing the other subtree, we say that a is in phase 2 . If ENCODE has finished traversing all
of tree(a), then we say that a is finished .

Let a be an interior node of π labeled by a variable x. Then edge1(a) denotes the edge labeled
by x1 entering a, edge0(a) denotes the edge labeled by x0 entering a, and we say that edge1(a)
and edge0(a) are partner edges.

Let leaf be a leaf node in π labeled by a clause C. Suppose xi ∈ lits(C). Then along the path
from the root of π to leaf there must be some node a labeled with the variable x. If at some point
during the execution of ENCODE the depth-first traversal reaches leaf and causes ENCODE to
encode C, we say that edgei(a) was covered by C, and from that point on we say that the edge

4Also, whenever an operation is recorded in code the type of operation must be specified. But this will only take
a constant number of extra bits per clause encoded and will not affect our analysis
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edgei(a) has been covered . For some node b, if leaf is in tree(b), we say that edgei(a) was covered
during the traversal of tree(b). (Note that this does not imply that edgei(a) is in tree(b).)

As a first try, let us define the cache deletion decisions of ENCODE as follows. Suppose
ENCODE has just encoded a clause C in step 2 containing the literals xi, yj , zk that labels a leaf
node leaf in π. In step 3 ENCODE now has to decide which if any variables to delete from the
cache. The only variables that ENCODE will consider deleting are the variables x, y, and z. To
decide whether to delete each of the variables, ENCODE will consider them one at time, using the
following protocol.

Suppose ENCODE is deciding whether to delete the variable x. Because xi ∈ lits(C), there
must be a node a on the path from the root to leaf that is labeled by the variable x. Because
ENCODE just encoded the clause C, the depth-first traversal is in the process of traversing treei(a),
so a is in phase 1 or in phase 2. If a is in phase 2 then delete x from the cache, and if a is in phase
1 then do not delete x from the cache.

The logic behind such a protocol is as follows. We know that because π is in normal form
(see Definition 3.2), there is some leaf node leaf1 in tree1(a) labeled by a clause C1 containing
the literal x1. Similarly, there is some leaf node leaf0 in tree0(a) labeled by a different clause
C0 containing the literal x0. The hope is that if we wait to delete x from the cache until after
both C0 and C1 have been encoded, then we can ensure that every time a variable is added to the
cache it is accessed twice during an encode operation before it is deleted from the cache like in our
hypothetical situation from before.

The problem with this strategy is that although we have the guarantee that leaf0 and leaf1

exist in tree(a), we do not have the guarantee that when ENCODE begins traversing tree(a) both
C0 and C1 have not been encoded previously during the algorithm. Indeed, it may be the case
using this cache deletion decision protocol that x is entered into the cache while a is in phase 1 but
no clause containing x is ever encoded while a is in phase 2 or vice versa, in which case x may only
be accessed once for an encode operation before it is deleted from the cache. However, in order for
this to be the case, it must be that x was entered into the cache previously during the algorithm
and then removed. This suggests a strategy for dealing with these bad situations: if we can predict
when such a situation will occur, we should not delete x from the cache the first time around, so
that it will still be waiting there when we need to access it again.

This motivates our second try at defining the cache deletion decisions of ENCODE. This time
the protocol will be more complex. As part of the cache deletion decisions ENCODE will color
edges of π in order to keep track of information that will be needed to make optimal decisions (and
which will be used in our analysis of the algorithm). ENCODE will also maintain a counter count
that starts at 0 and will be used to define a new halting condition.

The coloring is based on a case analysis and may seem arbitrary; it will be helpful to remember
that the purpose of the coloring is to keep track of those situations where a variable may be entered
into the cache and only accessed once for an encode operation before being deleted from the cache.
In general, the colors have the following meaning:

• All edges start off colored black . If an edge is black, it means that it has not yet been covered
during ENCODE.

• When an edge is covered during ENCODE, it is colored green if its partner edge has not
been covered yet and would never be covered during ENCODE, even if ENCODE was allowed
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to traverse all of π (i.e. ENCODE did not stop in the middle of the traversal because of a
halting condition)

• When an edge is covered during ENCODE, it is colored white if it has not been covered pre-
viously, and its partner edge has already been covered or would be covered during ENCODE
at some point if ENCODE was allowed to traverse all of π.

• When an edge is covered during ENCODE, if it is then colored blue it means the edge had
already been covered previously during ENCODE.

Every time an edge is colored (or recolored) either green or blue, ENCODE will increment
count. The new halting condition will be to halt if count ≥ 12nδ, or if ENCODE finishes traversing
all of π, whichever comes first. (This halting condition prevents the cache from getting too large,
as we will see later in the analysis).

We now give the new cache deletion decisions protocol in full detail. Again the setup is as
follows: we are assuming that ENCODE has just encoded a clause C containing the literal xi that
labels a leaf node leaf . ENCODE is now deciding whether or not to delete the variable x from
the cache. We know there exists a node a on the path from the root of π to leaf labeled with the
variable x, and that a is either in phase 1 or phase 2. The edge edgei(a) has just been covered.

We will break up the protocol into two cases, depending on whether a is in phase 1 or phase 2.
First suppose a is in phase 1. We now consider the following subcases, which are listed in

priority ordering since they are not completely disjoint. (For instance, both subcase 1 and subcase
2 could occur, in which case ENCODE follows the rules of subcase 1).

1. Let C be the set of all clauses labeling a leaf node in tree1−i(a). Let C′ ⊆ C be the set
of all such clauses that have not yet been encoded during ENCODE. Suppose ∀D ∈ C′,
x 6∈ var(D). This means that when ENCODE later traverses tree1−i(a), it will not encode
any clause containing x. (Note that every clause labeling a leaf node in treei(a) that contains
x contains the literal xi, and every clause labeling a leaf node in tree1−i(a) that contains x
contains the literal x1−i, so for the rest of the time a is in phase 1 whether or not C′ contains
a clause with the variable x will not change.) In this case ENCODE colors (or recolors)
edgei(a) green, increments count, and removes x from the cache.

2. edgei(a) is black. ENCODE colors edgei(a) white and leaves x in the cache.

3. edgei(a) is not black. ENCODE colors (or recolors) edgei(a) blue, increments count, and
leaves x in the cache.

Now suppose a is in phase 2. We consider the following subcases (this time the subcases are
disjoint). Note that in all these subcases x is always removed from the cache.

1. edge1−i(a) is black. Since ENCODE has already traversed all of tree1−i(a), this means that
edge1−i(a) will never be covered during ENCODE. In this case ENCODE colors (or recolors)
edgei(a) green, increments count, and removes x from the cache.

2. edgei(a) is black and edgei−1(a) is not black. ENCODE colors edgei(a) white and removes x
from the cache.
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3. edgei(a) is not black and edge1−a(a) is not black. ENCODE colors (or recolors) edgei(a)
blue, increments count, and removes x from the cache.

We are not quite done yet. ENCODE now is keeping track of the information it needs, but it
is not using this information to make optimal cache deletion decisions yet.

The actual coding algorithm we will use will be the following algorithm ENCODE′. ENCODE′

first runs ENCODE as we have defined it above, but throws away its output. Let ENCODE1 denote
this first execution of ENCODE. Let colored be the set of edges in π that are colored either green
or blue during ENCODE1. Let var-colored be the set of variables that label one of the edges in
colored (ignoring the sign of the literal).

ENCODE′ then runs ENCODE again. Let ENCODE2 denote this second execution of EN-
CODE. The traversal, coloring, and halting condition will be the same as in ENCODE1. Therefore
ENCODE2 will halt at the same point that ENCODE1 does. The only difference between EN-
CODE2 and ENCODE1 is that ENCODE2 has the following modification to the cache deletion
decisions protocol of ENCODE.

Suppose that ENCODE2 has just encoded a clause containing the literal xi and is deciding
whether to delete x from the cache. If x ∈ var-colored, and later on in ENCODE2 an edge from
colored labeled with x (ignoring the sign of the literal) will be colored (or recolored) green or blue,
then ENCODE2 leaves x in the cache regardless of what the cache deletion decisions protocol calls
for. This is well-defined, since the coloring is the same in ENCODE1 and ENCODE2 and they
halt at the same time and we have already run ENCODE1. Otherwise ENCODE2 makes cache
deletion decisions according to the protocol of ENCODE. The output of ENCODE′ is the output
of ENCODE2.

5 Analysis of the Algorithm

We continue the proof of Theorem 4.1 by analyzing ENCODE′. Our goal is to show that for some
ε > 0 the output of ENCODE2, code, has length at most (2−ε)m log n bits, where m is the number
of clauses encoded in code. (Note that from code we can reconstruct every clause that is encoded
in code.) First we state a combinatorial lemma that we will need later on.

Let T be a rooted binary tree, where each edge is colored black or white. We call T properly
colored if for every interior node a of the tree, the two edges entering a are the same color.

Consider the following one-player coloring game: T originally starts off colored all black, except
for two edges lying on some path P from the root of T to a leaf node in T that are colored white
and are called the initial edges of the game. On each turn the player is allowed to color three
black edges in T white provided they all lie on the same path from the root of T to a leaf node in
T . The player wins if he is able to properly color T .

Lemma 5.1 It is impossible to win the coloring game

We defer the proof of this lemma to the Appendix.
The main challenge will be in proving a lemma that states that the cache never grows to be

too large during ENCODE1. From there it will be easy to show that the cache never grows to
be too large during ENCODE2, which will be the key to proving that the output of ENCODE′ is
sufficiently short. We now give some definitions and prove a few smaller lemmas leading up to that
main lemma.
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Definition 5.2 Let us break an execution of ENCODE into discrete time steps. We say that
ENCODE is at time t = 0 at the beginning of the algorithm, and every time ENCODE performs
an action such as taking a step in the depth-first traversal, adding a variable to the cache, encoding
a clause, or deleting a variable from the cache, we increment t by 1. If ENCODE is at time t of its
execution, then node(t) denotes the last node that was visited during the depth-first traversal of
ENCODE, ρt denotes the set of nodes along the path from the root of π to node(t), and cache(t)
denotes the set of variables that are in the cache at time t. Also var(ρt) denotes the set of variables
that label some node in ρt.

For a node a ∈ ρt such that a 6= node(t), we define childρt(a) to be the child node of a that is
in ρt, edgeρt(a) to be the edge connecting a and childρt(a), and treeρt(a) to be tree(childρt(a)).
Similarly, we define childρ̄t(a) to be the child node of a that is not in ρt, edgeρ̄t(a) to be the
edge connecting a and childρ̄t and treeρ̄t(a) to be tree(childρ̄t(a)).

Let phase1(t) ⊆ ρt be the set of nodes in ρt that are in phase 1 at time t, and phase2(t) ⊆ ρt
be the set of nodes in ρt that are in phase 2 at time t. (All nodes in ρt will either be in phase 1 or
phase 2 at time t.)

Note that the following three lemmas refer to ENCODE1, the first execution of ENCODE by
ENCODE′ whose output is ignored.

Lemma 5.3 At time t of ENCODE1, |phase1(t)| ≤ nδ.

Proof: Suppose for contradiction there are more than nδ nodes in ρt in phase 1. Consider a
node a ∈ ρt that is in phase 1. Then, because the depth-first traversal always moves toward the
subtree of smaller size, size(treeρt(a)) ≤ size(treeρ̄t(a)). Therefore, because there are more than
nδ nodes in ρt in phase 1, π must have size greater than 2n

δ
, which contradicts the fact that π is

supposed to have size at most 2n
δ
.

Lemma 5.4 Suppose ENCODE1 is at time t of its execution. Then

y ∈ cache(t)⇒ y ∈ var(ρt)

Proof: Let y be a variable such that y 6∈ var(ρt). Suppose y is added to the cache at some
time t′ < t in order for ENCODE1 to encode some clause C containing the literal yi that labels a
leaf node leaf . Then there exists a node a on the path from the root of π to leaf that is labeled
by y, and a 6∈ ρt since y 6∈ var(ρt). Examining the cache deletion decision protocol of ENCODE1,
we see that if y is not deleted from the cache immediately after C is encoded, it is because a is in
phase 1 and there is another clause C ′ containing the literal y1−i labeling some leaf node leaf ′ in
tree1−i(a) that had not yet been encoded by time t′. (Remember that in ENCODE1 we use the
the cache deletion decisions protocol of ENCODE without the extra modifications of ENCODE2).
Because a 6∈ ρt, ENCODE1 will have traversed all of tree1−i(a) by time t. So at some time t′′ such
that t′ < t′′ < t, ENCODE1 will encode C ′. At this time a will be in phase 2, so, according to the
cache deletion decisions of ENCODE1, y will immediately afterwards be removed from the cache.
This proves that if y 6∈ var(ρt), then y 6∈ cache(t)

Definition 5.5 For an interior node b in π, let var(b) be the variable labeling b and edges(b)
be the set of edges that lie on the path from the root of π to b.
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Lemma 5.6 Suppose ENCODE1 is at time t of its execution, and let b ∈ phase2(t). Suppose
edgeρ̄t(b) is covered at some point during the traversal of treeρ̄t(b) by a clause C, and neither
edgeρ̄t(b) nor any edge in treeρ̄t(b) is colored green or blue during the traversal of treeρ̄t(b). Then
some edge in edges(b) is covered during the traversal of treeρ̄t(b).

Proof:
Suppose for contradiction that edgeρ̄t(b) is covered at some point during the traversal of

treeρ̄t(b), that neither edgeρ̄t(b) nor any edge in treeρ̄t(b) is colored green or blue during the
traversal of treeρ̄t(b), and that no edge in edges(b) is covered during the traversal of treeρ̄t(b).

Define an instance of the coloring game from Lemma 5.1 as follows. treeρ̄t(b) will be the tree T
of the coloring game. The other two edges that are covered by C during the traversal of treeρ̄t(b)
are the initial edges of the game. Since by assumption no edge in edges(b) is covered during the
traversal of treeρ̄t(b), they will both be in T . Also, because any edges covered by C must lie on a
single path, they will both lie on a single path as required by the definition of the coloring game.

Let the player’s moves be defined by the clauses that are encoded during the traversal of treeρ̄t(b)
other than C. Because b ∈ phase2(t), by time t ENCODE1 has already traversed all of treeρ̄t(b).
For every clause C ′ that is encoded, the player plays a move where he colors white the three edges
of T that correspond to the three edges covered by C ′. Note that every time the player colors three
edges white they lie on a single path, and by the assumption that no edge in edges(b) is covered
during the traversal of treeρ̄t(b) and that edgeρ̄t(b) is not colored green or blue, they also all lie
within T .

Also, no edge in treeρ̄t(b) is ever colored blue, so the player does not ever illegally color the
same edge twice. Furthermore, the player wins this coloring game; if there were a bad node a in
T after the player was done making all his moves, then, according to the cache deletion decisions
protocol of ENCODE1, either edge0(a) or edge1(a) would have to have been colored green during
ENCODE1, which contradicts the assumption that no edge in treeρ̄t(b) is colored green.

But this is a contradiction, since by Lemma 5.1 it is impossible to win the coloring game.

We are now ready to prove our main lemma.

Lemma 5.7 During an execution of ENCODE1 the cache never contains more than 14nδ variables

Proof: Suppose ENCODE1 is at time t of its execution.
The high level strategy for proving Lemma 5.7 is as follows. By Lemma 5.4 a variable can only

be in the cache at time t if it is var(ρt). We will define a set of nodes that we will call good ,
and establish a one-to-one mapping η from good nodes to elements of var(ρt) that cannot be in
the cache at time t. Then, by lower bounding the number of good nodes, we also lower bound the
number of elements of var(ρt) that cannot be in the cache at time t, and thus we get an upperbound
on the number of variables that can be in the cache at time t.

As part of this process we will need to define another one-to-one mapping ν from instances
where an edge has been colored (or recolored) green or blue in ENCODE1 to nodes in π.

Now we give the details. Let b ∈ phase2(t). We will consider a number of disjoint cases.

1. Suppose that var(b) has not ever been entered into the cache by ENCODE1 during the
traversal of tree(b). In this case, we say b is a good node and define η(b) = var(b).
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2. Suppose that during the traversal of treeρ̄t(b) an edge edgeρt(a) ∈ edges(b) was covered for
some a ∈ phase2(t) at time t′ < t. Furthermore, suppose edgeρt(a) was black before it was
covered. Then, because a ∈ phase2(t), according to the cache deletion decisions protocol of
ENCODE1, var(a) will be removed from the cache, and it cannot be in the cache at time
t. We will therefore call b a good node and define η(b) = var(a). Note that once an edge is
covered it will be colored something other than black and cannot ever become black again,
and also that for two nodes b, b′ ∈ ρt, the trees treeρ̄t(b) and treeρ̄t(b′) are disjoint. Therefore
η can only map a single node to var(a), so the property that η is one-to-one is maintained.

Suppose that in addition when edgeρt(a) was covered, it was colored from black to green. Then
we will say that a is responsible for coloring an edge and define ν(edgeρt(a), t′) = a. This
is an important point and is part of why these definitions are so involved; notice that in this
case both an edge is colored either green or blue and a variable is popped out of the cache.
The calculations in our analysis will be delicate enough that we must take special care to
associate these instances with two different nodes through η and ν, or else the math would
not go through.

3. Suppose that during the traversal of treeρ̄t(b) an edge edge is covered at time t′ < t, where
edge is either in treeρ̄t(b) or edge = edgeρ̄t(b). Furthermore, suppose that after edge is covered
it is colored either green or blue. Then we say that b is responsible for coloring an edge and
define ν(edge, t′) = b.

4. Suppose that during the traversal of treeρ̄t(b) an edge edge ∈ edges(b) was covered for some
time t′ < t. Furthermore, suppose edge was not black before it was covered (i.e. it had been
covered previously), so that after it was covered it was recolored either green or blue. Then
we say that b is responsible for coloring an edge and define ν(edge, t′) = b.

5. Suppose that during the traversal of treeρ̄t(b) an edge edgeρt(a) ∈ edges(b) was covered for
some a ∈ phase1(t) at time t′ < t. Furthermore, suppose edgeρt(a) was black before it
was covered, and then colored white immediately afterwards as part of the cache deletion
decisions. Note that in this case, because a is in phase 1, the variable var(a) will not be
removed from the cache according to the cache deletion decisions protocol of ENCODE1. In
this case we say that b is responsible for covering a phase 1 edge .

Note that as we have defined η and ν, they are both one-to-one mappings.
Now let us attempt to count the number of good nodes. Let b ∈ phase2(t). Suppose that b is

not responsible for coloring an edge and is not responsible for covering a phase 1 edge.
If var(b) has not ever been entered into the cache during the traversal of treeρ̄t(b), then by item

1 above b is a good node. Otherwise the edge edgeρ̄t(b) must have been covered during the traversal
of treeρ̄t(b). To see this, note that if edgeρ̄t(b) were not covered during the traversal of treeρ̄t(b),
then edgeρt(b) would have to have been covered during the traversal of treeρt(b) in order for var(b)
to be in the cache. But then, according to the cache deletion decisions protocol of ENCODE1,
edgeρt(b) would be colored green, and so by item 2 above, b is responsible for coloring an edge,
which contradicts our assumption.

Also, neither edgeρ̄t(b) nor any edge in treeρ̄t(b) was colored green or blue during the traversal
of treeρ̄t(b), otherwise by item 3 above b would be responsible for coloring an edge. Therefore,
by Lemma 5.6, some edge ∈ edges(b) was covered during the traversal of treeρ̄t(b). edge must
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have been black before it was covered, or else by item 4 above b would have been responsible for
coloring an edge. Then we know that edge = edgeρt(a) for some a ∈ phase2(t), otherwise b would
be responsible for covering a phase 1 edge, which contradicts our assumption. Therefore, by item
2 above, b is a good node in this case as well.

We have that the number of nodes that are responsible for coloring an edge can be at most
12nδ, due to the halting condition of ENCODE. Also, by Lemma 5.3 we have that |phase1(t)| ≤ nδ,
so there can be at most nδ nodes responsible for covering a phase 1 edge.

Therefore we get the following lower bound on the number of good nodes

(# of good nodes ) ≥ |phase2(t)| − 12nδ − nδ

= (|ρt| − |phase1(t)|)− 13nδ

≥ |ρt| − 14nδ

By Lemma 5.4 a variable can only be in the cache at time t if it is in ρt. Because η is a one-to-
one mapping between good nodes and elements of ρt that cannot be in the cache at time t, we get
that

|cache(t)| ≤ |ρt| − (|ρt| − 14nδ)

= 14nδ

Corollary 5.8 During an execution of ENCODE2 the cache never contains more than 26nδ vari-
ables

Proof: The only difference between ENCODE1 and ENCODE2 is that variables from var-colored
are potentially kept in the cache in ENCODE2 when they would be removed in ENCODE1. We
have that |var-colored| ≤ |colored| ≤ 12nδ due to the halting condition of ENCODE. Therefore
the cache at time t in ENCODE2 can contain at most 12nδ more elements than the cache at time
t in ENCODE1.

Corollary 5.9 Let endcache be the set of variables in the cache when ENCODE2 halts. Then
|endcache| ≤ 14nδ.

Proof: The cache deletion decision protocol of ENCODE2 is such that if ENCODE2 halts at
time t, its cache at time t is the same as the cache of ENCODE1 at time t.

Suppose ENCODE2 has halted and outputted code. We are ready to bound |code|, the length
of code in bits. Let T = t1, t2, . . . tl be a list of the instances during ENCODE2 in which a variable
was written to the cache, ordered chronologically. Let var(ti) be the variable that was added to
the cache at time ti. Note that it is possible that var(ti) = var(tj) for some i 6= j. Let num(ti) be
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the number of times the variable var(ti) was accessed from the cache for an encode operation after
time ti before being removed from the cache (including the time var(ti) is accessed immediately
after being added to the cache at time ti) Let num-colored be the number of times that an edge is
colored (or recolored) green or blue during ENCODE2.

Lemma 5.10

l ≤
∑l

i=1 num(ti)− num-colored+ |endcache|
2

Proof:
Suppose at time t of its execution ENCODE2 had just encoded a clause C containing the literal

xi that labels a leaf node leaf . Then there exists a node a on the path from the root of π to leaf
that is labeled with the variable x. After encoding C, during the cache deletion decisions when
ENCODE2 decided whether to delete x from the cache, ENCODE2 colored the edge edgei(a) some
color.

Suppose first that ENCODE2 colored edgei(a) blue. This means that x ∈ var-colored and
edgei(a) had been covered previously, so some clause C ′ 6= C containing xi had been encoded at
some time t′ < t. Then, according to the cache deletion decisions protocol of ENCODE2, when
C ′ was encoded the variable x must have been left in the cache and would still be there at time t
when C was encoded.

Similarly, suppose ENCODE2 colored edgei(a) green. Again, this implies that x ∈ var-colored.
Also, because edgei(a) is colored green it means that at the time ENCODE2 began traversing
tree(a), tree1−i(a) did not contain any leaf node labeled with a clause C ′ containing the literal
x1−i that had not already been encoded. But because π is in normal form (see Definition 3.2),
there must exist some leaf node in tree1−i(a) labeled with a clause C ′ containing the literal x1−i

that had already been encoded previously. Then, according to the cache deletion decisions protocol
of ENCODE2, when C ′ was encoded the variable x was left in the the cache and would still be
there at time t when C was encoded.

Therefore, if edgei(a) was colored green or blue, num(ti) was incremented for some ti without
adding any new element to T .

Now suppose that edgei(a) was colored from black to white, but that x 6∈ endcache. Then there
exists a clause C ′ labeling a leaf node leaf in tree1−i(a) that contains the literal x1−a and had not
been encoded by time t (let leaf be the first node labeled by such a C ′ that ENCODE2 would reach
during the traversal of tree1−i). It may be that in order to encode the clause C ENCODE2 had
to add x to the cache, in which case a new tj would have been added to the list T . But according
to the cache deletion decision protocol of ENCODE2, x would have remained in the cache until C ′

was encoded, and since x 6∈ endcache, it must be that C ′ was encoded before ENCODE2 halted.
Therefore num(tj) ≥ 2.

Putting all this information together, we get that

l∑
i=1

num(ti) ≥ 2l + num-colored− |endcache|

from which the claim follows.
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Let m be the total number of clauses encoded in code. Then m =
∑l

i=1 num(ti)/3. The total
length of code is the cost of documenting every addition and deletion of a variable to/from the cache,
plus the cost of encoding the m clauses by indexing three elements of the cache per clause, plus a
constant number of bits per clause that is encoded. There can be at most 3m variables added to the
cache during ENCODE2, so altogether there can be at most 3m total deletion operations recorded
in code. By Corollary 5.8, the cache never grows to be larger than 26nδ during ENCODE2, so
altogether these deletion operations contribute at most 3δm log n+O(m) bits to |code|. Similarly,
the encode operations will together contribute at most 3δm log n + O(m) bits to |code| as well.
Therefore in total, the deletion and encode operations will contribute at most 6δm log n + O(m)
bits to |code|.

Each time a variable is added to the cache it takes log n bits to document this, so the total
number of bits needed to document all the cache insertions is l log n. Therefore we have that
|code| ≤ l log n+ 6δm log n+O(m).

Now suppose that ENCODE traverses all of π before halting. In this case |endcache| = 0. Using
Lemma 5.10,

|code| ≤ l log n+ 6δm log n+O(m)

≤

(∑l
i=1 num(ti)− num-colored+ |endcache|

2

)
log n+ 6δm log n+O(m)

≤ 3
2
m log n+ 6δm log n+O(m)

≤
(

3 + 12δ
2

)
m log n+O(m)

Otherwise suppose that ENCODE halts before traversing all of π. In this case we have that
num-colored = 12nδ and, by Corollary 5.9, |endcache| ≤ 14nδ. Therefore, using Lemma 5.10 and
the fact that m ≥ num-colored/3 = 4nδ we get that

|code| ≤ l log n+ 6δm log n+O(m)

≤

(∑l
i=1 num(ti)− num-colored+ |endcache|

2

)
log n+ 6δm log n+O(m)

≤
(

3m+ 2nδ

2

)
log n+ 6δm log n+O(m)

≤
(

7m
4

)
log n+ 6δm log n+O(m)

Therefore,

|code| ≤ max
((

3 + 12δ
2

)
m log n+O(m),

(
7m
4

)
log n+ 6δm log n+O(m)

)
Choosing δ small enough we get that |code| ≤ (15/8)m log n, which is (2− ε)m log n for ε = 1/8.
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6 Open Questions

The main open question is whether these methods can be extended to prove lower bounds for
stronger systems than treelike resolution. Certainly the first step is to try to prove general resolution
lower bounds. Although exponential lower bounds for general resolution refutations of random
CNFs already exist, this would be an important step towards showing the validity of these new
methods. The reason why the proof in this paper does not extend immediately to the general
resolution case is that it relies crucially on the fact that every time ENCODE takes a step in its
depth-first traversal, because it always moves towards the smaller subtree, it is “cutting off” at
least half of the proof tree. This property is used to prove Lemma 5.3, which is subsequently used
to prove the main lemma, Lemma 5.7, which says that the cache never grows to be too large. In the
general resolution case, if we take a step in a depth-first traversal, it is possible that the majority
of the proof graph is still reachable regardless of which child node we choose to go to, so there is
no way to “cut off” at least half of the proof graph as before.

Also, the proof of Theorem 4.1 is messy at times, particularly in the description of the cache
deletion decisions protocol of ENCODE and the proof of Lemma 5.7. Is it possible to simplify the
coding algorithm or its analysis in the treelike resolution case?
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7 Appendix

In this appendix, we present the proof of Lemma 5.1.
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Proof of Lemma 5.1: Call an interior node a in T bad if the two edges entering a are different
colors. A proper coloring implies that there are no bad nodes in T . Let W be the set of black
edges entering a bad node (every bad node has exactly one black edge entering it). We can assume
without loss of generality that on each turn the player colors white some edge in W . To see this,
let edge be an edge that is in W before move i. In order for the player to win, on some move
j ≥ i, edge must be colored white. Suppose the player wins, and let σ be the winning sequence
of moves that the player plays. If the order of moves in σ is transposed in any way, it will still be
a winning sequence of moves. Therefore we can exchange move j with move i, so that on move i
edge is colored white.

We claim the following two invariants are maintained throughout the game:

1. Let {edge1, edge2} ⊆W . Then there does not exist a path in T from the root to a leaf node
that contains both edge1 and edge2.

2. For two edges edge1 and edge2, let anc(edge1, edge2) denote the least ancestor of edge1 and
edge2 (i.e. the farthest node from the root such that any path from the root that includes
edge1 must pass through anc(edge1, edge2) and any path from the root that includes edge2
must pass through anc(edge1, edge2)). Let {edge1, edge2} ⊆ W . Consider the two edges
going into anc(edge1, edge2). One of these two edges is colored white.

Let a and b denote the two bad nodes at the start of the game, and e and f the two elements
of W at the start of the game. Because the two initial edges lie on the path P , invariant 1 will be
satisfied at the beginning of the game. Also, anc(e, f) will be either the node a or the node b, so
invariant 2 will be satisfied at the beginning of the game as well.

Now suppose on some move the player colors white some edge1 ∈W . By invariant 1, this move
can only “fix” one bad node, so it will create two new bad nodes bad1 and bad2 in T . Let bad1B
be the black edge entering bad1 after this move and bad1W the white edge entering bad1. Similarly
let bad2B be the black edge entering bad2 after the move and bad2W the white edge entering bad2.
(bad1B and bad2B will be the new members of W ).

First consider the relationship between bad1B and bad2B. Because there exists some path from
the root to a leaf node in T that contains both bad1W and bad2W , there will be no path from the
root to a leaf node in T that contains both bad1B and bad2B, so these two edges will not violate
invariant 1 after the move. Also, because there exists some path from the root to a leaf node in T
that contains both bad1W and bad2W , either bad1W or bad2W will be going into anc(bad1B, bad2B),
so bad1B and bad2B will not violate invariant 2 after the move either.

Now consider some arbitrary edge edge2 ∈W that was in W before the move, and suppose for
contradiction that after the move edge2 violates invariant 1 with one of the new members of W ,
say bad1B. This means that bad1B and edge2 lie along the same path P ′. edge2 cannot be above
bad1B in P ′, because in this case edge2 and edge1 are both on some path, which would violate the
fact that invariant 1 held before the move. Therefore bad1B is above edge2 in P ′. We know that
edge1 and bad1W lie on some path P ′′ since they were part of the same move. If edge1 is above
bad1W in P ′′ then again edge2 and edge1 are both on some path, which would violate the fact that
invariant 1 held before the move. Therefore edge1 is below bad1W in P ′′. But in this case bad1
is the node anc(edge1, edge2), which is a contradiction since by invariant 2 one of the edges going
into anc(edge1, edge2) was already white before the move.

Now we show that edge2 and bad1B do not violate invariant 2 after the move either. Because ev-
ery path from the root that goes through edge1 must pass through anc(edge1, edge2), and edge1 and
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bad1W lie along some path from the root to a leaf node since they are part of the same move, after the
move there will be some path P ′ containing bad1W that goes through the node anc(edge1, edge2).
Suppose that bad1W is below anc(edge1, edge2) in P ′. Then anc(edge2, bad1B) = anc(edge1, edge2)
so invariant 2 will not be violated by edge2 and bad1B after the move since invariant 2 held be-
fore the move. Otherwise suppose that bad1W is above anc(edge1, edge2) in P ′. Then bad1W
is one of the edges going into anc(edge2, bad1B), so after the turn one of the edges going into
anc(edge2, bad1B) is white and invariant 2 will not be violated by edge2 and bad1B in that case
either.

By invariant 1, after every move |W | increases by 2, so the player can never win.
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