
Arithmetic Circuit Lower Bounds via MaxRank∗

Mrinal Kumar† Gaurav Maheshwari‡ Jayalal Sarma M.N.§

February 14, 2013

Abstract

We introduce the polynomial coefficient matrix and identify maximum rank of this
matrix under variable substitution as a complexity measure for multivariate polyno-
mials. We use our techniques to prove super-polynomial lower bounds against several
classes of non-multilinear arithmetic circuits. In particular, we obtain the following
results :

• As our main result, we prove that any homogeneous depth-3 circuit for computing
the product of d matrices of dimension n × n requires Ω(nd−1/2d) size. This
improves the lower bounds in [9] when d = ω(1).

• There is an explicit polynomial on n variables and degree at most n
2 for which

any depth-3 circuit C of product dimension at most n
10 (dimension of the space of

affine forms feeding into each product gate) requires size 2Ω(n). This generalizes
the lower bounds against diagonal circuits proved in [14]. Diagonal circuits are
of product dimension 1.

• We prove a nΩ(logn) lower bound on the size of product-sparse formulas. By
definition, any multilinear formula is a product-sparse formula. Thus, our re-
sult extends the known super-polynomial lower bounds on the size of multilinear
formulas [11].

• We prove a 2Ω(n) lower bound on the size of partitioned arithmetic branching
programs. This result extends the known exponential lower bound on the size of
ordered arithmetic branching programs [7].

∗Part of this work was done while the first two authors were undergraduate students at IIT Madras
†Department of Computer Science, Rutgers University, Piscataway, NJ 08855, USA. Email :

mrinal.kumar@rutgers.edu
‡Department of Computer Science and Engineering, Indian Institute of Technology Madras, Chennai -

600036. Email:gaurav.m.iitm@gmail.com
§Department of Computer Science and Engineering, Indian Institute of Technology Madras, Chennai -

600036. Email :jayalal@cse.iitm.ac.in

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 28 (2013)

1 Introduction

Arithmetic circuits is a fundamental model of computation for polynomials. Establishing
the limitations of polynomial sized arithmetic circuits is a central open question in the area
of algebraic complexity(see [17] for a detailed survey). One of the surprises in the area was
the result due to Agrawal and Vinay [2] where they show that if a polynomial in n variables
of degree d (linear in n) can be computed by arithmetic circuits of size 2o(n), then it can
be computed by depth-4 circuits of size 2o(n). The parameters of this result was further
tightened by Koiran [8]. These results explained the elusiveness of proving lower bounds
against even depth-4 circuits. For depth-3 circuits, the best known general result (over finite
fields) is an exponential lower bound due to Grigoriev and Karpinski [5] and Grigoriev and
Razborov [4]. Lower bounds for restricted classes of depth-3 and depth-4 circuits are studied
in [1, 9, 16] .

One class of models which has been extensively studied is when the gates are restricted to
compute multilinear polynomials. Super-polynomial lower bounds are known for the size of
multilinear formulas computing the permanent/determinant polynomial[12]. However, even
under this restriction proving super-polynomial lower bounds against arbitrary multilinear
arithmetic circuits is an open problem (see [17]). The parameter identified by [11], which
showed the limitations of multilinear formulas, was the rank of a matrix associated with
the circuit - namely the partial derivatives matrix1. The method showed that there exists a
partition of variables into two sets such that the rank of the partial derivatives matrix of any
polynomial computed by the model is upper bounded by a function of the size of the circuit.
But there are explicit polynomials for which the rank of the partial derivatives matrix is
high. This program has been carried out for several classes of multilinear polynomials and
several variants of multilinear circuits[3, 7, 10, 11, 12, 13]. However, this technique has
inherent limitations when it comes to proving lower bounds against non-multilinear circuits
because the partial derivatives matrix, in the form that was studied, can be considered only
for multilinear circuits.

In this work, we generalize this framework to prove lower bounds against certain classes
of non-multilinear arithmetic circuits. This generalization also shows that the multilinearity
restriction in the above proof strategy can possibly be eliminated from the circuit model
side. Hence it can also be seen as an approach towards proving lower bounds against the
general arithmetic circuits.

We introduce a variant of the partial derivatives matrix where the entries will be poly-
nomials instead of constants - which we call the polynomial coefficient matrix. Instead of
rank of the partial derivatives matrix, we analyze the maxrank - the maximum rank of the
polynomial coefficient matrix2 under any substitution for the variables from the underlying
field. We first prove how the maxrank changes under arithmetic operations. These tools are

1An exponential sized matrix associated with the multilinear polynomial with respect to a partition of
the variables into two sets. See Section 2 for the formal definition.

2When it is clear from the context, we drop the matrix as well as the partition. By the term, maxrank
of a polynomial, we denote the maximum rank of the polynomial coefficient matrix corresponding to the
polynomial with respect to the partition in the context.

2

combined to prove upper bounds on maxrank of various restrictions of arithmetic circuits.
In [9], it was proved that any homogeneous depth-3 circuit for multiplying d n×n matrices

requires Ω
(
nd−1/d!

)
size. We use our techniques to improve this result in terms of the lower

bound. Our methods are completely different from [9] and this demonstrates the power
of this method beyond the reach of the original partial derivatives matrix method due to
Raz [11]. We prove the following as the main result of this paper.

Theorem 1.1 (Main Result). Any homogeneous depth-3 circuit for computing the product
of d matrices of dimension n× n requires Ω(nd−1/2d) size.

Notice that compared to the bounds in [9], our bounds are stronger when d = ω(1).
Very recently, Gupta et al[6] studied the model of homogeneous circuits and proved a strong
lower bound parameterized by the bottom fan-in. They studied depth-4 circuits (ΣΠΣΠ)
and showed that if the fan-in of the bottom level product gate of the circuits is t, then any
homogeneous depth-4 circuit computing the permanent (and the determinant) must have
size 2Ω(n

t
). In particular, this implies 2Ω(n) lower bound for any depth-3 homogeneous circuit

computing the permanent (and the determinant) polynomial of n×n matrices (n2 variables).
However, we remark that Theorem 1.1 is addressing the iterated matrix multiplication poly-
nomial and hence is not directly subsumed by the above result. Moreover, the techniques
used in [6] are substantially different from ours.

We apply our method to depth-3 circuits where space of the affine forms feeding into
each product gate in the circuit is of limited dimension. Formally, a depth-3 ΣΠΣ circuit
C is said to be of product dimension r if for each product gate P in C, where P = Πd

i=1Li,
where Li is an affine form for each i, the dimension of the span of the set {Li}i∈[d] is at most
r.

We prove exponential lower bounds on the size (in fact, the top fan in) of depth-3 circuits
of bounded product dimension for computing an explicit function.

Theorem 1.2. There is an explicit polynomial on n variables and degree at most n
2

for which
any ΣΠΣ circuit C of product dimension at most n

10
requires size 2Ω(n).

In [14], the author studies diagonal circuits, which are depth-3 circuits where each product
gate is an exponentiation gate. Clearly, such a product gate can be visualized as a product
gate with the same affine form being fed into it multiple times. Thus, these circuits are
of product dimension 1, and our lower bound result generalizes size lower bounds against
diagonal circuits.

Note that the product dimension of a depth-3 circuit is different from the dimension of
the span of all affine forms computed at the bottom sum gates of a ΣΠΣ circuit. We will
show that this parameter, which we refer to as the total dimension of the circuit, when
bounded, makes the model non-universal.

For our next result, we generalize the model of syntactic multilinear formulas to product-
sparse formulas (see section 2 for a definition). These formulas can compute non-multilinear
polynomials as well. We show the following theorem regarding this model using our methods.

3

Theorem 1.3. Let X be a set of 2n variables and let f ∈ F[X] be a full max-rank polynomial.
Let Φ be any (s, d)-product-sparse formula of size nε logn, for a constant ε. If sd = o(n1/8),
then f cannot be computed by Φ.

We also generalize the above theorem to the case of preprocessesed product-sparse for-
mulas. A preprocessed product-sparse formula can be viewed as obtained from a product-
sparse formula by applying a preprocessing step in which each occurrence of input variables
is replaced by a non-constant univariate polynomial. Different instances of the same input
variable are allowed to be replaced by different univariate polynomials.

As our fourth result, we define partitioned arithmetic branching programs which are gen-
eralizations of ordered ABPs. While ordered ABP can only compute multilinear polynomials,
partitioned ABP is a non-multilinear model, thus can compute non-multilinear polynomi-
als too. Moreover, exponential lower bounds are known for ordered arithmetic branching
programs [7]. We prove an exponential lower bound for partitioned ABPs.

Theorem 1.4. Let X be a set of 2n variables and F be a field. For any full max-rank homo-
geneous polynomial f of degree n over X and F, the size of any partitioned ABP computing
f must be 2Ω(n).

The rest of the paper is organized as follows. In section 2 we describe formally some
of the preliminary definitions and notations. In Section 3 we define the main parameter of
our lower bounds - the polynomial coefficient matrix and prove the required properties with
respect to arithmetic operations. Section 4 presents the lower bound result against depth-3
homogeneous circuits for computing iterated matrix multiplication. In section 5, we present
an exponential lower bound for ΣΠΣ circuits of bounded product dimension. In section 6,
we present super-polynomial lower bounds on preprocessed product-sparse formulas. In
section 7 we prove exponential lower bounds on partitioned arithmetic branching programs.

2 Preliminaries

In this section, we formally define the models we study. For more detailed account of the
model and the results we refer the reader to the survey [17].

An arithmetic circuit Φ over the field F and the set of variables X = {x1, x2, . . . , xn} is a
directed acyclic graph G = (V,E). The vertices of G with in-degree 0 are called input gates
and are labelled by variables in X or constants from the field F. The vertices of G with
out-degree 0 are called output gates. Every internal vertex is either a plus gate or a product
gate. We will be working with arithmetic circuits with a single output gate and fan-in of
every vertex being at most two. The polynomial computed by the arithmetic circuit is the
polynomial associated with the output gate which is defined inductively from the polynomials
associated with the nodes feeding into it and the operation at the output gate. The size of Φ
is defined to be the number of gates in Φ. For a vertex v ∈ V , we denote the set of variables
that occur in the subgraph rooted at v by Xv.

We consider depth restricted circuits. A ΣΠΣ circuit is a levelled depth-3 circuit with a
plus gate at the top, multiplication gates at the middle level and plus gates at the bottom

4

level. The fan-in of the top plus gate is referred to as top fan-in. A ΣΠΣ circuit is said to be
homogeneous if the plus gate at the bottom level compute homogeneous linear forms only.

An important restricted model of arithmetic circuits is multilinear circuits. A polynomial
f ∈ F[X] is called multilinear if the degree of every variable in f is at most one. An arithmetic
circuit is called multilinear if the polynomial computed at every gate is multilinear. An
arithmetic circuit is called syntactic multilinear if for every product gate v with children v1

and v2, Xv1 ∩Xv2 = φ.
An arithmetic circuit is called an arithmetic formula if the underlying undirected graph

is acyclic i.e. fan-out of every vertex is one. An arithmetic circuit is called skew if for every
product gate, at least one of its children is an input gate. A circuit is called weakly skew if
for every product gate, at least one of its incoming edges is a cut-edge.

Let Φ be a formula defined over the set of variables X and a field F. For a product gate
v in Φ with children v1 and v2, let us define the following properties:

Disjoint v is said to be disjoint if Xv1 ∩Xv2 = φ.

Sparse v is said to be s-sparse if the number of monomials in the polynomial computed by
at least one of its input gates is at most 2s.

Also, for a node v in Φ, let us define the product-sparse depth of v to be equal to the
maximum number of non-disjoint product gates in any path from a leaf to v.

Definition 2.1. A formula is said to be a (s, d)-product-sparse if every product gate v is
either disjoint or s-sparse, where d is the product-sparse depth of the root node.

Clearly, any syntactic multilinear formula is a (s, 0)-product-sparse formula for any s.
Also, a skew formula is a (0, d)-product-sparse formula where d is at most the height of the
formula. Thus, proving lower bounds for product-sparse formulas will be a strengthening of
known results. We also define an extension of the above class of formulas.

Definition 2.2. A preprocessed product-sparse formula is a product-sparse formula in which
each input gate which is labelled by an input variable (say, xi) is replaced by a gate labelled by
a non-constant univariate polynomial T (xi) in the same variable. The size of a preprocessed
product-sparse formula is defined to be the size of underlying product-sparse formula.

An arithmetic branching program (ABP) B over a field F and a set of variables X is
defined as a 4-tuple (G,w, s, t) where G = (V,E) is a directed acyclic graph in which V can
be partitioned into levels L0, L1, . . . , Ld such that L0 = {s} and Ld = {t}. The edges in E
can only go between two consecutive levels. The weight function w : E → X ∪ F assigns
variables or constants from the field to the edges of G. For a path p in G, we extend the
weight function by w(p) =

∏
e∈pw(e). For any i, j ∈ V , let us denote by Pi,j the collection

of all paths from i to j in G. Every vertex v in B computes a polynomial which is given by∑
p∈Ps,v

w(p). The polynomial f computed by B is defined to be the polynomial computed

at the sink t i.e. f =
∑

p∈Ps,t
w(p). The size of B is defined to be |V |. The depth of B is

defined to be d.

5

For any i, j ∈ V , let us denote by Xi,j the set of variables that occur in paths Pi,j and
denote by fi,j the polynomial

∑
p∈Pi,j

w(p). A homogeneous arithmetic branching program
is an ABP B in which the weight function w assigns linear homogeneous forms to the edges
of B. Clearly, the degree of the homogeneous polynomial computed by B is equal to the
depth of B.

Definition 2.3. Let B = (G,w, s, t) be a homogeneous ABP over a field F and set of
variables X = {x1, x2, . . . , x2n}. B is said to be π-partitioned for a permutation π : [2n] →
[2n] if there exists an i = 2αn for some constant α such that the following condition is
satisfied, ∀v ∈ Li :

• Either, Xs,v ⊆ {xπ(1), xπ(2), . . . , xπ(n)} and |Xv,t| ≤ 2n(1− α).

• Or, Xv,t ⊆ {xπ(n+1), xπ(n+2), . . . , xπ(2n)} and |Xs,v| ≤ 2n(1− α)

We say that B is partitioned with respect to the level Li. B is said to be a partitioned ABP
if it is π-partitioned for some π : [2n]→ [2n].

3 The Polynomial Coefficient Matrix & Properties

In this section, we introduce the main tool used in the paper and prove its properties. Let
Y = {y1, y2, . . . , ym} and Z = {z1, z2, . . . , zm} be two sets of variables. Let f ∈ F[Y, Z] be a
multilinear polynomial over the field F and the variables Y ∪Z. Define Lf to be the 2m×2m

partial derivatives matrix as follows: for monic multilinear monomials p ∈ F[Y], q ∈ F[Z],
define Lf (p, q) to be the coefficient of the monomial pq in f . Let us denote the rank of Lf
by rank(Lf). We extend the partial derivatives matrix to non-multilinear polynomials.

Definition 3.1 (Polynomial Coefficient Matrix). Let f ∈ F[Y, Z] be a polynomial over the
field F and the variables Y ∪ Z. Define Mf to be the 2m × 2m polynomial coefficient matrix
with each entry from the ring F[Y, Z] defined as follows. For monic multilinear monomials
p and q in the set of variables Y and Z respectively, Mf (p, q) = G if and only if f can be
uniquely written as f = pq(G) +Q, where G,Q ∈ F[Y, Z] such that G does not contain any
variable other than those present in p and q, Q does not have any monomial m which is
divisible by pq and which contains only variables that are present in p and q.

For example, if f = y1z1 + y2
1z1 + y1z1z2 + z1 then Mf (y1, z1) = 1 + y1. Observe that we can

write,

f =
∑
p,q

Mf (p, q)pq .

Also observe that for a multilinear polynomial f ∈ F[Y, Z], the polynomial coefficient
matrix Mf is same as the partial derivatives matrix Lf . For any substitution function
S : Y ∪ Z → F, let us denote by Mf |S the matrix obtained by substituting each variable to
the field element as given by S at each entry in Mf . We define max-rank of Mf as follows:

max-rank(Mf) = max
S:Y ∪Z→F

{rank(Mf |S)}

6

The following propositions bound the max-rank of the polynomial coefficient matrix.

Proposition 3.2. Let f ∈ F[Y, Z] be a polynomial over the field F and the sets of variables
Y ′ ⊆ Y and Z ′ ⊆ Z. Let a = min{|Y ′|, |Z ′|}. Then, max-rank(Mf) ≤ 2a.

Proof. In the polynomial coefficient matrix Mf , the number of non-zero rows or non-zero
columns will be at most 2a. Thus, rank of Mf for any substitution would be at most 2a.
Hence, max-rank(Mf) ≤ 2a.

Proposition 3.3. Let f, g ∈ F[Y, Z] be two polynomials. Then,

max-rank(Mf+g) ≤ max-rank(Mf) + max-rank(Mg).

Proof. It is easy to observe that Mf+g = Mf + Mg. Let max-rank(Mf+g) = rank(Mf+g|S)
for some substitution S. Then,

max-rank(Mf+g) = rank(Mf+g|S)

= rank(Mf |S +Mg|S)

≤ rank(Mf |S) + rank(Mg|S)

≤ max-rank(Mf) + max-rank(Mg).

Proposition 3.4. Let Y1, Y2 ⊆ Y and Z1, Z2 ⊆ Z such that Y1 ∩ Y2 = φ and Z1 ∩ Z2 = φ.
Let f ∈ F[Y1, Z1] and g ∈ F[Y2, Z2]. Then,

max-rank(Mfg) = max-rank(Mf) ·max-rank(Mg).

Proof. We think of Mf as a 2|Y1|×2|Z1| matrix and Mg as a 2|Y2|×2|Z2| matrix as all the other
entries are zero. Similarly, we can think of Mfg as a 2|Y1∪Y2| × 2|Z1∪Z2| matrix. Since f and
g are defined over disjoint set of variables, we have Mfg = Mf ⊗Mg where ⊗ denotes the
tensor product of two matrices. Let max-rank(Mfg) = rank(Mfg|S) for some substitution S.
Then,

max-rank(Mfg) = rank(Mfg|S)
= rank((Mf ⊗Mg)|S) ≤ rank(Mf |S ⊗Mg|S)
≤ rank(Mf |S) · rank(Mg|S) ≤ max-rank(Mf) ·max-rank(Mg).

Similarly, max-rank(Mfg) ≥ max-rank(Mf) ·max-rank(Mg).

Proposition 3.5. Let f ∈ F[Y, Z] and g ∈ F[Y] or g ∈ F[Z]. Then, max-rank(Mfg) ≤
max-rank(Mf).

Proof. Without loss of generality, we assume that g ∈ F[Y]. The case when g ∈ F[Z]
will follow similarly. For a subset S ⊆ Y , we denote the monomial Πy∈Sy by yS. Let us
analyze the case when g = yS. Consider a row of Mfg indexed by the multilinear monomial

7

p in the set of variables Y . If p is not divisible by yS, then all the entries in this row
will be zero. Otherwise, for any multilinear monomial q in the variables Z, we can write,
MySf =

∑
S′⊆S y

S\S′Mf (p/y
S′ , q) . Thus, rows in MySf are a linear combination of rows in

Mf . Similarly, we can show that for any monomial m in the variables Y , rows in Mmf are a
linear combination of rows in Mf .

Now consider any g =
∑

i∈[r] mi ∈ F[Y] where r is the number of monomials in g and

each mi is a distinct monomial. Thus, Mfg =
∑

i∈[r] Mmif . Thus, each row in Mfg is a linear

combination of rows in Mf . Hence, max-rank(Mfg) ≤ max-rank(Mf).

Corollary 3.6. Let f, g ∈ F[Y, Z]. If g is a linear form, then max-rank(Mfg) ≤ 2 ·
max-rank(Mf).

Proof. Since g is a linear form in the variables Y ∪ Z, g can be expressed as g = g1 + g2

where g1 ∈ F[Y] and g2 ∈ F[Z] and the proof follows.

Corollary 3.7. Let f, g ∈ F[Y, Z]. If g can be expressed as
∑
i∈[r]

gihi where gi ∈ F[Y] and

hi ∈ F[Z], then max-rank(Mfg) ≤ r ·max-rank(Mf).

Proof. Since Mfg =
∑
i∈[r]

Mfgihi , using Proposition 3.5 completes the proof.

Corollary 3.8. Let f, g ∈ F[Y, Z]. If g has r monomials, then max-rank(Mfg) ≤ r ·
max-rank(Mf)

Proof. Each monomial mi of g can be written as gihi such that gi is a monomial in the
variables Y and hi is a monomial in the variables Z. Thus, the proof follows using above
corollary.

Full Rank Polynomials

Let X = {x1, · · · , x2n}, Y = {y1, · · · , yn} and Z = {z1, · · · , zn} be sets of variables and
f ∈ F[X]. f is said to be a full rank polynomial if for any partition A : X → Y ∪ Z,
rank(LfA) = 2n, where fA is the polynomial obtained from f after substituting every variable
x by A(x). We say that f is a full max-rank polynomial if max-rank(MfA) = 2n for any
partition A. Observe that any full rank polynomial is also a full max rank polynomial.
Further more, many full rank polynomials have been studied in the literature [7, 11, 12].

4 Lower Bounds against Homogeneous Depth-3 Cir-

cuits

We recall the definition of homogeneous ΣΠΣ circuits from section 2. The polynomial

computed by a ΣΠΣ circuit with top fan-in k can be represented as
k∑
i=1

Pi, where Pi =

8

deg(Pi)∏
j=1

li,j, each li,j is a linear from and deg(Pi) is the fan-in of the ith multiplication gate at

the middle level.
Let Φ be a homogeneous ΣΠΣ circuit defined over the set of variables X and over a field

F computing a homogeneous polynomial f . Let us denote the polynomial coefficient matrix
of the polynomial computed at the top plus gate of Φ by MΦ. For a partition A : X → Y ∪Z,
let us denote by ΦA the circuit obtained after replacing every variable x by A(x). We prove
the following upper bound on the max-rank(MΦA).

Lemma 4.1. Let Φ be a homogeneous ΣΠΣ circuit as defined above. Let the degree of f be
equal to d. Then, for any partition A : X → Y ∪ Z, max-rank(MΦA) ≤ k · 2d.

Proof. From the definition it is clear that f can be written as: f =
k∑
i=1

Pi where Pi =
deg(Pi)∏
j=1

li,j,

each li,j is a homogeneous linear form. Let us denote by lAi,j and PA
i the polynomials obtained

after substitution of x by A(x) in the polynomials li,j and Pi respectively.
Since each li,j is a homogeneous linear form, a multiplication gate Pi computes a homo-

geneous polynomial of degree deg(Pi). Thus if deg(Pi) 6= d then the multiplication gate Pi
does not contribute any monomial in the output polynomial f . Hence, it can be assumed
without loss of generality that deg(Pi) = d for all i ∈ [k].

Since li,j is a homogeneous linear form, max-rank(MlAi,j
) ≤ 2. Thus, using Corollary

3.6,∀i ∈ [k] : max-rank(MPA
i

) ≤ 2d. Hence, using Proposition 3.3, max-rank(MfA) ≤∑
i∈[k] max-rank(MPA

i
) ≤ k · 2d.

In [9], it was proved that any homogeneous ΣΠΣ circuit for multiplying d n×n matrices
requires Ω(nd−1/d!) size. We prove a better lower bound using our techniques. To consider a
single output polynomial, we will concentrate on the (1, 1)th entry of the product. Formally,
let X1, X2, . . . , Xd be disjoint sets of variables of size n2 each, with X = ∪i∈[d]X

i. The
variables in X i will be denoted by xijk for j, k ∈ [n]. We will be looking at the problem of

multiplying d n × n matrices A1, A2, . . . , Ad where (j, k)th entry of matrix Ai, denoted by
Aijk, is defined to be equal xijk for all i ∈ [d] and j, k ∈ [n]. The output polynomial, that we

are interested in, is the (1, 1)th entry of
∏

i∈[d] A
i denoted by f . f is clearly a homogeneous

multilinear polynomial of degree d. Moreover, any monomial in f contains one variable each
from the sets X1, X2, . . . , Xd.

We first prove an important lemma below. We also provide an alternative induction
based proof for the below lemma in the Appendix A.

Lemma 4.2. For the polynomial f as defined above, there exists a bijective partition B :
X → Y ∪ Z such that max-rank(MfB) = nd−1.

Proof. We fix some notations first. For i < j, let us denote the set {i, i + 1, . . . , j} by
[i, j]. Let us also denote the pair ((k, i), (k, j)) by eijk for any i, j, k. Construct a di-
rected graph G(V,E) on the set of vertices V = [0, d] × [1, n] and consisting of edges
E = {eijk | k ∈ [0, d− 1], i, j ∈ [1, n]}. Note that the edges eijk and ejik are two distinct

9

edges for fixed values of i, j, k when i 6= j. Let us also define a weight function w : E → X
such that w(eijk) = xk+1

ij .
It is easy to observe that the above graph encodes the matrices A1, A2, . . . , Ad. The

weights on the edges are the variables in the matrices. For example, a variable xk+1
ij in

the matrix Ak+1 is the weight of the edge eijk. Let us denote the set of paths in G from
the vertex (0, 1) to the vertex (d, 1) by P . Let us extend the weight function and define
w(p) =

∏
e∈pw(e) for any p ∈ P . Since, all paths in P are of length equal to d, the weights

corresponding to each of these paths are monomials of degree d.
Let us define the partition B : X → Y ∪ Z as follows: all the variables in odd numbered

matrices are assigned variables in Y and all the variables in even numbered matrices are
assigned variables in Z. Let us denote the variable assigned by B to x2k−1

ij by y2k−1
ij and the

variable assigned to x2k
ij by z2k

ij .
It follows from the matrix multiplication properties that for any path p ∈ P , the monomial

w(p) is a monomial in the output polynomial. Each such path is uniquely specified once we
specify the odd steps in the path. Now, specifying odd steps in the path corresponds to
specifying a variable from each of the odd numbered matrices. To count number of such
ways, let us first consider the case when d is even. There are d/2 odd numbered matrices
and we have n2 ways to choose a variable from each of these d/2 matrices except for the first
matrix for which we can only choose a variable from the 1st row since our output polynomial
is the (1, 1)th entry. Thus, there are nd−1 number of ways to specify one variable each from
the odd numbered matrices, the number of such paths is also nd−1. We get the same count
for the case when d is odd using the similar argument. Since once the odd steps are chosen,
there is only one way to choose the even steps, all these nd−1 monomials give rise to non-zero
entries in different rows and columns in the matrix MfB . Hence, the matrix is an identity
block of dimension nd−1 upto a permutation of rows and columns and thus it has rank equal
to nd−1.

Theorem 4.3. Any homogeneous ΣΠΣ circuit for computing the product of d n×n matrices
requires Ω(nd−1/2d) size.

Proof. Let Φ be a homogeneous depth-3 circuit computing f . Then, using Lemma 4.1, for
any partition A, max-rank(MfA) ≤ k · 2d. From Lemma 4.2, we know that there exists a
partition B such that max-rank(MfB) = nd−1. Hence, k ≥ nd−1/2d.

It is worth noting that there exists a depth-2 circuit of size nd−1 computing IMM polyno-
mial. As observed in Lemma 4.2, there are nd−1 monomials in the IMM polynomial. Hence,
the sum of monomials representation for IMM will have top fan-in equal to nd−1. We re-
mark that when the number of matrices is a constant, the upper and lower bounds for IMM
polynomial match.

10

5 Lower Bounds against Depth-3 Circuits of Bounded

Product Dimension

If a depth-3 circuit is not homogeneous, the fan-in of a product gate can be arbitrarily larger
than the degree of the polynomial being computed. Hence the techniques in the previous
section fails to give non-trivial circuit size lower bounds. In this section, we study depth-3
circuits with bounded product dimension - where the affine forms feeding into every product
gate are from a linear vector space of small dimension and prove exponential size lower
bounds for such circuits.

We will first prove an upper bound on the maxrank of the polynomial coefficient matrix
for the polynomial computed by a depth-3 circuit of product dimension r, parameterized by
r. Let C be a ΣΠΣ circuit of product dimension r and top fan in k. Let P j be the product
gates in C for j ∈ [k], given by P j = Πs

i=1L
j
i . Without loss of generality, let us assume

that the vectors Lj1, L
j
2, . . . , L

j
r form a basis for the span of {Lj1, L

j
2, . . . , L

j
s}. Let lji be the

homogeneous part of Lji for each i. So, clearly the set {lji}i∈[r′] spans the set {lji}i∈[s], where

r
′ ≤ r. To simplify the notation, we will refer to r

′
as r. In the following presentation, we will

always use d to refer to the degree of the homogeneous polynomial computed by the circuit
under consideration. Now, let us express each lji as a linear combination of {lji}i∈[r]. Let us
now expand the product P j into a sum of product of homogeneous linear forms coming from
{lji}i∈r. Let P j

d be the slice of P j of degree exactly d, for each j ∈ [k]. We now have the
following observation.

Observation 5.1. Let Cd = Σi∈[k]P
i
d. If C computes a homogeneous polynomial of degree d,

then Cd computes the same polynomial.

Proof. The proof follows from the fact that since C computes a homogeneous polynomial
of degree d, the monomials for degree other than d cancel each other across the different
product gates.

We now look at each product in P j
d , which is a sum of products. Each such product

is a product of homogeneous linear forms from {lji}i∈[r] of degree exactly d. To simplify it
further, we will use the following lemma.

Lemma 5.2. ([15]) Any monomial of degree d can be written as a sum of dth power of some
2d linear forms. Further, each of the 2d linear forms in the expression corresponds to Σx∈Sx
for a subset S of [d].

By applying this lemma to each product term in the sum of product representation of
P j
d , we obtain the following:

Lemma 5.3. If P j
d = ΣiΠ

d
u=1l

j
αiu

where αiu ∈ [r], then P j
d = Σv

q=1cqLq
d for some homoge-

neous linear forms Lq, constants cq and v ≤
(
d+r
r

)
.

11

Proof. Consider any product term in the sum of products expansion P j
d as described, say

S = Πd
u=1l

j
αiu

. From Lemma 5.2, we know that S can be written as S = Σ2d

t=1Lt
d, where for

every subset U of [d], there is a β ∈ [2d] such that Lβ = Σu∈U l
j
αiu

. In general, each Lt can

be written as Lt = Σi∈[r]γil
j
i for non-negative integers γi satisfying Σi∈[r]γi ≤ d. Now, each

of the product terms in P j
d can be expanded in a similar fashion into dth powers of linear

forms, each from the set {Σi∈[r]γil
j
i : γi ∈ Z≥0 ∧ Σi∈[r]γi ≤ d}. The number of distinct such

linear forms is at most
(
d+r
r

)
. Hence, the lemma follows.

We now bound the maxrank of the power of a homogeneous linear form which in turn
will give us a bound for P j

d due to the subadditivity of maxrank.

Lemma 5.4. Given a linear form l and any positive integer t, the maxrank of lt is at most
t+ 1 for any partition of the set X of variables into Y and Z.

Proof. Partition the linear form l into two parts, l = ly + lz, where ly consists of all variables
in l from the set Y and lz consists of the variables which come from the set Z. By the
binomial theorem, lt = Σt

i=0

(
t
i

)
liyl

t−i
z . Now, liy is a polynomial just in Y variables and hence

its maxrank can be bounded above by 1, and multiplication by lt−iz does not increase the
maxrank any further, by proposition 3.5. Hence, the maxrank of each term in the sum is at
most 1 and there are at most t+ 1 terms, so, by using the subadditivity of maxrank, we get
an upper bound of t+ 1 on the maxrank of the sum.

Now we are all set to give an upper bound on the maxrank of P j
d .

Lemma 5.5. The max rank of P j
d is at most (d + 1)

(
d+r
r

)
for any partition of the set X of

variables into Y and Z.

Proof. The proof follows from Lemma 5.3, Lemma 5.4 and the subadditivity of max rank.

Now we are ready to prove the theorem.

Theorem 5.6. There is an explicit polynomial in n variables X and degree at most n
2

for
which any ΣΠΣ circuit C of product dimension at most n

10
requires size 2Ω(n).

Proof. We describe the explicit polynomial Q(X) first. Fix an equal sized partition A of X
into Y and Z. Order all subsets of Y and Z of size exactly n

4
in any order, say S1, S2, . . . , Sw

and T1, T2, . . . , Tw, where w =
(n

2
n
4

)
. Let us define the polynomial QA(Y, Z) for the partition

A as follows:
QA(Y, Z) = Σw

i=1Πy∈Si
Πz∈Tiyz

We obtain the polynomial Q(X) by replacing variables in Y and Z in QA(Y, Z) by A−1(Y)
and A−1(Z) respectively. The polynomial Q(X) is homogeneous and of degree n

2
.

Now we prove the size lower bound. The polynomial coefficient matrix of Q with respect

to the partition Y and Z is simply the diagonal submatrix, and the rank is at-least 2
n
2√
n

Since

the circuit computes the polynomial, the top fan in k should be at least
2
n
2√
n

(d+r
r)(d+1)

, for d = n
2
,

and product dimension n
10

, we have a lower bound of 2cn, for a constant c > 0.

12

An Impossibility result: Consider the trivial depth-2 circuit for any polynomial, where
each monomial is computed by the product gate. Viewing this as a depth-3 circuit, the total
dimension of the circuit is bounded above by n, since there are only n variables. Can we have
a circuit with a smaller total dimension r computing the same polynomial? We show that
this is not always possible if r = α.n for a sufficiently small constant α < 1. In particular,
we show that even for r = n

10
, they cannot compute the polynomial that we constructed in

the proof of theorem 5.6 irrespective of the size of the circuit. As a first step, using ideas
developed in the previous subsection, we prove the following upper bound for maxrank of
such circuits.

Lemma 5.7. If the total dimension of a ΣΠΣ circuit is r, then the maxrank of the polynomial
computed by the circuit is bounded above by

(
d+r
r

)
(d+ 1).

Proof. Observe that if the span of all the affine forms occurring in a depth-3 ΣΠΣ circuit
is r (spanned by the basis L1, L2, . . . , Lr), then each of the product gates in the circuit can
be decomposed into sum of power of homogeneous linear forms as in Lemma 5.3. Moreover,
each of these homogeneous linear forms will be of the form Σiαili, where αi ∈ Z≥0∧Σiαi ≤ d
and li is the homogeneous part of Li for each i in [r]. Consequently, the maxrank for the
circuit is bounded by

(
d+r
r

)
(d+ 1) by Lemma 5.4 and the subadditivity of max rank.

Thus, a ΣΠΣ circuit of total dimension bounded by r, can compute the polynomial Q
described in the proof of 5.6, only if(

d+ r

r

)
(d+ 1) ≥ 2

n
2

√
n
.

This in turn implies that for r ≤ n
10

, such circuits cannot compute the polynomial Q irre-
spective of the number of gates they use.

6 Lower Bounds against Product-sparse Formulas

Let Y = {y1, y2, . . . , ym} and Z = {z1, z2, . . . , zm}. Let Φ be an arithmetic circuit defined
over the field F and the variables Y ∪ Z. For a node v, let us denote by Φv the sub-circuit
rooted at v, and denote by Yv and Zv, the set of variables in Y and Z that appear in Φv

respectively. Let us define, a(v) = min{|Yv|, |Zv|} and b(v) = (|Yv|+ |Zv|)/2. We say that a
node v is k-unbalanced if b(v) − a(v) ≥ k. Let γ be a simple path from a leaf to the node
v. We say that γ is k-unbalanced if it contains at least one k-unbalanced node. We say that
γ is central if for every u, u1 on the path γ such that there is an edge from u1 to u in Φ,
b(u) ≤ 2b(u1). v is said to be k-weak if every central path that reaches v is k-unbalanced.

We prove that if v is k-weak then the max-rank of the matrix Mv can be bounded. The
proof goes via induction on |Φv| and follows the same outline as that of [12]. It only differs
in the case of non-disjoint product gates which we include in full detail below. The proofs
of the rest of cases is given in the appendix B.

13

Lemma 6.1. Let Φ be a (s, d)-product-sparse formula over the set of variables {y1, . . . , ym}
and {z1, . . . , zm}, and let v be a node in Φ. Denote the product-sparse depth of v by d(v). If
v is k-weak, then, max-rank(Mv) ≤ 2s·d(v) · |Φv| · 2b(v)−k/2 .

Proof. Consider the case when v is a s-sparse product gate with children v1 and v2 and v.
Without loss of generality it can be assumed that v is not disjoint.

Let us suppose that the product-sparse depth of v is d. Without loss of generality, assume
that v2 computes a sparse polynomial having at most 2s number of monomials. Since v is
not disjoint, product-sparse depth of v1 is at most d− 1. Thus using Corollary 3.8,

max-rank(Mv) ≤ 2s ·max-rank(Mv1) (1)

Consider the following cases based on whether b(v) ≤ 2b(v1) or not.
If b(v) ≤ 2b(v1), then v1 is also k-weak. Therefore, by induction hypothesis,

max-rank(Mv1) ≤ 2s(d−1) · |Φv1 | · 2b(v1)−k/2 ≤ 2s(d−1) · |Φv| · 2b(v)−k/2 .

Thus, using Equation 1, max-rank(Mv) ≤ 2sd · |Φv| · 2b(v)−k/2 . If b(v) > 2b(v1), then b(v1) <
b(v)/2 < b(v) − k/2 since b(v) ≥ k. Therefore using Proposition 3.2, max-rank(Mv1) ≤
2a(v1) ≤ 2b(v1) < 2b(v)−k/2. Therefore, max-rank(Mv) ≤ 2s · 2b(v)−k/2 ≤ 2sd · |Φv| · 2b(v)−k/2 .

Because of previous lemma, to prove that a full max-rank polynomial cannot be computed
by any (s, d)-product-sparse formula of polynomial size, we only need to show that there
exists a partition that makes the formula k-weak with suitable values of s, d and k.

In [11], it was proved that for syntactic multilinear formulas of size at most nε logn, where
ε is a small enough universal constant, there exists such a partition that makes the formula
k-weak for k = n1/8. We observe that this lemma also holds for product-sparse formulas,
the proof given in [11] is not specific to just syntactic multilinear formulas and holds for any
arithmetic formula. We state the lemma again for the case of product-sparse formulas.

Lemma 6.2. Let n = 2m. Let Φ be a (s, d)-product-sparse formula over the set of variables
X = {x1, . . . , xn}, such that every variable in X appears in Φ, and such that |Φ| ≤ nε logn,
where ε is a small enough universal constant. Let A be a random partition of the variables in
X into {y1, . . . , ym}∪{z1, . . . , zm}. Then with probability of at least 1−n−Ω(logn) the formula
ΦA is k-weak, for k = n1/8.

With above lemma, the following theorem becomes obvious.

Theorem 6.3. Let X be a set of 2n variables and let f ∈ F[X] be a full max-rank polynomial.
Let Φ be any (s, d)-product-sparse formula of size nε logn, where ε is the same constant for
which Lemma 6.2 holds. If sd = o(n1/8), then f cannot be computed by Φ.

Proof. Assume for a contradiction that Φ computes f . Using Lemma 6.2, for a random
partition A, with probability of at least 1−n−Ω(logn), the formula ΦA is k-weak for k = n1/8.
Hence, using Lemma 6.1, max-rank(MΦA) ≤ 2sd · |ΦA| ·2n−k/2 < 2n. Since f is a full max-rank
polynomial, it cannot be computed by Φ.

14

Preprocessed Product-sparse Formulas

To prove the results about preprocessed product-sparse formulas, we observe first that the
Lemma 6.1 also holds for preprocessed product-sparse formulas.

Lemma 6.4. Let Φ be a preprocessed (s, d)-product-sparse formula over the set of variables
{y1, . . . , yn} and {z1, . . . , zn}, and let v be a node in Φ. If v is k-weak, then,

max-rank(Mv) ≤ 2s·d(v) · |Φv| · 2b(v)−k/2.

where d(v) is the product-sparse depth of v.

Proof. The proof proceed in the same way by induction on |Φv|. We only point out the
differences in the two proofs. Base case will hold similarly as for any univariate polynomial
T (x), max-rank(MT (x)) is at most one. In the induction step, only difference will be in Case
(3) in which v is a product gate obeying s-sparse property. In lemma 6.1, we obtain the
following inequality using Corollary 3.8,

max-rank(Mv) ≤ 2s ·max-rank(Mv1) .

We obtain the same inequality for preprocessed product-sparse formulas also using Corollary
3.7 instead of Corollary 3.8 and rest of the proof follows similarly.

We also observe that if a product-sparse formula Φ is k-weak, then any preprocessed
product-sparse formula obtained from Φ by applying a preprocessing step is also k-weak.

Lemma 6.5. Let Φ be a product-sparse formula over the set of variables Y ∪ Z. Let Φ′ be
any preprocessed product-sparse formula obtained from Φ. If Φ is k-weak, then Φ′ is also
k-weak.

Proof. For every node v in Φ, there is a corresponding node v′ in Φ′. To prove the lemma
we need to show that every central path in Φ′ is k-weak. Since in the preprocessing step,
each variable is replaced by a non-constant univariate polynomial in the same variable, we
know that Yv′ = Yv and Zv′ = Zv. Thus, a(v′) = a(v) and b(v′) = b(v). Hence, every central
path in Φ′ is a central path in Φ and vice-versa. Also, v is k-unbalanced in Φ iff v′ is also
k-unbalanced in Φ′. Hence, if Φ is k-weak then Φ′ is also k-weak.

By using Lemma 6.4, in a very similar way to the proof of Theorem 6.3, we get the
following:

Theorem 6.6. Let X be a set of 2n variables and let f ∈ F[X] be a full max-rank polynomial.
Let Φ be any preprocessed (s, d)-product-sparse formula of size nε logn, where ε is the same
constant for which Lemma 6.2 holds. If sd = o(n1/8), then f cannot be computed by Φ.

Proof. Assume for a contradiction that Φ computes f . Using Lemma 6.2 and 6.5, for a
random partition A, with probability of at least 1− n−Ω(logn), the formula ΦA is k-weak for
k = n1/8. Hence, using Lemma 6.4,

max-rank(MΦA) ≤ 2sd · |ΦA| · 2n−k/2 < 2n.

Since f is a full max-rank polynomial, it cannot be computed by Φ.

15

7 Lower Bounds against Partitioned Arithmetic Branch-

ing Programs

In the preliminaries section, we defined partitioned arithmetic branching programs which
are a generalization of ordered ABPs. While ordered ABP can only compute multilinear
polynomials, partitioned ABP is a non-multilinear model, thus can compute non-multilinear
polynomials also. We, then, prove an exponential lower bound for partitioned ABPs.

By definition, any polynomial computed by a partitioned ABP is homogenous. In [7],
a full rank homogenous polynomial was constructed. Thus, to prove lower bounds for par-
titioned ABP, we only need to upper bound the max-rank of the polynomial coefficient
matrix for any polynomial being computed by a partitioned ABP. Now we prove such an
upper bound and use it to prove exponential lower bound on the size of partitioned ABPs
computing any full max-rank homogenous polynomial.

Theorem 7.1. Let X be a set of 2n variables and F be a field. For any full max-rank ho-
mogenous polynomial f of degree n over X and F, the size of any partitioned ABP computing
f must be 2Ω(n).

Proof. Let B be a π-partitioned ABP computing f for a permutation π : [2n] → [2n]. Let
L0, L1, . . . , Ln be the levels of B. Consider any partition A that assigns all n y-variables to
{xπ(1), xπ(2), . . . , xπ(n)} and all n z-variables to {xπ(n+1), xπ(n+2), . . . , xπ(2n)}. Let us denote
by fA the polynomial obtained from f after substituting each variable x by A(x). Let B is
partitioned with respect to the level Li for i = 2αn. We can write, f = fst =

∑
v∈Li

fs,vfv,t .
Consider a node v ∈ Li. By definition, there are following two cases:
Case 1: Xs,v ⊆ {xπ(1), xπ(2), . . . , xπ(n)} and |Xv,t| ≤ 2n(1 − α). Thus, fAs,v ∈ F[Y]. Hence,
using Proposition 3.5,

max-rank(MfAs,vf
A
v,t

) ≤ max-rank(MfAv,t
) ≤ 2|Xv,t|/2 ≤ 2n(1−α)

Case 2: Xv,t ⊆ {xπ(n+1), xπ(n+2), . . . , xπ(2n)} and |Xs,v| ≤ 2n(1 − α). Thus, fAv,t ∈ F[Z].
Hence, again using Proposition 3.5,

max-rank(MfAs,vf
A
v,t

) ≤ max-rank(MfAs,v
) ≤ 2|Xs,v |/2 ≤ 2n(1−α)

Thus, in any case, max-rank(MfAs,vf
A
v,t

) ≤ 2n(1−α) for all v ∈ Li. Using Proposition 3.3,

max-rank(MfA) ≤ |Li| ·2n(1−α). Since f is a full max-rank polynomial, we get |Li| ≥ 2αn.

8 Acknowledgements

The authors thank the anonymous referees for suggesting a simplified view of the proof
for Lemma 4.2. The first author thanks Shubhangi Saraf and Venkata Koppula for some
insightful discussions related to Section 5.

16

References

[1] Manindra Agrawal, Chandan Saha, Ramprasad Saptharishi, and Nitin Saxena. Jacobian
Hits Circuits: Hitting-sets, Lower Bounds for Depth-d Occur-k Formulas & Depth-
3 Transcendence Degree-k Circuits. In Proceedings of the 44th ACM symposium on
Theory of computing, pages 599–614, 2012.

[2] Manindra Agrawal and V. Vinay. Arithmetic Circuits: A Chasm at Depth Four. In
Proceedings of the 2008 49th Annual IEEE Symposium on Foundations of Computer
Science, FOCS ’08, pages 67–75, 2008.

[3] Zeev Dvir, Guillaume Malod, Sylvain Perifel, and Amir Yehudayoff. Separating Mul-
tilinear Branching Programs and Formulas. In Proceedings of the 44th Symposium on
Theory of Computing Conference, STOC 2012, pages 615–624, 2012.

[4] D. Grigoriev and A. Razborov. Exponential Complexity Lower Bounds for Depth 3
Arithmetic Circuits in Algebras of Functions over Finite Fields. In Proceedings of the
39th Annual Symposium on Foundations of Computer Science, FOCS ’98, pages 269–
278, 1998.

[5] Dima Grigoriev and Marek Karpinski. An Exponential Lower Bound for Depth 3 Arith-
metic Circuits. In Proceedings of the Thirtieth Annual ACM Symposium on the Theory
of Computing (STOC), pages 577–582, 1998.

[6] Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. An Expo-
nential Lower Bound for Homogeneous Depth Four Arithmetic Circuits with Bounded
Bottom Fanin. Electronic Colloquium on Computational Complexity (ECCC), 19:98,
2012.

[7] Maurice J. Jansen. Lower Bounds for Syntactically Multilinear Algebraic Branching
Programs. In Proceedings of the 33rd international symposium on Mathematical Foun-
dations of Computer Science, MFCS ’08, pages 407–418, 2008.

[8] Pascal Koiran. Arithmetic Circuits: The Chasm at Depth Four Gets Wider. Computing
Research Repository, abs/1006.4700, 2010.

[9] N. Nisan and A. Wigderson. Lower Bounds on Arithmetic Circuits via Partial Deriva-
tives. In Proceedings of the 36th Annual Symposium on Foundations of Computer Sci-
ence, FOCS ’95, pages 16–25, 1995.

[10] R. Raz and A. Yehudayoff. Lower Bounds and Separations for Constant Depth Mul-
tilinear Circuits. In Computational Complexity, 2008. CCC ’08. 23rd Annual IEEE
Conference on, pages 128–139, june 2008.

[11] Ran Raz. Separation of Multilinear Circuit and Formula Size. Theory of Computing,
2(1):121–135, 2006.

17

[12] Ran Raz. Multi-linear Formulas for Permanent and Determinant are of Super-
polynomial Size. Journal of ACM, 56:8:1–8:17, April 2009.

[13] Ran Raz, Amir Shpilka, and Amir Yehudayoff. A Lower Bound for the Size of Syntacti-
cally Multilinear Arithmetic Circuits. SIAM Journal of Computation, 38(4):1624–1647,
2008.

[14] Nitin Saxena. Diagonal Circuit Identity Testing and Lower Bounds. Electronic Collo-
quium on Computational Complexity (ECCC), 14(124), 2007.

[15] Amir Shpilka. Affine Projections of Symmetric Polynomials. In Proceedings of the 16th
Annual Conference on Computational Complexity, CCC ’01, pages 160–, Washington,
DC, USA, 2001. IEEE Computer Society.

[16] Amir Shpilka and Avi Wigderson. Depth-3 Arithmetic Circuits over Fields of Charac-
teristic Zero. Computational Complexity, 10(1):1–27, 2001.

[17] Amir Shpilka and Amir Yehudayoff. Arithmetic Circuits: A Survey of Recent Results
and Open Questions. Foundations and Trends in Theoretical Computer Science, 5(3-
4):207–388, March 2010.

18

A An alternative Proof of Lemma 4.2

We view the product of d matrices as an iterative process using the associative property of
the matrix multiplication and prove a more stronger statement than Lemma 4.2. We will
first prove it for the case when d is an even integer. Let us define a partition B : X → Y ∪Z
as follows: all the variables in odd numbered matrices are assigned variables in Y and all the
variables in even numbered matrices are assigned variables in Z. Let us denote the variable
assigned by B to x2i−1

jk by y2i−1
jk and the variable assigned to x2i

jk by z2i
jk.

Lemma A.1. Let d = 2d′ be an even integer. Let us denote the polynomial computed at
(i, j)th entry of the product

∏
k∈[d]

Ak by fij. The following statements hold true:

1. For any i, j ∈ [n], rank(MfBij
) = nd−1.

2. For any i ∈ [n] and j 6= j′ ∈ [n], the set of non-zero columns in MfBij
and MfB

ij′
are

disjoint.

Proof. We will prove by induction on d′.
Base Case: d′ = 1 i.e. d = 2. In this case, we have two matrices A1 and A2 and the
partition B assigns all the variables in A1 to Y and all the variables in A2 to Z. For any i, j,
fij = (A1A2)(i, j) =

∑
k∈[n]

A1(i, k)A2(k, j). Thus, fBij =
∑
k∈[n]

y1
ikz

2
kj. Clearly, rank(MfBij

) = n.

Moreover, there are only n non-zero columns in MfBij
which are indexed by z2

kj respectively.

Thus, for j 6= j′, the set of non-zero columns in MfBij
and MfB

ij′
are disjoint.

Induction Step: Let us suppose the lemma holds for (d′−1). We will prove that it also holds
for d′. Let d = 2d′, Q =

∏
k∈[d−2]

Ak and P = Ad−1Ad. Therefore,
∏
k∈[d]

Ak = QP . Thus, fij =

(QP)(i, j) =
∑
k∈[n]

Q(i, k)P (k, j) where P (k, j) can again be written as
∑
r∈[n]

Ad−1(k, r)Ad(r, j).

Thus,

fij =
∑
k∈[n]

∑
r∈[n]

Q(i, k) Ad−1(k, r) Ad(r, j).

Let us denote the polynomial Q(i, k) by gik and
∑
r∈[n]

gBik y
d−1
kr zdrj by Pk. Thus,

fBij =
∑
k∈[n]

∑
r∈[n]

gBik y
d−1
kr zdrj =

∑
k∈[n]

Pk .

By induction hypothesis, rank(MgBik
) = nd−3. Thus, MgBik

has a sub-matrix of size nd−3×
nd−3 which is of full rank. Since the variables yd−1

kr and zdrj do not appear in gBik, the matrix
MgBik yd−1

kr zdrj
contains the full rank submatrix of MgBik

at a shifted position in both rows and

columns depending on yd−1
kr and zdrj. Formally, for any monomials p, q in the set of variables

Y and Z respectively, MgBik yd−1
kr zdrj

(yd−1
kr p, zdrjq) = 1 iff MgBik

(p, q) = 1. Thus, MPk
contains

19

n disjoint copies of the full rank sub-matrix of MgBik
such that no two of the copies contain

any common non-zero row or column. Thus, rank(MPk
) = n · rank(MgBik

) = nd−2.
By induction hypothesis, we also know that the set of non-zero columns in MgBik

and
MgB

i,k′
are disjoint for k 6= k′. Thus, for k 6= k′, MPk

and MPk′
do not contain any common

non-zero column. Hence,

rank(MfBij
) =

∑
k∈[n]

rank(MPk
) = nd−1 .

To prove statement 2, it is sufficient to observe that each non-zero entry in MfBij
is present in

a column such that the monomial indexing it is divisible by some variable in the jth column
of Ad and is not divisible by any variable present in other columns of Ad. Thus, for j 6= j′,
the set of non-zero columns in MfBij

and MfB
ij′

are disjoint.

For the case when d is a odd integer, let us denote the polynomial
∏

k∈[d−1]A
k(i, j) by

fij and
∏

k∈[d] A
k(i, j) by gij for all i, j ∈ [n]. Thus, gij =

∑
k∈[n] fikx

d
kj which implies

gBij =
∑

k∈[n] f
B
iky

d
kj. Thus, MgBij

contains a copy of MfBik
for each k and none of these copies

have a common non-zero row due to multiplication by ykj. Moreover, we know that MfBik
and MfB

ik′
do not have any common non-zero columns. Thus, MgBij

contains a copy of the

full rank sub-matrix of MfBik
for each k with no common non-zero rows or columns. Hence,

rank(MgBij
) =

∑
k∈[n]

rank(MfBik
) = nd−1 .

B Complete Proof of Lemma 6.1

Lemma. Let Φ be a (s, d)-product-sparse formula over the set of variables {y1, . . . , ym} and
{z1, . . . , zm}, and let v be a node in Φ. Denote the product-sparse depth of v by d(v). If v is
k-weak, then, max-rank(Mv) ≤ 2s·d(v) · |Φv| · 2b(v)−k/2 .

Proof. We will prove by induction on |Φv|.
Base Case: v is a leaf node. By definition, the polynomial computed at node v is either
a constant from the field or a single variable. Thus, max-rank(Mv) ≤ 1. Thus the lemma
follows.
Inductive Step: Let v be a node in Φ and assume that the lemma holds for all nodes u in
Φ such that |Φu| < |Φv|. We consider the following cases:

1. v is a k-unbalanced node.

Thus, a(v) ≤ b(v) − k. Hence, using Proposition 3.2, max-rank(Mv) ≤ 2b(v)−k ≤
2sd(v) · |Φv| ·2b(v)−k/2. In the rest of the cases, we can assume that v is not k-unbalanced.

2. v is a disjoint product gate with children v1 and v2 and v.

Thus, we have Yv1 ∩ Yv2 = φ and Zv1 ∩ Zv2 = φ. Thus, b(v) = b(v1) + b(v2). Without
loss of generality, we can assume that b(v) ≤ 2b(v1). Since v is not k-unbalanced,

20

every central path that reaches v1 must be k-unbalanced as otherwise we can extend
such a path to v that will remain central and not k-unbalanced. Thus v1 is also
k-weak and we have |Φv1| < |Φv|. Hence by induction hypothesis, max-rank(Mv1) ≤
2sd(v1)·|Φv1|·2b(v1)−k/2 .Using Proposition 3.2, we have, max-rank(Mv2) ≤ 2a(v2) ≤ 2b(v2) .
Hence by Proposition 3.4,

max-rank(Mv) = max-rank(Mv1) ·max-rank(Mv2)

≤ 2sd(v1) · |Φv1 | · 2b(v1)+b(v2)−k/2

≤ 2sd(v) · |Φv| · 2b(v)−k/2 .

3. v is a s-sparse product gate with children v1 and v2 and v. Without loss of generality
it can be assumed that v is not disjoint.

Let us suppose that the product-sparse depth of v is d. Without loss of generality,
assume that v2 computes a sparse polynomial having at most 2s number of monomials.
Since v is not disjoint, product-sparse depth of v1 is at most d−1. Thus using Corollary
3.8,

max-rank(Mv) ≤ 2s ·max-rank(Mv1) (2)

Consider the following cases based on whether b(v) ≤ 2b(v1) or not.

If b(v) ≤ 2b(v1), then v1 is also k-weak. Therefore, by induction hypothesis,

max-rank(Mv1) ≤ 2s(d−1) · |Φv1| · 2b(v1)−k/2 ≤ 2s(d−1) · |Φv| · 2b(v)−k/2 .

Thus, using Equation 2, max-rank(Mv) ≤ 2sd · |Φv| · 2b(v)−k/2 . If b(v) > 2b(v1),
then b(v1) < b(v)/2 < b(v) − k/2 since b(v) ≥ k. Therefore using Proposition 3.2,
max-rank(Mv1) ≤ 2a(v1) ≤ 2b(v1) < 2b(v)−k/2. Therefore, max-rank(Mv) ≤ 2s ·2b(v)−k/2 ≤
2sd · |Φv| · 2b(v)−k/2 .

4. v is a plus gate with children v1 and v2.

We know that b(v) ≤ b(v1)+b(v2). Without loss of generality, assume that b(v) ≤ 2b(v1)
which implies that v1 is also k-weak. Hence by induction hypothesis,

max-rank(Mv1) ≤ 2sd(v1) · |Φv1| · 2b(v1)−k/2 ≤ 2sd(v) · |Φv1| · 2b(v)−k/2 .

We consider the following cases based on whether b(v) ≤ 2b(v2) or not:

If b(v) ≤ 2b(v2), then v2 is also k-weak. Hence by induction hypothesis,

max-rank(Mv2) ≤ 2sd(v2) · |Φv2| · 2b(v2)−k/2 ≤ 2sd(v) · |Φv2| · 2b(v)−k/2.

Hence by Proposition 3.3,

max-rank(Mv) ≤ max-rank(Mv1) + max-rank(Mv2)

≤ 2sd(v) · (|Φv1|+ |Φv2|) · 2b(v)−k/2

≤ 2sd(v) · |Φv| · 2b(v)−k/2 .

21

If b(v) > 2b(v2), then b(v2) < b(v)/2 < b(v) − k/2 since b(v) ≥ k. Hence by propo-
sition 3.2, max-rank(Mv2) ≤ 2a(v2) ≤ 2b(v2) < 2b(v)−k/2 < 2sd(v) · 2b(v)−k/2 . Hence by
Proposition 3.3,

max-rank(Mv) ≤ 2sd(v) · (|Φv1|+ 1) · 2b(v)−k/2 ≤ 2sd(v) · |Φv| · 2b(v)−k/2.

22

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

