
A o(n) Monotonicity Tester for Boolean Functions over the Hypercube

D. Chakrabarty and C. Seshadhri

Abstract. Given oracle access to a Boolean function f : {0, 1}n 7→ {0, 1}, we design a
randomized tester that takes as input a parameter ε > 0, and outputs Yes if the function is
monotone, and outputs No with probability > 2/3, if the function is ε-far from monotone.
That is, f needs to be modified at ε-fraction of the points to make it monotone. Our

non-adaptive, one-sided tester makes Õ(n5/6ε−5/3) queries to the oracle.

1. Introduction

Testing monotonicity of Boolean functions is a classical question in property testing. The
Boolean hypercube {0, 1}n defines a natural partial with x ≺ y iff xi ≤ yi for all i ∈ [n]. A
Boolean function f : {0, 1}n 7→ {0, 1} is monotone if f(x) ≤ f(y) whenever x ≺ y.

A Boolean function’s distance to monotonicity is the minimum fraction of points at which
it needs to be modified to make it monotone. In the property testing framework, we are
provided oracle access to the function f and given a parameter ε > 0. A monotonicity tester
is an algorithm that accepts, if the function is monotone and rejects, if the function is ε-far
from monotone. The tester is allowed to be randomized, and has to be correct with non-
trivial probability (say > 2/3). The tester is called one-sided if the tester always accepts a
monotone function. The tester is non-adaptive if the queries made by the algorithm do not
depend on the answers given by the oracle.

The quality of a monotonicity tester is governed by the number of oracle queries as well
as the running time. Goldreich et al. [8] suggested the following simple tester: query the
function value on a pair of points that differ on exactly a single coordinate and reject if
monotonicity is violated. In other words, the tester samples a random edge of the hypercube
and checks for monotonicity between the two endpoints. This is called the edge tester for
monotonicity; it is clear the running time is of the same order as the query time.

Goldreich et al. [8] show that O(n/ε)-queries by the edge tester suffice to test monotonicity.
They also show that their analysis is tight, so the edge tester can do no better. They
explicitly ask whether there exists a tester with an improved query complexity in terms of
n? Fischer et al. [7] show that any non-adaptive, one-sided tester1 for monotonicity must
make Ω(

√
n)-queries for constant ε > 0. While monotonicity has been extensively studied

in property testing [6, 8, 5, 10, 7, 9, 11, 1, 3, 2, 4], no significant progress had been made on
this decade old question of testing monotonicity of Boolean functions.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corpo-
ration, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

1[7] also show a Ω(log n) lower bound for 2-sided testers.
1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 29 (2013)

2 D. CHAKRABARTY AND C. SESHADHRI

Our main result is an affirmative answer to the above question of [8]. For brevity, we use the

tilde notation to hide log factors; Õ(h) contains functions dominated by h ·poly(log h).

Theorem 1. There exists a one-sided, non-adaptive Õ(n5/6ε−5/3)-query monotonicity tester
for Boolean functions f : {0, 1}n 7→ {0, 1}.

We get an improved bound for functions with low average sensitivity. Given a Boolean
function f , the influence of dimension i, denoted as Infi, is defined as the fraction of edges on
the hypercube crossing the ith dimension whose endpoints have different function values. The
average sensitivity, denoted as I(f), is the sum of all the n influences. The functions defined
in [7] to prove lower bounds of Ω(

√
n) for non-adaptive, one-sided testers have constant

average sensitivity, and hence the following is optimal for that setting.

Theorem 2. There exists a one-sided, non-adaptive O(
√
npoly(I(f)/ε))-query monotonicity

tester for Boolean functions of average sensitivity I(f).

1.1. Pair testers. A pair tester [5] describes a fixed distribution (independent of the func-
tion) on domain pairs (x ≺ y), makes independent queries on pairs drawn from this distri-
bution, and rejects iff some drawn pair violates monotonicity. By definition, pair testers are
non-adaptive and one-sided. (Note that the edge tester is a pair tester.) Briët et al. [3] show
that any pair tester requires Ω(n/(ε log n)) samples and the linear dependence on O(1/ε) is
crucial in their argument. Our tester is also a pair tester. We circumvent the lower bound
(on n) of [3] because of the worse dependence on ε.

1.2. Main Ideas. Our tester is a combination of the edge tester and what we call the path
tester. The path tester essentially samples a random point x on the hypercube, performs
a sufficiently long random length walk ‘up’ the directed hypercube to reach y, queries f(x)
and f(y) and tests for monotonicity.

Our algorithm is inspired by a recent paper by Ron et al. [12], which shows a O(
√
n)-query

randomized algorithm to estimate the average sensitivity of a monotone function. The
algorithm essentially performs the operation above and counts the number of mismatches;
Ron et al. [12] explicitly ask whether an algorithm “in the spirit” above can be used for
monotonicity. Our answer is yes.

Consider a function f is ε-far from monotone. The aim of any tester is to detect a violation,
that is, a pair x ≺ y such that 1 = f(x) > f(y) = 0. The success probability of the
edge tester is exactly the fraction of violated edges. The intuition is that there are possibly
many more violations that are “far away” and the directed random walk will help detect
those. Consider the function f : {0, 1}n+1 7→ {0, 1}, f(0, x) = 0 if |x| ≤ n/2 − 2

√
n

and 1 otherwise; f(1, x) = 0 if |x| ≤ n/2 + 2
√
n and 1 otherwise. This function has a

constant distance to monotonicity, and all the violated edges are of the form ((0, x), (1, x))
for n/2− 2

√
n ≤ |x| ≤ n/2 + 2

√
n. The edge tester detects a violation with probability only

Θ(1/n). Suppose we pick a uniform random point and perform of length
√
n/2 ≤ ` <

√
n.

If the starting point has 0 in the first coordinate and any of the Θ(
√
n) steps flip the first

coordinate, the walk detects a violation. This happens with probability Θ(1/
√
n), handily

beating the edge tester.

Boolean Monotonicity Testing 3

The argument above required the violated edges to be aligned along one dimension. We prove
(in §2.2) that directed random walk detects a violation (with sufficiently high probability)
when there is a large matching of violated edges. One of the ingredients of this proof is the
following interesting combinatorial observation. In §2.1, we prove that if an ε-fraction of
the hypercube is marked blue, then the probability that the random walk starts and ends

at a blue point is Ω̃(ε2). It shows that the endpoints of this random walk, which are highly
correlated, behave like two independent samples as far as being blue is concerned.

But what if no large matching of violated edges exists? Take the ‘anti-majority’ function,
which is far from monotone, yet only has a matching of violated edges of size Θ(2n/

√
n).

This is dealt with by our dichotomy theorem. In §2.3, we prove that for any s > 0, either
there exists Θ(sε2n) violated edges, or there exists a matching of Θ(ε2n/s) violated edges.
With this we are done; in the former case, the edge tester suffices, in the latter the path
tester suffices. The factor n5/6 is the optimal tradeoff obtained by our approach.

The proof of our dichotomy theorem combines two ideas discovered earlier in the context of
monotonicity testing. The first is a theorem of Lehman and Ron [10] on multiple source-sink
routing over the hypercube. The second is an alternating paths machinery developed by the
authors in a separate work [4] for general range monotonicity.

2. The Tester and its Analysis

Fix a parameter ε > 0. Our tester accepts if the function is monotone, and rejects with
probability > 2/3 if f is ε-far from being monotone. We assume without loss of generality
that ε ≤ 1/2 since any function can be made monotone by changing at most 1/2 of its values.

Set parameter ` := 2dCε
√
n e, where Cε =

√
10 ln(1/ε). Since ε ≤ 1/2, we have Cε > 2 and

` > 4
√
n. I` denotes the index set [n/2− `/2, n/2 + `/2].

For a binary vector x, y ∈ {0, 1}n, |x| is the number of 1’s in x and ‖x−y‖1 is the `1-distance
between x and y. The all zeros and all ones vectors are denoted 0n and 1n, respectively.
The directed hypercube is the directed graph with vertex set {0, 1}n, and an arc from x
to y if x ≺ y and ‖y − x‖1 = 1. Throughout the paper, u.a.r. stands for ‘uniformly at
random’.

We describe a random walk based procedure called the path tester.

Path Tester.

(1) Let P be the collection of paths in the directed hypercube from 0n to 1n. Pick a path
p ∈ P u.a.r. Let Xp := {z ∈ p : |z| ∈ I`}.

(2) Sample x ∈ Xp u.a.r.

(3) Let Yp(x) := {z ∈ Xp : ||z − x||1 ≥ ε`
32Cε
− 1}. Sample y ∈ Yp(x) u.a.r.

(4) Reject if (x, y) violate monotonicity; i.e. f(x) < f(y), x � y or f(x) > f(y), x ≺ y.

This is clearly a pair tester (and is hence non-adaptive and one-sided). Our final tester runs
either the path tester or the edge tester, each with probability 1/2.

4 D. CHAKRABARTY AND C. SESHADHRI

The heart of our work lies in lower bounding the probability of rejection when the function
f is ε-far from monotonicity. Henceforth, we assume the function f is ε-far, and we call the
rejection event a success. Recall, since f is ε-far from monotonicity, any maximal set M of
disjoint, violating pairs satisfies |M | ≥ ε2n−1 [7]. We refer to M as a matching of violated
pairs,

For 1 ≤ i ≤ n, Li := {x ∈ {0, 1}n : |x| = i} denotes the ith layer of the directed hypercube.
We refer to

⋃
i∈I` Li as the middle layers of the hypercube.

Proposition 2.1. (a) |
⋃
i/∈I` Li| ≤ ε52n. (b) A u.a.r path p contains a u.a.r vertex from Li.

Proof. By Chernoff bounds, for a u.a.r x ∈ {0, 1}n, Pr[
∣∣|x| − n/2∣∣ > `/2] ≤ 2e−`

2/2n. Since

` = 2d
√

10n log(1/ε) e, this probability is at most ε5. For the second part, observe the
number of paths in P that pass through a given vertex x depends solely on |x|. �

2.1. Going from blue to blue. Assume ε-fraction of the hypercube is colored blue. Let
(x, y) be a random pair sampled by the path tester, and let E be the event that both x and
y are blue. If x and y were chosen independently u.a.r., then the probability of both being
blue is ε2. The following lemma shows that this probability does not degrade much even
though x and y are correlated (for instance, they form an ancestor-descendant pair).

Lemma 2.1. Pr[E] = Ω

(
ε2

ln(1/ε)

)
.

Proof. For notational convenience, set µ := ε/16Cε. This implies2 |Xp| − |Yp(x)| ≤ µ` for
any x ∈ p. Let b(p) be the random variable denoting the number of blue points in Xp

corresponding to a random path p. Let Ex and Ey be the probabilities that the first and
second points are blue; that is E = Ex ∧ Ey. Abusing notation, p will also denote the event
that p is the sampled path.

Conditioned on a path p being sampled, the probability of the first point x sampled by the
path tester being blue, that is Pr[Ex | p] = b(p)/`.

Conditioned on the path being p and the first point being x (irrespective of it being blue or
not), the probability that the second point y is blue is the number of blue points in Yp(x)
divided by |Yp(x)|. The number of blue points is at least b(p)−µ` since |Xp|− |Yp(x)| ≤ µ`.
Therefore,

Pr[Ey | p, x first point] =
|blue points in Yp(x)|

|Yp(x)|
≥ b(p)− µ`

`
.

Since the above inequality holds for all x (in particular all the blue x’s),

Pr[Ey | p, Ex] ≥
b(p)− µ`

`
.

2The curious reader may be wonder why we have a “−1” in the distance condition for Yp(x) in the
description of the path tester. This is a technicality so that we have the bound |Xp|− |Yp(x)| ≤ µ`. Without
the −1, the bound would be µ`+ 2 and can be made O(µ`) only for large enough ε. So instead of enforcing
such a condition or carrying around a +2, the “−1” allows for a cleaner presentation.

Boolean Monotonicity Testing 5

Together, we get

Pr[E] =
∑
p∈P

Pr[Ey|p, Ex] · Pr[Ex|p] · Pr[p]

≥ 1

|P|
∑
p∈P

(
b(p)

`
· b(p)− µ`

`

)

=
1

|P|
∑
p∈P

(
b(p)

`

)2

− µ

|P|
∑
p∈P

b(p)

`
.(1)

In the following, we use E[...] to denote the expectation over the choice of the path p.

Claim 2.1. E[b(p)/`] := 1
|P|
∑

p∈P(b(p)/`) ≥ ε/8Cε.

Proof. Note that, for all i, |Li| ≤
(
n
n/2

)
≤ 2n√

n
. Let ni be the number of blue vertices in

layer Li and Zi be the indicator variable for the ith layer vertex in p being blue. Hence,
b(p) =

∑
i∈I` Zi. For all i, a p chosen u.a.r from P contains a uniform random vertex in

layer Li. (Prop. 2.1). Thus,

E[Zi] =
ni
|Li|
≥
√
n

2n
· ni.

By the tail bound of Prop. 2.1, the number of vertices not in the middle layers is at most
ε52n. Since ε ≤ 1/2,

∑
i∈I` ni ≥ (ε− 2ε5)2n ≥ ε2n−1. Using linearity of expectation and the

boun ` < 4Cε
√
n,

E[b(p)/`] ≥
√
n

`2n

∑
i∈I`

ni ≥
ε
√
n

2`
≥ ε

8Cε
.

�

We express the bound of (1) in terms of expectations and apply Jensen’s inequality.

Pr[E] ≥ E[(b(p)/`)2]− µE[b(p)/`]

≥ (E[b(p)/`])2 − µE[b(p)/`] = E[b(p)/`](E[b(p)/`]− µ)

The function h(x) = x(x − µ) is increasing when x ≥ µ/2. Hence, we can apply the lower
bound of Claim 2.1 to get Pr[E] ≥ (ε/8Cε)(ε/8Cε − µ). Plugging back µ = ε/16Cε, we
complete the proof of Lemma 2.1. �

2.2. Large violated-edge matchings are good. We bound the success of the path tester
when a large matching of violated edges exists.

Lemma 2.2. Suppose there exists a matching E of violated edges in the middle layers of the
hypercube. Then the path tester succeeds with probability

Ω̃

(
ε√
n
·
(
|E|
2n

)2
)
.

6 D. CHAKRABARTY AND C. SESHADHRI

Proof. We begin with some notation. Denote B0 = {x ∈ B : f(x) = 0} and B1 = {x ∈
B : f(x) = 1}. Note that |B0| = |B1| = |E|. For any two points x, y, let Ex,y denote the
event that the path tester picks (x, y). For convenience, in what follows, the pairs of E will
be ordered according to the directed hypercube (so if (z, z′) ∈ E, then z ≺ z′). We abuse
notation to define E as a function. For edge (z, z′) ∈ E, we set E(z) = z′ and E(z′) = z.

We define the following sets of pairs of vertices.

V = {(x, y)|x ≺ y, ‖x− y‖1 ≥
ε`

32Cε
− 1, x ∈ B1, y ∈ B1}

V ′ = {(x,E(y))|(x, y) ∈ V }
A few observations. V lies in the support of the pair tester, that is, pairs (x, y) sampled with
non-zero probability. Every pair in V ′ is a violation; for (x, y) ∈ V , we have x ≺ y, y ∈ B1

implying E(y) � y and E(y) ∈ B0. Finally, the mapping (x, y) ∈ V to (x,E(y)) ∈ V ′ is
one-to-one. This uses the fact that E is a matching (and is a crucial piece of the proof).

Since all pairs in V ′ are violations,

Pr[success] ≥
∑

(x,y′)∈V ′

Pr[Ex,y′].

Using the mapping between V ′ and V and that Pr[Ex,y] > 0 for (x, y) ∈ V ,∑
(x,y′)∈V ′

Pr[Ex,y′] =
∑

(x,y′)∈V ′

Pr[Ex,E(y′)] ·
Pr[Ex,y′]

Pr[Ex,E(y′)]

=
∑

(x,y)∈V

Pr[Ex,y] ·
Pr[Ex,E(y)]

Pr[Ex,y]
(2)

We break the remaining proof into simpler claims. For a vertex x, define s(x) := |Yp(x)| =
|{z ∈ Xp : ‖z−x‖1 ≥ ε`/32Cε− 1}| where p is some path containing x. This is well-defined
since |Yp(x)| is independent of p for any p 3 x. In fact,

(3) s(x) =
∣∣∣ {i ∈ I` :

∣∣i− |x|∣∣ ≥ ε`

32Cε
− 1

} ∣∣∣
The following claim is just a routine calculation.

Claim 2.2. Suppose x, y are in the middle layers and ‖x− y‖1 ≥ ε`
32Cε
− 1. Let Px,y denote

the set of paths containing both x and y. Define

θx,y :=
1

`

(
1

s(x)
+

1

s(y)

)
Then,

(4) Pr[Ex,y] = θx,y
|Px,y|
|P|

Proof. Note that

Pr[Ex,y] =
∑

p:x,y∈p

Pr[p sampled] · Pr[x, y sampled | p sampled].

Boolean Monotonicity Testing 7

Since ‖x − y‖1 ≥ ε`
32Cε
− 1, y ∈ Yp(x) (and vice versa). Suppose x is the first point to be

sampled; this happens with probability 1/`. The probability y is the second point sampled
is 1
|Yp(x)| . Arguing analogously when y is sampled first, when x, y ∈ Xp,

Pr[x, y sampled | p sampled] =
1

`

(
1

|Yp(x)|
+

1

|Yp(y)|

)
= θx,y.

The proof concludes by noting that
∑

p:x,y∈p Pr[p sampled] = |Px,y |
|P| . �

The next claim shows that for any (x, y) ∈ V , θx,E(y) is almost as large as θx,y.

Claim 2.3. For (x, y) ∈ V , θx,E(y) ≥
(

1− 1√
n

)
θx,y

Proof. For convenience, let y′ denote E(y); note that y′ � y and |y′| = |y|+ 1. There exists
some path containing x, y, and y′. From (3), s(y) ≤ s(y′) ≤ s(y) + 1.

Putting it all together,

θx,y′

θx,y
=
s(x)−1 + s(y′)−1

s(x)−1 + s(y)−1
≥ s(y′)−1

s(y)−1
≥ s(y)

s(y) + 1
.

The first inequality follows from the observation c+a
c+b
≥ a

b
whenever a ≤ b and c ≥ 0. Since

` = 2dCε
√
ne, s(y) ≥ `− ε`

16Cε
≥
√
n. �

Claim 2.4. For (x, y) ∈ V ,
Pr[Ex,E(y)]

Pr[Ex,y]
= Ω

(
ε√
n

)
.

Proof. Combining Claim 2.2 and Claim 2.3,

(5)
Pr[Ex,E(y)]

Pr[Ex,y]
=
θx,E(y)|Px,E(y)|
θx,y|Px,y|

≥
(

1− 1√
n

)
|Px,E(y)|
|Px,y|

We know exactly what both the numbers in the RHS are. Say |x| = t and |y| = t+ s. Note
s ≥ ε`/32Cε − 1. Also note |E(y)| = |y|+ 1. Then,

|Px,y| = t!s!(n− s− t)! and |Px,E(y)| = t!(s+ 1)!(n− s− t− 1)!

Plugging in (5),
Pr[Ex,E(y)]

Pr[Ex,y]
≥
(

1− 1√
n

)
s+ 1

n− s− t
.

The denominator is Θ(n) since n/2−Cε
√
n ≤ |y| ≤ n/2 +Cε

√
n. The numerator is at least

ε`/32Cε = Ω(ε
√
n), completing the proof. �

Going back to (2),

Pr[success] ≥
∑

(x,y)∈V

Pr[Ex,y] ·
Pr[Ex,E(y)]

Pr[Ex,y]
= Ω

(ε√
n
·
∑

(x,y)∈V

Pr[Ex,y]
)

Now for the punchline. Color all points in B1 blue. By Lemma 2.1, the probability that the

random path tester samples a pair (x, y) such that both points are blue is Ω̃((|B1|/2n)2).

8 D. CHAKRABARTY AND C. SESHADHRI

This is the event that x ≺ y (or y ≺ x), ‖y− x‖1 ≥ ε`
32Cε
− 1, and x, y ∈ B1. The probability

of this event is exactly twice
∑

(x,y)∈V Pr[Ex,y]. Hence,

Pr[success] = Ω̃

[
ε√
n
·
(|E|

2n

)2]
�

2.3. Wrapping it up with the dichotomy. We state the dichotomy theorem between the
total number of violated edges and largest matching of violated edges.

Theorem 3. For any function f that is ε-far from monotone, and for any s > 0, either
there is a matching of violated edges completely contained in the middle layers of cardinality
at least ε2n−5/s, or the total number of violated edges is at least εs2n−1.

Proof. For any matching M of violated pairs, the average length of M is defined to be the
quantity

|M |−1
∑

(x,y)∈M

‖y − x‖1

Choose M to be maximum cardinality matching of violated pairs with the smallest average
length, denoted by r. Since f is ε-far from being monotone, and M is a maximal matching,
we know that |M | ≥ ε2n−1. The proof follows from the following two lemmas that we prove
in subsequent subsections. �

Lemma 3.1. If the average length of M is r, then there exists a matching E of violated
edges in the middle layers of the hypercube with size at least ε2n−5/r.

Proof. Deferred to §2.4. �

Lemma 3.2. If the average length of M is r, then there are at least rε2n−1 violated edges.

Proof. Deferred to §2.5. �

It is now routine to prove Theorem 1 and Theorem 2.

Proof of Theorem1: Set s = n1/6ε2/3. Suppose the largest matching in the middle
layers has size at least ε2n−5/s. By Lemma 2.2, we get that the path tester succeeds with
probability

Ω̃

[
ε√
n
·
(ε
s

)2]
= Ω̃

(
ε3

s2
√
n

)
= Ω̃(n−5/6ε5/3)

If the largest matching is at most ε2n−5/s, then by Theorem 3 there are at least εs2n−1

violated edges. The edge tester succeeds with probability Ω(sε/n) = Ω(n−5/6ε5/3). �

Proof of Theorem2: The number of violated edges is at most the number of influential
edges, I(f)2n−1. From Theorem 3, with s = I(f)/ε in Theorem 3, we know there exists a
violated edge matching of cardinality Ω(ε22n/I(f)) in the middle layers. By Lemma 2.2, the

path tester succeeds with probability Ω̃(n−1/2ε5/I2(f))). We do not need the edge tester for
these functions. �

Boolean Monotonicity Testing 9

2.4. Proof of Lemma3.1.

We first state the routing theorem of Lehman and Ron.

Theorem 4 (Lehman-Ron [10]). Let S,R be two subsets of points of the hypercube such
that |S| = |R| = m and all points in S (respectively, R) have j (respectively, i) ones, with
i < j. Furthermore, suppose there is a mapping φ : S 7→ R such that S � φ(S), ∀S ∈ S,
that is, (S, φ(S)) are ancestor-descendants. Then there exists m disjoint saturated chains
(vertex disjoint paths) that contain all of S and R.

For convenience, we represent the matching through ordered pairs, so if (x, y) ∈ M , then
x ≺ y (and f(x) = 1, f(y) = 0). Recall M is a maximum cardinality matching in the
violated graph with the smallest average length. Among such matchings, let M actually be
one maximizing

Φ(M) :=
∑

(x,y)∈M

||x− y||21

We prove a structural claim regarding M . Two pairs (x, y) and (x′, y′) cross if (a) there
exists a z such that x ≺ z ≺ y and x′ ≺ z ≺ y′ and (b) the intervals [|x|, |y|] and [|x′|, |y′|]
strictly cross, meaning that neither interval contains the other. (By (a), the intervals [|x|, |y|]
and [|x′|, |y′|] must intersect.)

Claim 4.1. There are no crossing pairs in M .

Proof. Suppose (x, y) and (x′, y′) cross, then consider M ′ formed by deleting these pairs from
M and adding (x, y′) and (x′, y). Note that these are valid violations due to the presence of
the vertex z. Furthermore, check that Φ(M ′) > Φ(M) since the sum of squares of a pair of
numbers having a fixed sum increases as the maximum (of the pair) increases. �

For every two levels i < j of the hypercube, let Mi,j ⊆ M be the pairs with endpoints in
these level sets. Apply Theorem 4 to get a collection of |Mi,j| vertex disjoint paths. Each of
these vertex disjoint paths contain at least one violated edge, and let Fi,j be the set of these
edges. Note that Fi,j forms a matching. Consider the multiset F formed by the union of Fi,j
over the set {(i, j) : i, j ∈ I`, i < j, j − i ≤ 2r}, containing duplicates. Note that all edges
of F lie in the middle layers.

Claim 4.2. |F | ≥ |M |/4.

Proof. Note that |F | =
∑

(i,j):i,j∈I`,i<j,j−i≤2r |Mi,j|. Since the matching M has average length

r, by Markov’s inequality, at least |M |/2 of these pairs have length at most 2r. Furthermore,
from Prop. 2.1 we get that at most ε52n ≤ |M |/4 pairs in M have endpoints not in the middle
layer. Looking at the remainder, we get

∑
(i,j):i,j∈I`,i<j,j−i≤2r |Mi,j| ≥ |M |/4. �

Claim 4.3. No point z ∈ {0, 1}n has more than 2r edges of F incident on it.

Proof. Pick a vertex z, and pick any two edges f1 and f2 of F incident on it. Since each
Fi,j is a matching, these must lie in different Fi,j’s. Suppose they are Fi,j and Fa,b, where i
could be a and j could be b, but not both together. Note that i ≤ |z| ≤ j and a ≤ |z| ≤ b.
We claim that [i, j] and [a, b] cannot cross, and therefore one must strictly lie in the other.

10 D. CHAKRABARTY AND C. SESHADHRI

There can be at most 2r intervals containing |z| satisfying such containment relationships.
Thus, there can be most 2r edges of F incident on z.

We now prove that [i, j] and [a, b] cannot cross. Consider the pairs in Mi,j, and let them be
(x1, y1), (x2, y2), . . . , (xk, yk). Note that Theorem 4 implies k vertex disjoint paths containing
all these vertices. Hence, there is some permutation π such that for each i ∈ [k], there is a
path from xi to yπ(i). Let M ′

i,j = {(xi, yπ(i))}. Similarly, get M ′
a,b. Let M ′ be the matching

where Mi,j and Ma,b are replaced by M ′
i,j and M ′

a,b (and all other pairs remain). Note that
M ′ has the same average length, same cardinality and Φ(M ′) = Φ(M).

But now, we have a pair (x, y) ∈ M ′
i,j such that x ≺ z ≺ y, and a pair (x′, y′) ∈ M ′

a,b such
that x′ ≺ z ≺ y′. This is because z is incident to an edge in both Fi,j and Fa,b. If [i, j] and
[a, b] cross, then (x, y) and (x′, y′) cross. Since M ′ maximizes the potential Φ, Claim 4.1 is
contradicted. �

Since the multigraph induced by F has maximum degree 2r, there exists a matching E ⊆ F
of size |E| ≥ |F |/4r. This can be obtained by picking an edge in E arbitrarily and deleting
all edges incident to any of its endpoints from F . For every edge added to E there are
at most 4r edges deleted from F . Therefore, following Claim 4.2, we get a matching E of
violated edges of size ≥ |M |/16r ≥ ε2n−5/r. Furthermore, they all lie in the middle layers.
This completes the proof of Lemma 3.1.

2.5. Proof of Lemma3.2.

Let Mi be the set of pairs in M that cross dimension i, that is, Mi := {(x, y) ∈ M : xi =
0, yi = 1}. Lemma 3.2 follows from following theorem.

Theorem 5. The number of violated edges across dimension i is at least |Mi|.

Note that
∑

i |Mi| =
∑

(x,y)∈M ‖y − x‖1 = r|M |, since a pair (x, y) appears in precisely

|y| − |x| different Mi’s. Theorem 5 implies that the number of violated edges is at least∑
i |Mi|, and therefore, since |M | ≥ ε2n−1. This completes the proof of Lemma 3.2. We now

prove Theorem 5.

Proof. (Proof of Theorem 5.) The proof requires setting up some of the machinery of [4].
Let H be the perfect matching of the hypercube formed by the edges crossing the dimension
i. Let X be the endpoints of Mi. For all x ∈ X, we define a sequence Sx as follows. The
first term Sx(0) is x. For even i, Sx(i + 1) = H(Sx(i)). For odd i, if Sx(i) ∈ X, or is
M -unmatched, then Sx terminates. Otherwise, Sx(i + 1) = M(Sx(i)). Above, we have
used the shorthand M(v) and H(v) to denote the partners of v in the matchings M and
H, respectively. (Observe that we use M and not Mi. The matching Mi is only used to
define X.) The best way to think about Sx is via alternating paths and cycles formed by
the matchings M and H. We start at x and take the H-edge along the alternating path. We
keep on moving till we reach an endpoint or another vertex in X. Thus, each Sx terminates.
It is not hard to see that if Sx ends at y ∈ X, then Sy is just Sx in reverse. Furthermore,
Sx and Sy are disjoint unless y terminates Sx. Therefore the number of sequences is at least
|X|/2 = |Mi|. The theorem therefore is a consequence of the following lemma which is the
heart of the proof. �

Boolean Monotonicity Testing 11

Lemma 5.1. For all x, Sx contains a violated edge in H.

Proof. We will prove this through contradiction, and will henceforth assume that (for some
x), Sx has no violated edge in H. We show that Sx cannot terminate, completing the
contradiction. For brevity, let us use si to denote Sx(i). Let (x, y) be the pair in Mi. We use
s−1 to denote y. Wlog, assume x � y, thus xi = 1 and yi = 0. Also f(y) = 1 and f(x) = 0
since the pair is a violation.

Let Bb (b = {0, 1}) be the n − 1 dimensional hypercube where ith coordinate is b. We will
use d(x, x′) for the Hamming distance between two points x and x′. We have the following
simple claim.

Claim 5.1. Let j ≥ 0 be an index and suppose sj exists. For j ≡ 0 (mod 4), f(sj) = 0 and
sj ∈ B1; j ≡ 1 (mod 4), f(sj) = 0 and sj ∈ B0; j ≡ 2 (mod 4), f(sj) = 1 and sj ∈ B0;
j ≡ 3 (mod 4), f(sj) = 1 and sj ∈ B1.

Proof. We prove by induction on j. For the base case, s0 = x, and f(x) = 0, s0 ∈ B1.
Consider j ≡ 0 (mod 4), j ≥ 1. By the induction hypothesis, f(sj−1) = 1 and sj−1 ∈ B1.
Since sj = M(sj−1) and (sj−1, sj) is a violation, f(sj) = 0 and sj ∈ B1. Consider j ≡
1 (mod 4). By the induction hypothesis, f(sj−1) = 0 and sj−1 ∈ B1. Since sj = H(sj−1) and
(sj−1, sj) is not a violation, f(sj) = 0 and sj ∈ B0. The remaining cases are analogous. �

Claim 5.2. Let j ≥ 0 be even. Then (sj, sj+3) is a violation and d(sj, sj+3) = d(sj+1, sj+2).
Also, the pair (y, s1) is a violation and d(y, s1) = d(y, s0)− 1.

Proof. Suppose j ≡ 2 (mod 4). Then from the above claim f(sj) = 1 and f(sj+3) = 0.
The claim also implies f(sj+1) = 1 and since (sj+1, sj+2) ∈ M , sj+2 � sj+1. Furthermore,
both sj+1, sj+2 ∈ B1. Since sj = H(sj+1) and sj+3 = H(sj+2), we get (a) sj+3 � sj as well,
implying (sj, sj+3) is a violation, and (b) d(sj, sj+3) = d(sj+1, sj+2). The case j ≡ 0 (mod 4)
is analogous.

Observe that (y, s0) is a violation where y ∈ B0 and s0 ∈ B1. Since s1 = H(s0), s1 has
the same coordinates as s0 except for the ith one. Also, f(s1) = 0. Therefore, (y, s1) is a
violation and d(y, s1) = d(y, s0)− 1. �

We will now argue that Sx cannot terminate. Consider sj for j ≡ 1 (mod 4). Because
f(sj) = 0 and sj ∈ B0, sj cannot participate in a pair in Mi. Hence, sj /∈ X. Suppose sj was
unmatched. Consider the following set of pairs in M : A = {(sk, sk+1)|k odd,−1 ≤ k ≤ j−2}.
Suppose we replaced these pairs in M by B = {(y, s1)} ∪ {(sk, sk+3)|k even, 0 ≤ k ≤ j − 3}.
Note that |A| = dj/2e = |B|. Also, by Claim 5.2

d(y, s0) +

j−2∑
k=1
k odd

d(sk, sk+1) = d(y, s1) +

j−3∑
k=0
k odd

d(sk, sk+3)− 1

This means that replacing A and inserting B (in M) leads to a violation matching of the same
size with a smaller Hamming distance. This violates the property of M (that of minimum
average Hamming distance), and therefore, the sequence Sx cannot terminate. This cannot
occur, and therefore, every Sx must contain a violated edge in H. This ends the proof of
Lemma 5.1. �

12 D. CHAKRABARTY AND C. SESHADHRI

3. Conclusion

In this paper, we make progress on the question of testing monotonicity of Boolean functions
over the hypercube. Theorem 3, Lemma 2.2 and Lemma 2.1 are tight, and the exponent of 5/6
is the best we can hope for using our analysis. Our approach in general falls short of the

√
n

bound. Nevertheless, we believe the path tester (alone) is a O(
√
n)-query monotonicity tester

for Boolean functions. A possible approach is suggested by Theorem 2. Can we perform a
different analysis (or even a different algorithm) for high average sensitivity functions?

References

1. N. Ailon, B. Chazelle, S. Comandur, and D. Liu, Estimating the distance to a monotone function,
Random Structures and Algorithms 31 (2006), no. 3, 1704–1711. 1

2. E. Blais, J. Brody, and K. Matulef, Property testing lower bounds via communication complexity, Com-
putational Complexity 21 (2012), no. 2, 311–358. 1

3. J. Briët, S. Chakraborty, D. Garćıa-Soriano, and A. Matsliah, Monotonicity testing and shortest-path
routing on the cube, Combinatorica 32 (2012), no. 1, 35–53. 1, 2

4. D. Chakrabarty and C. Seshadhri, Optimal bounds for monotonicity and Lipschitz testing over the hy-
percube, Tech. Report TR12-030, ECCC, April 2012. 1, 3, 10

5. Y. Dodis, O. Goldreich, E. Lehman, S. Raskhodnikova, D. Ron, and A. Samorodnitsky, Improved testing
algorithms for monotonicity, Proceedings of the 3rd International Workshop on Randomization and
Approximation Techniques in Computer Science (RANDOM) (1999), 97–108. 1, 2

6. F. Ergun, S. Kannan, R. Kumar, R. Rubinfeld, and M. Viswanathan, Spot-checkers, Journal of Computer
Systems and Sciences (JCSS) 60 (2000), no. 3, 717–751. 1

7. E. Fischer, E. Lehman, I. Newman, S. Raskhodnikova, and R. Rubinfeld, Monotonicity testing over
general poset domains, Proceedings of the 34th Annual ACM Symposium on the Theory of Computing
(STOC) (2002), 474–483. 1, 2, 4

8. O. Goldreich, S. Goldwasser, E. Lehman, D. Ron, and A. Samordinsky, Testing monotonicity, Combi-
natorica 20 (2000), 301–337. 1, 2

9. S. Halevy and E. Kushilevitz, Testing monotonicity over graph products, Random Structures and Algo-
rithms 33 (2008), no. 1, 44–67. 1

10. E. Lehman and D. Ron, On disjoint chains of subsets, Journal of Combinatorial Theory, Series A 94
(2001), no. 2, 399–404. 1, 3, 9

11. M. Parnas, D. Ron, and R. Rubinfeld, Tolerant property testing and distance approximation, Journal of
Computer and System Sciences 6 (2006), no. 72, 1012–1042. 1

12. D. Ron, R. Rubinfeld, S. Safra, and O. Weinstein, Approximating the Influence of Monotone Boolean
Functions in O(

√
n) Query Complexity., Proceedings of the 15th International Workshop on Random-

ization and Approximation Techniques in Computer Science (RANDOM), 2011. 2

Microsoft Research India, 9 Lavelle Road, Bangalore, 560001

E-mail address: dechakr@microsoft.com

Sandia National Labs, Livermore

E-mail address: scomand@sandia.gov

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

