
Absolutely Sound Testing of Lifted Codes

Elad Haramaty ∗ Noga Ron-Zewi † Madhu Sudan‡

February 19, 2013

Abstract

In this work we present a strong analysis of the testability of a broad, and to date the most
interesting known, class of “affine-invariant” codes. Affine-invariant codes are codes whose coor-
dinates are associated with a vector space and are invariant under affine transformations of the
coordinate space. Affine-invariant linear codes form a natural abstraction of algebraic properties
such as linearity and low-degree, which have been of significant interest in theoretical computer
science in the past. The study of affine-invariance is motivated in part by its relationship to
property testing: Affine-invariant linear codes tend to be locally testable under fairly minimal
and almost necessary conditions.

Recent works by Ben-Sasson et al. (CCC 2011) and Guo et al. (ITCS 2013) have introduced
a new class of affine-invariant linear codes based on an operation called “lifting”. Given a base
code over a t-dimensional space, its m-dimensional lift consists of all words whose restriction to
every t-dimensional affine subspace is a codeword of the base code. Lifting not only captures the
most familiar codes, which can be expressed as lifts of low-degree polynomials, it also yields new
codes when lifting “medium-degree” polynomials whose rate is better than that of corresponding
polynomial codes, and all other combinatorial qualities are no worse.

In this work we show that codes derived from lifting are also testable in an “absolutely sound”
way. Specifically, we consider the natural test: Pick a random affine subspace of base dimension
and verify that a given word is a codeword of the base code when restricted to the chosen
subspace. We show that this test accepts codewords with probability one, while rejecting words
at constant distance from the code with constant probability (depending only on the alphabet
size). This work thus extends the results of Bhattacharyya et al. (FOCS 2010) and Haramaty
et al. (FOCS 2011), while giving concrete new codes of higher rate that have absolutely sound
testers.

1 Introduction

In this work we present results on the testability of “affine-invariant linear codes”. We start with
some basic terminology before describing our work in greater detail.

Let Fq denote the finite field of q elements and {Fnq → Fq} denote the set of functions mapping
Fnq to Fq. In this work a code (or a family) will be a subset of functions F ⊆ {Fnq → Fq}. We

∗Department of Computer Science, Technion, Haifa. eladh@cs.technion.ac.il. Research was conducted while
the author was an intern at Microsoft Research New-England, Cambridge, MA..
†Department of Computer Science, Technion, Haifa. nogaz@cs.technion.ac.il. Research was conducted in

part while the author was visiting Microsoft Research New-England, Cambridge, MA, and supported in part by a
scholarship from the Israel Ministry of Science and Technology. The research leading to these results has received
funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement
number 257575.
‡Microsoft Research New-England, Cambridge, MA. madhu@mit.edu

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 30 (2013)

use δ(f, g) to denote the normalized Hamming distance between f and g, i.e., the fraction of
inputs x ∈ Fnq for which f(x) 6= g(x). We use δ(F) to denote minf 6=g,f,g∈F{δ(f, g)} and δF (f)
to denote ming∈F{δ(f, g)}. A code F is said to be a linear code if it is an Fq-subspace, i.e., for
every α ∈ Fq and f, g ∈ F , we have αf + g ∈ F . A function T : Fnq → Fnq is said to be an affine
transformation if there exists a matrix B ∈ Fn×nq and vector c ∈ Fnq such that T (x) = Bx+ c. The
code F ⊆ {Fnq → Fq} is said to be affine-invariant if for every affine transformation T and every
f ∈ F we have f ◦ T ∈ F (where (f ◦ T)(x) = f(T (x))).

Affine-invariant linear codes form a very natural abstraction of the class of low-degree polyno-
mials: The set of polynomials of degree at most d is a linear subspace and is closed under affine
transformations. Furthermore, as shown by Kaufman and Sudan [17] affine-invariant linear codes
retain some of the “locality” properties of multivariate polynomial codes (or Reed-Muller codes),
such as local testability and local decodability, that have found many applications in computa-
tional complexity. This has led to a sequence of works exploring these codes, but most of the
works led to codes of smaller rate than known ones, or gave alternate understanding of known
codes [10, 11, 6, 5, 4]. A recent work by Guo et al. [12] however changes the picture significantly.
They study a “lifting” operator on codes and show that it leads to codes with, in some cases dra-
matic, improvement in parameters compared to Reed-Muller codes. Our work complements theirs
by showing that one family of “best-known” tests manages to work abstractly for codes developed
by lifting.

We start by describing the lifting operation: Roughly a lifting of a base code leads to a code
in more variables whose codewords are words of the base code on every affine subspace of the
base dimension. We define this formally next. For f : Fnq → Fq and S ⊆ Fnq , let f |S denote the
restriction of f to the set S. A set A ⊆ Fnq is said to be a t-dimensional affine subspace, if there exist

α0, . . . , αt ∈ Fnq such that A = {α0 +
∑t

i=1 αixi|x1, . . . , xt ∈ Fq}. We use some arbitrary Fq-linear
isomorphism from A to Ftq to view f |A as a function from {Ftq → Fq}. Given an affine-invariant
linear base code B ⊆ {Ftq → Fq} and integer n ≥ t, the n-dimensional lift of B, denoted Liftn(B),
is the set {f : Fnq → Fq | f |A ∈ B for every t-dimensional affine subspace A ⊆ Fnq }.

The lifting operation was introduced by Ben-Sasson et al. [5] as a way to build new affine-
invariant linear codes that were not locally testable. Their codes were also of much lower rate
than known affine-invariant linear codes of similar distance. However in more recent work, Guo et
al. [12], showed that lifting could be used positively: They used it to build codes with very good
locality properties (especially decodability) with rate much better than known affine-invariant linear
ones, and matching qualitatively the performance of the best known codes. Our work attempts to
complement their work by showing that these codes, over constant sized alphabets, can be “locally
tested” as efficiently as polynomial codes.

Testing and Absolutely Sound Testing A code F ⊆ {Fnq → Fq} is said to be a (k, ε, δ)-locally
testable code (LTC), if δ(F) ≥ δ and there exists a probabilistic oracle algorithm that, on oracle
access to f : Fnq → Fq, makes at most k queries to f and accepts f ∈ F with probability one, while
rejecting f 6∈ F with probability at least εδF (f).

For an ensemble of codes {Fm ⊆ {Fnmq → Fq}}m for infinitely many m, with Fm being a
(k(m), ε(m), δ(m))-LTC, we say that the code has an absolutely sound tester if there exists ε > 0
such that ε(m) ≥ ε for every m.

Any tester can be converted into an absolutely sound one by repeating the test 1/ε(m) times.
However this comes with an increase in the query complexity (the parameter k(m)) and so it makes
sense to ask what is the minimum k one can get for an absolutely sound test.

Previous works by Bhattacharyya et al. [7] and Haramaty et al. [14] raised this question in the

2

context of multivariate polynomial codes (Reed-Muller codes) and showed that the “natural tester”
for multivariate polynomial codes is absolutely sound, without any repetitions! The natural test
here is derived as follows for prime fields:

To test if a function f is a polynomial of degree at most d, let t be the smallest integer
such that there exist functions of degree greater than d in t variables. Pick a random
t-dimensional affine subspace A and verify that f |A is a degree d polynomial.

The natural test thus makes roughly qt = q(d+1)/(q−1) queries. This number turns out to be optimal
for prime fields in that every function looks like a degree d polynomial if queried at at most qt−1

points. Such optimal analyses of low-degree tests turn out to have some uses in computational
complexity: In particular one of the many ingredients in the elegant constructions of Barak et
al. [3] is the absolutely sound analysis of the polynomial codes over F2.

Returning to the natural test above, it ends being a little less natural, and not quite optimal
when dealing with non-prime fields. Turns out one needs to use a larger value of t than the one
in the definition above (specifically, t = q(d+1)/(q−q/p) where p is the characteristic of the field Fq).
While it is unclear if sampling all the points in the larger dimensional space is really necessary for
absolutely sound testing the results so far seem to suggest working with prime fields is a better
option.

1.1 Our work: motivation and results

The motivation for our work is two-fold: Our first motivation is to understand “low-degree testing”
better. Low-degree testing has played a fundamental role in computational complexity and yet
its proofs are barely understood. They tend to involve a mix of probabilistic, algebraic, and
geometric arguments, and the only setting where the mix of these features seems applicable seems
to be the setting of low-degree polynomials. Affine-invariant codes naturally seperate the geometry
of subspaces in high-dimensional spaces, from the algebra of polynomials of low-degree. Thus
extending a proof or analysis method from the setting of low-degree polynomials to the setting of
generic geometric arguments has the nice feature that it has the potential to separate the geometric
arguments from the algebraic ones.

Within the theme of low-degree testing, the previous works have revealed interesting analyses.
And several of these variations in the resulting theorems have played a role in construction of
efficient PCPs or more recently in other searches for explicit objects. In particular the literature
includes tests such as those originally given by Blum, Luby and Rubinfeld [8] for testing linearity
and followed by [22, 1, 16, 15] for testing higher degree polynomials. The aspects of this family
of tests are well abstracted in Kaufman and Sudan [17]. But the literature contains other very
interesting theorems, such as those of Raz and Safra [20] and Arora and Sudan [2] which tend
to work in the “list-decoding” regime. The analysis of the former in particular seems especially
amenable to a “generic proof” in the affine-invariant setting and yet such a proof is not yet available.
Our work explores a third such paradigm in the analysis of low-degree tests, which was introduced
in the above-mentioned “absolutely-sound testers” of Bhattacharyya et al. and Haramaty et al.

Our work starts by noticing that the natural tests above are really “lifting tests”: Namely, the
test could be applied to any code that is defined as the lift of a base code with the test checking
if a given function is a codeword of the base code when restricted to a random small dimensional
affine subspace of the base dimension. Indeed this is the natural way of interpreting almost all the
previous results in low-degree testing (with the exception of that of [21]). If so, it is natural to ask
if the analysis can be carried out to show the absolute soundness of such tests.

3

The second, more concrete, motivation for our work is the work of Guo et al. [12]. Over prime
fields, it was well-known that lifts of low-degree polynomials lead only to polynomials of the same
degree (in more variables). Guo et al. show that lifting over non-prime fields leads to better codes
than over prime fields! (Prior to their work, it seemed that working with non-prime fields was
worse than working with prime fields.) The improved rate gives motivation to study lifted codes
in general, and in particular one class of results that would have been nice to extend was the
absolutely-sound tester of [14].

In this work we show that the natural test of lifted codes is indeed absolutely sound. The
following theorem spells this statement out precisely.

Theorem 1.1 (Main). For every prime power q, there exists εq > 0 such that the following holds:
Let t ≤ n be positive integers and let B ({Ftq → Fq} be any affine-invariant linear code. Then
F = Liftn(B) is (qt, εq, q

−t)-locally testable.

We stress that the importance of the above is in the absolute soundness, i.e., the fact that εq
does not depend on t or B. If one is willing to let εq depend on t and B then such a result follows
from the main theorem of [17].

Our result also sets into proper light the previous work of Haramaty et al. [14] who show that
the “natural test” for degree d polynomials over the field Fq of characteristic p makes q(d+1)/(q−q/p)

queries and is absolutely sound. Our result does not mention any dependence on p, the characteristic
of the field. It turns out that such a dependence comes due to the following proposition.

Let RM(n, d, q) denote the set of polynomials over Fq of degree at most d in n variables.

Proposition 1.2. For positive integers d and q where q is a power of a prime p, let t = td,q =
d d+1
q−q/pe. Then for every n ≥ t, the Reed-Muller code RM(n, d, q) equals the code Liftn(RM(t, d, q)).

Applying Theorem 1.1 to RM(n, d, q) we immediately obtain the main results of [7] and [14]. And
the somewhat cumbersome dependence on the characteristic of q can be blamed on the proposition
above, rather than any weakness of the testing analysis. Furthermore, as is exploited by Guo et
al. [12] if one interprets the proposition above correctly, then one should use lifts of Reed-Muller
codes over non-prime fields with dimension being smaller than td,q. These will yield codes of higher
rate while our main theorem guarantees that testability does not suffer.

One concrete consequence of our result is in the use of Reed-Muller codes in the work of Barak
et al. [3]. They show how to construct small-set expander graphs with many large eigenvalues and
one of the ingredients in their result is a tester of Reed-Muller codes over F2 (codes obtained by
lifting an appropriate family of base codes over F2). Till this work, the binary Reed-Muller code
seemed to be the only code with performance good enough to derive their result. Our work shows
that using codes over F4 or F8 (or any constant power of two) would serve their purpose at least
as well, and even give slight (though really negligible) improvements. We elaborate on these codes
and their exact parameters in Section 6.

Finally, unlike the works of Bhattacharyya et al., and Haramaty et al., we can not claim that
our testers are “optimal”. This is not because of a weakness in our analysis, rather it is due to the
generality of our theorem. For some codes, including the codes considered in the previous works,
our theorem is obviously optimal (being the same test and more or less same analysis as previously).
Other codes however may possess special properties making them testable much better. In such
cases we can not rule out better tests, though we hope our techniques will still be of some use in
analyzing tests for such codes.

4

Future research directions As noted earlier, the field of low-degree testing has seen several
different themes in the analyses. Combined with the work of Kaufman and Sudan [18] our work
points to the possibility that much of that study can be explained in terms of the geometry of
affine-invariance, and the role of algebra can be encapsulated away nicely. One family of low-degree
tests that would be very nice to include in this general view would be that of Raz and Safra [20].
Their work presents a very general proof technique that uses really little algebra; and seems ideally
amenable to extend to the affine-invariant setting. We hope that future work will address this.

We also hope that future work improve the dependence of εq on q in Theorem 1.1 (which is
unfortunately outrageous). Indeed it is not clear why there should be any dependence at all and it
would be nice to eliminate it if possible.

Organization We give an overview of the proof of Theorem 1.1 in Section 2, where we also
introduce the main technical theorem of this paper (Theorem 2.1). We also describe our technical
contributions in this section, contrasting the current proof with those of [7, 14], which we modify.
The remaining sections are devoted to the formal proof of Theorem 1.1. Specifically we introduce
some of the background material in Section 3. We then prove Theorem 2.1 in Section 4. In Section 5
we show how to prove Theorem 1.1 using Theorem 2.1. In Section 6 we give examples of family of
lifted codes for which our main theorem applies.

2 Overview of Proof

2.1 Some natural tests

Our proof of Theorem 1.1 follows the paradigm used in [7] and [14]. Both works consider a natural
family of tests (and not just the “most” natural test), and analyze their performance by studying
the behavior of functions when restricted to “hyperplanes”. We introduce the family of tests first.

From now onwards all codes we consider will be linear and affine-invariant unless we explicitly
say otherwise. Given a base code B ⊆ {Ftq → Fq} and n ≥ ` ≥ t, we let L` = Lift`(B), with F = Ln.
The `-dimensional test for membership in F works as follows: Pick a random `-dimensional affine
subspace A in Fnq and accept f if and only if f |A ∈ L`.

Let Rej`(f) denote the probability with which the `-dimensional test rejects. Our main theorem
aims to show that Rej`(f) = Ω(δF (f)) when ` = t. As in previous works, our analysis will first
lower bound Rej`(f) for ` = t+O(1) and then relate the performance of this test to the performance
of the t-dimensional test.

2.2 Overview of proof of Main Theorem 1.1

The analysis of the performance of the `-dimensional tests is by induction on the number of variables
n and based on the behaviour of functions when restricted to “hyperplanes”. A hyperplane in Fnq
is an affine subspace of dimension n− 1. In many future calculations it will be useful to know the
number of hyperplanes in Fnq . We note that this number is qn + qn−1 + · · ·+ 1 = qn(1 + o(1)).

The inductive strategy to analyzing Rej`(f) is based on the observation that Rej`(f) =
EH [Rej`(f |H)] where H is a uniform hyperplane. If we know that on most hyperplanes δLn−1(f |H)
is large, then we can prove the right hand side above is large by induction. Thus the inductive
strategy relies crucially on showing that if f is far from F , then f |H can not be too close to Ln−1

on too many hyperplanes. We state this technical result in the contrapositive form below.

Theorem 2.1 (Main technical). For every q there exists τ <∞ such that the following holds: Let
B ⊆ {Ftq → Fq} be an affine-invariant linear code and for ` ≥ t let L` = Lift`(B). For n > t, let

5

f : Fnq → Fq be a function and H1, . . . ,Hk be hyperplanes in Fnq such that δLn−1(f |Hi) ≤ δ for every

i ∈ [k] for δ < 1
2q
−(t+1). Then, if k ≥ qt+τ , we have δLn(f) ≤ 2δ + 4(q − 1)/k.

The theorem thus states that if f is sufficiently close to a lift of B on a sufficiently large number
of hyperplanes, yet a very small number (independent of n) of hyperplanes, then f is close to a lift
of B. The dependence of the number of hyperplanes on q and t is actually important to our (and
previous) analysis. The fact that it is some fixed multiple of qt, where the multiple depends only
on q and not on t, is crucial to the resulting performance.

Going from Theorem 2.1 above to Theorem 1.1 is relatively straightforward. In particular
using Theorem 2.1 we can get a lower bound on Rejt+τ (f) without any changes to the proof of
[14]. However going from such an analysis to a lower bound on Rejt(f) involves some extra work,
with complications similar to (but simpler than), those in the proof of Theorem 2.1 so we omit a
discussion here. Section 5 contains all the details.

The main contribution of this paper is the proof of Theorem 2.1. Here, the previous proofs,
both in [7] and [14] crucially relied on properties of polynomials and in particular the first step in
both proofs, when testing degree d polynomials, is to consider the case of f being a degree d + 1
(or a degree d+ q) polynomial. In our case there is no obvious candidate for the notion of a degree
d + 1 polynomial and it is abstracting such properties that forms the bulk of our work. In what
follows we give an overview of some of the issues arising in such steps and how we deal with them.

2.3 Overview of proof of Theorem 2.1

To understand our proof of Theorem 2.1 we need to give some background, specifically to the proofs
from the previous work of [14]. Recall the analogous statement in [14] attempted to show that if
f was far from being a polynomial of degree d, then the number of hyperplanes where f turns out
to be close to being a degree d polynomial is at most O(qt) (where t ≈ d/q, the exact number will
not be important to us). [14] reasoned about this in a sequence of steps: (1) They first showed
that any function of degree greater than d, stays of degree greater than d on at least 1/q fraction
of all hyperplanes (provided n > t). (2) Next they reasoned about functions of degree d + 1 and
showed that such a function reduces its degree on at most O(qt) hyperplanes. (3) In the third step
they consider a general function f that is far from being of degree d and show that the number of
hyperplanes on which f becomes a degree d polynomial exactly is O(qt). (This is the step where the
big-Oh becomes a really big-Oh.) (4) Finally, they show that for functions of the type considered
in the previous step the number of hyperplanes where they even get close to being of degree d is
at most O(qt), thus yielding the analog of Theorem 2.1.

In implementing the program above (which is what we will end up doing) in our more gen-
eral/abstract setting, our first bottleneck is that, for instance in Step (2) above, we don’t have a
notion of degree d+ 1 or some notion of functions that are “just outside our good set F”. Natural
notions of things outside our set do exist, but they don’t necessarily satisfy our needs. To under-
stand this issue better, let us see why polynomials of degree d + O(1) appear in the analysis of a
theorem such as Theorem 2.1. Consider a simple case where H1, . . . ,Hq are parallel hyperplanes
completely covering Fnq and δ = 0 so f is known to be a good function (member of F , or degree
d) when restricted to these hyperplanes. So, in the setting of testing polynomials of degree at
most d, the hypothesis asserts that f restricted to these hyperplanes is a polynomial of degree at
most d. For notational simplicity we assume that Hi is the hyperplane given by x1 = ηi where
Fq = {η1, . . . , ηq}. Then f |Hi = Pi(x2, . . . , xn) for some polynomial Pi of degree d. By polynomial
interpolation, it follows that f can be described as a degree d+ q−1 polynomial in x1, . . . , xn. The
bulk of the analysis in [7, 14] now attempts to use the remaining K − q hyperplanes on which f

6

reduces to degree at most d, in conjunction with the fact that f is a polynomial of degree at most
d+ q − 1 to argue that f is of degree at most d.

For us, the main challenge is that in the generic setting of the lift of some code B, we don’t
have a ready notion of a degree d+ q − 1 polynomial and so we have to define one. Thus the first
step in this work is to define such a code. The formal definition appears in Section 4.1: For our
current discussion it suffices to say that there is an affine-invariant linear code, which we denote
F+, which contains all “interpolating functions” of elements of F (so F+ contains every function
f for which there exist some q parallel hyperplanes H1, . . . ,Hq such that f |Hi is a function in Ln−1

for all i). Of course such a set is not useful if it does not have some nice structure. The key
property of our definition of F+ is that it is the lift of a non-trivial code on at most t + q − 1
dimensions. We prove this in Section 4.1. This definition of F+ and its analysis rely centrally
on some of the structural understanding of affine-invariant linear codes derived in previous works
[17, 10, 11, 6, 5, 4]. Lemma 4.5 allows us to say that F+ is almost as nice as F , roughly analogous to
the way the set of degree d+ q− 1 polynomials is almost as nice as the set of degree d polynomials.

The notion of F+ turns out to be easy enough to use to be able to carry out the steps (3) and
(4) in the program above by directly mimicking the proofs of [14], assuming Steps (1) and (2) hold
(See Section 4.3). But Steps (1) and (2) turn out to be more tricky. So we turn to these, and in
particular Step (2) next.

Our next barrier in extending the proofs of [14] is a notion of “canonical monomials” which
play a crucial role in Step (2) of [14]. For a function of degree d + 1, the canonical monomial is a
monomial of degree d + 1 supported on very few variables. The fact that the number of variables
in the support is small, while the monomial remains a “forbidden one” turns out to be central to
their analysis and allows them to convert questions of the form: “Does f become a polynomial of
smaller degree on the hyperplane H?”(which are typically not well-understood) to questions of the
form “Does g become the zero polynomial when restricted to H?” (which is a very well-studied
question).

In our case, we need to work with some function f in F+ which is not a function of F . The
fact that F+ is a lift of “few-dimensional” code, in principle ought to help us find a monomial
supported on few variables that is not in F . But isolating the “right one” to work with for f turns
out to be a subtle issue and we work hard, and come up with a definition that is very specific to
each function f ∈ F+ \ F . (In contrast the canonical monomials of [14] were of similar structure
for every function f .) Armed with this definition and some careful analysis we are able to simulate
Step (2) in the program above. Details may be found in Section 4.2. Finally, Step (1) is also dealt
with similarly, using some of the same style of ideas as in the proof of Step (2). (See Lemma 5.3.)

3 Background and preliminary material

In this section we fix some notation and provide some background material on affine-invariant linear
codes, needed later on. We start with some basic notation.

Recall we are working with the field Fq where q = p`, for prime p and integer `. Throughout
we will consider q as a constant, and so asymptotic notations such as O(·),Ω(·) in this work may
neglect dependence on q. All linear-algebraic terminology as subspaces, dimension, span, etc. will
be over the field Fq.

We will let Zq denote the set {0, ..., q − 1} and N denote the set of non-negative integers.
For n > t, we think of {Ftq → Fq} as a subset of {Fnq → Fq} by using the standard embedding
E : {Ftq → Fq} → {Fnq → Fq} given by (E(f))(x1, ..., xn) = f(x1, ..., xt).

7

We let Affn ⊆ {Fnq → Fq} represent the set of all the affine functions. i.e,

Affn =

{
L : Fnq → Fq | ∃α0, ..., αn ∈ Fq such that L(x) =

n∑
i=1

αixi + α0 ∀x = (x1, . . . , xn) ∈ Fnq

}
.

For L ∈ Affn define HL ⊆ Fnq to be the hyperplane
{
x ∈ Fnq | L(x) = 0

}
. We let Affn×n represent

the set of affine transformations from Fnq to Fnq . i.e.,

Affn×n :=
{
T : Fnq → Fnq | ∃B ∈ Fn×nq , c ∈ Fnq such that T (x) = Bx+ c ∀x ∈ Fnq

}
.

For a function f ∈ {Fnq → Fq} and T ∈ Affn×n, we denote by f ◦ T the composition of f and T .
i.e., ∀x ∈ Fnq : f ◦ T (x) = f (T (x)).

We view monomials defined on variables x1, . . . , xn as functions mapping Fnq to Fq, given by
the evaluations of the monomials. The set Mn ⊆ {Fnq → Fq} denotes the set of such monomial
functions. For M =

∏n
i=1 x

ai
i ∈ Mn where {ai}ni=1 ⊆ Zq, degxi(M) = ai. As usual, deg(M) =∑n

i=1 degxi(M).

Note that for a ∈ N, the monomials M = xai and M ′ = xa mod q−1
i are equivalent when q− 1 - a

or a = 0, while when q − 1 | a and a 6= 0 the monomials M = xai and M ′ = xq−1
i are equivalent.

Motivated by this, we define the operation a mod ∗k as follows

a mod ∗k =

{
a mod k, a = 0 or k - a
k, otherwise

For every function f ∈ {Fnq → Fq} there is a unique representation as a polynomial f =∑
M∈Mn

cfMM for some coefficients {cfM |M ∈Mn} ⊆ Fq. We define the support of such a function

f to be supp(f) :=
{
M ∈Mn | cfM 6= 0

}
, and we let deg(f) = max {deg(M) |M ∈ supp(f)}.

3.1 The structure of affine-invariant linear codes

One main feature of affine-invariant linear codes is that they can be characterized by the set of
monomials on which the functions in the code are supported. Let F ⊆ {Fnq → Fq} be an affine-
invariant linear code. The support supp(F) of F is simply the union of the supports of the functions
in F , i.e., supp(F) = ∪f∈F supp(f). The following lemma from [17] says that every affine-invariant
linear code is uniquely determined by its support.

Lemma 3.1 (Monomial extraction lemma, [17, Lemma 4.2]). Let F ⊆
{
Fnq → Fq

}
be an affine-

invariant linear code. Then F has a monomial basis, that is, F = span(supp(F)).

For a monomial M ∈Mn, let Affn×n(M) denote the set of all monomials that can be obtained
from M by applying an affine transformation T ∈ Affn×n on M , that is,

Affn×n(M) =
{
M ′ ∈Mn | ∃T ∈ Affn×n : M ′ ∈ supp(M ◦ T)

}
.

We will call Affn×n(M) the n-dimensional affine set of M . When the dimension n is clear from
the context we will omit the subscript n × n. Note that if M ∈ F , M ′ ∈ Affn×n(M) and F is an
affine-invariant linear code then M ′ ∈ F . The following lemma, also from [17], gives a sufficient
condition under which a monomial belongs to Affn×n(M).

8

Lemma 3.2. [Monomial spread lemma, [17, Lemma 4.6]] Let M ′ =
∏n
i=1 x

ai
i ,M =

∏n
i=1 x

bi
i

be a pair of monomials in Mn, where ai, bi ∈ Zq for all 1 ≤ i ≤ n. For all 1 ≤ i ≤ n, let

ai =
∑

j a
(i)
j p

j , bi =
∑

j b
(i)
j p

j be the base-p representation of ai, bi respectively. Assume that for all

j,
∑n

i=1 a
(i)
j ≤

∑n
i=1 b

(i)
j . Then M ′ ∈ Affn×n(M).

We shall also use the following theorem from [13] which says that if a linear code is invariant
under invertible affine transformations then it is also invariant under general affine transformations.

Theorem 3.3 ([13], Theorem A.1). If F ⊆
{
Fnq → Fq

}
is an Fq-linear code invariant under in-

vertible affine transformations, then F is invariant under all affine transformations.

3.2 Lifts of affine-invariant linear codes

The following claim relates the support of the base code to the support of its lift.

Claim 3.4. Let B ⊆ {Ftq → Fq} be an affine-invariant linear base code and let F = Liftn(B) be its
n-dimensional lift. Then the following holds:

1. supp(B) = supp(F) ∩Mt.

2. supp(F) = {M ∈Mn | Affn×n(M) ∩Mt ⊆ supp(B)} .

Proof. For the proof of the first part of the claim, suppose first that M ∈ supp(F) ∩Mt and let
A ⊆ Fnq be the t-dimensional subspace containing all vectors supported on the first t coordinates.
The fact that M ∈ F = Liftn(B) implies that M |A ∈ B. Since M ∈ Mt we thus have that
M ∈ supp(B).

On the other hand, suppose that M ∈ supp(B). Then in this case we clearly have that M ∈Mt.
To see that M is also contained in supp(F) let A be an arbitrary t-dimensional affine subspace.
Then the fact that B is an affine-invariant code and M ∈ B implies that M |A ∈ supp(B). Since
F = Liftn(B) this implies in turn that M ∈ F , so we conclude that M ∈ supp(F) ∩Mt.

We proceed to the proof of the second part of the claim. Suppose first that M ∈ supp(F)
and let M ′ ∈ Affn×n(M) ∩Mt. Then there exists an affine transformation T ∈ Affn×n such that
M ′ ∈ supp(M ◦ T |xt+1=0,...,xn=0). But if we let e1, . . . , en denote the standard basis for Fnq and we
let A denote the t-dimensional subspace spanned by T (e1), . . . , T (et) then M ◦T |xt+1=0,...,xn=0∈ B if
and only if M |A ∈ B. Since F = Liftn(B) and M ∈ F we have that M |A ∈ B and so M ′ ∈ supp(B).

For the other direction, suppose that M ∈ Mn is such that Affn×n(M) ∩Mt ⊆ supp(B), we
will show that M ∈ supp(F). For this we need to show that M |A ∈ B for every t-dimensional
affine subspace A. Let A be a t-dimensional affine subspace and let α1, . . . , αt be a basis for A.
Let T ∈ Affn×n be the affine transformation defined as T (ei) = αi for all 1 ≤ i ≤ t and T (ei) = 0
for all t < i ≤ n. Then supp(M ◦ T |xt+1=0,...,xn=0) ⊆ Affn×n(M) ∩Mt and so we also have that
supp(M |A) ⊆ Affn×n(M) ∩Mt. Our assumption that Affn×n(M) ∩Mt ⊆ supp(B) implies in turn
that supp(M |A) ⊆ supp(B) and so M |A ∈ B as required.

The following proposition bounds the distance of lifts of general affine-invariant linear codes.

Proposition 3.5. [Theorem 4.1 from [13]] Let B ⊆ {Ftq → Fq} be an affine-invariant linear base
code and let F = Liftn(B) be its n-dimensional lift. Then δ(B) ≥ δ(F) ≥ δ(B)− q−t

From the above proposition one can derive the following corollary.

Corollary 3.6. Let B ({Ftq → Fq} be some non-trivial affine-invariant linear code and let F =
Liftn(B) be its n-dimensional lift. Then δ(F) ≥ q−t.

9

Proof. From Proposition 3.5 it is enough to show that δ(B) ≥ 2q−t. Assume toward a contradiction
that δ(B) < 2q−t. From linearity of B there is a function f ∈ B such that there is only one point
v ∈ Ftq such that f(v) 6= 0. To reach a contradiction we show that any function g : Ftq → Fq
can be writen as a linear combination of affine transformations of f . Because B is affine-invariant
linear code it will follow that B = {Ftq → Fq}. Indeed, we can express any g : Ftq → Fq as

g(x) =
∑

u∈Ftq
g(u)
f(v)f(x+ v − u) and the result follows.

4 Proof of Main Technical Theorem 2.1

In this section we prove our Main Technical Theorem 2.1. Our goal then will be to show that if f
is far from F then on most hyperplanes it remains far from F . In particular if F is the lift of a
t-dimensional code, then f should get close on at most qt+O(1) hyperplanes. We start by studying
the special case where f results from an “interpolation” of several functions in F .

4.1 The code F+

We start with the definition of the code F+ which contains all functions obtained from interpolations
of functions in F . The code F+ is defined below as the n-dimensional lift of a non-trivial code B+

on t+ q− 1 variables. We will then show that the code F+ contains all interpolations of functions
in F .

Definition 4.1 (The code F+). Let B ⊆ {Ftq → Fq} be an affine-invariant linear base code with

support supp(B) = D. Let t+ = t+ (q − 1) and D+ ⊆ {Ft+q → Fq} be the set

D+ = Afft+×t+

{
M

q−1∏
i=1

xq−1
t+i |M ∈ D

}
.

Denote by B+ the code defined by the monomials in D+, that is B+ = span(D+) . Finally, let F+

be Liftn(B+).

We first show that F+ is non-trivial (i.e., F+ 6= {Fnq → Fq}), provided the base code B is
non-trivial.

Claim 4.2. If B 6= {Ftq → Fq}, then F+ 6= {Fnq → Fq}.

Proof. Since B 6= {Ftq → Fq} and since, by Lemma 3.2, every monomial on t variables is in the

affine set of the monomial
∏t
i=1 x

q−1
i , it follows that

∏t
i=1 x

q−1
i 6∈ D = supp(B). Hence we have that

for every monomial M ′ ∈ D, deg(M ′) < t(q − 1). From the definition of D+ it follows that every
monomial M ∈ D+ must have degree strictly less than t+ ·(q−1). It follows that B+ 6= {Ft+q → Fq}
and F+ 6= {Fnq → Fq}.

Next we show that F+ contains all functions resulting from interpolation of functions in F , as
per the following definition.

Definition 4.3 (Interpolation of functions in F). We say that f is an interpolation of functions
in F if there exist q parallel hyperplanes H1, . . . ,Hq (so Hi ∩Hj = ∅ for i 6= j and ∪iHi = Fnq) and
q functions f1, . . . , fq ∈ F such that f |Hi = fi|Hi for every i ∈ [q].

Claim 4.4. A function f ∈ {Fnq → Fq} is an interpolation of functions in F if and only if there
exists an affine function L ∈ Affn and functions {fa ∈ F|a ∈ Zq} such that f =

∑
a∈Zq faL

a.

10

Proof. The proof is straightforward by polynomial interpolation.

Lemma 4.5. If f is an interpolation of functions in F = Liftn(B), then f ∈ F+.

Proof. Fix f =
∑

a faL
a for affine function L and fa ∈ F . We need to show that for

every t+-dimensional affine subspace A it is the case that supp (f |A) ⊆ D+. Equivalently,
we need to show that for every T ∈ Affn×n, the restriction of supp (f ◦ T) to the subspace{
x ∈ Fnq | xt++1 = ... = xn = 0

}
is contained in D+.

First observe that for every T ∈ Affn×n, f ◦ T =
∑

a∈Zq L
′af ′a, where L′ is an affine function

and f ′a ∈ F (so it is of the same form as f). Note that every monomial in supp(f ◦ T) is of the
form M

∏a
j=1 xij where a ∈ Zq, i1, ..., ia ∈ [n] and M ∈ supp(F). Further, restricting f ◦ T to the

subspace
{
x ∈ Fnq | xt++1 = ... = xn = 0

}
allows us to focus only on the cases i1, ..., ia ∈ [t+] and

M ∈Mt+ .
We will show in this case that M

∏a
j=1 xij ∈ D+. Fix M ∈Mt+ ∩ supp(F), i1, ..., ia ∈ [t+] and

let I ⊆ [t+] be such that |I| = q−1 and {i1, ..., ia} ⊆ I. Write M =
∏t+

k=1 x
ak
k and choose M ′ ∈Mt

to be a monomial of the form
∏t
k=1 x

bk
k where {bk | k ∈ [t]} = {ak | k ∈ [t+]\I}. Then by Lemma

3.2

M
a∏
j=1

xij =
∏
k/∈I

xakk

∏
k∈I

x
ak+#{j|ij=k}
k ∈ Afft+×t+

(
t∏

k=1

xbkk

q−1∏
i=1

xq−1
t+i

)
= Afft+×t+

(
M ′

q−1∏
i=1

xq−1
t+i

)
.

Observe, again by Lemma 3.2, that M ′ ∈ Afft+×t+(M), so M ′ ∈ supp(F) ∩Mt. By Claim 3.4,
this implies in turn that M ′ ∈ D. To conclude, note that M

∏a
j=1 xij is in the t+-dimensional affine

set of M ′
∏q−1
i=1 x

q−1
t+i , so M

∏a
j=1 xij ∈ D+.

4.2 Restrictions of functions in F+ to hyperplanes

In this section we will consider an affine-invariant linear code F = Liftn(B) which is a lift of a
non-trivial affine-invariant linear code B ⊆ {Ftq → Fq}. Let B+ be the code given by Definition
4.1 and let F+ = Liftn(B+). Our main goal is to show that for every f ∈ F+ \ F , the number
of hyperplanes H for which f |H ∈ F is upper bounded by Oq(q

t+). (See Theorem 4.10 below for
formal statement.) We remark that throughout this section one could replace F+ by any affine-
invariant linear code that is the lift of an affine-invariant linear base code contained in {Ft+q → Fq}
and that the same holds for F (so F+ does not have to be as in Definition 4.1 and F could be a
lift of a base code defined over t+ variables and not only t variables).

The overall strategy is as follows. (1) We will first show in Lemma 4.6 that for every such f
there exists an invertible affine transformation T and monomial M /∈ F supported on the first t+

variables such that f ◦ T is supported on M . We further assume that T is such that the degree of
M is maximal. Since we can just prove the theorem about f ◦ T , we assume that f is supported
on M . (2) Next we partition the space of all possible hyperplanes into qt

++1 sets (based on their
coefficients on the first t+ variables). Our goal is to show that in each set in the partition there
are at most some constant (depending on q) number of hyperplanes such that f restricted to that
hyperplane becomes a member of F . To do so we extract from f a non-zero low-degree function
g (this function g depends on M and the set in the partition under consideration), such that for
a hyperplane H from this set, f |H ∈ F only if g|H ≡ 0. (See Lemma 4.7.) (3) The final task, to
bound the number of hyperplanes on which a low-degree polynomial becomes zero, turns out to be
relatively easy and we give this bound in Lemma 4.8.

11

Below we state the three lemmas mentioned above. We defer their proofs to later in this section.
We show how they imply Theorem 4.10 immediately after stating them.

The first of our lemmas isolates a “canonical monomial” for every function f ∈ F+\F . We note
that this is similar to such a step in [14] with the main difference being that the canonical monomials
here can be quite different for different functions f (whereas in [14] all canonical monomials of
functions f ∈ F+ \ F were of a similar structure).

Lemma 4.6. For every f ∈ F+ \ F there exists an invertible affine transformation T and a
monomial M ∈ Fq[x1, . . . , xt+] such that M 6∈ F and f ◦ T is supported on M .

Our next lemma, which is the bulk of this section, reduces the task of counting hyperplanes
where f becomes a member of F , to the task of counting hyperplanes where a related function
becomes zero.

Lemma 4.7. Let f ∈ F+ \ F be supported on a monomial M ∈ Fq[x1. . . . , xt+] with M 6∈
F . Suppose furthermore that for every invertible affine transformation T all monomials M ′ ∈
supp(f ◦ T) \ F supported on variables x1, . . . , xt+ satisfy that deg(M ′) ≤ deg(M). Then for every
α0, α1, . . . , αt+ ∈ Fq there exists a non-zero function g with deg(g) ≤ q2(q− 1) such that the follow-
ing holds: For every choice of αt++1, . . . , αn ∈ Fq the hyperplane H = {x ∈ Fnq |

∑n
i=1 αixi+α0 = 0}

satisfies f |H ∈ F only if g|H ≡ 0.

Finally, we bound the number of hyperplanes where a non-zero low-degree function can become
zero.

Lemma 4.8. Let f : Fnq → Fq be a non-zero polynomial of degree d. Then there are at most q
d
q−1

+1

affine hyperplanes H such that f |H ≡ 0.

Remark 4.9. We remark that any bound that is constant for constant d and q would have been
good enough to suffice for our purpose. We also note that the bound above is close to the right one.
In particular if d = t(q− 1) and f(x1, . . . , xn) =

∏t
i=1(xq−1

i − 1) then f is zero on every hyperplane
of the form xt =

∑t−1
i=1 αixi + β, with αi’s being arbitrary and β being non-zero, and there are at

least (q − 1) · qd/(q−1)−1 of these.

We now state and prove our main theorem of this section.

Theorem 4.10. Let B ({Ftq → Fq} be an affine-invariant linear code and let F = Liftn(B). Let
B+ be the code given by Definition 4.1, let F+ = Liftn(B+) and let f ∈ F+ \ F . Then there are at
most qt

++q2+2 affine hyperplanes H such that f |H ∈ F .

Proof. Let T and M be the affine transformation and the monomial given by Lemma 4.6 above,
respectively. Suppose furthermore that T maximizes the degree of M , in the sense that for every
other invertible affine transformation T ′ all monomials M ′ ∈ supp(f ◦T ′)\F supported on variables
x1, . . . , xt+ satisfy that deg(M ′) ≤ deg(M).

Applying Lemma 4.7 to the function f ◦ T and the monomial M , we get that for every
α0, α1, . . . , αt+ there is a non-zero polynomial g of degree at most (q − 1)q2 such that g|H ≡ 0
whenever (f ◦ T)|H ∈ F . By Lemma 4.8 there are at most qq

2+1 such hyperplanes H. Summing
over all possible choices of α0, α1, . . . , αt+ , we get that there are at most qt

++q2+2 hyperplanes H
such that (f ◦ T)|H ∈ F . The theorem follows from the fact that there is a one-to-one correspon-
dence between the hyperplanes for which the restriction of (f ◦ T) is in F and the hyperplanes for
which the restriction of f is in F .

In the remaining subsections of this section we prove the three lemmas mentioned above.

12

4.2.1 Proof of Lemma 4.6

Lemma 4.6 (restated). For every f ∈ F+ \ F there exists an invertible affine transformation T
and a monomial M ∈ Fq[x1, . . . , xt+] such that M 6∈ F and f ◦ T is supported on M .

Proof. Let Ff ⊆ {Fnq → Fq} be the minimal affine-invariant linear code containing f . Note that
Ff = {

∑
T∈T cT · (f ◦ T)|cT ∈ Fq}, where T denotes the set of all invertible affine transformations

in Affn×n (the fact that one can sum only over invertible transformations follows from Theorem
3.3).

Let B∗ ⊆ {Ft+q → Fq} be the code B∗ = {g|xt++1=0,...,xn=0|g ∈ Ff}. By definition B∗ is
an affine-invariant linear code and f ∈ Liftn(B∗). Since f 6∈ Liftn(B), it follows that B∗ 6⊆ B.
So there must exist a monomial M ∈ B∗ \ B (since B∗ is spanned by the monomials in it, by
Lemma 3.1). Note that the definition of B∗ implies that M belongs also to Ff . Finally by the fact
that Ff = {

∑
T∈T cT ·(f ◦T)|cT ∈ Fq} it follows that there exists an invertible affine transformation

T such that M ∈ supp(f ◦ T). The lemma follows.

4.2.2 Proof of Lemma 4.7

Lemma 4.7 (restated). Let f ∈ F+ \ F be supported on a monomial M ∈ Fq[x1. . . . , xt+] with
M 6∈ F . Suppose furthermore that for every invertible affine transformation T all monomials M ′ ∈
supp(f ◦ T) \ F supported on variables x1, . . . , xt+ satisfy that deg(M ′) ≤ deg(M). Then for every
α0, α1, . . . , αt+ ∈ Fq there exists a non-zero function g with deg(g) ≤ q2(q−1) such that the following
holds: For every choice of αt++1, . . . , αn ∈ Fq the hyperplane H = {x ∈ Fnq |

∑n
i=1 αixi + α0 = 0}

satisfies f |H ∈ F only if g|H ≡ 0.

Proof. As a first step, we perform a change of basis that will allow us to assume, w.l.o.g., that
α1 = −1 and α0 = α2 = · · · = αt+ = 0 and so restriction of f to the hyperplane given by
αt++1, . . . , αn is given by the function f(

∑n
i=t++1 αixi, x2, . . . , xn). We will analyze such functions

in later steps.
Fix α0, α1, . . . , αt+ ∈ Fq and let H = Hα0,...,αt+

be the set of hyperplanes H such that there
exist αt++1, . . . , αn so that H = {x ∈ Fnq |

∑n
i=1 αixi + α0 = 0}.

First we dismiss the case α1 = · · · = αt+ = 0. In this case for every hyperplane H ∈ H, the
function f |H still has the monomial M in its support and so f |H 6∈ F . (So formally, g = 1 satisfies
the condition of the lemma.) So from here on we assume there exists c ∈ [t+] such that αc 6= 0.
Without loss of generality we assume c is the minimal such index, and that αc = −1. For notational
simplicity we assume below that c = 1. Now consider the affine transformation S ∈ Affn×n such

that S(x1) = x1 +
∑t+

i=2 αixi + α0 and S(xi) = xi for all i ≥ 2. Let f ′ = f ◦ S. For hyperplane
H = {x|

∑n
i=1 αixi + α0 = 0}, let H ′ be the hyperplane H ′ = {x|x1 =

∑n
i=t++1 αixi}. Notice that

f |H ∈ F if and only if f ′|H′ ∈ F and H ′ corresponds to α′1 = −1 and α′i = 0 for i ∈ {0, 2, 3, . . . , t+}.
Now let M ′ ∈ supp(f ′) ∩ Fq[x1, . . . , xt+] be a monomial such that M ∈ supp(M ′ ◦ T) for some

invertible T ∈ Afft+×t+ . Note such a monomial M ′ must exist since S is an invertible transformation
in Afft+×t+ . Since M ∈ supp(M ′ ◦ T) and M 6∈ F it follows that M ′ 6∈ F . Furthermore, the fact
that M ∈ supp(M ′ ◦ T) implies that deg(M) ≤ deg(M ′) and hence M ′ is also maximal with
respect to degree. That is, for every invertible affine transformation T ′ it holds that all monomials
M ′′ ∈ supp(f ′ ◦ T ′) \ F supported on variables x1, . . . , xt+ satisfy that deg(M ′′) ≤ deg(M ′).

In what follows we prove that the lemma holds for the polynomial f ′ with monomial M ′ and
coefficients α′0, . . . , α

′
t+ , i.e., we prove the existence of a non-zero polynomial g′ of degree at most

q2(q− 1) such that g′|H′ ≡ 0 whenever f ′|H′ ∈ F . The lemma follows for f by setting g = g′ ◦S−1.

13

For notational simplicity we drop the primes below and simply assume α1 = −1 and αi = 0 for all
other i ≤ t+ and so f = f ′, M = M ′.

Let M̄ ∈ Fq[x2, . . . , xt+] and let a ≥ 0 be an integer such that M = xa1M̄ . Write f = g1M̄ + r1

where g1 ∈ Fq[x1, xt++1, . . . , xn] is such that g1M̄ contains all monomials whose degree in variables
x2, . . . , xt+ equals their degree in M̄ and r1 is the remaining terms. Further write g1 = g+g2 where
g includes all monomials M ′ of degree deg(M ′) mod ∗(q − 1) = a and g2 includes monomials M ′′

of degree deg(M ′′) 6= mod ∗(q − 1)a. Rewriting we have f = g · M̄ + r where r = g2M̄ + r1,
g ∈ Fq[x1, xt++1, . . . , xn] and r ∈ Fq[x1, . . . , xn]. We show below, using a series of claims that
g satisfies the conditions of the lemma. Specifically, fix αt++1, . . . , αn and let L(x) be the linear
function L(x) =

∑n
i=t++1 αixi, and let H be the hyperplane given by {x1 = L(x)}. We wish to

show that g|H ≡ 0 if f |H ∈ F .
Let Ff be the minimal affine-invariant linear code containing f . Let

F−M̄ = {h ∈ Fq[xt++1, . . . , xn]|M̄ · h ∈ F},

and let
Ff,−M̄ = {h ∈ Fq[xt++1, . . . , xn]|M̄ · h ∈ Ff}.

Below we state and prove four claims about g (Claims 4.11- 4.14) from which the lemma follows
immediately. Specifically, the first two prove that g is non-zero and of low-degree. And the final
two prove that g becomes zero on H if f |H ∈ F . Claim 4.12 uses Lemma 4.15 which we state and
prove after we prove the current lemma.

Claim 4.11. g 6= 0 and g ∈ Ff,−M̄ .

Proof. The fact that g is non-zero follows from the fact that M is in the support of f and M = xa1M̄
and so xa1 is in the support of g. Since supp(g · M̄) ⊆ supp(f) we have that g · M̄ ∈ Ff and so by
definition of Ff,−M̄ we have g ∈ Ff,−M̄ .

Claim 4.12. Every function in Ff,−M̄ has degree at most q2(q − 1).

Proof. In Lemma 4.15 we prove that for any affine-invariant linear code G, if there exists a monomial
N of degree at most ` that is not in G, then every function in G has degree at most 1

2q
2 · `. So to

prove the current claim it suffices to show that there is a monomial of degree at most 2(q− 1) that
is not contained in Ff,−M̄ . We now show that the monomial N = xa1x

q−1
t++1

6∈ Ff,−M̄ . Notice that
N is a monomial of degree at most a+ (q − 1) ≤ 2(q − 1), and so with Lemma 4.15 this suffices to
prove the claim.

Assume for contradiction that xa1x
q−1
t++1

∈ Ff,−M̄ and so M · xq−1
t++1

= xa1x
q−1
t++1

M̄ ∈ Ff . Since

B+ 6= {Ft+q → Fq}, we have M 6=
∏t+

i=1 x
q−1
i . We conclude there exists i ∈ [t+] such that di ,

degxi(M) 6= q − 1. But if xa1x
q−1
t++1

M̄ ∈ Ff then by exchanging the variables xi and xt++1 we

also have the monomial Mxq−1−di
i xdi

t++1
∈ Ff and so Mxq−1−di

i ∈ Ff . We show below that this
contradicts the maximality of M .

Note first that Mxq−1−di
i is a monomial in Fq[x1, . . . , xt+]. Furthermore, since Ff = {

∑
T∈T cT ·

(f ◦T)|cT ∈ Fq} we have that Mxq−1−di
i ∈ supp(f ◦T) for some invertible affine transformation T .

Finally, by Lemma 3.2 we have that M ∈ Affn×n(Mxq−1−di
i) and so the fact that M /∈ F implies

that Mxq−1−di
i /∈ F . Concluding, we have just shown that Mxq−1−di

i is a monomial in variables
x1, . . . , xt+ contained in supp(f ◦ T) \ F for some invertible affine transformation T . Given that

deg(Mxq−1−di
i) > deg(M), this clearly violates the maximality of M .

Claim 4.13. If f |H ∈ F then g|H ∈ F−M̄ .

14

Proof. Recall that H = {x ∈ Fnq |x1 = L(xt++1, . . . , xn)}. Let f ′(x2, . . . , xn) =
f(L(xt++1, . . . , xn), x2, . . . , xn) denote the function f |H . As in the partitioning of f , let f ′ =
g′1M̄ + r′1 where g′1M̄ includes all monomials of f ′ whose degree in x2, . . . , xt+ equals their degree
in M̄ . Further let g′1 = g′ + g′2 where g′ includes all terms of degree d for d mod ∗(q − 1) = a and
g′2 collects the remaining terms.

The proof of the claim relies crucially on the following property of g′, namely that
g′(xt++1, . . . , xn) = g(L(xt++1, . . . , xn), xt++1, . . . , xn) is the function g|H . To see this, note that
the substitution x1 = L(xt++1, . . . , xn) does not change the degrees in x2, . . . , xt+ and so we have
g′1 = g1(L(x), xt++1, . . . , xn). Next we note that for every monomial of degree d, the reductions
modulo xqi − xi (for every i) can only change the degree of the monomial to d′ which satisfies d′

mod ∗(q − 1) = d and so g′ = g(L(x), xt++1, . . . , xn).
The claim now follows easily. From the property of the previous paragraph our claim can be

rephrased as asserting that if f ′ ∈ F then g′ ∈ F−M̄ . But if f ′ = g′M̄ + r′ ∈ F , then it follows that
g′M̄ (with its support being a subset of the support of f ′) is also in F and so g′ ∈ F−M̄ .

Claim 4.14. If g|H ∈ F−M̄ then g|H ≡ 0.

Proof. Assume for contradiction that g|H ∈ F−M̄ and g|H 6≡ 0. Let g′(xt++1, . . . , xn) = g|H(x) =
g(L(x), xt++1, . . . , xn). Every monomial of g is of degree d where d mod ∗(q − 1) = a, and hence
the same holds also for g′. For β = (βt++1, . . . , βn), let pβ(x1) = g′(βt++1, . . . , βn)xa1. Since g|H 6≡ 0,

there exists β = (βt++1, . . . , βn) such that g′(βt++1, . . . , βn) 6= 0 and so pβ(x1) has xa1 in its support.
Note furthermore that pβ(x1) is obtained by an affine (although non-invertible) transformation of
the coordinates of g′ which is given by T (xi) = βix1 for all i ∈ {xt++1, . . . , xn}. Thus the fact that
g′ ∈ F−M̄ implies in turn that xa1 ∈ F−M̄ . But, by the definition of F−M̄ this implies M = xa1M̄ ∈ F
which contradicts the hypothesis of the lemma.

This concludes the proof of Lemma 4.7.

We now state and prove a lemma which bounds the maximal degree of functions in any affine-
invariant linear code given a single monomial not in the code, which was used in the proof above.

Lemma 4.15. Let G ⊆ {Fnq → Fq} be an affine-invariant linear code and let M be a monomial of

degree ` such that M 6∈ G. Then, for every function f ∈ G, we have deg(f) ≤ 1
2q

2`.

Proof. We first note that we can assume, without loss of generality, that `q ≤ n. Else (if n < `q)
we can prove the result for the code G′ = Lift`q(G), and then use the identity G = G′ ∩ {Fnq → Fq}
to derive the result for G. So from now we have n ≥ `q.

Let p be a prime number and t be an integer such that q = pt. Let M ′ =
∏n
i=1 x

ai
i be a monomial

in f ∈ G, write any degree ai in base-p as ai =
∑t−1

j=0 a
(i)
j p

j , where a
(i)
j ∈ Zp for all 0 ≤ j ≤ t − 1

and i ∈ [n].

We will show that
∑n

i=1 a
(i)
j < `pt−j for every 0 ≤ j ≤ t− 1 . This will show that

deg(M ′) =

n∑
i=1

ai =

n∑
i=1

t−1∑
j=0

a
(i)
j p

j <

t−1∑
j=0

`pt−jpj = tq` ≤ 1

2
q2`,

thereby yielding the lemma.

Assume for contradiction that there is some j, such that
∑n

i=1 a
(i)
j ≥ `pt−j . Then, by Lemma

3.2 the monomial M1 =
∏`pt−j

i=1 xp
j

i is in G. By applying the linear transformation T1 given by

T1(xi) = xi mod pt−j for every i in the monomial M1, we deduce that
∏`
i=1 x

q
i ∈ G. In turn the

15

resulting monomial is equivalent to the monomial M2 =
∏`
i=1 xi over Fq. Let `i denote the degree

of xi in M so that
∑

i `i = `. Now consider the transformation T2 defined by ∀i ∈ [n], ∀k such that∑i−1
j=1 `j < k ≤

∑i
j=1 `j : T2(xk) = xi. We have M2 ◦ T2 = M , yielding M ∈ G which contradicts

our assumption. The lemma follows.

4.2.3 Proof of Lemma 4.8

We conclude the section by proving Lemma 4.8 which we restate below for convenience.

Lemma 4.8 (restated). Let f : Fnq → Fq be a non-zero polynomial of degree d. Then there are at

most q
d
q−1

+1
affine hyperplanes H such that f |H ≡ 0.

Proof. Let H1, ...,Hk be all the hyperplanes that satisfy f |Hi ≡ 0. Consider the set S ,{
x ∈ Fnq | ∀i ∈ k, x /∈ Hi

}
. We will find an upper and lower bound on the density of the set S

as a function of k and this will yield the claimed bound on k.
Consider a point x ∈ Fnq , chosen uniformly at random. We first give an upper bound on the

probability that x ∈ S. Let Zi be a random variable such that Zi = 1 if and only if x ∈ Hi. Note
that we wish to upper bound the probability that

∑k
i=1 Zi = 0. We bound this probability using

the Chebychev bound.
Clearly, for all i ∈ [k],

E
[
Z2
i

]
= E [Zi] =

|Hi|∣∣Fnq ∣∣ =
1

q
.

Moreover, for i 6= j, E [ZiZj] ≤ 1
q2

. (E[ZiZj] = 1/q2 if Hi and Hj are not parallel, and equals zero

if they are.) Calculating the variance,

σ2

(
k∑
i=1

Zi

)
= E

(k∑
i=1

Zi

)2
− E

[
k∑
i=1

Zi

]2

= 2
∑
i<j

E [ZiZj] +

k∑
i=1

E
[
Z2
i

]
−
(
k

q

)2

≤ k(k − 1)

q2
+
k

q
− k2

q2
=
k(q − 1)

q2

We bound the density of S by Chebyshev’s inequality,

Pr[x ∈ S] = Pr

[
k∑
i=1

Zi = 0

]
≤ Pr

[∣∣∣∣∣
k∑
i=1

Zi −
k

q

∣∣∣∣∣ ≥ k

q

]
≤
σ2
(∑k

i=1 Zi

)
(
k
q

)2 ≤ q − 1

k
.

On the other hand, by the well-known polynomial-distance lemma (see, for instance, [14, Lemma
3.2])

Pr [x ∈ S] ≥ Pr [f(x) 6= 0] ≥ q−
d
q−1

Combining the above, we have q
− d
q−1 ≤ q−1

k which yields

k ≤ q
d
q−1 (q − 1) < q

d
q−1

+1
,

as claimed.

16

4.3 Restrictions of general functions to hyperplanes

We finally turn to the proof of the Main Technical Theorem 2.1. The proof of this section is a
straightforward adaptation of the proof of the corresponding theorem in [14], given Theorem 4.10.
We give a brief overview of the proof first.

Recall that Theorem 2.1 says that if a function f ∈ {Fnq → Fq} is δ-close to functions from F
on k hyperplanes (for sufficiently large k), then f is itself close to some function from F . It turns
out that the central difficulty in proving this theorem already arises when δ = 0, and the theorem
for general δ follows immediately. Theorem 4.16 states this special case, which we prove first. The
proof of Theorem 2.1 follows easily and we prove it later in Section 4.3.4.

The proof of Theorem 4.16 is itself by induction on n, however now the hardest part is the base
case. We prove this separately as Lemma 4.19. We then prove Theorem 4.16 as a consequence in
Section 4.3.3.

4.3.1 Interpolation from exact agreement

We start by stating Theorem 4.16 which implies the special case of Theorem 2.1 for the case of
δ = 0.

Theorem 4.16. For every q there exists τ < ∞ such that the following holds: Let n > t, let
B ({Ftq → Fq} be an affine-invariant linear code and let F = Liftn(B). Let f : Fnq → Fq be
a function and H1, ...,Hk be hyperplanes in Fnq such that f |Hi ∈ F for every i ∈ [k]. Then, if
k ≥ qt+τ , there exists a function h ∈ F such that f |Hi = h|Hi for all i ∈ [k].

We will prove Theorem 4.16 in Section 4.3.3 by induction on n. Our proof will rely on a slightly
stronger (smaller) bound on k as n gets smaller. This makes the base case of small values of n
more challenging and we deal with this first.

4.3.2 The base case

Here we consider the case where n = t + O(1). In this case the number of hyperplanes k ≥
qt+τ is a “constant” fraction of all the hyperplanes. We view these hyperplanes as points in a
(n + 1)-dimensional subspace (the hyperplane given by

∑n
i=1 αixi = α0 is associated with the

point (α0, . . . , αn) ∈ Fn+1
q), and then use the well-known Hales-Jewett Theorem from additive

combinatorics to infer that there are q points in a straight line among this set of points. (Indeed
by choosing our density to be slightly larger we may conclude that there are many straight lines
among the given set of points. We use such a version that was already used in [14].) In terms of
hyperplanes these lines lead to a small set that cover most of Fnq . We use this set to derive that
there is a function g from F+ that is consistent with f on all the given hyperplanes. We then use
Theorem 4.10 to conclude that g must actually be an element of F .

We start by stating the version of the Hales-Jewett theorem we will use after a basic definition.

Definition 4.17. Let v ∈ Fnq and u ∈ Fnq \{0}. A line through v in direction u is the set
{v + αu | α ∈ Fq}. Notice that the direction of a given line is unique up to multiplication by an
element of Fq\{0}.

The following theorem is a corollary of the Hales-Jewett theorem [9, 19].

Theorem 4.18 ([14, Corollary 3.5]). For every prime power q and every c > 0 there exists an
integer λ = λq,c such that for every integer m ∈ N the following holds: if n ≥ λq,c + m then every
set A ⊆ Fnq of size |A| ≥ qn−c contains m lines whose directions are linearly independent.

17

The following lemma now states Theorem 4.16 for the special (base) case of n ≤ t+O(1).

Lemma 4.19. For every q, and constant c, there exists a constant τc <∞ such that the following
holds: Let n, t ∈ N be such that t < n ≤ t + τc. Let B ({Ftq → Fq} be an affine-invariant linear
code and let F = Liftn(B). Let f : Fnq → Fq be a function and H1, ...,Hk be hyperplanes in Fnq
such that f |Hi ∈ F for every i ∈ [k]. Then, if k ≥ qt+τc−c, there exists a function h ∈ F such that
f |Hi = h|Hi for all i ∈ [k].

Proof. We prove the lemma for τc = λ+ q + c where λ = max
{
λq,c+1 + 1, q2 + 3

}
and λq,c+1 is as

given by Theorem 4.18.

Overview: We start by giving an overview of the proof. Using a natural correspondence between
hyperplanes in Fnq and points in Fn+1

q (the hyperplane
∑n

i=1 αixi = α0 corresponds to the point
(α0, . . . , αn) ∈ Fn+1

q) and the Hales-Jewett theorem in Fn+1
q we find many hyperplanes of a “some-

what structured” type. We will formally describe these later below, but an example of hyperplanes
corresponding to points on a line would be the set of hyperplanes x1 + λx2 = 0 for every λ ∈ Fq.
This set of hyperplanes almost covers the entire region Fnq , except the points with x1 6= 0 and
x2 = 0.

We then proceed in three steps: We first observe that for every hyperplane of the form x2 = η
for η 6= 0, f restricted to this hyperplane is an element of F+. Observing further that f |x2=η is a
function of F for many hyperplanes in Fn−1

q , we use Theorem 4.10 to claim that f |x2=η ∈ F . Now
if we only could claim that f |x2=0 is also an element of F we would be done by a similar sequence
of observations. However this is not necessarily true. To deal with this we use the fact that there
are many hyperplanes to note that for many variables xi we have f |xi=η ∈ F for every η 6= 0 .

In the second step we apply some algebraic interpolations to show for every i ∈ [m] the existence
of a function hi : Fnq → Fq such that hi ∈ F+ and hi|xi=η = f |xi=η for every η 6= 0.

In the third and last step we show how to build a single function h ∈ F+ that agrees with
f |xi=η for every choice of i and for every η 6= 0, and then show that this function is in F and agrees
with f on every given hyperplane. We note that this step requires some non-trivial extensions of
corresponding steps in [14] as well. We now turn to the formal proof.

The formal proof: We start by showing that some very structured set of hyperplanes are in-
cluded among the given k hyperplanes.

Claim 4.20. Let m = t+q+1. There exists an invertible affine transformation T and m invertible
affine functions L1, . . . , Lm : Fnq → Fnq such that for every i ∈ [m] and γ ∈ Fq the hyperplane

Hi,γ , {x|Li(x) + γxi = 0} is included in the set {H1 ◦ T, . . . ,Hk ◦ T}.

Proof. For a point α = (α0, . . . , αn) ∈ Fn+1
q let Hα denote the hyperplane Hα = {x ∈ Fnq |∑n

i=1 αixi = α0}. Let P = {α(1), . . . , α(k)} ⊆ Fn+1
q be a set of k points such that Hi = Hα(i)

for every i ∈ [k]. We assume without loss of generality that α
(i)
0 ∈ {0, 1} for all i ∈ [k] since

other α
(i)
j ’s can be scaled to achieve this. Note furthermore that if n < logq k then there is

nothing to prove since in this case one cannot find k distinct hyperplanes inside Fnq . Hence we

may assume that n ≥ logq k ≥ t + τc − c. Since the density of P in Fn+1
q is k/qn+1 ≥ q−(c+1) and

n ≥ t+ τc− c ≥ t+λq,c+1 + 1 + q we have that there are at least m = t+ q+ 1 linearly independent
lines in P . Since all points in P have their 0th coordinate in {0, 1} these lines must be constant in
the 0th direction.

By applying an invertible linear transformation to the last n coordinates, we can assume without
loss of generality that the lines are parallel to the axes in directions x1, . . . , xm. Let T be such a

18

transformation and let T (P) = {T (α)|α ∈ P}. Then we get that there are vectors α(1), . . . , α(m) ∈
Fn+1
q such that for every i ∈ [m] and every γ ∈ Fq, the vector α(i) + γ~e(i) ∈ T (P), where ~e(i) =

(e
(i)
0 , . . . , e

(i)
n) has e

(i)
i = 1 and is 0 on every other coordinate. For i ∈ [m], let Li(x) =

∑n
j=1 α

(i)
j xj−

α
(i)
0 . The claim follows for this choice of T and Li’s.

In what follows, we assume that the affine transformation T above is the identity transform (or
else we can simply prove the lemma about the function f ◦ T).

First step

Claim 4.21. For every i ∈ [m], η ∈ F∗q, we have f |xi=η ∈ F (i.e., f is an element of F when
restricted to the hyperplane given by fixing xi to η).

Proof. In order to prove the claim we first prove that f |xi=η is in F+ and then use Theorem 4.10
to deduce that f |xi=η is actually in F .

Fix x ∈ Fnq such that xi = η and let β = Li(x). By definition x ∈ HLi−η−1βxi (note that here we
use the fact that η 6= 0). We thus conclude that Hxi−η =

⋃
γ∈Fq (Hxi−η ∩HLi−γxi). In other words

the hyperplane Hxi−η is covered by q parallel hyperplanes in Fn−1
q . Thus, since for every γ ∈ Fq

we have f |HLi−γxi ∈ F , we get f |Hxi−η∩HLi−γxi ∈ F as well. We thus conclude, by Lemma 4.5, that

f |xi−η ∈ F+.
Now, consider the set S = {Hxi−η ∩Hj | j ∈ [k]}. Allowing for q of Hj ’s to be parallel to Hxi−η

and for q different Hj ’s to become identical when restricted to Hxi−η, we still get k
q −1 > qt+q

2+q+1

many distinct (n− 2)-dimensional affine subspaces of Hxi−η in S. On each such subspace, we have
f |Hxi−η∩Hj =

(
f |Hj

)
|Hxi−η ∈ F . Therefore, by Theorem 4.10 (applied to functions over Fn−1

q), we
get f |Hxi−η ∈ F .

Second step

Claim 4.22. For every i ∈ [m] there exists a function hi : Fnq → Fq with hi ∈ F+ and hi|xi=η =
f |xi=η for every η ∈ F∗q.

Proof. Let hi be defined as hi(x) = f(x) when xi 6= 0 and hi(x) = 0 otherwise. Clearly we have
that hi|xi=η = f |xi=η for every η ∈ F∗q , it remains to show that hi ∈ F+. To see this note that
Claim 4.21 above implies that for every η 6= 0, hi|xi=η = f |xi=η ∈ F . Since F is linear we also have
that the zero function is contained in F and hence hi|xi=0 is also contained in F . Thus we have
that hi is an interpolation of functions in F as per Definition 4.3. Lemma 4.5 then implies that
hi ∈ F+.

Third step Our final step, which is the major step of this proof, is to collect the hi’s together
consistently to form the function h. Lemma 4.23 below proves that there is a function h ∈ F+ such
that h agrees with f on all the hyperplanes Hxi−η for η 6= 0 and i ∈ [m]. We now conclude the
proof by going back to the k hyperplanes H1, . . . ,Hk given by the hypothesis.

For every j ∈ [k], we first claim that h|Hj = f |Hj . To see this, let Sj = Hj ∩ (
⋃m
i=1 ∪η 6=0Hxi−η).

On the one hand f and h agree on every point in Sj . On the other hand, we have |Sj | ≥ qn−1(1−
q−(m−1)). Finally, we also have that f |Hj ∈ F ⊆ F+. Since δ(F+) ≥ q−t−q+1 > q−(m−1) (since

m > t + q) we get f |Hj = h|Hj . We now have that h ∈ F+ is a function that on k ≥ qt+q
2+q+3

hyperplanes h restricted to the hyperplane is a function in F . By Theorem 4.10, we have h ∈ F as
desired.

19

Lemma 4.23. Let G be an affine-invariant linear code and let h1, . . . , hm, f : Fnq → Fq be functions
such that for every η 6= 0 and i ∈ [m], we have hi|xi=η = f |xi=η, and hi ∈ G for every i ∈ [m].
Then there exists h ∈ G such that h|xi=η = f |xi=η for every i ∈ [m] and η 6= 0.

For the proof of the above lemma we shall need the following definition of non-standard mono-
mials.

Definition 4.24 (Non-standard monomials). For integer j ∈ {0, . . . , q − 1} we define the “non-
standard” monomial Nj(t) to be tj if j 6= q−1 and tj−1 if j = q−1. For a vector a ∈ {0, . . . , q−1}n
we define the non-standard monomial Na(x) to be

∏n
i=1Nai(xi).

It is simple to see that non-standard monomials do form a basis for all functions from Fnq → Fq.
We mention this and some other properties we will be using below.

Proposition 4.25. 1. For every function f : Fnq → Fq there exists a unique set of coefficients
{ca}a∈{0,...,q−1}n such that f(x) =

∑
a caNa(x).

2. For I ⊆ [n], let AI = {a ∈ {0, . . . , q − 1}n|ai 6= q − 1 ∀i ∈ I} and let SI = {x ∈ Fnq |xi 6=
0 ∀i ∈ I}. Then for every function f(x) =

∑
a caNa(x) the coefficients {ca}a∈AI are uniquely

determined by f |SI .

3. Let G be an affine-invariant linear code and suppose f =
∑

a caNa(x) is in G. Then for every
a such that ca 6= 0, it holds that Na(x) ∈ G.

Proof. The first part of the proposition is immediate and the second part is given as Lemma 4.13.
in [14] so it remains to prove the third part. For a vector a ∈ {0, . . . , q − 1}n denote by xa the
(standard) monomial

∏n
i=1 x

ai
i . Let a be such that ca 6= 0 and let xa

′
be a monomial of maximal

degree such that ca′ 6= 0 and xa ∈ supp(Na′(x)). Since xa
′

is of maximal degree we must have that
xa
′ ∈ supp(f) which by Lemma 3.1 implies that xa

′ ∈ G.
Note that all monomials in supp(Na′(x)) are of the form xb where bi = a′i if a′i 6= q − 1 and

bi ∈ {0, q − 1} if a′i = q− 1. Since xa ∈ supp(Na′(x)), in particular we have that every monomial in
supp(Na(x)) is of this form. By Lemma 3.2 this implies in turn that supp(Na(x)) ⊆ Affn×n(xa

′
).

Since xa
′ ∈ G we conclude that supp(Na(x)) ⊆ G so Na(x) ∈ G as required.

Proof of Lemma 4.23. We now use the non-standard monomials. For i ∈ [m], let {c(i)
a }a∈{0,...,q−1}n

be such that hi(x) =
∑

a c
(i)
a Na(x). Let D = {a ∈ {0, . . . , q − 1}n|∃i ∈ [m] s.t. ai 6= q − 1}. For

a ∈ D, let i(a) = min{i|ai 6= q − 1}. We define h(x) =
∑

a∈D c
(i(a))
a Na(x). We argue below that h

is a member of G and h agrees with f on the hyperplanes Hxi−η for every i ∈ [m] and η 6= 0.
The first part is simple. We first notice that every term in the non-standard expansion of

h =
∑

a caNa(x) is in G. Suppose Na(x) has a non-zero coefficient in the expansion of h. Then we

have that ca = c
i(a)
a and so Na(x) has a non-zero coefficient in the non-standard expansion of hi(a).

Since hi(a) ∈ G, it follows, from Part (3) of Proposition 4.25, that Na(x) ∈ G. Thus, every term of
h is in G and by linearity of G it follows that h ∈ G.

It remains to argue that h equals f on every hyperplane of the form xi = η for i ∈ [m] and
η 6= 0. To see this we first claim that for i 6= j ∈ [m] and a ∈ {0, . . . , q − 1}n if ai, aj 6= q − 1

then c
(i)
a = c

(j)
a . To see this, note that hi|xi 6=0,xj 6=0 = f |xi 6=0,xj 6=0 = hj |xi 6=0,xj 6=0. But now, applying

Part (2) of Proposition 4.25 to the set I = {i, j}, we get that c
(i)
a = c

(j)
a as claimed. Thus, as a

consequence, we have that for every a such that ai 6= q − 1, we have ca = c
(i)
a . Applying Part (2)

of Proposition 4.25 again, this time to the set I = {i}, we have that h and hi must agree in every
x such that xi 6= 0. The lemma follows.

20

4.3.3 Proof of Theorem 4.16

We are now ready to prove Theorem 4.16.

Proof of Theorem 4.16. We will prove the theorem for τ = max
{
τ4 − 3, q2 + q + 1

}
where τ4 is the

constant given by Lemma 4.19 for c = 4.
Recall that we wish to prove that if f agrees with a function from F on k hyperplanes (where

the agreeing function may be different for each hyperplane), then there is a single function in F
with whom f agrees on all the given hyplerplanes. We wish to prove this when k ≥ qt+τ , but we
will prove a slightly stronger result for the induction.

Inductive Hypothesis: Let n′ := n − t − τ and let C(t, n) = qt+τ

2
∏n′−3
i=1 (1−q−n′+i+1)

and let

k ≥ C(t, n). Let f : Fnq → Fq be a function such that there exist k hyperplanes H1, . . . ,Hk in Fnq
such that f |Hi ∈ F for every i ∈ [k]. Then there exists h ∈ F such that f |Hi = h|Hi for every
i ∈ [k].

We first note that the hypothesis does imply the theorem. This is so since the denominator in
the above expression is

2
n′−3∏
i=1

(
1− q−n′+i+1

)
≥ 2

(
1−

n′−3∑
i=1

q−n
′+i+1

)
= 2− 2q−n

′+1
n′−3∑
i=1

qi

> 2− 2q−n
′+1 · qn′−2 = 2− 2q−1 ≥ 1,

and so C(t, n) ≤ qt+τ .
Base Case (n ≤ t+ τ4): In this case we have n ≤ t+ τ4 and k ≥ C(t, n) ≥ qt+τ/2 ≥ qt+τ−1 ≥

qt+τ4−4. Applying Lemma 4.19 with c = 4, we find that we have k ≥ qt+τc−c and n ≤ t+ τc and so
a function h as desired exists.

Inductive step: In Claim 4.26 below we prove that there exists a linear function L such that
for every γ ∈ Fq the hyperplane HL(x)−γ is “good” in the sense that the set Sγ = {Hi∩HL(x)−γ |i ∈
[k],dim(Hi ∩ HL(x)−γ) = n − 2} is of size at least C(t, n − 1). By induction, we conclude that
for every γ the functions f |HL(x)−γ belong to F (since each agrees with a member of F on at least

C(t, n−1) hyperplanes). Using interpolation, we conclude the existence of a function h ∈ F+ which
agrees with f on all hyperplanes Hi. Applying Theorem 4.10 (using the fact that τ ≥ q2 + q + 1)
we now conclude that h ∈ F . Details follow.

Claim 4.26. There exists a linear function L ∈ Affn such that for every γ ∈ Fq the set Sγ ={
HL(x)−γ ∩Hi | i ∈ [k],dim

(
HL(x)−γ ∩Hi

)
= n− 2

}
has cardinality at least C(t, n− 1)

Proof. Without loss of generality assume k = C(t, n). Let Li ∈ Affn be an affine function such that
Hi = HLi . For L ∈ Affn and i 6= j ∈ [k] such that Hi∩Hj 6= ∅ the sets HL−γ∩Hi, HL−γ∩Hj are the
same only if there exist α, β ∈ Fq\{0} such that L = αLi +βLj + γ. Moreover, dim (HL−γ ∩Hi) 6=
n− 2 only if there are α, γ′ ∈ Fq such that L = αLi + γ′.

There are at most k2q3 ways to represent a function in Affn as L = αLi+βLj+γ where i, j ∈ [k]

and α, β, γ ∈ Fq. Hence there is some function L ∈ Affn such that there are at most k2q3

|Affn| = k2

qn−2

such different ways to represent it (we allow α, β and γ ∈ Fq arbitrary to be zero to deal with the
case where L = αLi + γ′). As we saw, for any hyperplane that we lose in the set Sγ there is at

least one such representation for L. So |Sγ | ≥ k − k2

qn−2 . Calculating

21

|Sγ | ≥ k − k2

qn−2
= k

(
1− k

qn−2

)
≥ C(t, n)

(
1− qt+τ

qn−2

)
= C(t, n)

(
1− q−n′+2

)
=

(
1− q−n′+2

) qt+τ

2
∏n′−3
i=1 (1− q−n′+i+1)

=
qt+τ

2
∏n′−3
i=2 (1− q−n′+i+1)

=
qt+τ

2
∏n′−4
i=1 (1− q−n′+i+2)

= C(t, n− 1)

We are ready to continue the proof of Theorem 4.16. Consider the function L ∈ Affn as
promised by Claim 4.26 and fix some γ ∈ Fq. Observe that there are C(t, n− 1) hyperplanes of the
space HL−γ of the form Hi ∩HL−γ where i ∈ [k]. On each one f |Hi∩HL−γ = (f |Hi) |Hi∩HL−γ ∈ F .
So, by the induction hypothesis there exists some function hγ ∈ F such that

(
f |HL−γ

)
|Hi∩HL−γ =

(hγ) |Hi∩HL−γ for all i ∈ [k] such that dim(Hi ∩HL−γ) = n− 2.
Define

h(x) =
∑
γ∈Fq

∏
α 6=γ

L(x)− α
γ − α

 · hγ(x) .

By Lemma 4.5, h is in F+. Let i ∈ [k] and x ∈ Hi. Define γ′ = L(x), so clearly x ∈ Hi ∩HL−γ′

and hence

h(x) =
∑
γ∈Fq

∏
α 6=γ

γ′ − α
γ − α

 · hγ(x) = hγ′(x) = f(x).

We saw that h|Hi = f |Hi for any i ∈ [k]. We conclude by observing that h ∈ F+ is a function
such that on k ≥ qt+q

2+q+1 hyperplanes H, h|H ∈ F . Hence by Theorem 4.10 h ∈ F and we are
done.

4.3.4 The case of general δ

We finally turn to the proof of Theorem 2.1. To prove this theorem, we shall also need the following
proposition whose proof appears as part of the proof of Lemma 4.16 in [14].

Proposition 4.27. Let f, g : Fnq → Fq be a pair of functions such that there are k hyperplanes

H1, ...,Hk which satisfy δ(f |Hi , g|Hi) < δ for all 1 ≤ i ≤ k. Then δ(f, g) ≤ 2δ + 4(q−1)
k .

We include the proof below for completeness.

Proof. Let S ⊆ Fnq be the set of points given by S , {x ∈ Fnq | Pri∈[k][x ∈ Hi] ≤ 1/(2q)}.
We claim first that δ(f, g) ≤ 2δ + |S|/qn. To see this consider the following experiment: Pick a

random hyperplane Hi by picking i uniformly from [k] and pick a point x uniformly at random from
Fnq and let I = I(i, x) = 1 if x lies on Hi and f(x) 6= g(x). On the one hand we have E[I] ≤ δ/q
since the probability that x lies on Hi is 1/q and conditioned on x ∈ Hi the probability that f and

22

g disagree is at most δ. On the other hand, the probability that f and g disagree on x and x 6∈ S
is at least δ(f, g)− |S|/qn and conditioned on x 6∈ S, the probability that x ∈ Hi is at least 1/(2q).
We conclude that 1

2q (δ(f, g)− |S|/qn) ≤ δ/q and so δ(f, g) ≤ 2δ + |S|/qn. Thus it suffices to show
that |S|/qn ≤ 4(q − 1)/k, which we do next (by an application of Chebychev bound).

Consider picking x ∈ Fnq at random and let Yi = Yi(x) = 1 if x ∈ Hi. Notice x ∈ S if and only if

Y (x) ,
∑k

i=1 Yi(x) < k/(2q). We have E[Yi] = 1/q and E[YiYj] ≤ 1/q2 (we have E[YiYj] = 1/q2 if

the hyperplanes are not parallel and E[YiYj] = 0 if they are). Thus Y =
∑k

i=1 Yi has expectation k/q
and variance E[Y 2]−E[Y]2 ≤ k/q+k(k−1)/q2−k2/q2 = k(1/q)(1−1/q). By the Chebychev bound
it follows that Pr[Y < k/(2q)] ≤ Pr[|Y − E[Y]| ≥ k/(2q)] ≤ (2q)2k(1/q)(1− 1/q)/k2 = 4(q − 1)/k.
The proposition follows.

We can now prove Theorem 2.1 as a corollary of Theorem 4.16 and Proposition 4.27.

Proof of Theorem 2.1. For all i ∈ [k] let gi be a function in F such that δ(gi|Hi , f |Hi) ≤ δ. We will
show that the functions g1, . . . , gk are consistent with each other, namely that gi|Hi∩Hj = gj |Hi∩Hj
for all 1 ≤ i, j ≤ k.

For any i, j ∈ [k], if Hi ∩Hj = ∅ then there is nothing to prove. Else,

δ
(
gi|Hi∩Hj , gj |Hi∩Hj

)
≤ δ

(
gi|Hi∩Hj , f |Hi∩Hj

)
+ δ

(
f |Hi∩Hj , gj |Hi∩Hj

)
≤ qδ + qδ < q−t .

But by Corollary 3.6, the distance of F is at least q−t, so gi and gj must agree on Hi ∩ Hj .
Theorem 4.16 then implies the existence of a function g ∈ F such that g|Hi = gi |Hi for every i ∈ [k].
By Proposition 4.27, δ(g, f) ≤ 2δ + 4(q − 1)/k and so δF (f) ≤ 2δ + 4(q − 1)/k as required.

5 Proof of Main Theorem 1.1

In this section we prove our Main Theorem 1.1 which bounds the rejection probability of the
t-dimensional test. In order to prove Theorem 1.1 we first prove in Lemma 5.1 below, using
probabilistic arguments, bounds on the rejection probability of the `-dimensional test for the case
in which f is relatively close to F and ` ≥ t. In Lemma 5.2 we then use our Main Technical
Theorem 2.1 to bound the rejection probability of the `-dimensional test for the case in which f
is relatively far from F and ` ≥ t + c for some absolute constant c. Combining Lemmas 5.1 and
5.2 one can bound the rejection probability of the `-dimensional test when ` = t+ c. Relating this
to the rejection probability of the t-dimensional test requires some extra work given in Lemma 5.3
and Corollary 5.4 below.

We start by analyzing the rejection probability of the `-dimensional test for the case in which
f is relatively close to F . Recall that Rej`(f) denotes the probability that the `-dimensional test
rejects the function f : Fnq → Fq.

Lemma 5.1. Let F = Liftn(B) for an affine-invariant linear base code B ⊆ {Ftq → Fq}. Then for

every ` ≥ t, and every f : Fnq → Fq, if δF (f) ≤ q−t/2 then Rej`(f) ≥ min{ 1
4q , q

`δF (f)/2}.

Proof. The proof is similar to the proof of Lemma 5.1 in [14].
We will use the monotonicity of the rejection probability and prove a bound on Rej`′(f) for

some `′ ≤ `.
Let `′ be such that t ≤ `′ ≤ ` and let A be an `′-dimensional subspace. Let g ∈ F be the function

closest to f , so that δ(f, g) = δ , δF (f). We now use the fact that δ(f |A, g|A) is the average of

23

N = q`
′

random {0, 1}-valued variables of expectation δ that are roughly pairwise independent to
derive a lower bound on the probability that f |A and g|A disagree on exactly one point. Since the
`′-dimensional test rejects whenever f |A and g|A disagree on exactly one point this will imply a
lower bound on Rej`′(f).

Let A be specified by α0, . . . , α`′ ∈ Fnq such that A = {A(θ) , α0+
∑`′

i=1 θiαi | θ = (θ1, . . . , θ`′) ∈
F`′q }. Fix θ ∈ F`′q , and let X(θ) denote the random variable that is 1 if f(A(θ)) 6= g(A(θ)) and
0 otherwise, where A is a uniform `′-dimensional affine subspace. We note that for every θ ∈
F`′q , we have EA[X(θ)] = δ. Furthermore, for every pair of distinct points θ, η ∈ F`′q we have
EA[X(θ)X(η)] ≤ δ2. (If the points α1, . . . , α`′ were not required to be linearly independent, this
expectation would be exactly δ2. But because we insist that they are independent we get that A(θ)
and A(η) are two distinct random points in Fnq and so the bound above is a (strict) inequality.)

Furthermore we have δ(f |A, g|A) = q−`
′∑

θX(θ).
Thus we have

Pr[δ(f |A, g|A) = 1] = Pr
A

[q−`
′∑
θ

X(θ) = q−`
′
] ≥ q`′δ(1− (q`

′ − 1)δ) ≥ q`′δ(1− q`′δ).

When δ ≤ 1
2q
−` the bound above implies that Rej`(f) ≥ 1

2q
`δ. Else, let `′ be the largest integer

such that δ ≤ 1
2q
−`′ (and so δ > 1

2q q
−`′). We then get Rej`(f) ≥ Rej`′(f) ≥ 1

2q
`′δ > 1

4q . The lemma
follows.

Next we bound the rejection probability of the `-dimensional test in the case in which f is
relatively far from F and ` ≥ t+ c for some absolute constant c.

Lemma 5.2. Let F = Liftn(B) for an affine-invariant linear base code B ⊆ {Ftq → Fq}. Then for
every q there exist ε > 0 and c < ∞ such that if n ≥ ` ≥ t + c we have the following: For every
f : Fnq → Fq with δF (f) ≥ q−` we have Rej`(f) ≥ ε+ 1

8q
`
∑∞

i=n+1 q
−i.

Proof. The proof is identical to the proof of Lemma 5.2 in [14]. Let c = max {τ, 9} where τ is the
constant from Theorem 2.1.

We prove the lemma by induction on n. The base case n = ` is straightforward since in this
case Rej`(f) = 1 and 1

8q
`
∑∞

i=n+1 q
−i ≤ 1

8 and so this case holds for every ε ≤ 7
8 .

For the inductive step, let H1, . . . ,Hk be all hyperplanes which satisfy δLn−1(f |Hi) ≤ q−`. If
k < 1

8q
` then we are done by induction since Rej`(f) = EH [Rej`(f |H)] ≥ ε+ 1

8q
`
∑∞

i=n q
−i−k/qn ≥

ε+ 1
8q
`
∑∞

i=n+1 q
−i as desired.

Finally we are left with the case where k ≥ 1
8q
`. In this case we use Theorem 2.1 to show that

δF (f) is small and then use Lemma 5.1 to show that Rej`(f) is large. Specifically, by Theorem 2.1
we have δF (f) ≤ 2q−` + 4(q − 1)/k ≤ (2 + 32q) · q−` ≤ (34q) · q−`. Since ` ≥ t + c and c ≥ 9
we have δF (f) < q−t/4 and so by Lemma 5.1 we have Rej`(f) ≥ min{1/2, q`δF (f)/2} ≥ 1

2 ≥
ε+ 1

8q
`
∑∞

i=`+1 q
−i for every ε < 3

8 . So the lemma is true for ε = 3
8 .

As noted above, Lemmas 5.1 and 5.2 suffice to analyze the rejection probability of a sufficiently
high dimensional test (` = t+ c), but not the t-dimensional test. To relate the two we use a lemma
similar to Lemma 4.7 from [14]. We note that the proof again gets new complications since our
result is more general.

Lemma 5.3. Let F = Liftn(B) for an affine-invariant linear code B ⊆ {Ftq → Fq}. If f 6∈ F , then
PrH [f |H /∈ F] ≥ 1/q where the probability is over a hyperplane H chosen uniformly in Fnq .

24

Proof. Since f /∈ F there exists an affine transformation T ∈ Affn×n such that f ◦T |xt+1=...=xn=0 is
not in B. To simplify notation, assume T is the identity. We now bound the number of hyperplanes
H such that f |H ∈ F . Each hyperplane can be written as Hα = {x ∈ Fnq | xc =

∑n
i=c+1 αixi + α0}

for α = (α0, . . . , αn) ∈ Fn+1
q , where c ≥ 1 is the first coordinate such that αc 6= 0. For such an

hyperplane define fα := f(x1, ..., xc−1,
∑n

i=c+1 αixi + α0, xc+1, . . . , xn). Observe that f |Hα ∈ F if
and only if fα ∈ F . We will show that for any hyperplane Hα there exists an hyperplane Hα′ ,
where α′ differs from α by at most one coordinate, such that f |Hα′ /∈ F . This will prove the claim
since it will map at most q different hyperplanes to one ‘good’ hyperplane.

First, consider the case where c > t. In this case consider α′ such that ∀i > 0 : α′i = αi and
α′0 = 0. In this case, fα′ |xt+1=...=xn=0 = f |xt+1=...=xn=0 /∈ B, hence fα′ /∈ F which implies in turn
that f |Hα′ /∈ F .

Next assume that 1 ≤ c ≤ t and for a variable z, let α(z) ∈ Fn+1
q denote the vector which

satisfies α(z)i = αi for all i 6= n and α(z)n = z. Our goal will be to show that there exists an
assignment β ∈ Fq to z for which fα(β) /∈ F . In order to do so we shall show that there exists a
monomial M in variables x1, . . . , xn in supp(fα(z)) such that M /∈ F and the coefficient of M is
a non-zero polynomial in the variable z. This will imply in turn that there exists an assignment
β ∈ Fq to z such that M has a non-zero coefficient in fα(β) and consequently fα(β) /∈ F .

Consider the affine transformation B ∈ Affn×n which satisfies ∀i 6= c : B(xi) = xi and B(xc) =
xc+

∑n−1
i=c+1 αixi+α0 and the affine transformation B′ ∈ Afft×t which satisfies ∀i 6= c : B′(xi) = xi

and B′(xc) = xc +
∑t

i=c+1 αixi + α0. Observe that

f ◦B|xt+1=...=xn=0 =
(
f |xt+1=...=xn=0

)
◦B′ /∈ B .

Therefore, there exists a monomial M =
∏t
i=1 x

ai
i , containing only the variables x1, . . . , xt, that

is in supp(f ◦B) but not in supp(B). Note next that the function fα(z) is obtained from f ◦B by
substituing xc with zxn. This implies in turn that the monomial zacxacn

∏
i∈[t]\{c} x

ai
i is a monomial

of fα(z) when viewed as a function of the variables {xi}i 6=c and z.
Now view fα(z) as a function of {xi}i 6=c with coefficients that are functions of z. Then the

coefficient of the monomial M ′ = xacn
∏
i∈[t]\{c} x

ai
i is a non-zero polynomial in z. Hence, there

is some value β ∈ Fq such that if we substitute z = β then the coefficient of M ′ will be non-
zero. In particular, fα(β) has the monomial M ′ in its support. The proof is completed by noting
that M ∈ Affn×n(M ′) and hence the fact that M /∈ F implies that M ′ /∈ F . Consequently,
fα(β) /∈ F .

By applying the above lemma iteratively we obtain the following corollary.

Corollary 5.4. Let F = Liftn(B) for an affine-invariant linear code B ⊆ {Ftq → Fq} and let

n ≥ ` ≥ k ≥ t. Let f : Fnq → Fq be a function such that f /∈ F . Then Rejk(f) ≥ Rej`(f) · q−(`−k).

Proof. The proof is by induction on k. The base case, where k = ` is trival. Now assume the
corollary holds for k = r+ 1 and we will prove it for k = r. Consider the following way of chosing a
random r-dimensional affine subspace. First choose a random (r + 1)-dimensional affine subspace
V ′ ⊆ Fnq and then choose a random r-dimensional affine subspace V ⊆ V ′. Then

Rejr(f) = Pr [f |V /∈ F] ≥ Pr [f |V /∈ F | f |V ′ /∈ F] Pr [f |V ′ /∈ F]

≥ 1

q
· Rej`(f) · q−(`−(r+1)) = Rej`(f) · q−(`−r),

where the last inequality is obtained by the induction hypothesis and Lemma 5.3.

Proof of Theorem 1.1. Theorem 1.1 follows immediately from Lemmas 5.1 and 5.2 and Corol-
lary 5.4.

25

6 New testable codes

In this section, we give some examples of codes with “nice” parameters that are testable with
absolute soundness based on our main theorem (Theorem 1.1).

The need for such codes is motivated by the work of Barak et al. [3]. Their work used appropriate
Reed-Muller codes over F2. Our work gives the second family of codes that is known to satisfy
their requirements. We point out that Guo et al. [12] also give codes motivated by the work of [3],
but their codes are not, thus far, known to be testable with absolute soundness and so fail to meet
all the requirements of [3]. Our codes fall within the class of “lifted” codes studied by [12], but
were not analyzed there. Here we use analysis similar to their to analyze the rate and distance of
our codes, while the testing follows from our main theorem.

The code. Our codes are defined by three parameters: a real number ε > 0 and two integers
s and n. The code F = Fε,s,n is obtained as follows: Let q = 2s, and let ` = b1

s log 1/εc. Let
B = {f : Fn−`q → F2|

∑
~x∈Fn−`q

f(~x) = 0}. Let F = Liftn(B).

Basic parameters:

Proposition 6.1. For every ε, s and n the code F = Fε,s,n has block length N = 2sn, (absolute,

non-normalized) distance at least 1/ε and dimension at least 2sn −
((

n
`

)s
+
∑s`−1

i=0

(
ns
i

))
.

Proof. The size of the block length can be easily verified and the distance follows from Proposition
3.5. Lemmas 3.11. and 3.12. in Guo et. al. [12] analyzed the dimension of the code Fε,s,n for the
case in which s = log(1/ε) (so ` = 1). More specifically, given a degree pattern a = (a1, . . . , an)

with {ai}ni=1 ⊆ Zq, let a
(j)
i denote the j-th bit of the binary expansion of ai. Let M(a) denote

the n × s matrix with entries M(a)i,j = a
(j)
i . Guo et. al. show that in the special case in which

` = 1 the code Fε,s,n contains in its support all monomials with degree pattern a = (a1, . . . , an)
such that there exists a column in M(a) with at least two zeroes. This readily implies a bound of
2sn − (n+ 1)` on the dimension of their code.

A similar analysis shows that our code Fε,s,n contains all monomials with degree pattern a =
(a1, . . . , an) where the matrix M(a) has at least s`+1 zeroes, or the matrix has s` zeroes and there
exists a column in M(a) with at least `+ 1 zeros. The lower bound on the dimension follows.

Testability. The following is an immediate application of Theorem 1.1.

Proposition 6.2. For every s there exists a constant τ > 0 such that for every ε and n the code
F = Fε,s,n is testable by a test that makes εN queries, accepts codewords with probability one, while
rejecting all functions f : Fnq → F2 with probability at least τ · δ(f,F).

We remark that the dimension of our codes, for any choice of N and ε is strictly better than that
of the codes used in [3] which have dimension 2sn−

∑s`
i=0

(
sn
i

)
≈ 2sn− 1√

2πs`
(en/`)s`. An important

parameter for them is the “co-dimension” of their code (block length minus the dimension, or the
dimension of the dual code), which thus turns out to be roughly 1√

2πs`
(en/`)s` from the above

expression. (A smaller codimension is better for their application.) Simplifying the dimension of
our code from Proposition 6.1, we see that the codimension of our code is smaller by a multiplicative
factor of roughly O(`s/2−1), making our codes noticeably better. Unfortunately such changes do
not alter the essential relationship between N = 2sn, the parameter ε (which determines the locality
of the tester) and the codimension of the code. The following theorem summarizes the performance
of our codes.

26

Theorem 6.3. For every positive s there exists a constant τ such that for every sufficiently small

ε and sufficiently large N there exists a code of block length N , codimension
(
log 1

ε

)−s ·(e logN

log 1
ε

)log 1
ε

that is testable with a tester that makes ε ·N queries accepting codewords with probability one, while
rejecting words at distance δ with probability at least τ · δ.

To contrast, the corresponding result in [3] would assert the existence of a positive constant s
for which the above held.

References

[1] Noga Alon, Tali Kaufman, Michael Krivelevich, Simon Litsyn, and Dana Ron. Testing Reed-
Muller codes. IEEE Transactions on Information Theory, 51(11):4032–4039, 2005.

[2] Sanjeev Arora and Madhu Sudan. Improved low degree testing and its applications. Combi-
natorica, 23(3):365–426, 2003.

[3] Boaz Barak, Parikshit Gopalan, Johan H̊astad, Raghu Meka, Prasad Raghavendra, and David
Steurer. Making the long code shorter, with applications to the unique games conjecture. In
FOCS. IEEE Computer Society, 2012.

[4] Eli Ben-Sasson, Elena Grigorescu, Ghid Maatouk, Amir Shpilka, and Madhu Sudan. On
sums of locally testable affine invariant properties. In Approximation, Randomization and
Combinatorial Optimization. Algorithms and Techniques, volume 6845 of LNCS, pages 400–
411. IEEE Computer Society, 2011.

[5] Eli Ben-Sasson, Ghid Maatouk, Amir Shpilka, and Madhu Sudan. Symmetric LDPC codes
are not necessarily locally testable. In IEEE Conference on Computational Complexity, pages
55–65. IEEE Computer Society, 2011.

[6] Eli Ben-Sasson and Madhu Sudan. Limits on the rate of locally testable affine-invariant codes.
In APPROX-RANDOM, volume 6845 of Lecture Notes in Computer Science, pages 412–423.
Springer, 2011.

[7] Arnab Bhattacharyya, Swastik Kopparty, Grant Schoenebeck, Madhu Sudan, and David Zuck-
erman. Optimal testing of reed-muller codes. In FOCS, pages 488–497. IEEE Computer
Society, 2010.

[8] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with applications
to numerical problems. In STOC, pages 73–83. ACM, 1990.

[9] H. Furstenberg and Y. Katznelson. A density version of the Hales-Jewett theorem. J. d’Analyse
Math., 57:64–119, 1991.

[10] Elena Grigorescu, Tali Kaufman, and Madhu Sudan. 2-transitivity is insufficient for local
testability. In IEEE Conference on Computational Complexity, pages 259–267. IEEE Computer
Society, 2008.

[11] Elena Grigorescu, Tali Kaufman, and Madhu Sudan. Succinct representation of codes with
applications to testing. In APPROX-RANDOM, volume 5687 of Lecture Notes in Computer
Science, pages 534–547. Springer, 2009.

27

[12] Alan Guo, Swastik Kopparty, and Madhu Sudan. New affine-invariant codes from lifting.
Proceedings of ITCS 2013, (to appear), 2013.

[13] Alan Guo and Madhu Sudan. New affine-invariant codes from lifting. Electronic Colloquium
on Computational Complexity (ECCC), 19:106, 2012.

[14] Elad Haramaty, Amir Shpilka, and Madhu Sudan. Optimal testing of multivariate polynomials
over small prime fields. In FOCS, pages 629–637. IEEE Computer Society, 2011.

[15] Charanjit S. Jutla, Anindya C. Patthak, Atri Rudra, and David Zuckerman. Testing low-degree
polynomials over prime fields. Random Struct. Algorithms, 35(2):163–193, 2009.

[16] Tali Kaufman and Dana Ron. Testing polynomials over general fields. SIAM Journal of
Computing, 36(3):779–802, 2006.

[17] Tali Kaufman and Madhu Sudan. Algebraic property testing: The role of invariance. Electronic
Colloquium on Computational Complexity (ECCC), 14(111), 2007.

[18] Tali Kaufman and Madhu Sudan. Algebraic property testing: the role of invariance. In STOC,
pages 403–412. ACM, 2008.

[19] D. H. J. Polymath. A new proof of the density Hales-Jewett theorem. CoRR,
arxiv.org/abs/0910.3926, 2009.

[20] Ran Raz and Shmuel Safra. A sub-constant error-probability low-degree test, and a sub-
constant error-probability pcp characterization of np. In STOC, pages 475–484. ACM, 1997.

[21] Noga Ron-Zewi and Madhu Sudan. A new upper bound on the query complexity for test-
ing generalized reed-muller codes. In APPROX-RANDOM, volume 7408 of Lecture Notes in
Computer Science, pages 639–650. Springer, 2012.

[22] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with applications
to program testing. SIAM J. on Computing, 25(2):252–271, 1996.

28

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

