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Abstract

We consider the following clustering with outliers problem: Given a set of points X ⊂
{−1, 1}n, such that there is some point z ∈ {−1, 1}n for which Prx∈X [⟨x, z⟩ ≥ ε] ≥ δ, �nd z.
We call such a point z a (δ, ε)-center of X.

In this work we give lower and upper bounds for the task of �nding a (δ, ε)-center. We �rst

show that for δ = 1−ν close to 1, i.e. in the �unique decoding regime�, given a (1−ν, ε)-centered
set our algorithm can �nd a (1−(1+o(1))ν, (1−o(1))ε)-center. More interestingly, we study the

�list decoding regime�, i.e. when δ is close to 0. Our main upper bound shows that for values of

ε and δ that are larger than 1/poly log(n), there exists a polynomial time algorithm that �nds

a (δ − o(1), ε− o(1))-center. Moreover, it outputs a list of centers explaining all of the clusters

in the input.

Our main lower bound shows that given a set for which there exists a (δ, ε)-center, it is hard
to �nd even a (δ/nc, ε)-center for some constant c and ε = 1/poly(n), δ = 1/poly(n).
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1 Introduction

Suppose we are given access to a set of points X ⊂ {−1, 1}n such that at least δ fraction of
these points are ε-correlated with some unknown �center� z ∈ {−1, 1}n. We wish to recover (an
approximation of) z even if the remaining 1 − δ fraction of the points in X are arranged in an
adversarial manner. Formally, a (δ, ε)-center is de�ned as follows,

De�nition 1.1. Given a set X ⊂ {−1, 1}n, the point z ∈ {−1, 1}n is called a (δ, ε)-center if there
exists X ′ ⊂ X, |X| ≥ δX, such that:

∀x ∈ X ′ ⟨x, z⟩ ≥ ε.

We denote by Cε(z) the set of all points x ∈ X satisfying ⟨z, x⟩ ≥ ε.

We call Cε(z) the cluster of z in X.
Clustering is a vastly studied topic, but usually the the focus is on inputs that are drawn

from some unknown (parameterized) distribution, or on deterministic data with a small amount of
adversarial noise. Here we consider the problem in the �list decoding� regime, where the fraction of
corrupted data points approaches 1. In this case, there are potentially more than a single cluster,
so the algorithm needs to output a list of clusters.

Formally, we study the following (δ, ε)-clustering problem: Given a set X ⊂ {−1, 1}n that
contains a (δ, ε)-center, �nd all such centers.

Ideally, we are seeking an algorithm that lists all possible centers. Of course, list decoding is
feasible when there is some way to bound the list size. In the case of error correcting codes, the
distance of the code may facilitate such a bound. In our case, there is no underlying code, so we
instead rely on an approximate representation. The idea is simply to output a short list of centers
such that every cluster is `represented' by some center in the list. Pinning down the best notion of
`representation' turns out to be tricky, and we view this as part of the contribution of this paper,
on which we elaborate more in Section 3.2.

In this work, we study upper and lower bounds for the problem of �nding (δ, ε)-center. The
complexity of this problem depends on the choice of the parameters ε and δ: We show that when
ε or δ are close to 1, then the task of �nding a (δ, ε)-center is relatively easy. For ε and δ that are
larger than 1/poly log(n) we present an algorithm that �nds a ((1− o(1))δ, (1− o(1))ε)-center. We
complement our results by showing hardness results when δ and ε are much smaller. We elaborate
on these results next.

1.1 Upper Bounds

In this part we present several approximation results for the (δ, ε)-clustering problem. The approx-
imation version of the (δ, ε)-center problem allows the output to be a center whose cluster has a
smaller margin value ε′ ≤ ε, and that contains a smaller δ′ ≤ δ fraction of the points. In other
words, under the promise of existence of a (δ, ε) center, the approximation algorithm will �nd a
(δ′, ε′)-center.

De�nition 1.2 (Approximate-Cluster Problem). An instance of the problem is a (δ, ε)-centered
set of points X = {x1, . . . , xN} ⊂ {−1, 1}n. The goal is to �nd a (δ′, ε′) center with parameters as
close as possible to ε, δ.

We �rst give an approximation algorithm for the easier �unique-decoding� parameter regime, i.e.
where δ is close to 1.
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Theorem 1.3. Let 0 < ε, δ < 1, and let X ⊂ {−1, 1}n. There is a polynomial-time algorithm for

solving the following problems,

1. If X is (1, ε)-centered �nd a (1, ε−O( logN√
n
))-center.

2. If X is (1− ν, ε)-centered �nd a (1− 1/a, ε− aν(1 + ε))-center, for any a > 1. In particular,

for a parameter τ > 0 if ν < τ2ε/(1 + ε) then this gives a (1− τ, (1− τ)ε)-center.

This algorithm is simply based on linear programming.
We next turn to the more challenging setting that is when both ε and δ are small. Our main

result is a polynomial time algorithm that approximates the (δ, ε)-center for values of ε and δ that
are larger than 1/poly log(n). As explained earlier we are in a �list decoding� setting, that allows
for more than one cluster to exist simultaneously. Moreover, we want our algorithm to output a list
that �exhaustively� explains all of the clusters in the data.

Here, the goal for the algorithm is to output an exhaustive list of centers, namely a list for
which:

• Each member in the list is a cluster in the data.

• Each cluster in the data is approximately equal to one of the clusters in the list.

The reason for asking only for an approximate equality to members in the list is clear: there can
be an exponential number of di�erent clusters, and approximation seems like a natural way to get
a manageable list size. However, it turns out that even when allowing approximate centers, there
still might be an exponential number of them (more details in Section 3.2). We show that this can
only occur if the exponentially-many clusters are contained in one bigger cluster. In light of this
example, the new goal for the algorithm becomes to output a list of �maximal� centers1. We state
below an informal version of our main theorem, for a formal version please see Section 3.2.

Theorem 1.4 (Main result, informal). Let ε, δ > 0 be parameters, and let X ⊂ {−1, 1}n be (δ, ε)-
centered, with |X| = N . There exists an algorithm that runs in time polynomial in n,N, exp( 1

ε2 log 1/εδ
),

and outputs a list L of points each in {−1, 1}n, such that with probability 1−2−n the following holds:

• Each y ∈ L is a ((1− o(1)) · δ, (1− o(1)) · ε) center for X.

• For every z ∈ {−1, 1}n which is a (δ, ε)-center and is approximately maximal2, there exists

y ∈ L such that, ∣∣Cε(z) △ C(1−o(1))ε(y)
∣∣ < o(1) |Cε(z)|

We note that, while a priory the number of approximate maximal centers could be exponentially
large, the correctness of our algorithm is a proof that it is polynomially bounded.

Let us brie�y sketch our proof of this theorem. We �rst randomly restrict the given set of points
into a small poly-logarithmic subset of coordinates. We show that a (δ, ε)-center for X is still a
center in the restricted space (if δ and ε are large enough). Therefore, we can enumerate over all
possible centers and �nd a solution in the restricted space. Then we show how to extend the solution
from the local space into a global solution.

Our last algorithmic result deals with smaller values of ε, ε ≥ log n/
√
n. When δ and ε are this

small the above algorithm runs in super polynomial time. For such a choice of parameters, we prove
that there is always a data point x ∈ X that is itself a (2δε, ε2)-center. This leads to the following
algorithm:

1For exact de�nition see De�nition 3.1
2For exact de�nition see De�nition 3.1
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Theorem 1.5. Let X ⊂ {−1, 1}n be an (δ, ε)-centered set of N elements and let ε ≫ log n/
√
n.

There is an algorithm that runs in time poly(N) and outputs a list L such that:

• Each z ∈ L is a (2δε, ε2)-center.

• For every center z, there exists a center z′ ∈ L, such that at least 2ε fraction of the points

x ∈ X satisfying ⟨x, z⟩ > ε are also satisfying ⟨x, z′⟩ > ε2.

Observe that this result is incomparable to the one attained in Theorem 1.4. While in Theorem
1.4 we are able to �nd almost the whole cluster of each maximal center, the algorithm proposed
by Theorem 1.5 �nds only a non-trivial subset of each cluster. On the other hand, Theorem 1.5 is
stronger in the sense that it has a guarantee for each center, and not just for a subset of them as in
Theorem 1.4.

1.2 Lower Bounds

We next turn to lower bounds. It is not hard to see that given a (1, poly(1/n))-centered set it isNP-
hard to �nd such a center, by reduction from, say, 3SAT. Moreover, we describe stronger reductions
that show the hardness of the approximation problem. That is, we show that for some choices of the
parameters (δ, ε, δ′, ε′) the approximate center problem is infeasible unless BPP ⊇ NP. Formally,
we consider the following gap-clustering problem:

De�nition 1.6. The gap-clustering problem with parameters (δ, ε, δ′, ε′):
The input of the problem is a set of point X ⊂ {−1, 1}n. The goal is to distinguish between the

following cases:

• There exists a (δ, ε)-center in X.

• There is no (δ′, ε′)-center in X.

There are four parameters involved so it is complicated to understand the tradeo�s between the
settings of the parameters. There are two key points to address: First we would like to get as large
as possible a gap between δ and δ′ and ε and ε′. The second is the location of the gap: �nd the
largest ε and δ for which the problem is still hard.

Since a large gap between δ and δ′ might lead to a small gap between ε and ε′, and vice versa,
we separate this optimization question into two: �nd largest δ-gap and �nd the largest ε-gap.

Our �rst hardness result focuses on the gap between ε and ε′. It shows that it is hard to
distinguish between the case that there exists a (δ, ε)-center, and the case that there is no (δ/c, ε/2)-
center for some constant c > 1, ε which is an arbitrarily large polynomial in 1/n, and δ that is a
constant, formally:

Theorem 1.7. Unless BPP ⊇ NP, there exist constants δ, c > 1, such that for every constant α >
2, it is infeasible to solve the gap-clustering problem with parameters: δ, δ′ = δ/c, ε = 2

n1/α −o( 1
n1/α )

and ε′ = 1
n1/α + ω( 1

n1/α ).

Our next result focuses on amplifying the gap between δ and δ′. It shows that it is NP-hard to
distinguish between the case that there exists a (δ, ε)-center, and the case that there is no ( δ

nc , ε
′)-

center, for some constant c, and for ε, δ which are poly(1/n), and ε′ = (1− o(1))ε. Formally:

Theorem 1.8. Unless BPP ⊇ NP, there exist constants c1 > 0, c2 > 0 such that it is infeasible to

solve the gap-clustering problem with parameters: δ = n−c1 , δ′ = δ
nc2 and ε > ε′ = Θ(n−1/3).
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There is a gap between our algorithmic results and the aforementioned lower bounds, two par-
ticular open questions are:

• Theorem 1.5 states that given a (δ, ε)-centered set, there is a polynomial time algorithm that
�nds a (δε, ε2)-center. A natural question that arises is how hard is the task of �nding a better
center - that is �nding a (δ′, ε′)-center for ε′ ≫ ε2 and δ′ being non trivial.

• Both our hardness results deal with sub-constant values of ε, and it is not clear whether we
can strengthen our hardness result to deal with larger values of ε. In particular, given a
(δ = 1/poly(n), ε = O(1))-centered set is it hard to �nd a (δ′, ε/2)-center for any nontrivial δ′

? Note that if we take δ to be larger than 1/poly(log(n)), then by Theorem 1.4 we can �nd
an approximate solution in polynomial time.

1.3 Related Work

1.3.1 Upper Bounds

The most related work on clustering with outliers, as far as we know, is the work of [BHPI02]. This
work considers several clustering problems, one of which is the clustering with outliers problem.
The main di�erence is that we consider a set of data points in the Boolean hypercube {−1, 1}n,
whereas they consider a set of points in Rn, and their algorithm outputs centers that are in Rn as
well. We provide a more detailed comparison between our work and theirs in Appendix A.

We are not aware of works that looked at the �list-decoding� version of the problem, where the
algorithm needs to output a list explaining all of the clusters in the data.

1.3.2 Lower Bounds

Our lower bounds are closely related to the works of [FGKP09, GR06] on the MaxLin-Q problem,
de�ned as follows: Given a system of equations over the rationales, and we are expected to �almost�
satisfy as many equations as possible. Formally a MaxLin-Q with parameters (N,n, δ, ε) consists of
a system of N equations over n variables x1, . . . , xn with rational coe�cients,

{ai0 +
N∑
j=1

aijxj = 0}j=1,...,N

and the goal is to distinguish between the following cases:

• At least (1− δ)N of the equations can be satis�ed.

• In any assignment: ∣∣∣∣∣∣ai0 +
N∑
j=1

aijxj

∣∣∣∣∣∣ < ε

is true for at most δN equations.

In [FGKP09] this problem is shown to be NP-hard for any constant value of δ > 0.
The gap-clustering problem and MaxLin-Q are similar in the following sense: In the complete-

ness case, there exits an assignment (center) that satis�es (correlates) much more equations (points)
compared to the soundness case. Furthermore, the quality of the solution considered in the complete-
ness is much better compared to the soundness case. However, there are several hurdles that prevent
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us from reducing MaxLin-Q into gap-clustering. First, the coe�cients of the linear-equations can
take values outside {−1, 1} unlike in gap-clustering. Second, in MaxLin-Q we are trying to satisfy
equalities, and not inequalities as in gap-clustering. Third, note that it is hard to solve MaxLin-Q
even when there is an assignment that satis�es 1 − ε fraction of equalities. In comparison, the
problem of �nding a (1− δ, ε)-center is easy, see Theorem 1.3.

Although we could not directly reduce MaxLin-Q into gap-clustering, we were able to apply
similar ideas to those presented in [FGKP09] and [GR06] to derive our hardness results.

Organization of the paper: Section 2 contains standard tools we use later. Section 3 studies
the upper bounds for our clustering problem and contains the proofs of Theorem 1.3, Theorem 1.4,
and Theorem 1.5. In Section 4 we study lower bounds for the gap-clustering problem and prove
Theorem 1.7 and Theorem 1.8. We conclude by Section 5 showing information theoretic bounds on
the list size of all (δ, ε)-centers.

2 Preliminaries

We state the Johnson bound as appears in the book [AB09]. It asserts that, for an error correcting
code with distance 1/2− ε2, and for every word x, a ball of radius 1/2− ε around x cannot contain
too many codewords.

Lemma 2.1 (Johnson Bound [Joh62], Theorem 19.23 in [AB09]). Let 0 < ε < 1, for every x ∈
{0, 1}n, there exist at most 1/(2ε) vectors y1, . . . , yℓ ∈ {0, 1}n such that ∆(x, yi) ≤ 1/2− ε for every
i ∈ [ℓ], and ∆(yi, yi′) ≥ 1/2− ε2 for every i ̸= i′ ∈ [ℓ].

We also state here the standard Cherno� bound:

Lemma 2.2 (Cherno� Bound). Let X1, . . . , Xt be random independent variables taking values in the

interval [0, 1], with expectations µ1, . . . , µt, respectively. Let X = 1
t

∑
i∈[t]Xi, and let µ = 1

t

∑
i∈[t] µi

be the expectation of X. For any 0 < γ ≤ 1, we have the following:

Pr[|X − µ| ≥ γ] ≤ exp−γ2n/3 .

Notation. For two sets A,B ⊆ {−1, 1}n we denote their symmetric di�erence by A△B. For a
vector z ∈ {−1, 1}n and a subset K ⊆ [n], we denote by zK its restriction to the coordinates in K.

3 Upper Bounds: algorithms for clustering

In this section we describe algorithms for clustering �rst in the �unique decoding� regime, where a
small fraction of the data points are corrupted, and then in the �list decoding� regime, where a very
large fraction of the data is corrupted.

We �rst observe that ifX has a (δ, ε)-center, for ε = 1−τ for small τ , then �nding an approximate
center is relatively easy: Any point x ∈ X that belongs to the centered cluster is itself a (δ, 1− 2τ)-
center for that cluster, by the triangle inequality. By enumerating over all elements in X and
checking for each x ∈ X how many y ∈ X are within the speci�ed radius, we can recover a
(δ, 1− 2τ)-center.

The more interesting case is, therefore, when ε < 1/2 approaches 0.
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3.1 Clustering with Few Outliers (Proof of Theorem 1.3)

We begin by addressing the easier �unique decoding� regime, where only a relatively small fraction
of the data points are corrupt. More accurately, we give an algorithm that addresses the situation
where δ is close to 1.

Theorem 1.3. Let 0 < ε, δ < 1, and let X ⊂ {−1, 1}n. There is a polynomial-time algorithm for

solving the following problems,

1. If X is (1, ε)-centered �nd a (1, ε−O( logN√
n
))-center.

2. If X is (1− ν, ε)-centered �nd a (1− 1/a, ε− aν(1 + ε))-center, for any a > 1. In particular,

for a parameter τ > 0 if ν < τ2ε/(1 + ε) then this gives a (1− τ, (1− τ)ε)-center.

Proof. 1. Given a (1, ε)-centered setX ⊆ {−1, 1}n, write a linear program in variables z1, . . . , zn ∈
R with the following equations

∀x ∈ X,
∑
i

xizi ≥ εn; ∀i ∈ [n], −1 ≤ zi ≤ 1

The solution will be some z ∈ [−1, 1]n, and output z̃ the randomized rounding of z, i.e. z̃i = 1
with probability (1 + zi)/2.

A standard Cherno� bound will show that |⟨z̃, x⟩ − ⟨z, x⟩| <
√

2 log |X| /n for all x ∈ X with
high probability.

2. Given a (1− ν, ε)-centered set X we write a similar linear program, except we add `violation'
variables vx per each x as follows

∀i ∈ [n] − 1 ≤ zi ≤ 1

∀x ∈ X 0 ≤ vx ≤ 1 + ε

∀x ∈ X 1

n

∑
i

xizi + vx ≥ ε

and then we �nd a solution minimizing val = 1
|X|

∑
x vx. Again, the �nal output of the

algorithm is a randomized rounding z̃ of the solution z.

It is easy to see that the solution z = 0̄ with ∀x, vx = ε is a feasible solution whose value
is val = ε. A more interesting solution is where z is the promised (1 − ν, ε)-center, and for
every equation violated by x outside this ball, we set vx = 1 + ε. This solution has value
val = 0 · (1 − ν) + (1 + ε) · ν = (1 + ε)ν. These two solutions show that the solution to the
linear program gives information only as long as (1 + ε)ν < ε. Suppose z, {vx}x∈X is the
solution for this system, with value v = Ex[vx] ≤ (1 + ε)ν < ε. By Markov's inequality, at
most 1/a fraction of the x's have vx > av. The remaining 1 − 1/a equations are satis�ed to
within av, as claimed. The last conclusion follows by setting a = 1/τ .

�
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3.2 Clustering with Few Outliers: the list decoding regime

We now turn to the clustering question when the input consists of mostly noise. In other words,
where the data set X is guaranteed to be (δ, ε)-centered, for values of δ, ε as small as 1/poly log(n).

Clearly, X might have several distinct (δ, ε)-centers, and ideally we would like an algorithm that
outputs a list of all of them. To control the length of the list, we must settle for a list of centers
that `represent' all the possible centers in X. One natural way to de�ne `represent' is by saying that
z represents z′ if the symmetric di�erence between Cε(z) and Cε(z

′) is small (compared to their
size). However, this notion turns out to be insu�cient. It is easy to describe a set X of points that
are highly correlated to a single center, and yet could be explained by an exponential number of
other centers, whose pairwise symmetric di�erence is large, see Section 5 for details. This example
shows that the best we can hope for is an algorithm that recovers the �maximal� clusters; those that
are not contained in even-larger clusters. This is roughly what we do, with a small change in the
de�nition of maximal to accommodate the approximate nature of our algorithm.

De�nition 3.1 (τ -maximal). For sets A,B and 0 < τ < 1 we de�ne A ⊆τ B if |A \B| < τ |A|.
For a set X, and parameters δ, ε, τ > 0 we say that a (δ, ε)-center z is τ -maximal if the following

holds: For every z′ ∈ {−1, 1}n, if Cε(z) ⊆2τ C(1−τ)ε(z
′), then∣∣C(1−τ)ε(z

′)
∣∣ < (1 + ρ) |Cε(z)| , for ρ = τ2δε/8.

The main point of this de�nition is that if there is some z′ whose cluster approximately contains
the cluster of a maximal z, then the cluster of z′ is not much larger. With this de�nition, we can
now state the formal version of Theorem 1.4:

Theorem 3.2 (Formal Version of Theorem 1.4). Let ε, δ, τ > 0 be parameters. Let X ⊂ {−1, 1}n
be an N -element set that is (δ, ε)-centered. There exists an algorithm that runs in time polynomial

in n,N, 2O( 1
ε2τ2

log 1/τ2δε), and outputs a list L of points each in {−1, 1}n, such that with probability

1− 2−n the following holds:

• Each y ∈ L is a ((1− τ) · δ, (1− τ) · ε) center for X.

• For every z ∈ {−1, 1}n which is a (δ, ε)-center and is τ -maximal, there exists y ∈ L such that,∣∣Cε(z)△C(1−τ)ε(y)
∣∣ < O(τ) |Cε(z)| .

The following lemma is the main technical tool in the proof:

Lemma 3.3. Let ε, δ, τ > 0 be parameters. Let X ⊂ {−1, 1}n be an N -element set that is (δ, ε)-
centered. There exists an algorithm that runs in time poly(n,N, 2k), where k = O( 1

ε2τ2
log 1/τ2δε),

and outputs a list L of at most 2k points each in {−1, 1}n, such that:

• Each y ∈ L is a ((1− τ) · δ, (1− τ) · ε) center for X.

• For each z ∈ {−1, 1}n which is a (δ, ε)-center and is τ -maximal, with probability > 1/2 there

exists y ∈ L such that, ∣∣Cε(z)△C(1−τ)ε(y)
∣∣ < O(τ) |Cε(z)| .

Proof of Theorem 3.2 using Lemma 3.3. We apply the algorithm implied by Lemma 3.3 t = 2n
iterations, and concatenate the list obtained in each iteration. We say that a center z is discov-
ered in the i-th iteration, if there exists y in the list produced in the i-th iteration such that:
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∣∣Cε(z)△C(1−τ)ε(y)
∣∣ < O(τ) |Cε(z)|. Fix a maximal (δ, ε)-center z, by Lemma 3.3 we get that the

probability that z is discovered in the i-th iteration is at least 1/2, so the probability that it remains
undiscovered after t iterations is at most 1/2t < 2−2n. Taking union bound on all centers the
probability that there exits a center that remains undiscovered is at most 1/2n, and this completes
the proof. �

Now we turn to prove Lemma 3.3:

Proof of Lemma 3.3. The proof of this lemma follows by randomly restricting the points to a smaller
dimensional space and then enumerating to �nd a good approximation for the cluster. The approx-
imate center is then found by applying Theorem 1.3 on the approximate cluster. This algorithm is
relatively e�cient when ε, δ = poly(1/ log n). The algorithm is as follows.

Algorithm 1 Randomly Restrict and Enumerate

Input: A (δ, ε)-centered set X.
Parameters: k = C

ε2τ2
log 1/τ2δε for some large enough C to be determined later, and τ > 0.

1. Choose at random a multiset K ⊆ [n] by selecting a random i ∈ [n] into K repeatedly k times
with replacement.

2. For each y ∈ {−1, 1}k let X(y) = {x ∈ X | ⟨xK , y⟩ ≥ (1− τ/2) · ε}, and compute the center
z(y) of X(y) using the linear programming algorithm from Item 3 of Theorem 1.3. If z(y) is
a ((1− τ) · δ, (1− τ) · ε) center for X then output it.

Clearly, each center produced by the list is a ((1− τ) · δ, (1− τ) · ε) center for X. Moreover, the
list size is bounded by 2k. It is left to prove the second item of the lemma. Let z∗ be a τ -maximal
(δ, ε)-center, and consider the set

X∗ := {x ∈ X | ⟨xK , z∗K⟩ > ε(1− τ/2)} .

We will prove that 1 − ν fraction of the elements of X∗ also belong to Cε(z
∗), which means that

X∗ is a (1 − ν, ε)-centered set for an appropriate parameter ν. This implies that at step 2 our
algorithm will output some center z′ of X∗ (because X∗ = X(y) for y = z∗K). We will then prove
that C(1−τ)ε(z

′) ≈ X∗ ≈ Cε(z
∗) which means that z∗ is explained by our list.

We �rst claim that the sampling is good enough.

Claim 3.4. We say that x ∈ X is typical with respect to K if |⟨x, z∗⟩ − ⟨xK , z∗K⟩| ≤
τε
2 . Then for at

least half of the choices of K, the fraction of typical x's is at least 1−γ for γ := 2 exp(−τ2ε2k/12) <
τ2δε/8.

Proof. We �rst show that Prx∈X,K [x is not typical] ≤ γ. In fact, we show this for each �xed x
separately. For a random i, xiz

∗
i can be viewed as a random ±1 variable whose expectation is

⟨x, z∗⟩. By a Cherno� bound the probability that |⟨x, z∗⟩ − ⟨xK , z∗K⟩| > τε/2 is at most γ/2.
By an averaging argument this means that for at least half of the choices of K have no more

than γ atypical x's, which gives the claim. �

Suppose from now on that K is as in the claim. We �rst show that X∗ is a (1 − ν, ε)-centered
set. Indeed let x ∈ X∗ \ Cε(z

∗). This means that ⟨x, z∗⟩ < ε and ⟨xK , z∗K⟩ > (1 − τ/2)ε. If
⟨x, z∗⟩ < (1 − τ)ε then x is atypical, and this occurs with probability ≤ 2γ. Otherwise, x ∈
C(1−τ)ε(z

∗) \Cε(z
∗), and this set is upper bound by ρ due to the maximality of z∗. In all, at most a
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2γ+ρ fraction of X are in this problematic set, and let ν = (2γ+ρ) |X| / |X∗| denote their fraction
out of X∗. We established that X∗ is (1− ν, ε)-centered.

Now, to show that step 2 of the algorithm works (and the conditions for Theorem 1.3 hold), we
need to make sure that ν is small enough. We need ν = 2γ+ρ

δ−2γ ≤
2γ+ρ
δ/2 < τ2ε/(1 + ε). This holds if

ρ+ 2γ < τ2δε/4, which governs our choice of parameters for ρ and k.
Now, let z′ be a (1− τ, ε(1− τ))-center for X∗ (it is output in step 2 when run on y ← z∗K). In

order to complete the proof, we upper bound
∣∣Cε(z

∗)△C(1−τ)ε(z
′)
∣∣ by proving:

•
∣∣Cε(z

∗) \ C(1−τ)ε(z
′)
∣∣ < 3τ |Cε(z

∗)|

•
∣∣C(1−τ)ε(z

′) \ Cε(z
∗)
∣∣ < 4τ |Cε(z

∗)|

To prove the �rst item take x ∈ Cε(z
∗) \ C(1−τ)ε(z

′): If x /∈ X∗, then x is atypical and this occurs
with probability at most 2γ/δ. Otherwise, x ∈ (Cε(z

∗) ∩ X∗) \ C(1−τ)ε(z
′): By the guarantee of

Theorem 1.3, we get at most τ |X∗| elements of X∗ are outside C(1−τ)(z
′). We have already proved

that that 1− ν fraction of the elements of X∗ also belong to Cε(z
∗). By combining these two facts

we get:

Pr
x∈X∗∩Cε(z∗)

[x /∈ C(1−τ)ε(z
′)] ≤ τ |X∗|

|Cε(z∗) ∩X∗|
≤ τ |X∗|

(1− ν) |X∗|
< 2τ

To summarize, at most 2γ/δ+2τ < 3τ -fraction of x ∈ Cε(z
∗) are not in C(1−τ)ε(z

′), as claimed.
To prove the second item we observe that since

∣∣Cε(z
∗) \ C(1−τ)ε(z

′)
∣∣ < 3τ |Cε(z

∗)|, and by the
maximality of z∗:

∣∣C(1−τ)ε(z
′)
∣∣ < (1 + ρ) |Cε(z

∗)|, so:∣∣C(1−τ)ε(z
′) \ Cε(z

∗)
∣∣ =

∣∣C(1−τ)ε(z
′)
∣∣− ∣∣C(1−τ)ε(z

′) ∩ Cε(z
∗)
∣∣

< |Cε(z
∗)| (ρ+ 3τ)

< 4τ |Cε(z
∗)| .

�

3.3 Approximating very small margins (proof of Theorem 1.5)

In our next theorem, we consider much smaller margins, say ε = 1/n0.1. Here enumerating over a
space of dimension 1/ε is out of the question. Instead, our argument uses the Johnson bound to
deduce that one of the points of X is already a good �approximate� center.

Theorem 1.5. Let X ⊂ {−1, 1}n be an (δ, ε)-centered set of N elements and let ε ≫ log n/
√
n.

There is an algorithm that runs in time poly(N) and outputs a list L such that:

• Each z ∈ L is a (2δε, ε2)-center.

• For every center z, there exists a center z′ ∈ L, such that at least 2ε fraction of the points

x ∈ X satisfying ⟨x, z⟩ > ε are also satisfying ⟨x, z′⟩ > ε2 (We call z′ an approximate center

for z).

In order to prove the theorem we prove �rst the following lemma:

Lemma 3.5. Let ε > 0 and let X ⊆ {−1, 1}n be any (1, ε)-centered set. Then, there exists x ∈ X
such that x is an (2ε, ε2) for X.
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Proof. Let X = {x1, . . . , xN} be an (1, ε)-centered set, let z be an (1, ε)-center. Let X ′ ⊆ X
constructed by adding xi into X

′ if for all j < i we have ⟨xi, xj⟩ < ε2.
X ′ can be viewed as an error correcting code with distance at least 1/2−ε2 and hence by Lemma

2.1 a ball of radius 1/2− ε around z cannot contain more than 1/2ε of them, so |X ′| ≤ 1/2ε.
Now, for every x′ ∈ X ′ let p(x′) = Prx∈X [⟨x, x′⟩ ≥ ε2]. Observe that for each x ∈ X there exists

x′ ∈ X ′ such that ⟨x, x′⟩ > ε2, so
∑

x′∈X′ p(x′) ≥ 1. Therefore, by averaging argument, there exists
x′ ∈ X ′ with p(x′) ≥ 1/ |X ′| ≥ 2ε. Clearly, this point x′ is a (2ε, ε2)-center for X and the proof is
done. �

Proof of Theorem 1.5: The algorithm is as follows: For each y ∈ X we include y ∈ L if it is a
(2δε, ε2)-center for X. Clearly, the �rst item of the theorem holds. To prove the second part, we
observe that by Claim 3.5, for each (δ, ε)-center z, one of the points in X is an approximate center
for z, as required. �

4 Hardness of Approximating the gap-Clustering Problem

In this section we study the hardness of the task of �nding a (δ, ε) over various choices of parameters.
We �rst show that it is infeasible to solve the task of �nding a (δ, ε)-center without approximation,
even when δ = 1.

Claim 4.1. Unless BPP ⊇ NP, given a (1, ε)-centered set it is infeasible to �nd a (1, ε)-center,
for ε = n−1/3(1− o(1)).

Proof Sketch. We do not give a whole proof, but rather sketch the proof. The proof of the com-
pleteness and soundness resembles the proof of Theorem 1.7. We reduce the 3SAT problem into
our problem as follows: Given a 3SAT formula ψ with n variables and m constraints, we translate
it into (1, ε) clustering problem instance X ⊆ {−1, 1}(n+2)r with |X| = m, where r = n2.

Each variable yi in ψ is represented by r coordinates and we index the coordinates of a point
x ∈ X ⊆ {−1, 1}nr by a double index xi,s for i ∈ [n] and s ∈ [r]. Each clause ℓi ∨ ℓj ∨ ℓk gives rise
to the following point:

xm,s =


(−1)sign(ℓm)+1 if m ∈ {i, j, k},
1 if m ∈ {n+ 1, n+ 2},
coin�ip otherwise

It is not hard to see that if ψ is satis�ed if and only if X has a (1, 1n(1− o(1)))-center. �

We remark that by adding random points to X the δ parameter can be made smaller than 1.
Additionally, by adding dummy coordinates to all the points in X, all containing the value 1, the ε
parameter can be made to approach 1.

Of course, the more interesting question is that of approximate hardness. We show that one
cannot even �nd an approximate center when such exists. Recall the de�nition the problem (De�-
nition 1.6), where the task is given a set of points X distinguish between the case that there exists
a (δ, ε)-center, and the case where no (δ′, ε′)-center exists.

There are two key points which we like to address in the parameters settings: First we would
like to get as large as possible a gap between δ and δ′ and ε and ε′. The second is locating the gap-
�nding the largest ε and δ for which the problem is hard. By the following claim, the larger ε and
δ are, the stronger is the hardness result.
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Claim 4.2. Assume ε, ε′ ≫ logN/
√
n, then:

• For every c > 1, a hardness result with parameters (δ, ε, δ′, ε′), implies a hardness result with

parameters (δ/c, ε, δ′/c, ε′).

• For every c > 1, a hardness result with parameters (δ, ε, δ′, ε′), implies a hardness result with

parameters (δ, ε/c, δ′, ε′/c).

Proof. The �rst item holds since we can add random points into the original set X. Note that with
overwhelming probability each random point s satis�es ⟨s, x⟩ < ε′ for every x ∈ X. The second
item holds since we can add new coordinates to the original instance, by setting a random value in
each of the new coordinates. �

There are four parameters involved so the gaps and tradeo�s between the parameters can become
quite complicated. We separate the task of �nding the largest δ-gap and the task of �nding the
largest ε-gap.

Our �rst hardness result shows a factor 2 gap between ε and ε′. It shows that it is hard to
distinguish between the case that there exists a (δ, ε)-center, and the case that there is no (δ/c, ε/2)
for some constant c > 1, ε which is an arbitrarily large polynomial in 1/n, and δ that is a constant.
This is proved in Section 4.1.

Our next result shows a polynomial gap between δ and δ′. It shows that it is hard to distinguish
between the case that there exists a (δ, ε)-center, and the case that no ( δ

nc , ε′)-center exists, for c
being some constant, ε, δ which are poly(1/n), and ε′ = (1− o(1))ε. This is proved in Section 4.2.

The starting point for our reductions for both Theorem 1.7 and Theorem 1.8 is the MAX-DICUT
problem: Given n Boolean variables y1, . . . , yn, and m constraints of the form ¬yi ∧ yj , the goal is
to satisfy the maximal number of constraints. Now we state the gap version of the NP-hardness
result for MAX-DICUT obtained by [TSSW96].

Theorem 4.3 ([TSSW96]). There exists a constant γ > 0 such that given a MAX-DICUT instance

I with n variables, it is NP-hard to decide whether there is an assignment that satis�es γ fraction

of the constraints or that every assignment satis�es at most 12
13γ fraction of the constraints.

Moreover, every variable yi appears in at most d/n-fraction of the constraints, where d is some

constant.

The following de�nition would be useful in the proof:

De�nition 4.4. The generalized gap-clustering problem with parameters (δ, ε, δ′, ε′):
The input of the problem is a set of point X ⊂ {−1, 0, 1}n. The goal is to distinguish between

the following cases:

• There exists a (δ, ε)-center for X.

• There is no (δ′, ε′)-center for X.

The following lemma asserts that if the generalized gap-clustering problem is hard, then the
gap-clustering is hard with essentially the same sets of parameters.

Lemma 4.5. There exists a randomized algorithm that takes an instance for the generalized gap-

clustering problem X, and outputs an instance for the gap-clustering problem X ′ such that with

probability at least 9/10 the following holds: If X has (δ, ε)-center, then X ′ has (δ−η, ε− ζ)-center.
If X has no (δ′, ε′)-center, then X ′ has no (δ′ + η, ε′ + ζ)-center, for any value of ζ > 0 and

η > 2 exp−Ω(ζ2n). The running time of the algorithm is poly(1/η, n,N).
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Proof. Given an instance X ⊂ {−1, 0, 1}, |X| = N for generalized gap-clustering we translate it
into a set X ′ ⊂ {−1, 1}n, |X ′| = tN , where t = Ω(n log(N)/η2). Each point x ∈ X gives rise to t
points sampled independently at random from the following distribution:

x′i =

{
xi if xi ∈ {−1, 1},
coin �ip otherwise

where each coin�ip coordinate in x is drawn independently and uniformly at random in {−1, 1}.
We now prove completeness and soundness:

Completeness: If there exists a (δ, ε)-center z for X, then we show that with probability at
least 9/10, z is a (δ − η, ε− ζ)-center for X ′.

Let x ∈ X satisfying ⟨z, x⟩ > ε. Let Sx be the set of coordinates in x for which xi = 0. For
each i ∈ Sx, x′i · zi is a ±1 random variable with expectation 0, so E ⟨z, x′⟩ = ⟨z, x⟩. It is easy
to see that the larger the cardinality of Sx is, the larger is the probability that ⟨z, x′⟩ < ⟨z, x⟩ − ζ.
Now, taking Sx to be maximal (i.e. [n]), by Cherno� bound the probability that ⟨z, x′⟩ < ε− ζ is at
most exp−Ω(ζ2n) < η/2. By Cherno� bound again, the probability that there would be more than
η points associated with x, that satisfy ⟨z, x′⟩ < ε − ζ is bounded by exp−Ω(η2t) < 1/10m. Taking
union bound on all points in X satisfying ⟨z, x⟩ > ε, the completeness follows.

Soundness: If X has no (δ′, ε′)-center, then we show that with probability at least 9/10, there
is no (δ′ + η, ε′ + ζ) for X ′.

Take z ∈ {−1, 1}n, and take x such that ⟨z, x⟩ < ε′. Analogously to the completeness case,
the probability that x′ associated with x satis�es ⟨x′, z⟩ > ε′ + ζ is bounded by exp−Ω(ζ2n) < η/2.
Therefore, �x z and x, the probability that more than δ′ + η points x′ ∈ X ′ that associated with
x satisfy ⟨z, x′⟩ > ε′ + ζ is bounded by exp−Ω(η2t) < 1

10N2n . By taking union bound on all centers
and points in X, the soundness follows. �

4.1 Maximizing ε-gap for the gap-Clustering Problem

We begin with the following theorem, a hardness of approximating the gap-clustering problem that
addresses the ϵ ratio, showing that it is hard to decide if a given set has a (δ, 2ε) center and (roughly)
a (δ, ε) one.

Theorem 1.7. Unless BPP ⊇ NP, there exist constants δ, c > 1, such that for every con-

stant α > 2, it is infeasible to solve the gap-clustering problem with parameters: δ, δ′ = δ/c,
ε = 2

n1/α − o( 1
n1/α ) and ε

′ = 1
n1/α + ω( 1

n1/α ).

The following lemma shows that there is a polynomial time reduction that given an instance for
the gap version of MAX-DICUT produces an instance for the generalized gap-clustering problem.

Lemma 4.6. There exists a constant γ, and for every constant value of η > 0 and α > 2, there
exists a polynomial time algorithm that when given MAX-DICUT instance I with n variables and

m constraints as an input, produces an instance X for the generalized gap-clustering problem, with

|X| = m points, each lies in {−1, 1}ñ, where ñ = nα such that:

• (Completeness:) If I has an assignment that satis�es at least γ fraction of the constraints,

then, there exists a (γ, ε)-center for X, for ε = 2
n = 2

ñ1/α .

• (Soundness:) If every assignment for I satis�es at most 12
13γ fraction of the constraints, then,

with probability larger than 2/3, there is no (1213γ, ε/2)-center for X.
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Proof of Theorem 1.7 using Lemma 4.6 and Lemma 4.5. We take an instance I for MAX-DICUT
with n variables, such that either at least γ-fraction of the constraints are satis�ed or at most
12
13γ-fraction of the constraints are satis�ed. We �rst translate it using Lemma 4.6 into an instance
X ∈ {−1, 0, 1}ñ, ñ = nα, for the generalized gap-clustering problem such that Y ES-instances have
(γ, 2

ñ1/α )-center, while NO-instances have no (1213γ,
1

ñ1/α )-center.

Then we apply Lemma 4.5, with η < 12
39γ, and ζ = O(1/

√
ñ) = o(1/n1/α) (observe that η >

2 exp−(ζ2ñ)), and get that Y ES-instances are translated into X ′ that have (γ − η, ε − ζ)-center,
while NO-instances have no (1213γ + η, ε′ + ζ)-center, the Theorem follows.

�

We now prove Lemma 4.6:

Proof of Lemma 4.6. Given a MAX-DICUT instance I with n variables and m constraints, we
translate it into (δ, ε, δ′, ε′) gap-clustering problem instance X ⊆ {−1, 1}nr with |X| = m, where
r = nα−1.

Each variable yi is represented by r coordinates and we index the coordinates of a point x ∈
X ⊆ {−1, 1}nr by a double index xi,s for i ∈ [n] and s ∈ [r]. Each constraint ci,j = ¬yi ∧ yj gives
rise to the following point:

xk,s =


−1 if k = i,

1 if k = j,

0 otherwise

We now prove completeness and soundness:
Completeness: Assuming there exists an assignment a that satis�es at least γ fraction of the

constraints of I, we show that there exists a (γ, ε)-center in X. Consider the point z ∈ {−1, 1}ñ
de�ned as follows: for all s ∈ [r], i ∈ [n], set zi,s = (−1)(a(yi)+1). Then, for every constraint ci,j
satis�ed by a, it holds that

∑
s∈[r]−zs,i + zj,s = 2r. Therefore, if x is associated with ci,j and ci,j

is satis�ed by a, we get: ⟨x, z⟩ = 2r/rn = 2/n, and the completeness follows.
Soundness: Now take an instance I for which there is no assignment that satis�es more than

12
13γ fraction of constraints. We show that there is no (1213γ, 1/n)-center in the random instance X.

Let z ∈ {−1, 1}ñ, we de�ne an assignment a for y1, . . . , yn assigning for each i ∈ [n] the value
a(yi) = (−1)(MAJ{zi,s}s∈[r]+1). We show that if z is a (1213γ, 1/n)-center for X, then a satis�es more
than 12

13γ fraction of the constraints of I, contradicting the soundness assumption.
For any constraint ci,j , consider the point x associated with ci,j . Observe that ⟨z, x⟩ > 1/n i�∑

s∈[r](−zi,s + zj,s) > r. In such case the majority value of the zi,s is −1, and the majority of the
zj,s is 1. Therefore, ci,j is satis�ed by a, and the proof is done.

�

4.2 Maximizing δ-gap for the gap-Clustering Problem

Next, we show a polynomial gap between δ and δ′.

Theorem 1.8. Unless BPP ⊇ NP, there exist constants c1 > 0, c2 > 0 such that it is infeasible

to solve the gap-clustering problem with parameters: δ = n−c1 , δ′ = δ
nc2 and ε > ε′ = Θ(n−1/3).

The main step of the proof is the following lemma which we prove next.

Lemma 4.7. There exists a constant c, such that for ℓ = c log n, and β = 4
(
12
13

)ℓ
there exists

a probabilistic polynomial time algorithm that when given a regular MAX-DICUT instance I with
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n variables and m constraints as an input, produces an instance X for generalized gap-clustering

problem, with N = Θ

(
n
(

13
12γ

)2ℓ
)

points, each lies in {−1, 1}ñ, ñ = n3, such that:

• (Completeness:) If I has an assignment that satis�es at least γ fraction of the constraints,

then, with probability larger than 2/3, there exists a (δ, ε)-center for X, for δ = γℓ/2 and

ε = 2ℓ
n .

• (Soundness:) If every assignment for I satis�es at most 12
13γ fraction of the constraints, then,

with probability larger than 2/3, there is no (β · δ, ε′)-center for X, for ε′ = 2ℓ−1
n .

Proof of Lemma 4.7. Our �rst step is to take the instance I and translate it into generalized gap-
clustering problem X, such that each point lies in {−1, 0, 1}ñ, where ñ = n3, as done in Lemma 4.6.
We get that if I is a Y ES-instance then X has (γ, 2/n)-center, while if I is a NO-instance then
X that has no (1213γ, 1/n)-center. Our next step is to associate for each ℓ = c log(n)-tuple of points
x1, . . . , xℓ, a new point x = x1 + · · ·+ xℓ.

There are mℓ ℓ-tuples, so we cannot take all the ℓ tuples. Therefore, we take only a random
subset of them. We must be careful to take point only points with no common non-zero entries so
that the sum of the points is still in {−1, 0, 1}n. Note that since in I every variable appears in d/n
fraction of the constraints, then the fraction of ℓ tuples that have common no-zero entry is bounded
by dℓ2/n.

Formally, we choose at random a subset S of non intersecting ℓ points x1, . . . , xℓ, for |S| >

Ω

(
n
(

13
12γ

)2ℓ
)
. Each such ℓ tuple gives rise to a point x = x1 + · · · + xℓ in X ′. Now we prove

completeness and soundness.
Completeness: Consider an instance I for MAX-DICUT for which there exists an assignment

a that satis�es at least γ fraction of the constraints. In such a case there exits a (γ, 2/n)-center z for
X. Since we take only non-intersecting points then the probability that all them are ε-correlated to
z is at least γℓ− dℓ2/n > γℓ/2. Using Cherno� inequality, the probability that we sample less than

γℓ/4 such tuples is bounded by exp−Ω(γ2ℓ|S|) which is at most 1/3 by our choice of parameters.
Let x1, . . . , xℓ be an ℓ tuple of non-intersecting points, which are all 2/n-correlated to z, then

x = x1+ . . . xℓ satis�es: ⟨x, z⟩ > 2ℓ
n . We get that with probability at least 2/3 at least γℓ/4-fraction

of the points in X ′ are 2ℓ
n -correlated to z, and the completeness follows.

Soundness: Consider an instance I for MAX-DICUT for which every assignment a satis�es at
most 12

13γ fraction of the constraints. In such a case there there is no (1213γ, 1/n)-center z for X. Fix

z ∈ {−1, 1}n, and let x ∈ X ′, x = x1 + · · · + xℓ. Note that whenever ⟨x, z⟩ > 2ℓ−1
n , then it holds

that for all i ∈ [ℓ], ⟨xi, z⟩ > 1/n (this is true since for every point x ∈ X the fraction of non-zero
coordinates is 2/n so ⟨x, z⟩ ≤ 2/n).

If we choose ℓ points at random, the the probability that each of them is 1/n-correlated to z is
bounded by (1213γ)

ℓ. The probability that there are more than 2(1213γ)
ℓ-fraction of such tuples in S is

bounded by exp−Ω(( 12
13

γ)2ℓ|S|) which is at most 1
10·2ñ by our choice of parameters. Therefore, taking

a union bound on the set of all possible centers the probability that there exists a center for which
more than 2(1213γ)

ℓ of the tuples are satisfying that all points are 1/n-correlated to z is bounded by

1/3. If that is not the case, then there is no (2(1213γ)
ℓ = 4δ/β, 2ℓ−1

n )-center for X ′, the soundness
follows.

�

We conclude with the proof of Theorem 1.8:



5 BOUNDING THE CENTERS LIST SIZE 16

Proof of Theorem 1.8 Using Lemma 4.7. We take an instance I for MAX-DICUT with n variables,
such that either at least γ-fraction of the constraints are satis�ed or at most 12

13γ-fraction of the
constraints are satis�ed. We �rst translate it using Lemma 4.7 into an instance X ⊂ {−1, 0, 1}ñ
for the generalized gap-clustering problem such that Y ES-instances have (γℓ/2, 2ℓn )-center, while

NO-instances have no (2
(
12
13γ

)ℓ
, 2ℓ−1

n )-center.

Then we apply Lemma 4.5, with η < (1213γ)
ℓ/16, and ζ = 1/3n (observe that η > 2 exp−Ω(ζ2ñ)).

We get that Y ES-instances are translated into X ′ that have (γℓ/2 − η, ε − ζ)-center, while NO-

instances have no (2
(
12
13γ

)ℓ
+η, ε′+ ζ)-center. Consider the ratio γℓ/2−η

2( 12
13

γ)
ℓ
+η

> γℓ/4

4( 12
13

γ)
ℓ =

(
13
12γ

)ℓ
/16,

which is polynomial in n, the Theorem follows.
�

A similar proof can be used to show:

Lemma 4.8. For every constant c > 0, there exist constants c1, c2 > 0 such that unless BPP ⊇ NP,
it is infeasible to solve the gap-clustering problem with parameters: δ = c1, δ

′ = c1/c and ε
′ = c2ε,

and ε which is Θ(n−1/3).

The proof of Lemma 4.8 follows by the same proof of Theorem 1.8, and we omit it.

5 Bounding the Centers List Size

In this section we study the information-theoretic bound to the list size of all possible centers,
providing the best-possible algorithms that attempts to list all the (δ, ε)-centers.

Our �rst result shows that when we consider a list of (δ, ε)-centers, such that for every pair of
centers in the list, their clusters have a large symmetric di�erence, then it might be the case that
the list size is exponential in n. These centers do not have the property of being τ -maximal (see
de�nition 3.1), so this shows that the requirement of being τ -maximal in Theorem 3.2 is essential.

Lemma 5.1. For any ε > 0 and 0 < δ < 1/2, there exists a set X, and a t-size list L of points,

t = 2Ω(n), such that:

• For each z ∈ L, z is a (1/2− ε, ε)-center for X.

• For z ̸= z′ ∈ L: |Cε(z)△Cε(z
′)| > 2δX (where A△B is the symmetric di�erence between A

and B).

Proof. We construct a set X of vectors that has a global (1, 1− 1/n)-center, yet at the same time
has an exponential number of (1/2− ε, ε) centers z(1), z(2), . . . such that the clusters of z(i) and z(j)

have large symmetric di�erence if i ̸= j. This means that there is no list of clusters of polynomial
size that is close to all non-trivial centers of X.

Denote ei the vector with 1 in the i-th coordinate, and −1 in the rest. Let X = {ei | i ∈ [n]}.
Clearly the −1 vector is a (1, 1− 1/n)-center for this set.

Let S ⊂ [n] have size t and let z be −1 on coordinates in S and 1 otherwise. We have:

⟨z, ei⟩ =

{
|S| −

∣∣S̄∣∣+ 2 = t− (n− t) + 2 = 2t− n+ 2 if i /∈ S,
|S| − 1−

∣∣S̄∣∣− 1 = t− (n− t)− 2 = 2t− n− 2 otherwise.
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If we choose t so that 2t− n = εn then z is ε-correlated with exactly the points in {ei | i /∈ S},
so it is an (1− t

n , ε)-center. Since t/n = (1 + ε)/2 it is an (1/2− ε/2, ε)-center. Note that for z, z′
of weight 1/2 + ε/2 it holds that whenever zi ̸= z′i then ei is either ε-correlated with z or with z′

but not with both of them. Therefore, |Cε(z)△Cε(z
′)| = ∆(z, z′)n (where ∆(z, z′) is the Hamming

distance between z, z′).
To get the counterexample,Choose z(1), z(2), . . . to be points that have weight t and are pairwise

far from each other as in an error correcting code. �

Our next result shows that under the promise that the centers are far apart, then the list size is
feasible.

Lemma 5.2. Given a set X ⊂ {−1, 1}n of N points, then there exist at most t for t ≤ 1
2δε centers

z(1), . . . , z(t) ∈ {−1, 1}n such that the following holds:

• For every i ∈ [t]: z(i) is (ε, δ)-center of X.

• For every z that is a (ε, δ)-center of X, there is some i such that
⟨
z, z(i)

⟩
> O(ε2).

Proof. Assume there is a list of t such centers, we show t < 1/2δε. Using Johnson bound, for each
x the number of i's such that

⟨
x, z(i)

⟩
> ε is bounded by 1/2ε. Now consider a bipartite graph

G = (L,R) such that L = X and R = [t], and (x, i) ∈ E i�
⟨
x, z(i)

⟩
> ε.

For every x ∈ X, x participates in at most 1/2ε edges. Therefore, the number of edges is bound
by |X| /2ε. On the other hand, each i ∈ [m] has at least δ |X| edges, so the number of edges is at
least tδ |X|. Combining the two inequalities we get t ≤ 1

2δε . �
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A A Detailed Description of [BHPI02]'s Approach

The problem of clustering with outliers was studied in [BHPI02]. They apply the following two
steps paradigm: First they show that a random sample of a small subset of points, which they call
�coreset�, represents the original set well (where by small they mean that the size depends on the
accuracy of the approximation and not on the dimension n). Second, they solve the problem on the
small set, and show that this solution is a good enough approximation for the original set of points.
Let us sketch brie�y their approach:

They �rst show that with constant probability, a random set S ⊂ X of cardinality O(1/δ′ε′),
satis�es the following:

• There exists s ∈ S, such that there exists a (δ− δ′, ε− ε′)-center for X that is relatively close
to s.

• The linear subspace H spanned by S contains a (δ − δ′, ε− ε′)-center for X.

They use these two facts in order to build an exponential grid on H. They show that one of the
points in the grid is indeed an approximate solution for X.

This approach strongly uses the fact that the points and the centers lie in Rn, and not in the
hypercube. In particular [BHPI02] claim that an approximate solution lies in the subspace spanned
by S. Even if the original set of points lies in the hypercube, the subspace spanned by them does
not lie in the hypercube.
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