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Abstract

Small-bias probability spaces have wide applications in pseudorandomness which naturally
leads to the study of their limitations. Constructing a polynomial complexity hitting set for
read-once CNF formulas is a basic open problem in pseudorandomness. We show in this paper
that this goal is not achievable using small-bias spaces. Namely, we show that for each read-once
CNF formula F with probability of acceptance p and with m clauses each of size c, there exists a
δ-biased distribution µ on {0, 1}n such that δ = 2−Ω(logm log (1/p)) and no element in the support

of µ satisfies F , where n = mc (assuming that 2−m0.3 ≤ p ≤ p0, where p0 > 0 is an absolute

constant). In particular if p = n−Θ(1), the needed bias is 2−Ω(log2 n), which requires a hitting set

of size 2Ω(log2 n). Our lower bound on the needed bias is asymptotically tight. The dual version
of our result asserts that if flow : {0, 1}n → R is such that and E[flow] > 0 and flow(x) ≤ 0
for each x ∈ {0, 1}n such that F (x) = 0, then the L1-norm of the Fourier transform of flow is
at least E[flow]2

Ω(logm log (1/p)). Our result extends a result due to De, Etesami, Trevisan, and
Tulsiani (APPROX-RANDOM 2010) who proved that the small-bias property is not enough to
obtain a polynomial complexity PRG for a family of read-once formulas of Θ(1) probability of
acceptance.
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1 Introduction

A pseudorandom number generator (PRG) G : {0, 1}r → {0, 1}n maps uniformly random seeds
to longer pseudorandom strings. An α-PRG G for a class C of boolean functions from {0, 1}n
to {0, 1} is a PRG such that the probability distribution supported by G({0, 1}r) α-fools 1 all
function in C. Hitting sets are weaker than PRGs but they capture the PRG problem when
Pr[f = 1] is small. An ǫ-hitting set [ACR98, SZ11] for a class C of boolean functions is subset
H ⊂ {0, 1}n such that for every function f ∈ C with Pr[f = 1] > ǫ, there exists y ∈ H such
that f(y) = 1. Hence if G is an ǫ-PRG for C, then H = G({0, 1}r) is an ǫ-hitting set for C. More
generally, if µ is a probability distribution on {0, 1}n, we say that µ is an ǫ-hitting distribution
for C if for every function f ∈ C such that Pr[f = 1] > ǫ, there exists y ∈ Support(µ) such that
f(y) = 1.

An ultimate goal of pseudorandomness is to construct an n−O(1)-PRG (computable in uni-
form polynomial time) of logarithmic seed length for all polynomial size circuits. Without hard-
ness assumptions [NW88, IW97], the problem is still open even for simple families of circuits such
as polynomial-size depth-d circuits constructed from AND, OR, and NOT gates, for d ≥ 2. The
d = 2 case corresponds to DNF formulas (OR of AND gates) and CNF formulas (AND of OR
gates). The simpler problem of constructing polynomial-size n−O(1)-hitting sets (computable
in uniform polynomial time) for depth-2 circuits is also an open problem, even if we assume
that the depth-2 circuit is read-once. It is not hard to show that any ǫ/m-biased probability
distribution 2 on {0, 1}n is an ǫ-hitting distribution for DNF formulas consisting of m clauses
(this follows from a union bound and the fact that any ǫ-biased distribution is an ǫ-hitting dis-
tribution for AND gates). The CNF case is different due to the lack of symmetry between 0 and
1 in the hitting set definition. Constructing a hitting set for read-once CNF formulas captures
a key difficulty of the problem of constructing a PRG for depth-2 circuits.

1.1 Fooling depth-2 circuits

Nisan constructed [Nis91] a PRG for polynomial-size constant-depth circuits of polylogarithmic
seed-length. In the special case of depth-2 circuits with m clauses and n variables, the seed
length is O(log10(mn/α)). By optimizing Nisan’s generator, Luby, Velickovic, and Wigderson
[LVW93] achieved O(log4(mn/α)) seed length. By resolving a conjecture due to Linial and
Nisan [LN90], [Baz07, Baz09] proved that any t-wise independent distribution 3 α-fools depth-
2 circuits, where t = O(log2 (m/α)), which gives a PRG of seed length O(log n log2 (m/α)).
The proof was later simplified by Razborov [Raz09] and the result was extended by Braverman
[Bra10] to constant-depth circuits of depth greater than 2. By building on [Baz07, Baz09, Raz09],
De et al. [DETT10] proved that any δ-biased distribution α-fools depth-2 circuits, where δ =

2−O(log2 (m/α) log log (m/α)), which reduced the seed length to O(log n+log2 (m/α) log log (m/α)).
To date, this is the best known seed-length for general depth-2 circuits. For constant-depth
circuits of depth d ≥ 3, the best known seed-length is Õ(logd+4 (M/α)) due to Trevisan and
Xue [TX12], where M is the circuit size.

1If µ is a probability distribution on {0, 1}n and f : {0, 1}n → {0, 1} is a boolean function, we say that µ α-fools
f [BM82, Yao82] if |Prµ[f = 1] − Pr[f = 1]| ≤ α, where the second probability is with respect to the uniform
probability distribution on {0, 1}n.

2A probability distribution µ on {0, 1}n is called δ-biased [NN93] if µ δ/2-fools all parity functions on the n binary
variables. See Section 2 for an equivalent character-based definition.

3We say that µ is t-wise independent (e.g., [Lub85, Vaz86]) if any t or less of the underlying n binary random
variables are statistically independent and each is equally likely to be zero or one.
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1.2 The read-once depth-2 case

Better bounds are known for the special case of read-once depth-2 circuits. The best cur-
rently known seed-length is O(log(m) log log(m)+ log(1/α)) [GMRTV12]. The underlying PRG
uses an iterative construction involving small-bias spaces. Earlier results were based entirely
on the limited-independence or small-bias properties. Using inclusion-exclusion, it was shown
in [Baz03] that any t-wise independent distribution α-fools read-once depth-2 circuits, where
t = O(log (m/α) log (1/α)), which gives O(log n log (m/α) log (1/α)) seed length. De et al.
[DETT10] improved the seed length to O(log n+ logm log (1/α)) by analyzing the inclusion ex-
clusion construction in the context of small bias spaces. Namely, they proved that any δ-biased
distribution α-fools read-once depth-2 circuits, where δ = 2−O(logm log (1/α)). Accordingly, we
have the following in the context of hitting sets.

Theorem 1.1 [DETT10] If δ = 2−O(logm log (1/ǫ)), then any δ-biased distribution on {0, 1}n is
an ǫ-hitting distribution for read-once CNF formulas on n variables with m clauses.

1.3 Limitations of small bias

The bias of a subset S ⊂ {0, 1}n (i.e., the bias of the probability distribution supported by S) is
polynomially related to the size of S. Namely, [NN93, AGHP92] show how to construct δ-biased
probability spaces of support size poly(n/δ). On the other hand, Alon et. al [AGHP92] proved
that a δ-biased subset of {0, 1}n has size Ω(min( n

δ2log(1/δ) , 2
n)).

The wide applicability of small-bias spaces in pseudorandomness naturally leads to the study
of their limitations.

(A) Is small bias sufficient to construct polynomial-complexity o(1)-PRGs for general CNF
formulas?

(B) Is it sufficient for the weaker task of constructing polynomial-complexity o(1)-hitting sets
for general CNF formulas?

(C) Is it sufficient to construct polynomial-complexity o(1)-PRGs for the weaker class of read-
once CNF formulas?

(D) Is it sufficient for the weaker task of constructing polynomial-complexity o(1)-hitting sets
for read-once CNF formulas?

De et. al [DETT10] answered Questions A, B, and C in the negative.

Theorem 1.2 [DETT10] Assume that 2−m/2 < p < p0, where p0 is absolute constant p0. Then
there exist a (read-many) CNF formula F on n variables with m clauses and probability of
acceptance p, and a δ-biased distribution µ on {0, 1}n such that δ = 2−Ω(logm log (1/p)) and no
element in the support of µ satisfies F .

In the read-once case, they established a weaker negative result. They proved that the small bias
property is not sufficient to obtain a polynomial complexity o(1)-PRG for a class of read-once
CNF formulas whose probability of acceptance is Θ(1).

Theorem 1.3 [DETT10] There exists a read-once CNF formula F on n variables with m
clauses and probability of acceptance p = Θ(1), and a δ-biased distribution µ on {0, 1}n such
that δ = 2−Ω(logm log (1/α)/ log log (1/α)) and µ does not α-fool F .

1.4 Contribution

We answer Question D in the negative. We derive a lower bound on bias needed to hit read-
once CNFs which asymptotically meets inclusion-exclusion upper bound in Theorem 1.1, and
accordingly is asymptotically tight.
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Our approach is different from that of De et. al. While their approach is based on directly
analyzing the properties of an explicit distribution, our proof is nonconstructive and it is based
on approaching the problem as an optimization problem. The result of De et. al in Theorem 1.3
rules out the possibility that the task of constructing an o(1)-PRG for read-once CNF formulas
is achievable using small bias, but since the probability of acceptance p is constant, it does not
rule out the possibility that the weaker task of constructing an o(1)-hitting set for read-once
CNF formulas is achievable using small bias. We show that this is not possible. It is worth
noting that the problem of hitting a read-once CNF F of probability of acceptance p is easy for
p = Θ(1): by inclusion-exclusion (Theorem 1.1), any δ-biased distribution contains a satisfying
assignment of F provided that δ = 2−O(logm log (1/p)) = nO(1). Hence, in the context of hitting
sets, the interesting case corresponds to o(1) values of the probability of acceptance.

We argue that to guarantee that any δ-biased distribution is an ǫ-hitting distribution for
read-once CNF formulas, we need δ = 2−Ω(logm log (1/ǫ)).

Theorem 1.4 Let m and c be positive integers and F a read-once CNF formulas with m clauses
of c variables each. Let n = mc and p be the probability of acceptance of F . Assume that
2−m0.3 ≤ p ≤ p0, where p0 > 0 is an absolute constant.

Then there exists a δ-biased distribution µ on {0, 1}n such that δ = 2−Ω(logm log (1/p)) and no
element in the support of µ satisfies F .

Asymptotically, our lower bound is tight since it meets the inclusion-exclusion upper bound of
De et. al in Theorem 1.1 (assuming 2−m0.3 ≤ ǫ ≤ ǫ0, where ǫ0 > 0 is an absolute constant).
Moreover, it extends the negative result of De et. al in Theorem 1.2 from read-many to read-once
CNF formulas.

The special case when p = n−Θ(1) is of particular interest.

Corollary 1.5 There exists a read-once CNF formula F on n variables with probability of
acceptance n−Θ(1) and a probability distribution µ on {0, 1}n with bias 2−Ω(log2 n) such that no
element in the support of µ satisfies F .

Hence for probability of acceptance p = n−Θ(1), the bound δ = 2−Ω(log2 n) requires a hitting set
of size 2Ω(log2 n) [AGHP92].

The LP dual of Theorem 1.4 is a statement about the nonseparability of the boolean functions
computed by a read-once CNF formulas by real-valued functions with low L1-norm in the Fourier
domain.

Corollary 1.6 Let F be a read-once CNF formula with m, c, n, and p as defined in Theorem
1.4. If flow : {0, 1}n → R is such that (i) EUflow > 0, where U is the uniform distribution

on {0, 1}n, and (ii) flow(x) ≤ 0 for each x ∈ {0, 1}n such that F (x) = 0, then ‖f̂low‖1 ≥
(EUflow)2

Ω(logm log (1/p)).

We extract form the proof of Theorem 1.4 the the following key technical lemma, which exhibits
a non-hitting distribution for F with the property that all variables appearing in O(log 1

p ) clauses
of F are independent.

Theorem 1.7 Let m and c be positive integers and F a read-once CNF formulas with m clauses
of c variables each. Let n = mc and p be the probability of acceptance of F . Assume that
2−o(

√
m) < p ≤ p0, where p0 > 0 is an absolute constant.

Then there exists a probability distribution µ on {0, 1}n such that:

a) (Limited independence with respect to the Formula) For any set S of variables which ap-
pear in no more than d0 = Θ(log 1

p ) clauses, the variables in S are statistically independent
with respect to µ and each is equally likely to be 0 or 1.

b) No element in the support of µ satisfies F .
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The dual statement is the following.

Corollary 1.8 Let F be a read-once CNF formula with m, c, n, and p as defined in Theorem
1.7. If plow(x1, . . . , xn) ∈ R[x1, . . . , xn] is a polynomial such that (i) EUplow > 0, where U is the
uniform distribution on {0, 1}n, and (ii) plow(x) ≤ 0 for each x ∈ {0, 1}n such that F (x) = 0,
then plow has a monomial whose variables appear in Ω(log 1

p ) clauses.

1.5 Technique

After providing the basic definitions in Section 2, we outline the proof in Section 3. At a high
level, our approach is the following. We formulate the problem of minimizing the bias of a
distribution whose support does not contain any satisfying input of the formula as a linear
program. We reduce the complexity of the LP by restricting our attention to distributions
which are symmetric with respect to the formula in the sense that any two elements of {0, 1}n
that satisfy the same number of clauses have the same probability. Krawtchouk polynomials
originate in the proof when studying the bias of such distribution. We reduce the problem of
bounding the bias to that of showing that a certain polytope of distributions is not empty.
The polytope consists of symmetric distributions which do not hit the formula and have the
property that all variables appearing in at most a certain number of clauses are independent. By
studying the dual, we reduce the problem to a minimax like problem on low degree univariate
polynomials, which we solve using Chebyshev’s alternating signs technique.

2 Basic definitions

2.1 CNF Formulas

A CNF formula is an AND of OR gates called clauses. It is called monotone if no variable is
negated, and read-once if each variable appears in exactly one clause. Let the positive integers
m, c, and n = mc denote, respectively, the number of clauses, the clause size, and the number of
variables. We study in this paper monotone read-once CNF formulas, where all the clauses have
equal length. It is convenient to represent such a formula using a partition of [n] := {1, . . . , n}
which divides the variables according to the clauses they belong to. A c-regular m-partition π of
[n] is a collection {π(j)}mj=1 of subsets of [n] such that |π(j)| = c, for all j,

⋃m
j=1 π(j) = [n], and

π(j) ∩ π(j′) = ∅, for all j 6= j′. Given π, define the corresponding CNF formula Fπ : {0, 1}n →
{0, 1} as Fπ(x) :=

∧m
j=1 ORπ(j)(x), where ORπ(j)(x) :=

∨

i∈π(j) xj . We say that clause π(j) is

satisfied by x if ORπ(j)(x) = 1. Thus Fπ(x) = 1 iff all the m clauses are satisfied by x.
Define the π-weight function Wπ : {0, 1}n → N as Wπ(x) := |{j ∈ [m] : ORπ(j)(x) = 1}|,

i.e., Wπ(x) is the number of clauses satisfied by x. We will call Wπ(x) the π-weight of x. Hence
Fπ(x) = 1 iff Wπ(x) = m.

In the entire paper, we fix the definitions ofm,c ≥ 1, the partition π, and accordingly n = mc,
Fπ , and Wπ.

2.2 Distributions

2.2.1 Bias

The bias of a probability distribution on {0, 1}n measures how far the distribution is from the
uniform distribution with respect to linear tests modulo 2 [NN93]. Those tests are captured
by the characters {X z}z∈{0,1}n of the abelian group (Z/2Z)n, where X z : {0, 1}n → {0, 1}n is

given by X z(x) = (−1)〈x,z〉, where 〈x, z〉 =
∑n

i=1 xizi. They are orthogonal in the sense that
∑

x∈{0,1}n X z(x)X z′(x) = 0 for all z 6= z′, hence in particular
∑

x∈{0,1}n X z(x) = 0 for each

z 6= 0 ∈ {0, 1}n. Let µ be a probability distribution on {0, 1}n. If z ∈ {0, 1}n, the bias of µ
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at z is given by biasz(µ) := Ex∼µX z(x) =
∑

x∈{0,1}n µ(x)X z(x). The bias of µ is bias(µ) :=

maxz 6=0∈{0,1}n |biasz(µ)|. We call µ δ-biased if bias(µ) ≤ δ

2.2.2 Limited independence with respect to clauses

We call a probability distribution µ on {0, 1}n (d, π)-wise independent if for any set S of variables
which appear in no more than d clauses, the variables in S are statistically independent and
each is equally likely to be 0 or 1. In terms of bias, µ is (d, π)-wise independent, if biasz(µ) = 0
for each z 6= 0 ∈ {0, 1}n such that Wπ(z) ≤ d.

2.2.3 Symmetric distributions

We call a probability distribution µ on {0, 1}n π-symmetric if the probability µ(x) of x depends
only on the π-weight of x (i.e., the number of clauses satisfied by x). That is, µ(x) = µ(y), for
all x, y ∈ {0, 1}n such that Wπ(x) = Wπ(y).

2.2.4 Induced distributions

If µ is a probability distribution on {0, 1}n, let µ be the probability distribution induced on
[0 : m] := {0, 1, . . . ,m} via π, i.e., µ(w) := µ(x : Wπ(x) = w) for w = 0, 1, . . . ,m. That is, µ(w)
is the probability with respect to µ that a random vector satisfies exactly w clauses of the CNF
formula.

Hence if µ is π-symmetric, we have µ(w) =
(

m
w

)

(2c − 1)wµ(x) for any x ∈ {0, 1}n such that
Wπ(x) = w.

Finally, we denote by µ(Fπ = 1) the probability that Fπ is 1 with respect to µ, i.e., µ(Fπ =
1) := µ(x ∈ {0, 1}n : Fπ(x) = 1) = µ(m).

2.2.5 Binomial distribution

For a uniformly random x ∈ {0, 1}n, the number Wπ(x) of satisfied clauses obeys the bi-
nomial distribution. We denote this binomial distribution by binm,c := µunif , i.e., binm,c is

the distribution induced on [0 : m] by the uniform probability distribution µunif on {0, 1}n.
Hence binm,c(w) = 1

2cm

(

m
w

)

(2c − 1)w. Its mean is the expected number of satisfied clauses
Ew∼binm,c

w = m−m/2c.
Finally, note that the probability p that Fπ(x) = 1 over the uniform distribution of x ∈

{0, 1}n is (1 − 2−c)m ≈ e−m/2c . Hence the term m/2c = Θ(log (1/p)). Of particular interest to
us is the case when m/2c = Θ(logn), which corresponds to p = n−Θ(1).

3 Proof outline

In this section, we overview the proof and specialize it to the simple case when m/2c = c, hence
m = c2c, n = c22c, c = logm− logΘ(logm)4, and the probability of acceptance of the CNF is
(1 − 2−c)m ≈ e−c = m−Θ(1).

Consider the optimization problem of estimating the smallest possible bias a distribution
has while still not having in its support any satisfying input of the CNF formula. Define βm,c

to be the minimum δ such that there exist a δ-biased probability distribution µ on {0, 1}n such
that µ(Fπ = 1) = 0. Recall that throughout the paper π is a c-regular m-partition of [n]. Our
objective is to establish an upper bound on βm,c. Due to the symmetry of the optimization

4Throughout the paper, log means log2.
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problem, βm,c does not depend on the partition π, it depends only on m and c. Thus we have
a linear program on the real variables {µ(x)}x∈{0,1}n and δ:

βm,c := min δ subject to : (1)

µ(x) ≥ 0 ∀x ∈ {0, 1}n
µ(x) = 0 ∀x ∈ {0, 1}n such that Fπ(x) = 1
∑

x∈{0,1}n µ(x) = 1

−δ ≤∑x∈{0,1}n µ(x)X z(x) ≤ δ ∀z ∈ {0, 1}n \ {0}.

First, we note that the optimum is achieved by a π-symmetric distribution.

Lemma 3.1 If µ is a probability distribution on {0, 1}n such that µ(Fπ = 1) = 0, then there
exists a π-symmetric probability distribution µ∗ on {0, 1}n such that µ∗(Fπ = 1) = 0 and
bias(µ∗) ≤ bias(µ).

This reduces the 2n variables {µ(x)}x∈{0,1}n to m + 1 variables {µ(w)}mw=0 (µ is the induced
distribution, as defined in Section 2.2).

Note that since our problem is about establishing an upper bound on the minimum bias,
Lemma 3.1 is not used to establish other propositions in this paper. It is included as it justifies
the focus on π-symmetric distributions. The proof of Lemma 3.1 is in Appendix A.

In Section 4, we study the bias of π-symmetric distributions, which naturally leads to
Krawtchouk polynomials. We note that if µ is π-symmetric, then biasz(µ) depends only on
the π-weight t of z and it is given by

biast(µ) = Ew∼µK(m,c)
t (w), (2)

where K(m,c)
t is the Krawtchouk polynomial. Krawtchouk polynomials {K(m,c)

t }mt=0 originate in
our context as

K(m,c)
t (w) = Ex:Wπ(x)=wX z(x), where z ∈ {0, 1}n is any vector of π-weight t (3)

=
1

(

m
w

)

(2c − 1)w

∑

a

(

t

a

)(

m− t

w − a

)

(−1)a(2c − 1)w−a (4)

The Krawtchouk expression of the bias reduces the 2n − 1 constraints |biasz(µ)| ≤ δ, for
z 6= 0 ∈ {0, 1}n, to m constraints |biast(µ)| ≤ δ, for t = 1, . . . ,m. Therefore we have a linear
program with m+ 2 variables and O(m) constraints.

Estimating the optimum of the LP is a difficult problem due to the sensitivity of Krawtchouk
polynomials. Accordingly, rather than directly working with the bias of π-symmetric distribu-
tions, we reduce the problem to estimating the maximum d such that there exists a π-symmetric
(d, π)-wise independent distribution whose support contains no satisfying input for Fπ, i.e.,
µ(Fπ = 1) = 0.

3.1 Reduction

The (d, π)-wise independence property alone is not enough to guarantee low bias. We argue in
Section 5 that the (d, π)-wise independence property together with the π-symmetry property
guarantee low bias. Namely, we show in Corollary 5.3 that if µ be a π-symmetric (d, π)-wise
independent probability distribution on {0, 1}n, then

bias(µ) ≤ 2

(

8
√
dm

2c − 1

)d

(5)
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assuming that m ≥ 2c and d ≥ 1. The bound improves as d increases, which reduces our problem
to estimating the maximum d such that there exists a π-symmetric probability distribution µ
on {0, 1}n such that µ is (d, π)-wise independent and µ(Fπ = 1) = 0. For instance, when

m = c2c, the bound is 2
(

8
√
dc2c

2c−1

)d

= Θ
(

d logm
m

)d/2

. Hence to obtain βm,c = 2−Ω(log2 n), we

need d = Ω(logm).
We establish (5) as follows. If t ≤ d, then biast(µ) = 0 since µ is (d, π)-wise independent.

For t > d, it follows from (2) that

|biast(µ)| ≤ maxm
w=m−m0

|K(m,c)
t (w)| + µ(w : w < m−m0), (6)

where m0 is a parameter we will optimize on.

The key observation is that |K(m,c)
t (w)| decays quickly with t if w is large enough. Namely,

we show in Lemma 5.1 that if m ≥ 2c and m0 is an integer such that 1 ≤ m0 ≤ m/2, then

|K(m,c)
t (w)| ≤ 4m

2
0/m

(

2m0

2c − 1

)t

for w = m−m0, . . . ,m. (7)

The proof of (7) is based on expression (4) of Krawtchouk polynomials. Eventually we will set
m0 = ⌊

√
dm⌋. For instance, when m = c2c, we will set m0 = Θ(

√
m logm), which reduces (7) to

mO(1)
(

Θ(log3 m)
m

)t/2

. We will use (7) for large values of t > d, e.g., t = Ω(logm) when m = c2c.

The second term µ(w : w < m−m0) is the probability that the number of satisfied clauses
is less than m−m0. Since µ is (d, π)-wise independent, this probability decays quickly with d if
m−m0 is small enough compared to the average Ew∼µw = m−m/2c (In the special case when
m = c2c,Ew∼µw = m− Θ(logn)). This follows easily from a d’th moment inequality. We show
in Lemma 5.2 that for m ≥ 2c,

µ(w : w < m−m0) ≤ d

(

md

2cm0

)d

(8)

By setting m0 = ⌊
√
dm⌋ and replacing (7) and (8) in (6), we obtain (5).

3.2 Estimating the maximum d

Given d ≥ 1, consider the convex polytope P
(m,c)
d ⊂ R

{0,1}n

of (d, π)-wise independent π-
symmetric probability distributions µ on {0, 1}n such that µ(Fπ = 1) = 0. We estimate in

Section 6 the maximum d such that P
(m,c)
d is nonempty.

We study the low dimensional version of P
(m,c)
d . The polytope P

(m,c)
d is nonempty iff its low

dimensional version P
(m,c)
d := {µ : µ ∈ P

(m,c)
d } ⊂ R

m+1 is nonempty. We show in Lemma 6.3

that P
(m,c)
d 6= ∅ for d = ⌊ m

4×2c ⌋ (assuming that 200 × 2c ≤ m ≤ 22c and m divisible by 2c+1).

For instance, when m = c2c, we get P
(m,c)
d 6= ∅ for d = ⌊c/4⌋ = Θ(logm), hence (5) reduces to

βm,c = 2−Ω(log2 n) as noted above. The argument in Section 6 is in two parts.
First, by a duality argument, we give in Lemma 6.2 a univariate low degree polynomial

characterization of the dual. Then, using this characterization, we estimate in Lemma 6.3 the
maximum d using Chebyshev’s minimax technique. The proof uses the fact that for the binomial
distribution binm,c, binm,c(x) is much larger than binm,c(m) when x is close to the mean m−
m/2c of binm,c (Lemma 6.6). The proof of Lemma 6.3 boils down to showing that if 0 < a < b
are integers and g(z) ∈ R[z] is a polynomial of degree at most d such that g(0) = 1, then there
exists an integer a ≤ x0 ≤ b such that |g(x0)| is not very small if a and b are not very close.

We establish in Lemma 6.4 the lower bound Ω( 1d
(

b−a−2d
2eb

)d
) for b − a > 2d (and d ≥ 5). The
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proof idea is based on a construction of a suitable polynomial on which we apply Chebyshev’s
alternating signs technique. Our approach was motivated by the work Linial and Nisan [LN90]
who used Chebyshev polynomials to solve a related optimization problem.

In Section 7, we complete the proof of Theorems 1.4 and 1.7 and we verify the dual propo-
sitions stated in Corollaries 1.6 and 1.8.

We conclude in Section 8 with an open question related to extending the small bias condition
in Theorem 1.4 from mod 2 to mod M gates.

4 Krawtchouk polynomials and the bias of symmetric dis-

tributions

For a general reference on Krawtchouk polynomials, see for instance [Sze75]. Krawtchouk poly-
nomials originate in the proof when studying the bias of π-symmetric distributions via the
character sum

∑

x:Wπ(x)=w X z(x). We adopt the following definition.

Lemma 4.1 Let 0 ≤ w ≤ m be an integer and z ∈ {0, 1}n. Consider the summation Sz(w) =
∑

x:Wπ(x)=w X z(x). Then Sz(w) depends only on the π-weight t of z and it is given by

St(w) =
∑

a

(

t

a

)(

m− t

w − a

)

(−1)a(2c − 1)w−a.

The proof is below. Accordingly, we define Krawtchouk polynomial as follows.

Definition 4.2 For t = 0, . . . ,m, define the t’th Krawtchouk polynomial as

K(m,c)
t (w) := Ex:Wπ(x)=wX z(x), where z ∈ {0, 1}n is any vector of π-weight t (9)

=
1

(

m
w

)

(2c − 1)w

∑

a

(

t

a

)(

m− t

w − a

)

(−1)a(2c − 1)w−a. (10)

It follows from Lemma 4.1 that if µ is a π-symmetric distribution, then biasz(µ) depends
only on the π-weight of z, and it can be expressed in terms of the Krawtchouk polynomials and
the probability distribution µ on [0 : m] induced by µ.

Corollary 4.3 Let µ be a π-symmetric probability distribution on {0, 1}n and let z ∈ {0, 1}n.
Then biasz(µ) depends only on t = Wπ(z), i.e, biasµ(z

′) = biasµ(z) for all z
′ ∈ {0, 1}n such that

Wπ(z
′) = Wπ(z). Moreover, biasz(µ) is given by biast(µ) =

∑m
w=0 µ(w)K

(m,c)
t (w) = EµK(m,c)

t .

Proof: Since µ is π-symmetric, we have

biasz(µ) =
∑

x∈{0,1}n

µ(x)X z(x) =

m
∑

w=0

µ(w)
1

(

m
w

)

(2c − 1)w

∑

x:Wπ(x)=w

X z(x) =

m
∑

w=0

µ(w)K(m,c)
t (w).

�

Lemma 4.4 For t = 0, . . . ,m, K(m,c)
t (w) is a degree-t polynomial in the variable w.

The reason is that K(m,c)
t (w) = K(m,c)

w (t), which is verified below. The Krawtchouk polynomials

{K(m,c)
t (x)}mt=0 form an orthogonal basis of the set of polynomials in R[x] of degree at most m.

They are orthogonal with respect to the binomial probability distribution binm,c. In particular,
we have

Ew∼binm,c
K(m,c)

t (w) = 0 for t = 1, . . . ,m. (11)

9



We do not need the full orthogonality property in the proof of Theorem 1.4, we only need (11),
which follows immediately from (9):

Ew∼binm,c
K(m,c)

t (w) =
m
∑

w=0

binm,c(w)
1

(

m
w

)

(2c − 1)w

∑

x:Wπ(x)=w

X z(x) =
1

2cm

∑

x

X z(x) = 0,

where z ∈ {0, 1}n is any vector of π-weight t.

4.1 Proof of Lemma 4.1

Grouping terms, we get

Sz(w) =
∑

S⊂[m]:|S|=w

∑

x∈
∏

j∈S
({0,1}π(j)\{0})

X z(x̄),

where if A ⊂ [n] and x ∈ {0, 1}A, x̄ means the extension of x to {0, 1}n by zeros.
Fix S ⊂ [m] such that |S| = w. Using the multiplicativity of the character X z, and the fact

that
∑

x∈{0,1}π(j) X z(x̄) is 0 if z|π(j) 6= 0, and 2c otherwise, we have

∑

x∈
∏

j∈S
({0,1}π(j)\{0})

X z(x̄) =
∏

j∈S

∑

x∈{0,1}π(j)\{0}
X z(x̄) = (−1)|Az∩S|(2c − 1)|A

c
z∩S|,

where Az = {j ∈ [m] : z|π(j) 6= 0}. Therefore

Sz(w) =
∑

S⊂[m]:|S|=w

(−1)|Az∩S|(2c − 1)|A
c
z∩S|,

and consequently Sz(w) depends only on |Az | = t. Grouping the terms which have the same
value of |Az ∩ S|, we get

Sz(w) =

w
∑

a=0

∑

S⊂[m]:|S|=w&|Az∩S|=a

(−1)a(2c − 1)w−a =
∑

a

(

t

a

)(

m− t

w − a

)

(−1)a(2c − 1)w−a.

4.2 Proof of Lemma 4.4

Let 0 ≤ t, w ≤ m and consider the identity

∑

z:Wπ(z)=t





∑

x:Wπ(x)=w

X z(x)



 =
∑

x:Wπ(x)=w





∑

z:Wπ(z)=t

X x(z)





Note that X z(x) = (−1)〈x,z〉 = X x(z). Applying Lemma 4.1 to both sides, we get

(

m

t

)

(2c − 1)tSt(w) =

(

m

w

)

(2c − 1)wSw(t). (12)

It follows from (12) that

K(m,c)
t (w) = K(m,c)

w (t)

=
1

(

m
t

)

(2c − 1)t

∑

a

(

w

a

)(

m− w

t− a

)

(−1)a(2c − 1)t−a.

Accordingly, K(m,c)
t (w) is a degree-t polynomial in w.
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5 Reduction

We derive in this section a bound on the bias of π-symmetric (d, π)-wise independent probability
distributions on {0, 1}n. The bound is in Corollary 5.3 and it is based on Lemmas 5.1 and 5.2
below. See Section 3.1 for a detailed overview.

Lemma 5.1 Assume that m ≥ 2c and let m0 be an integer such that 1 ≤ m0 ≤ m/2. If

w ≥ m−m0, then |K(m,c)
t (w)| ≤ 4m

2
0/m

(

2m0

2c−1

)t

for t = 1, . . . ,m.

Proof: The proof relies on upper bounding the (−1)a term in expression (10) of Krawtchouk
polynomial by 1. Fix 0 ≤ v ≤ m0. We have

|K(m,c)
t (m− v)| =

∣

∣

∣

∣

∣

∣

1
(

m
v

)

(2c − 1)m−v

min(t,m−v)
∑

a=max(0,t−v)

(

t

a

)(

m− t

m− v − a

)

(−1)a(2c − 1)m−v−a

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1
(

m
v

)

min(t,m−v)
∑

a=max(0,t−v)

(

t

a

)(

m− t

v − t+ a

)

(−1)a
1

(2c − 1)a

∣

∣

∣

∣

∣

∣

since m− v − a = (m− t)− (v − t+ a). Upper bounding (−1)a by 1, we get

|K(m,c)
t (m− v)| ≤ 1

(

m
v

)

min(t,m−v)
∑

a=max(0,t−v)

(

t

a

)(

m− t

v − t+ a

)

1

(2c − 1)a

To simplify the above expression we use the bounds
(

m−t
v−t+a

)

≤ mv−t+a

(v−t+a)! and

(

m

v

)

≥ 4−m2
0/m

mv

v!
. (13)

The proof of (13) is below. Thus

|K(m,c)
t (m− v)| ≤ 4

m2
0

m
v!

mv

min(t,m−v)
∑

a=max(0,t−v)

(

t

a

)

mv−t+a

(v − t+ a)!

1

(2c − 1)a

= 4
m2

0
m

1

mt

min(t,m−v)
∑

a=max(0,t−v)

(

t

a

)

v!

(v − t+ a)!

(

m

2c − 1

)a

.

Using the bounds v!
(v−t+a)! ≤ mt

0 and
(

m
2c−1

)a

≤
(

m
2c−1

)t

(since m ≥ 2c), we get

|K(m,c)
t (m− v)| ≤ 4

m2
0

m

(

m0

2c − 1

)t t
∑

a=0

(

t

a

)

= 4
m2

0
m

(

2m0

2c − 1

)t

.

Proof of (13): If v = 0, the bound is trivial. If v 6= 0, we have

(

m

v

)

≥ (m− v)v

v!
=

(

1− 1

m/v

)
m
v

v2

m mv

v!
≥ 4−

v2

m
mv

v!
≥ 4−

m2
0

m
mv

v!
,

where the second inequality follows from the fact that (1 − 1/x)x ≥ 1/4 for x ≥ 2 (m/v ≥ 2
since v ≤ m0 ≤ m/2). �

11



Lemma 5.2 Assume that m ≥ 2c and let m0 ≥ 1. Let d ≥ 1 and µ be a (d, π)-wise independent

probability distribution on {0, 1}n. Then µ(x ∈ {0, 1}n : Wπ(x) < m−m0) ≤ d
(

md
2cm0

)d

.

Proof: The proof follows from a d’th moment inequality. Let Zπ(x) = m−Wπ(x) and B = {x ∈
{0, 1}n : Zπ(x) > m0}. We are interested in upper-bounding µ(B). We have

Zπ(x) =

m
∑

j=1

ANDπ(j)(x⊕ 1),

where ANDS(x) = ∧i∈S(xi) for S ⊂ [n], ⊕ denotes addition modulo 2 in {0, 1}n, and 1 denotes
the all ones vector in {0, 1}n. Thus Ex∼µZπ(x) =

m
2c if d ≥ 1. By Markov Inequality

µ(B) = Prx∼µ[Zπ(x) > m0] = Prx∼µ[Zπ(x)
d > md

0] ≤
Ex∼µZπ(x)

d

md
0

. (14)

We have

Zπ(x)
d =





m
∑

j=1

ANDπ(j)(x⊕ 1)





d

=
∑

(j1,...,jd)∈[m]d

ANDπ(j1)∪...∪π(jd)(x⊕ 1),

hence
Ex∼µZπ(x)

d =
∑

(j1,...,jd)∈[m]d

2−|π(j1)∪...∪π(jd)| =
∑

(j1,...,jd)∈[m]d

2−c|{j1,...,jd})|

since µ is (d, π)-wise independent. Let U(t) denote the number of tuples (j1, . . . , jd) in [m]d such
that |{j1, . . . , jd}| = t. Thus U(t) ≤

(

m
t

)

td, and accordingly

Ex∼µZπ(x)
d =

d
∑

t=1

2−ctU(t) ≤
d
∑

t=1

2−ct

(

m

t

)

td ≤
d
∑

t=1

2−ctmtdd =

d
∑

t=1

(m

2c

)t

dd ≤ d

(

md

2c

)d

since m ≥ 2c. Replacing in (14), we get µ(B) ≤ d
(

md
2cm0

)d

. �

Corollary 5.3 Assume that m ≥ 2c and d ≥ 1. If µ be a π-symmetric (d, π)-wise independent

probability distribution on {0, 1}n, then bias(µ) ≤ 2
(

8
√
dm

2c−1

)d

.

Proof: Let 1 ≤ t ≤ m. If t ≤ d, then biast(µ) = 0 since µ is (d, π)-wise independent. Assume that

t > d. By Corollary 4.3, biast(µ) = EµK(m,c)
t . Let m0 be an integer such that 1 ≤ m0 ≤ m/2.

Thus,

|biast(µ)| ≤ maxm
w=m−m0

|K(m,c)
t (w)| + µ(w : w < m−m0),

since |K(m,c)
t (w)| ≤ 1 for all 0 ≤ w ≤ m. Applying Lemmas 5.1 and 5.2, we obtain

|biast(µ)| ≤ 4m
2
0/m

(

2m0

2c − 1

)t

+ d

(

md

2cm0

)d

≤ 4m
2
0/m

(

2m0

2c − 1

)d

+ d

(

md

2cm0

)d

since t > d. Note that the bound trivially holds if 2m0

2c−1 > 1 since 4m
2
0/m ≥ 1, and accordingly

the RHS is larger than 1. While the first term 4m
2
0/m

(

2m0

2c−1

)d

improves as m0 decreases, the

second term d
(

md
2cm0

)d

improves as m0 increases. Setting m0 = ⌊
√
dm⌋ makes both terms at
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most
(

8
√
dm

2c−1

)d

, and hence |biast(µ)| ≤ 2
(

8
√
dm

2c−1

)d

. To verify this, use the inequalities
√
dm/2 ≤

m0 ≤
√
dm. We have 4m

2
0/m

(

2m0

2c−1

)d

≤ 4(
√
dm)2/m

(

2
√
dm

2c−1

)d

=
(

8
√
dm

2c−1

)d

. On the other hand,

d
(

md
2cm0

)d

≤ d
(

md
2c

√
dm/2

)d

= d
(

2
√
md
2c

)d

≤
(

8
√
dm

2c−1

)d

since d ≤
(

4×2c

2c−1

)d

, for all d ≥ 1.

Finally, we note that the conditions m0 ≤ m/2 can be ignored since if m0 > m/2, then
√
md > m/2, hence 2

(

8
√
dm

2c−1

)d

> 2
(

4m
2c−1

)d

> 1 (since m ≥ 2c), which makes the corollary

claim trivial.
�

6 The limited independence polytope

Definition 6.1 Given d ≥ 1, let P
(m,c)
d ⊂ R

{0,1}n

be the convex polytope of (d, π)-wise inde-
pendent π-symmetric probability distributions µ on {0, 1}n such that µ(Fπ = 1) = 0.

Note that the defining constraints of P
(m,c)
d are:

• µ ≥ 0

• ∑x µ(x) = 1,

• µ(x) = 0, for each x ∈ {0, 1}n such that Wπ(x) = m,

• ∑x µ(x)X z(x) = 0, for each nonzero z ∈ {0, 1}n such that Wπ(z) ≤ d.

The bound on the bias in Corollary 5.3 improves as d increases. We estimate in this section

the maximum d such that P
(m,c)
d is nonempty. Since a π-symmetric distribution µ is uniquely de-

termined by its corresponding distribution µ on [0 : m], it is enough to study the low dimensional

version P
(m,c)
d := {µ : µ ∈ P

(m,c)
d } ⊂ R

m+1 of the polytope P
(m,c)
d .

We derive in Lemma 6.2 a low-degree polynomial characterization of the dual of P
(m,c)
d . Using

this characterization, we estimate in Lemma 6.3 the maximum d such that P
(m,c)
d is nonempty.

Lemma 6.2 Let d ≥ 0 be an integer. Then P
(m,c)
d 6= ∅ if and only if for each polynomial

f(x) ∈ R[x] such that

• deg(f) ≤ d,

• f(m) = 1, and

• f(w) ≤ 0, for w = 0, . . . ,m− 1,

we have Ew∼binm,c
f(w) ≤ 0.

Proof: We will work with P
(m,c)
d since P

(m,c)
d 6= ∅ iff P

(m,c)
d 6= ∅. By Corollary 4.3, P

(m,c)
d is the

convex polytope consisting of γ : [0 : m] → R such that:

a) γ ≥ 0,

b)
∑m

w=0 γ(w) = 1,

c) γ(m) = 0,

d) EγK(m,c)
t = 0, for t = 1, . . . , d.

Recall from Lemma 4.4, that the Krawtchouk polynomial K(m,c)
t has degree t. Hence the poly-

nomials {K(m,c)
t (x)}dt=0 form a basis of the set of polynomials in R[x] of degree at most d. Recall

also from (11) that Ebinm,c
K(m,c)

t = 0 for t = 1, . . . ,m. It follows that constraints (b) and (d)
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are equivalent to: Ew∼γw
t = Ew∼binm,c

wt for t = 0, . . . , d. Accordingly, P
(m,c)
d 6= ∅ is equivalent

to L = 0, where L is the Linear Program given below with its dual D:

L = min γ(m) D = max
∑d

t=0 at(
∑m

w=0 binm,c(w)w
t)

where γ : [0 : m] → R is subject to: where a0, a1, . . . , ad ∈ R are subject to:

γ(w) ≥ 0, for w = 0, 1, . . . ,m
∑d

t=0 atm
t ≤ 1

∑m
w=0 γ(w)w

t =
∑m

w=0 binm,c(w)w
t, for t = 0, . . . , d

∑d
t=0 atw

t ≤ 0, for w = 0, 1, . . . ,m− 1

Since L = D (because L and D are feasible and bounded), we get P
(m,c)
d 6= ∅ iff for each

polynomial f(x) ∈ R[x] such that (i) deg(f) ≤ d, (ii) f(m) ≤ 1, and (iii) f(w) ≤ 0, for
w = 0, . . . ,m− 1, we have (iv) Ew∼binm,c

f(w) ≤ 0. To complete the proof, we note that (ii) can
be replaced with the condition f(m) = 1. If f(m) ≤ 0, then (iv) holds trivially. If 0 < f(m) < 1,
we can scale f(x) by 1/f(m) while preserving (i), (iii), and the sign of Ew∼binm,c

f(w). �

Lemma 6.3 Assume that 200 × 2c ≤ m ≤ 22c and m divisible by 2c+1. Let d0 = ⌊ 1
4
m
2c ⌋, then

P
(m,c)
d0

6= ∅.

Proof: First note that d0 ≥ 50 since 200×2c ≤ m. Let d ≥ 50 be an integer such that m/2c ≥ 4d
and let f(x) ∈ R[x] be a polynomial of degree at most d such that f(m) = 1 and f(w) ≤ 0 for
w = 0, . . . ,m− 1. By Lemma 6.2, it is enough to show that Ebinm,c

f ≤ 0.
The polynomial f(x) takes positive values on the discrete interval [0 : m] only at x = m.

Hence to establish the lemma, it is enough to find a single integer value x0 ∈ [0 : m − 1] such
that

|f(x0)| ×
binm,c(x0)

binm,c(m)
≥ 1. (15)

Since f(m) = 1, the existence of x0 implies that

Ebinm,c
f ≤ binm,c(m)f(m)− binm,c(x0)|f(x0)| ≤ 0.

The intuition behind the existence of x0 is that the binomial distribution binm,c is concentrated
around its mean m− m

2c , hence binm,c(m) is much smaller than binm,c(x) when x is close to the
mean. To ensure (15), will find x0 such that x0 is close enough to the mean and |f(x0)| is large
enough. The key is the following lemma.

Lemma 6.4 Let d ≥ 5 be an integer and 0 < a < b be integers such that b − a > 2d. If g(z) is
a real polynomial of degree at most d such that g(0) = 1, then there exists an integer a ≤ x0 ≤ b

such that |g(x0)| ≥ 3
d

(

b−a−2d
2eb

)d
.

Proof of Lemma 6.4. The idea of this proof is based on Chebyshev alternating signs technique
which is classically used in conjunction with Chebyshev polynomials [Che66]. Our approach was
motivated by the work of Linial and Nisan [LN90] who used Chebyshev polynomials to solve a
related optimization problem. Chebyshev polynomials are not directly applicable to our problem
since we are interested in an integer point x0. We construct below alternating polynomials which
suit the discrete nature of our problem.

Lemma 6.5 If d ≥ 5 and 0 < a < b are integers such that b − a > 2d, then there exist d + 1
integer points a ≤ A1 < A2 < . . . < Ad+1 ≤ b and a degree-d polynomial g∗(z) ∈ R[z] such that:

• g∗(0) = 1

• sign(g∗(Aj)) = −sign(g∗(Aj+1)), for j = 1, . . . , d

• |g∗(Aj)| ≥ 3
d

(

b−a−2d
2eb

)d
, for j = 1, . . . , d+ 1.
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The proof of Lemma 6.5 is in Section 6.1. Let g(z) be a polynomial of degree at most d such that

g(0) = 1. We argue by contradiction that |g(Aj)| ≥ 3
d

(

b−a−2d
2eb

)d
for some 1 ≤ j ≤ d+1. Assume

the opposite and consider the polynomial e(z) = g∗(z) − g(z). Since |g∗(Aj)| > |g(Aj)| for all
1 ≤ j ≤ d+ 1, e(Aj) has the same sign as g∗(Aj). Therefore, between A1 and Ad+1, e changes
sign at least d times and hence has at least d zeros on this interval. But e(0) = g∗(0)− g(0) = 0,
hence e(z) has at least d + 1 zeros. It follows that the degree of e(z) is at least d + 1, which
which is not possible since it is the difference of two polynomials each of degree at most d. H

We apply Lemma 6.4 to the polynomial q(z) = f(m − z) whose degree is at most d, hence
q(0) = 1 since f(m) = 1. We would like to bound |f(x)| on an interval centered around the
mean m−m/2c of binm,c. This interval should be neither too narrow (otherwise the maximum
of |f(x)| might be too small) nor too wide (otherwise it might include points that are so far from
the mean that their probability is too low). Let ρ = m/2c+1, thus the mean of binm,c is m− 2ρ.
We choose the interval [m − 3ρ : m − ρ] of width 2ρ = m/2c, hence a = ρ and b = 3ρ. Note
that the requirements b − a > 2d (i.e., m/2c > 2d) and d ≥ 5 in Lemma 6.4 follow respectively
from the stronger conditions m/2c ≥ 4d and d ≥ 50. By Lemma 6.4, there exists an integer
x0 ∈ [m− 3ρ : m− ρ] such that

|f(x0)| ≥
3

d

(

ρ− d

3eρ

)d

. (16)

To verify (15), we still have to establish a lower bound on binm,c(x0)/binm,c(m).

Lemma 6.6 Assume that 200 × 2c ≤ m ≤ 22c and m divisible by 2c+1 and let ρ = m/2c+1.
Then for each integer m− 3ρ ≤ x ≤ m− ρ, we have binm,c(x)/binm,c(m) ≥ 5ρ.

The proof of Lemma 6.6 is in Section 6.2. Combining with (16), we get that to guarantee (15),
it is enough to satisfy

3

d

(

ρ− d

3eρ

)d

5ρ ≥ 1.

Since m/2c ≥ 4d, i.e., ρ ≥ 2d, we have

3

d

(

ρ− d

3eρ

)d

5ρ ≥ 3

(ρ/2)

(

1

6e

)ρ/2

5ρ =
3

(ρ/2)

(

25

6e

)ρ/2

≥ 1

since 3
x

(

25
6e

)x ≥ 1 for all x ≥ 1. �

6.1 Proof of Lemma 6.5

Let r = ⌊ b−a
2d ⌋ and consider the points A1 = a,A2 = a + 2r, . . . , Ad+1 = a + 2dr and B1 =

a + r, B2 = a + 3r, . . . , Bd = a + (2d − 1)r. Thus r ≥ 1 since b − a > 2d and a = A1 < B1 <
A2 < B2 . . . < Bd < Ad+1 ≤ b. Define the degree-d polynomial

G∗(z) :=
d
∏

i=1

(z −Bi).

The polynomial G∗ changes signs d times in the interval [a, b], namely, for j = 1, . . . , d,

sign(G∗(Aj)) = −sign(G∗(Aj+1)). Let g∗(z) = G(z)
G(0) so that g∗(0) = 1. We will argue below

that
|G∗(Aj)| ≥ |G∗(A⌈ d+1

2 ⌉)| for j = 1, . . . , d+ 1, (17)

and

|G∗(A⌈ d+1
2 ⌉)| ≥

3

d

(

b− a− 2d

2e

)d

if d ≥ 5. (18)
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Since |G∗(0)| =∏d
i=1 |Bi| ≤ bd, we get |g∗(Aj)| ≥ 3

d

(

b−a−2d
2eb

)d
for j = 1, . . . , d+1. We still have

to verify (17) and (18).

Proof of (17): We have G∗(Aj) =
∏d

i=1(Aj − Bi) =
∏j−1

i=1 (Aj − Bi)
∏d

i=j(Aj − Bi). Since
Aj −Bi = (2(j − i)− 1)r, we get

|G∗(Aj)| = rd

(

j−1
∏

i=1

(2i− 1)

)(

d−j+1
∏

i=1

(2i− 1)

)

.

The ratio
|G∗(Aj+1)|
|G∗(Aj)| = 2j−1

2d−2j+1 is strictly less that 1 for 1 ≤ j < d+1
2 , and strictly greater than

1 for d+1
2 < j ≤ d. Hence |G∗(Aj)| achieves its minimum at j = ⌈d+1

2 ⌉.

Proof of (18): First note that for all t ≥ 1,
∏t

i=1(2i−1) ≥∏t−1
i=1 2i = 2t−1(t−1)!. We consider

two cases according to the parity of d. If d is even, ⌈d+1
2 ⌉− 1 = d

2 and d− ⌈d+1
2 ⌉+1 = d

2 , hence

|G∗(A⌈ d+1
2 ⌉)| =





d/2
∏

i=1

(2i− 1)





2

rd ≥
(

2d/2−1(d/2− 1)!
)2

rd.

We use Stirling approximation: x! ≥
√
2πx(x/e)x, for x ≥ 1 (d/2− 1 ≥ 1 since d ≥ 4).

|G∗(A⌈ d+1
2 ⌉)| ≥

(

2
d−2
2

√

2π(d/2− 1)

(

d− 2

2e

)
d−2
2

)2

rd =
πe2

d− 2

(

1− 2

d

)d (
d

e

)d

rd ≥ 3

d

(

d

e

)d

rd

for all d ≥ 5. If d is odd, ⌈d+1
2 ⌉ − 1 = d−1

2 and d− ⌈d+1
2 ⌉+ 1 = d+1

2 , hence

|G∗(A⌈ d+1
2 ⌉)| =





d−1
2
∏

i=1

(2i− 1)





2

drd ≥
(

2
d−3
2

(

d− 3

2

)

!

)2

drd.

Using Stirling approximation (with x = (d− 3)/2 ≥ 1 for d ≥ 5), we get

|G∗(A⌈ d+1
2 ⌉)| ≥

(

2
d−3
2

√

2π
d− 3

2

(

d− 3

2e

)
d−3
2

)2

drd =
πe3d

(d− 3)2

(

1− 3

d

)d(
d

e

)d

rd ≥ 3

d

(

d

e

)d

rd

for all d ≥ 5. It follows that in both cases

|G∗(A⌈ d+1
2 ⌉)| ≥

3

d

(

d

e

)d ⌊
b− a

2d

⌋d

≥ 3

d

(

d

e

)d (
b− a

2d
− 1

)d

=
3

d

(

b− a− 2d

2e

)d

.

6.2 Proof of Lemma 6.6

The binomial distribution binm,c achieves its minimum on the interval [m− 3ρ : m− ρ] at one
of its extremities since its mean m− 2ρ belongs to the interval. Thus it is enough to establish a
lower bound on binm,c(m− βρ)/binm,c(m) for β = 1, 3. We have

binm,c(m− βρ)

binm,c(m)
=

1
2cm

(

m
βρ

)

(2c − 1)m−βρ

1
2cm (2c − 1)m

=
1

(2c − 1)βρ

(

m

βρ

)

≥ 1

2cβρ
(m− βρ)

βρ

(βρ)!
.

Using Stirling Approximation (x! ≤ exx+1/2e−x for x ≥ 1), we get

binm,c(m− βρ)

binm,c(m)
≥

(

m−βρ
2c

)βρ

e
√
βρ (βρ)

βρ
e−βρ

=
(1 − β

2c+1 )
βρ(2e/β)βρ

e
√
βρ

≥ (1− 3
2c+1 )

3×2c−1

(2e)ρ

e
√
3ρ
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because ρ = m/2c+1 ≤ 2c−1 (since m ≤ 22c) and (2e/3)3 > 2e. Since (1 − 3
2c+1 )

3×2c−1 ≥ 1/64
for c ≥ 1 and since 2e > 5, we obtain

binm,c(m− βρ)

binm,c(m)
≥ (2e)ρ

64e
√
3ρ

≥ 5ρ

for ρ ≥ 100, i.e, m/2c ≥ 200.

7 Concluding the proof

In this section, we conclude the proof of Theorems 1.4 and 1.7 and we verify the dual propositions
stated in Corollaries 1.6 and 1.8.

7.1 Proof of Theorem 1.4

The following follows from Lemma 6.3 and Corollary 5.3.

Corollary 7.1 Let 0 < β < 1/2 be an absolute constant. Assume that 200 ≤ m
2c ≤ 2βc and 2c+1

divides m. Then there exists a probability distribution µ on {0, 1}n such that µ(Fπ = 1) = 0 and
bias(µ) = 2−Ω(log(m) m

2c ).

Proof: By Lemma 6.3, P
(m,c)
d0

6= ∅, where d0 = ⌊ 1
4
m
2c ⌋. Let µ ∈ P

(m,c)
d0

. Thus µ is π-symmetric,

(d0, π)-wise independent, and µ(Fπ = 1) = 0. By Corollary 5.3, bias(µ) ≤ 2
(

8
√
d0m

2c−1

)d0

=

2−Ω(( c
2−log m

2c ) m
2c ). Since m

2c ≤ 2βc, we have c
2 − log m

2c ≥ (12 − β)c ≥ 1/2−β
1+β logm = Ω(logm). �

We have p = (1 − 2−c)m = 2−Θ(m/2c), hence m
2c = Θ(log 1

p ). The condition m
2c ≤ 2βc is

equivalent to m
2c ≤ mβ/(1+β). Set β = 0.43, thus β/(1 + β) > 0.3006, and hence the condition

m
2c ≤ 2βc is guaranteed by p > 2−m0.3006

form large enough. The condition 200 ≤ m
2c is equivalent

to p less than some positive constant for m large enough.
Finally, we get rid of the requirement that 2c+1 divides m. Let G be the formula resulting

from F by removing clauses to guarantee the divisibility requirement. Let m′ be the number
of clauses of G and p′ be its probability of acceptance under the uniform distribution. Apply
Corollary 7.1 to G, extend µ to the variables of F by adding uniformly random bits, and let µ′

be the resulting distribution. We have bias(µ′) = bias(µ) = 2−Ω(log(m′)m′

2c ) and Prµ′ [F = 1] = 0
since Prµ[G = 1] = 0. The number of removed clauses is at most 2c+1−1, thus m = Θ(m′) (since

m ≥ 200 × 2c) and p = Θ(p′) (p(1− 2−c)2
c+1−1 ≤ p′ ≤ p), which do not affect the asymptotic

statements.

7.2 Proof of Theorem 1.7

Theorem 1.7 follows from Corollary 5.3. Assume that 200× 2c ≤ m ≤ 22c and 2c+1 divides m.
Then there exists a π-symmetric (d0, π)-wise independent probability distribution µ on {0, 1}n
such that µ(Fπ = 1) = 0 and d0 = ⌊ 1

4
m
2c ⌋. In terms of p = 2−Θ(m/2c), we have d0 = Θ(log 1

p ).

Moreover, the condition m ≤ 22c is equivalent to m
2c ≤ √

m, hence it is guaranteed by the

requirement p = 2−o(
√
m) for m large enough. The condition 200 ≤ m

2c is equivalent to p less
than some positive constant for m large enough. Finally, we get rid of the requirement that
2c+1 divides m by arguing as above. Construct the formula G as above and define m′ and p′

accordingly. Apply Corollary 5.3 to G and construct µ′ from µ as above by adding uniformly
random bits. Thus µ′ is (⌊ 1

4
m′

2c ⌋, π)-wise independent, Prµ′ [F = 1] = 0, m = Θ(m′), and
p = Θ(p′).
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7.3 Proof of Corollary 1.6

Let µ be the the probability distribution exhibited in Theorem 1.4. Assume without loss of
generality that EUflow = 1. We have µ(x) = 0 for each x ∈ {0, 1}n such that F (x) = 1,
and flow(x) ≤ 0 for each x ∈ {0, 1}n such that F (x) = 0. Thus Eµflow ≤ 0. Consider the

Fourier expansion of flow: flow(x) = 1 +
∑

z 6=0 f̂low(z)X z(x) (EUflow = 1). Thus 0 ≥ Eµflow ≥
1 − δ

∑

z 6=0 |f̂low(z)| since |EµX z| ≤ δ for each z 6= 0 because µ is δ-biased. It follows that
∑

z 6=0 |f̂low(z)| ≥ 1/δ, and hence ‖f̂low‖1 ≥ 1/δ + 1.

7.4 Proof of Corollary 1.8

Let µ be the the probability distribution exhibited in Corollary 1.7. By arguing as above, we
have Eµplow ≤ 0. Consider the Fourier expansion of plow on {0, 1}n: plow(x) = EUplow +
∑

z 6=0 p̂low(z)X z(x). Thus Eµplow = EUplow +
∑

z 6=0 p̂low(z)EµX z(x). Since Eµplow ≤ 0 and
EUplow > 0, we must have

∑

z 6=0 p̂low(z)EµX z(x) 6= 0. Since µ is (d0, π)-wise independent,
EµX z(x) = 0 for each nonzero z of π-weight less than or equal to d0. Thus p̂low(z) 6= 0 for some
z of π-weight greater than d0, i.e., plow has a monomial whose variables appear in more than
d0 = Θ(log 1

p ) clauses.

8 Open problem

A natural extension of the small bias property is from mod 2 to mod M gates. Let M ≥ 2
be an integer. Call a probability distribution µ on {0, 1}n (δ,M)-biased [MZ09, LRTV09] if

|Ex∼µξ
〈x,a〉
M − Ex∈{0,1}nξ

〈x,a〉
M | ≤ δ, for each nonzero a ∈ Z

n
M , where ZM is the additive group

modulo M , ξM = e2πi/M , and 〈x, a〉 =∑n
i=1 xiai.

Is the above extension of small bias enough to construct hitting sets for read-once CNF
formulas? We believe that the answer is no.

One way to verify this claim is to extend Corollary 5.3. Let F be a read-once CNF formula
with m clauses each of size c. Consider the simple case when the probability of acceptance of the
read-once CNF formula F is n−Θ(1), thus c = logm− logΘ(logm). We established in Lemma 6.3
the existence of a π-symmetric (d, π)-wise independence distribution µ such that d = Θ(logn)
and no element in the support of µ satisfies F 5. In Corollary 5.3, we argued that since (i) µ is

π-symmetric and (ii) µ is (d, π)-wise independent, then µ is 2−Ω(log2 n)-biased.
Conditions (i) and (ii) are not particularly related to mod 2 gates. Is µ a (n−ω(1),M)-biased?

for M = O(1)? for larger values of M? We believe that the answer is yes.
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Appendix

A Proof of Lemma 3.1

Lemma 3.1 If µ is a probability distribution on {0, 1}n such that µ(Fπ = 1) = 0, then there
exists a π-symmetric probability distribution µ∗ on {0, 1}n such that µ∗(Fπ = 1) = 0 and
bias(µ∗) ≤ bias(µ).

Proof: Let G ⊂ GLn(F2) be the group of n × n invertible π-block permutation matrices over
F2, i.e., G consists of the invertible n× n matrices T over F2 such that: ∀j1 ∈ [m], ∃ a unique
j2 ∈ [m] such that ∀j3 6= j2 ∈ [m], we have Ti1,i3 = 0, ∀i1 ∈ π(j1) and i3 ∈ π(j3).

For T ∈ G, define the probability distribution µT on {0, 1}n as µT (x) := µ(Tx). Symmetrize
µ by averaging: define the probability distribution µ∗ on {0, 1}n as µ∗(x) := ET∈GµT (x). The
key points are:

i) Wπ(x) = Wπ(Tx), ∀x ∈ F
n
2 and ∀T ∈ G

ii) Conversely, ∀x, y ∈ F
n
2 such that Wπ(x) = Wπ(Tx), ∃T ∈ G such that y = Tx

iii) bias(µT ) = bias(µ) for each T ∈ G since the matrices in G are invertible. This follows
from the fact that biasz(µT ) = biasT−1∗z(µ), where

∗ is the transpose operator 6.

It follows from (i) that µT (Fπ = 1) = 0 since µ(Fπ = 1) = 0 for each T ∈ G. Hence µ∗(Fπ =
1) = 0. The fact that µ∗ is π-symmetric follows from (ii).

Finally, for each z ∈ {0, 1}n, we have biasz(µ
∗) = ET∈Gbiasz(µT ), hence |biasz(µ∗)| ≤

maxT∈G |biasz(µT )|. Therfore, it follows from (iii) that bias(µ∗) ≤ maxT∈G bias(µT ) = bias(µ).
�

6Since 〈T−1x, z〉 = 〈x, T−1∗z〉, we have
∑

x
µ(Tx)(−1)〈x,z〉 =

∑
x
µ(x)(−1)〈T

−1x,z〉 =
∑

x
µ(x)(−1)〈x,T

−1∗
z〉.

20

 

ECCC                 ISSN 1433-8092 

http://eccc.hpi-web.de 


