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Abstract. We introduce strong, and in many cases optimal, lower bounds for the number of queries
required to nonadaptively test three fundamental properties of functions f : [n]d → R on the hypergrid:
monotonicity, convexity, and the Lipschitz property.
Our lower bounds also apply to the more restricted setting of functions f : [n]→ R on the line (i.e., to
hypergrids with d = 1), where they give optimal lower bounds for all three properties. The lower bound
for testing convexity is the first lower bound for that property, and the lower bound for the Lipschitz
property is new for tests with 2-sided error.
We obtain our lower bounds via the connection to communication complexity established by Blais,
Brody, and Matulef (2012). Our results are the first to apply this method to functions with non-
hypercube domains. A key ingredient in this generalization is the set of Walsh functions, an orthonormal
basis of the set of functions f : [n]d → R.

1 Introduction

We consider the problem of testing properties of functions over the hypergrid3: given oracle access to a
function f : [n]d → R, for some (finite or infinite) set R ⊆ R, and given a property P of functions mapping
[n]d to R, what is the minimum number of queries to f that a randomized algorithm must make to distinguish
with high probability between the case where f has the property P from the case where f is far4 from having
the same property? We focus on nonadaptive tests—algorithms that must fix all their queries before observing
the value of the function on any of the queried inputs.

The problem of testing properties of functions has been studied extensively (see, for example, the sur-
veys [21,22] and the book [12]), but most of this research has been restricted to functions f : [n] → R on
the line and to functions f : {0, 1}d → R on the hypercube. (These classes of functions correspond to the
special cases of the hypergrid where d = 1 and n = 2, respectively.) The purpose of the current research is
to generalize tools developed in these more specialized settings to improve our understanding of property
testing of functions with general hypergrid domains. In particular, we show for the first time how the connec-
tion with communication complexity established in [3] can be applied to obtain lower bounds on functions
with non-hypercube domains. We then use this method to obtain significantly stronger, and in many cases
optimal, lower bounds on the number of queries required to nonadaptively test three of the most fundamental
properties of functions on the hypergrid: monotonicity, convexity, and the Lipschitz property.

Monotonicity. The function f : [n]d → R is monotone if for any two inputs (x1, . . . , xn), (y1, . . . , yn) ∈ [n]d

that satisfy x1 ≤ y1, . . . , xn ≤ yn, the function f satisfies f(x1, . . . , xn) ≤ f(y1, . . . , yn).
Monotonicity testing is a classic problem in property testing that has been studied extensively for func-

tions on the line [9,10], on the hypercube [13,8,11,3,6,5], on general partially ordered set domains [11], and
on hypergrid domains as well: Dodis et al. [8] showed that we can test whether f : [n]d → [r] is monotone
with O(d log n log r) queries. Ailon and Chazelle [1] gave an alternative algorithm with the incomparable

3 We use [n] to denote the set {1, 2, . . . , n}.
4 See Section 2 for the formal definitions. For the purposes of this introduction, we say that f is far from having the

property P if we need to modify the value of f on a constant fraction of its inputs to turn it into a function that
does satisfy P.
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Functions on the hypergrid

Our lower bounds Previous lower bounds Upper bounds

Monotonicity Ω(d logn) Ω(d) (adaptive, n = 2) [3] O(d logn) [6]

Convexity Ω(d logn) — —

Lipschitz Ω(d logn) Ω(d) (adaptive, n = 2) [15] O(d logn) [6]

Functions on the line

Our lower bounds Previous lower bounds Upper bounds

Monotonicity Ω(min{log r, logn}) Ω(min{log r, logn}) (1.-s. err.) [9]
O(logn) [9]

Ω(logn) (adaptive, r � n) [9,10]

Convexity Ω(logn) (r = Ω(n2)) — O(logn) [17]

Lipschitz Ω(min{log r, logn}) Ω(min{log r, logn}) (1-s. err.) [15] O(logn) [15]

Table 1. Query complexity bounds for testing properties of the function f : [n]d → Z (top) and of the function
f : [n]→ [r] (bottom). All the bounds are for nonadaptive tests with two-sided error unless marked otherwise.

query complexity O(d2d log n). Very recently, Chakrabarty and Seshadhri [6] improved on both these results
by showing that O(d log n) queries are sufficient for the task.

Prior to this work, however, the only known query complexity lower bounds for the problem of testing
whether the function f : [n]d → Z is monotone were for two special cases: When n = 2, (i.e., for the
hypercube), we know thatΩ(d) queries are required to test monotonicity [3] and that this bound is optimal [5].
And when d = 1 and r is large enough, we know that Θ(log n) queries are both necessary and sufficient for
testing monotonicity [9,10].

We give the first lower bound for testing monotonicity of functions on general hypergrid domains. Fur-
thermore, the bound that we obtain is optimal for nonadaptive tests, since it matches the upper bound of
Chakrabarty and Seshadhri [6].

Theorem 1.1. Fix ε ∈ (0, 18 ]; m, r ∈ N. Let n = 2m. Any nonadaptive ε-test for monotonicity of functions
f : [n]d → [nd] must make Ω(d log n) queries.

The special case d = 1 of the theorem also gives the first nontrivial lower bound on the query complexity
of two-sided error monotonicity tests for functions f : [n]→ [r] on the line when r is subexponential in n.5

Convexity. The function f : [n]d → R is convex if for all x, y ∈ [n]d and all ρ ∈ [0, 1] such that ρx+(1−ρ)y ∈
[n]d, the function f satisfies f(ρx+ (1− ρ)y) ≤ ρf(x) + (1− ρ)f(y).

Convexity testing is another classic problem in property testing. This problem was first studied by Parnas,
Ron, and Rubinfeld [17], who showed that we can test if f : [n]→ R is convex with O(log n) queries. In the
same paper, they proposed two open problems: to understand the testing of closely-related properties, and
to examine the problem of testing convexity in the setting of functions f : [n]d → R on the hypergrid. While
there has been much work on the first open problem—including results on testing submodularity [24,20],
convexity of images [19], and convexity of geometric sets in Rd [18]—our lower bound represents the first
progress on the study of testing convexity on the hypergrid.

Theorem 1.2. Fix ε ∈ (0, 18 ]; m, r ∈ N. Let n = 2m. Any nonadaptive ε-test for convexity of functions
f : [n]d → R must make Ω(d log n) queries.

5 Strictly speaking, our result gives the first lower bound in the two-sided error model for any finite r, but the
Ramsey theory arguments of Fischer [10] can be extended to finite ranges when r is large enough.
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We also prove a matching lower bound for separate convexity, a closely-related (but weaker) property of
functions on hypergrids (see Definition 4.8). Our results also hold for testing concavity.

The special case of our lower bound for d = 1 gives the first lower bound for testing convexity on the line.6

This lower bound matches the query complexity of the nonadaptive test of Parnas, Ron, and Rubinfeld [17],
showing that their algorithm and our lower bound are both optimal.

Lipschitz property. The function f : [n]d → R is Lipschitz if for any two inputs (x1, . . . , xn), (y1, . . . , yn) ∈
[n]d, the function f satisfies |f(x1, . . . , xn)− f(y1, . . . , yn)| ≤

∑n
i=1 |xi − yi|.

The problem of testing the Lipschitz property on functions with hypergrid domains has applications to
data privacy and program checking [15,7]. Notably, Dixit et al. [7] have used Lipschitz testers to construct
privacy testers. Motivated by these applications, Jha and Raskhodnikova [15] initiated the study of testing
whether functions are Lipschitz. They showed that testing if a function f : {0, 1}d → [r] is Lipschitz can
be done with O(min{d2, dr}) queries, that testing f : [n] → [r] for the same property can be done with
O(log min{n, r}) queries, and that the latter bound is optimal for nonadaptive tests with one-sided error.
Awasthi et al. [2] gave the first algorithms for testing the Lipschitz property for functions f : [n]d → [r]
on the hypergrid, showing that O(min{d3/2n log n, dr log r, dr log n}) queries suffice for the task. Finally,
Chakrabarty and Seshadhri [6] improved this bound for arbitrary ranges by showing that O(d log n) queries
suffice for testing whether f : [n]d → R is Lipschitz.

We give the first lower bound for testing the Lipschitz property for functions with hypergrid domains.

Theorem 1.3. Fix ε ∈ (0, 18 ]; m, r ∈ N. Let n = 2m. Any nonadaptive ε-test for the Lipschitz property of
functions f : [n]d → [R], where R = Ω(dn) must make Ω(d log n) queries.

The lower bound in the theorem is optimal: it shows that no nonadaptive test can improve on the query
complexity of Chakrabarty and Seshadhri’s test in the hypergrid setting. The special case of the theorem
when d = 1 is also optimal; showing that the algorithm of Jha and Raskhodnikova for the line is optimal,
even if we allow two-sided error.

Our techniques. We obtain our lower bounds by exploiting the connection between property testing
and communication complexity discovered in [3]. This connection, which we describe in Section 2, gives a
method for establishing reductions between property testing problems and (a special class of) communication
problems. These reductions then let us build on the rich body of work in communication complexity to prove
lower bounds in property testing. This approach has been particularly successful in establishing lower bounds
for testing properties of functions over the hypercube [3,4,15], but until the present work it had yet to be
applied to functions over other domains.

One important reason why the previous lower bounds were restricted to properties of functions over the
hypercube is that a key ingredient in all these proofs is the use of parity functions—the set of functions
χS : {0, 1}d → {0, 1}, S ⊆ [d], defined by χS(x) =

∑
i∈S xi (mod 2). These functions form an orthonormal

basis for the set of functions mapping {0, 1}n to R, a fact that is exploited in the reductions.
We prove our lower bounds for functions with hypergrid domains by replacing the use of parity functions

with Walsh functions, a set of functions that forms an orthonormal basis of the functions mapping [n]d to
R. These functions offer different challenges in the construction of reductions and their analysis, but the
resulting lower bounds are as clean and natural as the ones obtained for functions on the hypercube.

Remarks on adaptivity. All the lower bounds introduced in this paper are for nonadaptive tests—that
is, tests that must fix all their queries in advance, before observing the value of the function on any of
the inputs that are queried. Interestingly, all the best known upper bounds on the query complexity of
testing monotonicity, convexity, or the Lipschitz property (for functions over any domain) are achievable with
nonadaptive tests and nearly all the lower bounds for testing these properties only apply to nonadaptive

6 One might ask whether the lower bound for testing monotonicity on the line immediately implies a matching lower
bound for testing convexity. It does not, and while it is certainly possible that a direct argument showing this
implication exists, this argument would certainly not be trivial (c.f. [24]).
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tests. In fact, apart from the result in [3], the only lower bound for monotonicity testing that applies to
adaptive tests is obtained via an intricate argument of Fischer [10] that uses deep results in Ramsey theory
to show that adaptivity cannot help in this setting.

In light of this general phenomenon, our results suggest two promising directions for future research: if one
believes that the upper bounds can be improved in general, then our lower bounds imply that a completely
new algorithmic approach which critically makes use of adaptivity will be required; conversely, if one believes
that adaptivity does not help for these testing problems, then the proof of this statement will probably lead
to a better understanding of the role of adaptivity in property testing and stronger connections between
property testing and Ramsey theory or other areas of combinatorics.

Organization. The basic definitions and facts for property testing and communication complexity are
introduced in Section 2. In Section 3, we prove our lower bounds for functions on the line; the more general
lower bounds for functions with hypergrid domains are presented in Section 4.

2 Preliminaries

Property testing. The basic property testing definitions are as follows. For a more thorough introduction
to the area, we recommend [21,22].

Definition 2.1 (Relative distance to a property). Let P be a property (i.e., a set) of functions on a
domain D, with range R and consider a function f : D → R. The relative distance of f to the property is
the minimum over all functions g ∈ P of the fraction of points in D on which f and g differ. We say f is
ε-far from P if its relative distance from P is at least ε.

Definition 2.2 (Property test [14,23]). Fix ε ∈ (0, 1). A (two-sided error, adaptive) ε-test for a property
P is a randomized algorithm which, given oracle access to a function f , accepts with probability at least 2/3
if f ∈ P, and rejects with probability at least 2/3 if f is ε-far from P.

A test has one-sided error if it always accepts functions in P. It is nonadaptive if the queries to f do not
depend on the answers to the previous queries.

Communication complexity. In a (two-player) communication game C, Alice receives some input a, Bob
receives some input b, and they must compute the value of some function fC(a, b) on their joint input. A
protocol defines how Alice and Bob communicate. The maximum number of bits exchanged by Alice and
Bob during the execution of a protocol over the possible inputs a and b is the complexity of the protocol. A
randomized protocol is valid for fC if for every input, the protocol computes fC correctly with probability
at least 2/3. The communication complexity of fC is the minimum complexity of any protocol that is valid
for fC .

A number of different communication models have been extensively studied. We focus on the one-way
shared randomness model. In this model, the only communication allowed is directed from Alice to Bob.
Alice and Bob share access to a common source of randomness that can be used to determine the protocol.
The communication complexity of fC in the one-way shared randomness model is denoted RA→B(fC).

A fundamental function fC studied in the one-way shared randomness model is Augmented Index.
Alice’s input to this function is a set A ⊆ [t] while Bob’s input is an index i ∈ [t] and the set B = A∩ [i− 1].
The output of Augmented Index is 1 if i ∈ A and 0 otherwise. No randomized one-way communication
protocol for this function does significantly better than the näıve protocol where Alice communicates her
whole set to Bob.

Theorem 2.3 ([16]). The one-way communication complexity of Augmented Index in the shared ran-
domness model is RA→B(Augmented Index) = Θ(t).
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The connection between communication complexity and property testing is established via combining
operators. An operator ψ that takes as input a and b, the inputs of Alice and Bob, respectively, and outputs
a function h(x) = ψ[a, b](x) is called a one-bit one-way combining operator if for all x in the domain of h,
Bob can compute the value h(x) with only one bit of communication from Alice. Next we summarize the
conditions on the combining operator which are sufficient for a successful reduction from the Augmented
Index communication game to the problem of testing a given property.

Definition 2.4 (Reduction operator). Let t ∈ N be a parameter. A combining operator ψ[A, i,B] is called
a reduction operator for (the Augmented Index problem and) a property7 Pt and a value ε0 ∈ (0, 1) if it is
a one-bit one-way combining operator and the function h = ψ[A, i,B] satisfies the following two conditions
for all valid inputs A ⊆ [t], i ∈ [t] and B = A ∩ [i− 1] to Augmented Index:

1. If Augmented Index(A, i,B) = 0 then h ∈ Pt.
2. If Augmented Index(A, i,B) = 1 then h is ε0-far from Pt.

The following lemma is implicit in [3].

Lemma 2.5 (Reduction lemma). If there exists a reduction operator for (the Augmented Index prob-
lem and) a property Pt and a value ε0 ∈ (0, 1) then for all ε ∈ (0, ε0], every nonadaptive ε-test for Pt requires
Ω(t) queries.

Proof. To prove the lemma, we reduce the Augmented Index communication game to the problem of
ε-testing property Pt and then apply Theorem 2.3.

Let ψ[A, i,B] be a reduction operator. Consider a nonadaptive ε-test T for Pt that makes at most
q(t) queries for some ε ∈ (0, ε0]. Then the following protocol for Augmented Index uses q(t) bits of
communication from Alice to Bob. In this protocol, both players run the test T using shared randomness
to find out the positions x1, . . . , xq queried by the test. Since T is nonadaptive, they can run it on any
input of the right size. Then Alice sends to Bob q ≤ q(t) bits of information that Bob needs to compute
h(x1), . . . , h(xq), where h = ψ[A, i,B]. One bit per query point is sufficient because ψ is a one-bit one-way
combining operator. Bob answers the queries of T with h(x1), . . . , h(xq) and outputs 0 if T accepts and
1 otherwise. The correctness of the protocol for the cases when Augmented Index(A, i,B) is 0 and 1,
respectively, follows from the conditions 1 and 2 of Definition 2.4.

The reduction establishes that RA→B(Augmented Index) ≤ q(t). Consequently, by Theorem 2.3, the
query complexity of the test, q(t), is Ω(t). ut

3 Lower bounds on the line

We use two classes of functions on the domain [2m] (where8 m ∈ N) in the constructions that establish
the lower bounds on the query complexity for testing properties of functions on the line: step functions and
Walsh functions. Functions in both classes are constant on blocks of inputs in [2m], which we define next.

Definition 3.1 (Blocks). Let i ∈ {0, . . . ,m}. For k ∈ [2m−i], the kth block of length 2i is the set of integers
[2i(k − 1) + 1, . . . , 2ik]. We denote this block Bik.

Observe that blocks of length 2i partition [2m].

Definition 3.2 (Step functions). For i ∈ {0, . . . ,m}, the step function of block length 2i is the function
si : [2m]→ [2m−i] defined by si(x) = k, such that x ∈ Bik. (Equivalently, si(x) =

⌊
x−1
2i

⌋
+ 1.)

7 In our reductions, the integer t is used to parameterize the size of the domain of functions under consideration.
Specifically, for functions on the d-dimensional hypergrid domain [n]d, we set n = 2t/d.

8 The parameter m is set to t in the application of the reduction lemma (Lemma 2.5) to testing functions on the
line; in the case of d-dimensional hypergrids, it is set to t/d.
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The step functions of block length 2i are constant on each block Bik. Walsh functions indexed by i, which
we define next, are equal to 1 on the first half of each block Bik and to -1 on the second half. In other words,
whether they take the value 1 or -1 on input x is determined by the ith bit of the binary representation of
x− 1, denoted by biti(x− 1), where the bits are numbered starting from the least significant.

Definition 3.3 (Walsh functions). For i ∈ [m], let wi : [2m] → {−1, 1} be the function defined by
wi(x) = (−1)biti(x−1). For any S ⊆ [m], Walsh function wS : [2m]→ {−1, 1} corresponding to S is wS(x) =∏
i∈S wi(x). (If S = ∅ then wS(x) = 1 for all x.)

Also, we define wm+1(x) = 1. (This is needed only in one of the proofs).

For two functions u,w we denote the the function v(x) = u(x)w(x) by u×w. We use ‖ · ‖ to denote the
L1-norm, that is, ‖u‖ =

∑
x u(x), where the sum is over all x in the domain of u. With this notation, we can

express the fundamental properties of Walsh functions that we will use in our proofs.

Proposition 3.4. 1. ‖wS‖ ≥ 0 for all sets S ⊆ [m].
2. For all sets A,B ⊆ [m], Walsh function wA4B : [2m]→ {−1, 1} corresponding to the symmetric difference

between A and B satisfies wA4B = wA × wB .

3.1 Monotonicity

Theorem 3.5. Fix ε ∈ (0, 14 ]; m, r ∈ N. Let n = 2m. Any nonadaptive ε-test for monotonicity of functions
f : [n]→ [r] requires Ω(min(log n, log r)) queries.

Proof. To prove the lower bound of Ω(log n) queries (for n < r), we apply the reduction lemma (Lemma 2.5)
with the parameter t in the lemma set to m. To get the bound of Ω(log r) queries (for r ≤ n), we use the
same proof with t set to blog2(r−1)c, except that the sets given to Alice and Bob reside in {m−t+1, . . . ,m}
instead of [m]. Let ψ be the combining operator that receives Alice’s set A, and Bob’s index i and set B as
input and returns the function h : [2m]→ Z defined by

h(x) = 2si(x) + wS(x),

where S = A4B = A ∩ {i, . . . ,m}. The range of h is [2 · 2t−1 + 1] = [2t + 1], i.e. it is equal to [n+ 1] when
t = m and to [r] when t = blog2(r − 1)c.

By Proposition 3.4(2), wS = wA × wB . Bob knows B, so to determine h(x) he only needs Alice to
communicate a single bit—namely, the value wA(x). Thus, ψ is a one-bit one-way combining operator.

To prove that ψ is a reduction operator for monotonicity of functions on the line and ε0 = 1/4, it remains
to show that it satisfies Items 1 and 2 of Definition 2.4. To demonstrate this, we prove the following lemma,
which in addition to the required statements about h, also contains a statement about a related function h−
needed in Section 4.1.

Lemma 3.6. Fix i ∈ [m] and S ⊆ {i, . . . ,m}. Consider the functions h = 2si + wS and h− = 2si − wS .
1. If i /∈ S, then the functions h and h− are monotone;
2. If i ∈ S, then the function h is 1

4 -far from monotone.

Proof. Recall the definition of blocks (Definition 3.1). When i /∈ S, i.e., S ⊆ {i + 1, . . . ,m}, the functions
si, wS and −wS are constant on each block Bik (for k ∈ [2m−i]). The value of of functions wS and −wS can
decrease (from 1 to -1) only between the blocks (i.e., if wS(x) > wS(x+ 1) then x ∈ Bik and (x+ 1) ∈ Bik+1

for some k ∈ [2m−i − 1]). But the step function si increases by 1 on each subsequent block Bik. Thus, h and
h− are monotone (nondecreasing). This completes the proof of Item 1.

When i ∈ S, i.e., i is the smallest element in S, Walsh function wS changes value in the middle of each
block Bik. If this change is from 1 to -1, then wS is 1/2-far from monotone on this block, and so is h because
the step function si is constant on each Bik. Note that this change is from 1 to -1 for all blocks on which
wS\{i} evaluates to 1. By Proposition 3.4(1), ‖wS\{i}‖ ≥ 0, so it happens for at least half of the blocks. Thus,

h is 1
4 -far from monotone. ut
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By Lemma 3.6, the function h is monotone when i /∈ A and it is 1
4 -far from monotone when i ∈ A. That

is, ψ is a reduction operator for monotonicity of functions of the form f : [2m]→ [t+ 1] and ε0 = 1/4. Then,
by Lemma 2.5, any nonadaptive ε-test for this property, where ε ∈ (0, 1/4] requires Ω(t) queries. That is,
when r > n, we get a bound of Ω(m) = Ω(log n), and when r ≤ n, we get a bound of Ω(log r). ut

3.2 Convexity

Recall that the function f : [n]→ R is convex if for all x, y ∈ [n] and all ρ ∈ [0, 1] such that ρx+ (1− ρ)y is
also an integer in [n], the function f satisfies f(ρx + (1 − ρ)y) ≤ ρf(x) + (1 − ρ)f(y). Equivalently, we can
define convexity in terms of the discrete derivative of functions on the line.

Definition 3.7 (Discrete derivative). The discrete derivative of the function f : [n]→ R is the function
f ′ : [n− 1]→ R defined by f ′(x) = f(x+ 1)− f(x).

Definition 3.8 (Convexity, concavity). The function f : [n] → R is convex (resp., concave) if its
derivative f ′ is a monotone nondecreasing (resp., nonincreasing) function.

We present a lower bound for testing the convexity of functions on the line; the same bound also applies
for testing concavity.

Theorem 3.9. Fix ε ∈ (0, 18 ] and n = 2m for some m ≥ 1. Any nonadaptive ε-test for convexity of functions
f : [n]→ [r], where r = Ω(n2), requires Ω(log n) queries.

Proof. We apply the reduction lemma (Lemma 2.5) with the parameter t in the lemma set to m. Our
construction for the lower bound uses Walsh functions and rising-step-size functions, which are built from
step functions (see Definition 3.2). The discrete derivatives of these new functions, which we call double-step
functions, play a crucial role in our construction.

Definition 3.10 (Rising-step-size and double-step functions). Fix i ∈ [m]. The rising-step-size func-

tion ri : [n]→ [n2] is defined by ri(x) = si(x)+2
∑x−1
y=1 si(y). Its discrete derivative, r′i(x) = si(x+1)+si(x),

is called a double-step function. Equivalently (by Definitions 3.1 and 3.2), for all k ∈ [2m−i], function r′i(x)
is equal to 2k on all but the last element x of the block Bik, and to 2k + 1 on the last element of Bik.

Given Alice’s set A ⊆ [m] and Bob’s index i ∈ [m] and the prefix set B = A ∩ [i − 1] the combining
operator ψ[A, i,B] returns the function

h(x) = ri(x) +
1

2
(wS(x) + 1),

where S = A4B = A ∩ {i, . . . ,m}. Since wS = wA × wB , the operator ψ is a one-bit one-way combining
operator. It remains to show that if i /∈ A, then h is convex and that if i ∈ A, then h is 1/8-far from convex.
We do so in the following lemma, which is also used in Section 4.3.

Lemma 3.11. Fix i ∈ [m] and S ⊆ {i, . . . ,m}. The functions h = ri + 1
2 (wS + 1) and h− = ri − 1

2 (wS + 1)
satisfy the following properties.

1. If i /∈ S, then h and h− are convex;
2. If i ∈ S, then h is 1

8 -far from convex.

Proof. First, consider the case where i /∈ S. The discrete derivative of h is h′(x) = r′i(x) + 1
2w
′
S(x). It is

sufficient to prove that h′ is nondecreasing. Since S ⊆ {i + 1, . . . ,m}, the function wS is constant on each
block Bik (for k ∈ [2m−i]). That is, for all but the last element x of a block Bik, the discrete derivative
w′(x) = 0 and, consequently, h′(x) = r′i(x) = 2k. Now consider h′(x), where x is the last element of a block
Bik. Recall that r′i(x) = 2k+1. Since Walsh functions are ±1-valued, the value 1

2w
′
S(x) is in {−1, 0, 1}. Thus,
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h′(x) ∈ [2k, 2k + 2], i.e., h′(x− 1) ≤ h′(x) ≤ h′(x+ 1). Therefore, h′ is a nondecreasing function. The same
argument shows that when i /∈ S, the function h− is also convex.

Now consider the case where i ∈ S. We start the analysis of this case by showing that for at least half of the
blocks Bik, the derivative w′S(x) = −2 on the 2i−1th element of Bik (i.e., on the input x = 2i(k−1)+2i−1.) Note
that wS = wi ×wS\{i}. Proposition 3.4(1) gives that ‖wS\{i}‖ ≥ 0, implying that Prx[wS\{i}(x) = 1] ≥ 1/2.
Since S ∩ [i − 1] = ∅, the function wS\{i} is constant within the blocks Bik. Thus, for at least half of these
blocks it is a constant 1. For each block Bik, the function wi is 1 on the first half of the block and −1 on
the second half. Combining these observations, for half of the blocks Bik, the derivative of wS on the middle
point x = 2i(k − 1) + 2i−1 of the block satisfies w′S(x) = wS(x + 1) − wS(x) = wS\{i}(x + 1) · wi(x + 1) −
wS\{i}(x) · wi(x) = −2.

Let Bik be a block where w′S(x) = −2 on the 2i−1th element x of Bik. Note that w′S(x) = 0 on all other
inputs in the block apart from the last one because wS is constant on all blocks Bi−1j . Consider any three

points x, y, z ∈ Bik such that x ≤ (k− 1)2i + 2i−1 < y < z, namely, x is in the first half of the block Bik while
y and z are in the second half. Then h′(y) = h′(y + 1) = · · · = h′(z − 1) = 2k so (h(z)− h(y))/(z − y) = 2k.
However, h′((k−1)2i+2i−1) = 2k−2 so (h(y)−h(x))/(y−x) < 2k, which violates convexity. To fix convexity
on all such triples, we must change the value of h on all the points (k − 1)2i + 1, . . . , (k − 1)2i + 2i−1 in the
first half of the block Bik, or on all but one point in the second half of Bik. Thus, we need to change at least
1/4 of the points in Bik. Since this is the case for at least half of all blocks, h is 1/8-far from convex. ut

Lemma 3.11 completes the proof that ψ is a reduction operator for convexity and, thus, of the claimed
lower bound for convexity. ut

3.3 The Lipschitz property

Theorem 3.12. Fix ε ∈ (0, 14 ]; m, r ∈ N. Let n = 2m. Any nonadaptive ε-test for the Lipschitz property of
functions f : [n]→ [r] requires Ω(min(log n, log r)) queries.

Proof. To obtain the Ω(log n) bound (for r > n), we apply the reduction lemma (Lemma 2.5) with the
parameter t in the lemma set to m.

Definition 3.13 (Up-down staircase functions). For all i ∈ {0, 1, . . . ,m}, let the up-down staircase
function of block-length 2i be the function ui : [2m]→ [2i], such that ui(1) = 1 and the discrete derivative of
ui is

u′i(x) =

{
0 if x is divisible by 2i;

wi+1(x) otherwise.

In other words (using Definition 3.1), function ui takes values 1, . . . , 2i on consecutive inputs from the block
Bij if j is odd, and values 2i, . . . , 1 if j is even.

The combining operator ψ receives Alice’s set A, and Bob’s index i and set B as input and returns the
function h : [2m]→ Z defined by

h(x) = ui(x)− 1

2
(wS(x) + 1),

where S = A4B = A ∩ {i, . . . ,m}. Since wS = wA × wB , the operator ψ is a one-bit one-way combining
operator. It remains to show that if i /∈ A, then h(x) is Lipschitz and otherwise it is 1/4-far from Lipschitz.
To demonstrate this, we prove a stronger lemma, which is also used in Section 4.3.

Lemma 3.14. Fix i ∈ [m] and S ⊆ {i, . . . ,m}. Consider the functions h(x) = ui(x) − 1
2 (wS(x) + 1) and

h−(x) = ui(x)− 1
2 (−wS(x) + 1).

1. If i /∈ S, then the functions h and h− are Lipschitz;
2. If i ∈ S, then the function h is 1

4 -far from Lipschitz.
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Proof. If i /∈ S, i.e., S ⊆ {i+1, . . . ,m}, then the function wS is constant on each block Bik (for k ∈ [2m−i]). Let
w(x) = − 1

2 (wS(x) + 1). Since Walsh functions are ±1-valued, the discrete derivative w′(x) is in {−1, 0, 1}
for all x, and w′(x) = 0 for all x not divisible by 2i. By definition of the up-down staircase functions,
u′i(x) ∈ {−1, 0, 1} for all x, and u′i(x) = 0 for all x divisible by 2i. Thus, h′ = u′i + w′ takes values only in
{−1, 0, 1}, implying that h is Lipschitz. The proof that h− is Lipschitz is analogous.

When i ∈ S, i.e., i is the smallest element in S, the rescaled Walsh function w(x) = − 1
2 (wS(x) + 1)

changes value in the middle of each block Bik. This change is either from -1 to 0 or vice versa. In the former
case, the discrete derivative w′ is 1 on the 2i−1th element of the block, in the latter, it is -1. In both cases, it
is 0 on all other elements of the block besides the last one. Next we show that if the former case occurs on a
block with odd i (similarly, if the latter case occurs on a block with even i), then h is 1/2-far from Lipschitz
on this block.

Consider the case when i is odd and w′ is 1 on the 2i−1th element of a block Bik. Since i is odd, u′i takes
value 1 on all but the last element of Bik. Then h′ = u′i + w′ is 2 on the 2i−1th element of Bik, and 1 on all
other elements of the block besides the last one. We pair up all elements of Bik as follows: each element x in
the first half of the block is paired up with the element x + 2i−1. The function h is not Lipschitz on each

such pair: h(x+ 2i−1)− h(x) =
∑x+2i−1−1
y=x h′(y) = 2i−1 + 1. Thus, h is 1/2-far from Lipschitz on each such

block. The other case (when i is even and w′ is -1 on the 2i−1th element of a block Bik) is analogous—the
only difference is that h′ takes negative values.

We can rephrase what we just proved as follows: the function h is 1/2-far from Lipschitz on all blocks
Bik with k ∈ [2m−i], where wS\{i}(x) = wi+1(x) for all x ∈ Bik. Equivalently, wS\{i}(x) × wi+1(x) =
w(S\{i})4{i+1}(x) = 1 for all x ∈ Bik. By Proposition 3.4(1), ‖w(S\{i})4{i+1}‖ ≥ 0. Since w(S\{i})4{i+1} is
constant on each block Bik, it is 1 on at least half of such blocks. Thus, h is 1/2-far from Lipschitz on at
least half of the blocks Bik. That is, overall h is 1/4-far from Lipschitz. ut

This completes the proof of the Ω(log n) lower bound. To get the bound of Ω(log min{n, r}), we use the
same proof with t set to min{m, blog2(r− 1)c}. The range of h is {0, 1, . . . , 2t}, i.e., it has size min(n+ 1, r).

ut

4 Lower bounds on the hypergrid

In this section, we generalize the lower bounds for testing functions on the line to the hypergrid setting. To
obtain our lower bounds for testing functions on the domain [2m]d, we give a reduction from the Augmented
Index problem by applying the reduction lemma (Lemma 2.5) with the parameter t set to md. With this
parameter setting, inputs to Augmented Index consist of subsets of [md] and an index in [md]. We associate
each such subset with a d-dimensional vector of subsets of [m] and each such index with a d-dimensional
vector of indices in {0, 1, . . . ,m}.

Definition 4.1 (Vector representation). Fix m, d ∈ N. The d-dimensional vector corresponding to the
set S ∈ [md] is S = (S1, . . . ,Sd), where Sj = {` ∈ [m] : (j−1)m+` ∈ S} for every j ∈ [d]. The d-dimensional
vector corresponding to the index i ∈ [md] is i = (i1, . . . , id), where ij = max{0,min{m, i− (j − 1)m}} for
every j ∈ [d].

Equivalently, i = (m, . . . ,m, ij∗ , 0, . . . , 0), where j∗ = di/me and ij∗ = i− (j∗− 1)m. Observe that i ∈ S
iff ij∗ ∈ Sj∗ . Recall that in the Augmented Index problem, Bob is given an element i, and he has to
find out whether i is in Alice’s set. Intuitively, in our reduction from Augmented Index to the problem
of testing a property P (such as monotonicity) of d-dimensional functions, the function h returned by the
combining operator will satisfy P on all axis-parallel lines in dimensions other than j∗. Most restrictions of h
to lines in the special dimension j∗ will behave as in the one-dimensional case: many of them will be far from
P if i is in Alice’s set; otherwise, all of them will be in P. This suffices for the proofs for monotonicity, the
Lipschitz property and for separate convexity (Definition 4.8), a property closely related (but not equivalent)
to convexity. For convexity itself, it doesn’t suffice to ensure that restrictions of the function on the axis-
parallel lines are convex, so in this case if i is in Alice’s set we construct the reduction in such a way that
projections on all (not necessarily axis-parallel) lines are convex.
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Next we extend the definitions of step functions and Walsh functions (namely, Definitions 3.2 and 3.3,
respectively) to multiple dimensions.

Definition 4.2 (Componentwise sum). For a family of functions fi : [n]→ R, indexed by i ∈ {0, 1, . . . ,m},
and a vector i ∈ {0, 1, . . . ,m}d, the componentwise sum f̂i : [n]d → R of f is defined by f̂i(x1, . . . , xd) =∑d
j=1 fij (xj).

Definition 4.3 (Step functions). The step function indexed by the d-dimensional vector i ∈ [m]d is the

componentwise sum ŝi : [2m]d → [d2m] defined by ŝi(x1, . . . , xd) =
∑d
j=1 sij (xj).

Definition 4.4 (Walsh functions). The Walsh function indexed by the d-dimensional vector S of subsets

of [m] is the function wS : [2m]d → {−1, 1} defined by wS(x1, . . . , xd) =
∏d
j=1 wSj (xi).

Next we extend Proposition 3.4 to the hypergrid setting.

Proposition 4.5. 1. ‖wS‖ ≥ 0 for all d-dimensional vectors S of subsets of [m].
2. Fix A,B ⊂ [md], and S = A4B. Let A,B,S be the d-dimensional vector representations of sets A,B, S,

respectively. Walsh function wS : [2m]d → {−1, 1} satisfies wS(x) = wA(x) · wB(x) for all x ∈ [2m]d.

Proof (of Item 1). It is sufficient to prove that if the random variables X1, . . . , Xd are i.i.d. and uniform
over [2m] then Pr[wS(X1, . . . , Xd) = 1] ≥ 1/2. If Sj = ∅ then wSj

(Xj) = 1. For all j ∈ [d] such that
Sj 6= ∅, the random variables wSj

(Xj) ∈ {−1, 1} are i.i.d. and uniformly distributed over {−1, 1}. Thus,
Pr[wS(X1, . . . , Xd) = 1] = Pr[

∏
j∈[d] wSj

(Xj) = 1] ≥ 1/2. ut

Corollary 4.6. Let S be the d-dimensional representation of S ⊆ [md]. The product
∏
k∈[d]\{j} wSk

(xk),

where xk ∈ [2m] for all k ∈ [d] \ {j}, evaluates to 1 for at least half of the settings of variables xk.

Proof. Let S′ be the (d − 1)-dimensional vector (S1, . . . ,Sj−1,Sj+1, . . . ,Sd). Then
∏
k∈[d]\{j} wSk

(xk) =

wS′(x1, . . . , xj−1, xj+1, . . . , xd). By Proposition 4.5(1), this expression is 1 for at least half of the settings of
xk. ut

4.1 Monotonicity

We extend our construction from Section 3.1 to prove Theorem 1.1.

Proof (of Theorem 1.1). We use Lemma 2.5, giving a reduction with parameter t = md. Let A ⊆ [md] be
Alice’s input and i ∈ [md] and B = A ∩ [i− 1] be Bob’s input.

The combining operator ψ is defined as follows. It receives A, i,B as input. Then it computes S =
A4B = A ∩ {i, . . . ,md} and the d-dimensional vectors i and S corresponding to i and S, respectively. (See
Definition 4.1. Also recall definitions of the step functions ŝi and Walsh functions wS on the hypergrid—
specifically, Definitions 3.2, 4.2 and 4.4.) It returns the function h : [n]d → {d − 1, . . . , dn + 1} defined
by

h(x) = 2ŝi(x) + wS(x).

By Proposition 4.5, wS = wA · wB, where A and B are d-dimensional vector representations of A and B,
respectively. Bob knows i and B and can compute their vector representations. To determine h(x), he only
needs Alice to communicate the bit wA(x). Thus, ψ is a one-bit one-way combining operator.

Lemma 4.7 concludes the proof that ψ is a reduction operator for monotonicity and ε0 = 1/8, implying
the theorem. ut

Lemma 4.7. Fix i ∈ [md] and S ⊆ {i, . . . , dm}, and let i and S, respectively, be their d-dimensional vector
representations.

1. If i /∈ S, then the function h is monotone;
2. If i ∈ S, then the function h is 1

8 -far from monotone.
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Proof. Let j∗ = di/me. We will show that all line restrictions of h to dimensions other than j∗ are monotone.
If i /∈ S, we will show that all line restrictions of h to dimension j∗ are also monotone, so h itself is monotone.
Conversely, if i ∈ S, we will show that at least half of the line restrictions of h to dimension j∗ are 1/4-far
from monotone, so h itself is 1/8-far from monotone.

Consider the restriction of h = 2ŝi + wS to a line in dimension j ∈ [d], i.e., a function h̄ : [2m] → N
defined by h̄(xj) = h(x̄1, . . . , x̄j−1, xj , x̄j+1, . . . , x̄d), where the values x̄k ∈ [2m] are fixed for all k ∈ [d] \ {j}.
Then

h̄(xj) = 2
∑
k 6=j

sik(x̄k) + 2sij (xj) + wSj
(xj) ·

∏
k 6=j

wSk
(x̄k)

= 2sij (xj)± wSj
(xj) + c, (1)

where ± means “either + or -” and c is a constant independent of xj .
If j < j∗ then Sj = ∅, ij = m and h̄ = 2sm ± w∅ + c = 2 ± 1 + c. And if j > j∗ then ij = 0, so

h̄(xj) = 2xj ± wSj
(xj) + c. In both cases, the function h̄ is monotone.

Finally, if j = j∗ then ij = i − (j − 1)m. In this case, i ∈ S iff ij ∈ Sj . If ij /∈ Sj then, by (1)
and Lemma 3.6, h̄(xj) is monotone. Since all line restrictions of h(x) are monotone, the overall function
h(x) is monotone. Now suppose ij ∈ Sj . Consider the product

∏
k 6=j wSk

(x̄k) that determines whether the
expression ± in (1) is actually a plus or a minus. By Corollary 4.6, this product evaluates to 1 for at least
half of the line restrictions h̄ of h in dimension j. For those restrictions, h̄(xj) = 2sij (xj) +wSj

(xj) + c and,
since ij ∈ Sj , Lemma 3.6 implies that h̄ is 1

4 -far from monotone. Thus, at least half of the line restrictions
of h in dimension j are 1/4-far from monotone. Since the domains of line restrictions of h in dimension j
partition the domain of h, it implies that the overall function h(x) is 1

8 -far from monotone. ut

4.2 Convexity

In this section, we give lower bounds for testing convexity and a related property called separate convexity.

Definition 4.8 (Separate convexity). The function f : [n]d → R is separately convex if for all i ∈ [d]
and all sets of values (x̄1, . . . , x̄i−1, x̄i+1, . . . x̄d) ∈ [n]d−1, the one-dimensional function f̄ : [n] → R defined
by f̄(xi) = f(x̄1, . . . , x̄i−1, xi, x̄i+1, . . . , x̄d) is convex.

Separate convexity is a weaker property than (standard) convexity: every convex function is also sepa-
rately convex, but the converse is not true.

Theorem 4.9. Fix ε ∈ (0, 18 ]; m, r ∈ N. Let n = 2m. Any nonadaptive ε-test for separate convexity of
functions f : [n]d → [r] where r = Ω(dn2) must make Ω(d log n) queries.

The proofs of Theorem 4.9 and Theorem 1.2 have some common elements so we present them together.

Proof (of Theorem 1.2 and Theorem 4.9). We apply Lemma 2.5 with parameter t = md. Let A ⊆ [md] be
the set received by Alice and let i ∈ [md] and B = A∩ [i− 1] be Bob’s input. Let j∗ = di/me. Let A,B and
i be the d-dimensional vectors corresponding to A,B and i respectively. The combining operator ψ receives
A and i as input and returns the function h : [n]d → R defined by

h(x1, . . . , xd) = α

(
1

2
(wS(x) + 1) + rij∗ (xj∗)

)
+

d∑
j=j∗+1

xj
2

where S is a d-dimensional vector corresponding to S = A4B = A ∩ {i, . . . ,md} and r is the family of
rising-step-size function (Definition 3.10). The parameter α > 0 will be selected later. For any x ∈ [n]d, Bob
only needs the single bit wA(x) from Alice to compute h(x), so ψ is a one-bit one-way combining operator.

To show that ψ is a reduction operator for convexity (resp., separate convexity) we need to show that if
i /∈ S (or equivalently ij∗ /∈ Sj∗) then h is convex (resp., separately convex) and otherwise h is 1

8 -far from
convex (resp., separately convex).

We first show how to complete the proof using the following two lemmas and then present their proofs
below.
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Lemma 4.10. If ij∗ /∈ Sj∗ then :

1. For α = 1 the function h is separately convex.
2. There exists a value of α > 0 such that the function h is convex.

Lemma 4.11. If ij∗ ∈ Sj∗ then the function h is 1
8 -far from separately convex for all α > 0.

The proof of Theorem 4.9 for separate convexity is completed by setting α = 1 and noting that the range
of h is [r] for [r] = O(dn2) because for every k ∈ [m] the range of rk is O(n2). In the proof of Theorem 1.2
for convexity we set α to the value from the second part of Lemma 4.10. Then Lemma 4.11 implies that h
is 1

8 -far from convex because the distance to convexity is at least the distance to separate convexity. ut

Proof (of Lemma 4.10, Part 1). The proof follows by showing that every restriction of h to any dimension
j ∈ [d] is a convex function.

Every one-dimensional restriction h̄ of h in dimension j∗ can be expressed as h̄(xj∗) = α(rij∗ (xi) ±
1
2wSj∗ (xj∗)) + c, where c is some constant independent of xj∗ . Because ij∗ /∈ Sj∗ this function is convex by

Lemma 3.11. For all j < j∗ every one-dimensional restriction h̄ of h to dimension j is a constant function.
For all j > j∗, the restrictions of h to dimension j can be expressed as h̄(xj) = ± 1

2αwSj (xj) + xj
2 + c. The

derivative of the first term wSj satisfies that | 12αw
′
Sj

(xj)| ≤ α and the derivative of the second term is 2xj ,

so for α ≤ 1 the derivative h̄′ is a nondecreasing function and h̄ is convex. Hence, the function h is separately
convex for all α ≤ 1. ut

Proof (of Lemma 4.10, Part 2). We show how to pick a parameter 0 < α < 1 such that the function h is
convex. By definition, to prove convexity we need to show that for every pair of points (x, y) ∈ [n]d × [n]d

and every 0 < γ < 1 for which z = γx+ (1− γ)y ∈ [n]d, we have that h(z) ≤ γh(x) + (1− γ)h(y).
The function h is independent of the first j∗ − 1 coordinates, so h(x) = h(y1, . . . , yj∗−1, xj∗ , . . . , xd) and

h(z) = h(y1, . . . , yj∗−1, zj∗ , . . . , zd).
First, consider the case when for all j > j∗ it holds that xj = yj so we have x = (x1, . . . , xj∗ , yj∗+1, . . . , yd).

By Lemma 4.10 (Part 1), all the restrictions h̄ of h to dimension j∗ are convex, so in this case h(z) ≤
γh(x) + (1− γ)h(y).

Otherwise, fix an index j > j∗ such that xj 6= yj .

Proposition 4.12. Define φj∗(x) =
∑d
t=j∗+1 xt

2. For all n, d ≥ 1 there exists a value δ∗(n, d) > 0 such
that the inequality

φj∗(γx+ (1− γ)y) ≤ γφj∗(x) + (1− γ)φj∗(y)− δ∗(n, d)

holds for all pairs (x, y) such that xj 6= yj for some j > j∗ and all γ ∈ (0, 1) such that γx+ (1− γ)y ∈ [n]d.

Proof. We have:

φj∗(γx+ (1− γ)y)− γφj∗(x)− (1− γ)φj∗(y)

=

d∑
t=j∗+1

(γxt + (1− γ)yt)
2 − γ

d∑
t=j∗+1

xt
2 − (1− γ)

d∑
t=j∗+1

yt
2

=

d∑
t=j∗+1

(
(γxt + (1− γ)yt)

2 − γxt2 − (1− γ)yt
2
)

≤
(

(γxj + (1− γ)yj)
2 − γxj2 − (1− γ)yj

2
)
< 0.

The first inequality uses convexity of x2. The second inequality uses its strict convexity and the fact that
xj 6= yj .

Let δ(x, y, j, γ, n, d) = −
(

(γxj + (1− γ)yj)
2 − γxj2 − (1− γ)yj

2
)
> 0. Note that j and γ can take at most

d and nd different values respectively for any fixed pair (x, y). Thus there are at most dn3d different valid
tuples (x, y, j, γ). The claim follows by letting δ∗(n, d) = minx,y,j,γ δ(x, y, j, γ, n, d). ut
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We set α = δ∗(n,d)
6(2n2+1) . Using the notation introduced above, h(x) = α

(
1
2 (wS(x) + 1) + rij∗ (xj∗)

)
+
∑
j>j∗ xj

2 =

α
(
1
2 (wS(x) + 1) + rij∗ (xj∗)

)
+ φj∗(x) Because the range of cij∗ is [2n2],

h(z)− γh(x)− (1− γ)h(y) ≤ φj∗(z)− γφj∗(x)− (1− γ)φj∗(y) + 3α(2n2 + 1)

≤ −δ∗(n, d) + 3α(2n2 + 1) = −δ∗(n, d)/2 < 0,

where the inequalities follows from Proposition 4.12. This concludes the proof of the fact that h is convex.
ut

Proof (of Lemma 4.11). If ij∗ ∈ Sj∗ then by Corollary 4.6 the product
∏
k 6=j∗ wSk

(xk) evaluates to 1 for

at least half of the line restrictions h̄ of h to dimension j∗. For such restrictions, h̄(xj∗) = α( 1
2wSj∗ (xj∗) +

rij∗ (xj∗)) + c, for some constant c. Lemma 3.11 implies that h̄ is 1
8 -far from convex. The domains of the

restrictions h̄ of h in dimension j∗ partition the domain of h, so we conclude that the function h is 1
8 -far

from separately convex. ut

4.3 The Lipschitz property

In this section, we extend our construction from Section 3.3 to prove Theorem 1.3.

Proof (of Theorem 1.3). The starting point of the reduction is the same as in the proof of the lower bound for
monotonicity in Section 4.1. We use the same notation for the parameters of the reduction from Augmented
Index, Alice’s and Bob’s inputs, the set S = A4B = A∩{i, . . . ,md} and the vector representation of these
objects. Let ûi be the componentwise sum (see Definition 4.2) of the up-down staircase functions ui (see
Definition 3.13). The combining operator ψ returns the function

h(x) = ûi(x)− 1

2
(wS(x) + 1).

As in the proof of Theorem 1.1, ψ is a one-bit one-way combining operator. The next lemma completes the
proof of the theorem. ut
Lemma 4.13. Fix i ∈ [md] and S ⊆ {i, . . . , dm}, and let i and S be their respective d-dimensional vector
representations.

1. If i /∈ S, then the function h is Lipschitz;
2. If i ∈ S, then the function h is 1

8 -far from Lipschitz.

Proof. Consider the restriction of h to a line in dimension j ∈ [d], i.e., consider the single-variate function
h̄(xj) = h(x̄1, . . . , x̄j−1, xj , x̄j+1, . . . , x̄d), where the values x̄k ∈ [2m] are fixed for all k ∈ [d] \ {j}. Then

h̄(xj) =
∑
k 6=j

uik(x̄k) + uij (xj)−
1

2

(
wSj

(xj) ·
∏
k 6=j

wSk
(x̄k) + 1

)
= uij (xj)−

1

2
(±wSj (xj) + 1) + c, (2)

where ± means “either + or -” and c is a constant independent of xj .
Let j∗ = di/me. If j < j∗ then Sj = ∅, ij = m and h̄ = uij − 1

2 (±1+1)+c. Since every up-down staircase
function ui is Lipschitz, and since a Lipschitz function plus a constant function is Lipschitz, the resulting
function h̄ is Lipschitz. If j > j∗ then ij = 0, so h̄(xj) = 1− 1

2 (±wSj
(xj) + 1) + c,, i.e., h̄ is again a Lipschitz

function because it is the sum of a Lipschitz function and a constant function.
Finally, if j = j∗ then ij = i − (j − 1)m. In this case, i ∈ S iff ij ∈ Sj . If ij /∈ Sj then, by (2) and

Lemma 3.14, h̄ is Lipschitz. Since all line restrictions of h are Lipschitz, the overall function h is Lipschitz.
Now suppose ij ∈ Sj . Consider the product

∏
k 6=j wSk

(x̄k) that determines whether the expression ± in
(1) is actually a plus or a minus. By Corollary 4.6, this product evaluates to 1 for at least half of the line
restrictions h̄(xj) of h in dimension j. For those restrictions, h̄(xj) = uij + 1

2 (wSj
+ 1)(xj) + c and, since

ij ∈ Sj , Lemma 3.14 implies that h̄ is 1
4 -far from Lipschitz. Thus, at least half of the line restrictions of

h in dimension j are 1/4-far from Lipschitz. Since the domains of the line restrictions of h in dimension j
partition the domain of h, the overall function h is 1

8 -far from Lipschitz. ut
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