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Abstract. Santhanam (2007) proved that MA /1 does not have circuits of size n*. We translate his
result to the heuristic setting by proving that there is a constant a such that for any k, there is a

language in HeurMA that cannot be solved by circuits of size n* on more than the 1 — - fraction of
inputs.

In order to get rid of the non-uniform advice, we supply the inputs with the probability threshold that
we use to determine the acceptance. This technique was used by Pervyshev (2007) for proving a time
hierarchy for heuristic computations.

1 Introduction

A widely known counting argument shows that there are Boolean functions that have no polynomial-size
circuits. However, all attempts to prove a superpolynomial lower bound for an explicit function (that is,
function in NP) failed so far.

This challenging problem was attacked in three directions. The most obvious direction to prove weak
lower bounds for specific functions did not yield anything better than the bound 3n — o(n) [Blu83]. Another
direction, to prove strong lower bounds for restricted classes of circuits yielded exponential bounds for
monotone [Raz85] and bounded-depth circuits [Ajt83,Has86], but did not attain superpolynomial bounds for
circuits without such restrictions, and even for de Morgan formulas (of unrestricted depth).

A yet another way is to prove lower bounds for smaller and smaller complexity classes (aiming at NP).
The exponential lower bound obtained by counting needs doubly exponential time. Buhrman et al [BFT98]
showed that it can be also done in MAgxp. A less ambitious goal is to prove lower bounds in the form nk
(for each k), called fixed-polynomial lower bounds. This line of research was started by Kannan [Kan82] who
showed that for each k there is a language in X2P N IT?P that has no circuits of size n*. This was pushed
down to S2P [Cai0l]. However, attempts to push down it further to MA ended up in lower bounds for the
classes PromiseMA, MA/1 [San07], which are not “normal” classes in the sense that PromiseMA is not a
class of languages, and MA /1 is not a uniform class.

The obstacle that prevents proving the result for MA is typical for proving structural results (hier-
archy theorems, the existence of complete problems) for semantic classes: Santhanam’s construction does
not always satisfy the bounded-error condition (the promise) of MA. A similar obstacle was overcome by
Pervyshev [Per07] for a hierarchy theorem for heuristic bounded-error randomized computations and many
other heuristic classes and by Itsykson [Its09] for the existence of a HeurBPP-complete problem (though
the existence of HeurMA-complete problems remained open).

In this paper we translate Santhanam’s result to the heuristic setting. Namely, we prove fixed-polynomial
circuit lower bounds for HeurMA: there is a number a > 0 such that for every k, there exists a language L
such that

(1) there is a heuristic polynomial-time Merlin-Arthur protocol for solving L under the uniform distribution
on the inputs, i.e., a Merlin-Arthur protocol that gets a confidence parameter §, runs in time polynomial
in §~1 and the size of the input, and correctly (with bounded probability of error) accepts or rejects the
fraction 1 — ¢ of the inputs;
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(2) no nk-size circuit can solve L in more than the fraction 1 — -1 of the inputs.

na

Similarly to Santhanam’s proof, our proof consists of two parts. The easier part is conditioned on
PSPACE C P/poly, and it follows from the resulting collapses. The main part is the construction of
a hard language based on the assumption PSPACE ¢ P/poly. In order to get rid of the non-uniform
advice, we supply the inputs with the probability threshold that we use to determine the acceptance. (This
technique was used by Pervyshev [Per07] for proving a time hierarchy for heuristic computations.) It follows
that the fraction of the resulting inputs that have a “bad” threshold is small.

Organization of the paper. In Sect. 2 we give the definitions and recall the necessary background results.
In Sect. 3 we prove the main result.

2 Definitions

We first introduce some notation.
For two sets S1,52 C {0, 1}" denote A(S,S2) = ‘(SIUSZ)QM
For language L C {0,1}*, denote L= = L N {0, 1}"™.
The characteristic function of L is denoted by L(z).

The main idea of the proof is to take a hard language that is self-correctable and instance-checkable, and
turn it into a language that has a HeurMA protocol while remaining sufficiently complex on the average.
The self-correctness property is needed to convert a worst-case hard function into a function that is hard on
the average. The instance checkability is needed to design a Merlin-Arthur protocol (where Arthur simulates
the instance checker and Merlin sends a circuit family computing the oracle). We now formally define these
two properties.

Definition 1 ([TVO02]). Letb € Q. We call language L b-self-correctible if there is a probabilistic polynomial-
time oracle algorithm A (self-corrector for L) such that for all languages L':

AL, L") < % = vz € {0,1}", Pr[A" " (2) = L(x)] >

=W

We call a language self-correctible if it is b-self-correctible for some constant b.

Definition 2 ([TVO02]). We call language L f-instance-checkable if there is a probabilistic polynomial-time
oracle algorithm M (instance checker for L) such that for all x € {0,1}":

zel=Pr M (@) =1)=1
1

L'=r(m) o
x ¢ L=VL Pr[M (x)—1]<2—n

In order to define heuristic computations, we need to define distributional problems. Although in our
case we only use problems with the uniform distribution, we give the definition for the general case.

Definition 3. A distributional problem is a pair (L, D) that consists of a language L and an ensemble of
distributions D = { Dy, }nen, where Dy, is a distribution over a finite set of bit strings.

(Note that D,, is not necessarily distributed on {0,1}".)

Definition 4. Let C be a class of languages. Then the class Heur,,)C of distributional problems contains
a problem (L, D) iff there is a language L' € C' such that

Vn Pr [L(z)=L'(z)] > f(n).

<D,



Classes HeurC' make a “uniform” version of classes Heur ¢(,,)C: namely, the “confidence” parameter f(n)
is given to the decision algorithm on the input, and the algorithm is required to work in polynomial time both
in the input size and (1 — f(n))~!. For clarity, we give the definition for the specific case of Merlin-Arthur
protocols.

Definition 5. A distributional problem (L, D) has a heuristic Merlin-Arthur protocol (in short (L,D) €
HeurMA ) iff there is a probabilistic algorithm A(z,y,d) (here x is the input, y is Merlin’s proof, and ¢ is
the confidence parameter) and a family of sets {S§ }scq, nen (large sets where the protocol behaves correctly)
such that for all n and 9,

— Dyp(S§) >1-0,
— A(z,y,0) runs in time poly(%), and
— for every x,

x e LNSy =3y PrlA(z,y,0) =1] >

Wl Do

Wl =

r € LNSY=Vy Pr[A(z,y,6) =1] <

Definition 6. Denote by U the ensemble of uniform distributions on {0,1}" (if |x| =n then U,(z) = 5= ).

Also we need definition of classes languages which decided by circuits.

Definition 7. 1. Language L contains in Size(f(n)) iff there is family of circuits C,, such that |Cy| < f(n)
and Cp () = L(x).
2. Language L contains in BPSize(f(n)) iff there is family of circuits Cyp, such that |C,| < f(n) and
Pr(Cly(z) = L(z)] > 3.
Lemma 1. Let all functions f: N — (0;1] and t: N - N,
Heur f(,)BPSize(t(n)) C Heur(,)Size(poly(n)t(n)).
Proof. A trivial extension of Adleman’s theorem (BPP C P/poly) yields. O

Lemma 2. Iflanguage L is a-self-correctible and (L,U) € Heur, _ 1 Size(f(n)), then L € Size(f(n)poly(n)).

Proof. Obviously L € BPSize(f(n)poly(n)) and by Lemma 1 L € Size(f(n)poly(n)). O

For the first case of our proof we need a PSPACE language with high heuristic circuit complexity (a
collapse will put it into MLA).

Lemma 3 ([San07]). There is a constant a such that for all k,
{(L,U) | L ¢ PSPACE} ¢ Heur,_._Size(n").
For the second case we need a PSPACE-complete language with good properties.

Lemma 4 ([San07]). There exists a PSPACE-complete language that is self-correctible and n-instance-
checkable.

We need reductions somewhat similar yet different from randomized heuristic search reductions [BT06]:
we do not need polynomial-time computability of the reduction (we will formulate a specific complexity
requirement when needed), the disjointness of its images for different random strings and the uniformness of
the distribution for each input.



Definition 8. Let L and L' be two languages, and c: N — R be a function. A collection of functions
fr: 40,1} x {0,1}¥» — {0,1}™" is called a c(n)-heuristic reduction of L to L' if for all z (|x| =n),

xeL=VvYre{0,1}¥ f,(x,r)e L,

v & L=Vre{0,1}¥ f,(z,r) &L, (correctness)
and . .
vn VS5 € {0,1}" x {0, 1} w > c(n) 27|L+L (domination)

Lemma 5. If L' € Heur, _ S Size(p(n)) and there is a %—heum’stic reduction of L to L' computable by

circuits of size q(n), then L € Heur, 1_Size((p(my) + q(n))poly(n)) (where my, is as in Definition 8 and d
is a constant).

Proof. Let D,, be a size-q(n) circuit that computes the reduction f,, and let C,, be a circuit that decides

L'=" with error —r. By Lemma 1 it suffices to prove that for sufficiently large n, Pr,[Pr,[C(D(z,7)) #

L(z)] > 1] < 7 (here and in what follows C and D stands for C,, and D, for appropriate n’). Assume the

contrary. Then
{(z,r)|C(D(z, 7)) # Lx)}| 1
In+yn — 4po’
However, using the correctness and the domination conditions we get

W) # L)} o KD, n)|C(D(@,r) # L'(D(x, 7))}

= (by correctness)

2mn 2mn
DL NCWD ) £ KD (1 domiation
d [{(z,n)|C(D(x,r)) # L)} _ _d
n! 2n+Yn = 4natl’
which contradicts the assumption on C. g

3 Lower bounds for HeurMA

In order to work in the heuristic setting, we need to pay the attention to the probabilities of the inputs.
Because of that, we need a function that encodes triples without increasing the length too much.

Definition 9. Denote by (-,-,-) the function from {0,1}" x {0,1}9(") x {0, 1}¥» to {0, 1}2108(m)+n+g(n)+yn+2
defined by (x,p, z) = nllapz, where 15 ... = 210220 ... and g is a polynomial.

Theorem 1. There is a constant a > 0 such that for all k € Q,
HeurMA ¢ Heur, . Size(n")

Proof. Let L be as in Lemma 4 and M be its instance checker (Def. 2). Fix any k € Q. Assume that M uses
g(n) random bits for n-bit inputs. If L € P/poly then PSPACE C P/poly, and hence MA = PSPACE,
because the prover in the interactive protocol for QBF [Sha90] can be replaced by a family of circuits sent
by Merlin. Then Lemma 3 gives a language in MA that has high heuristic complexity w.r.t. the uniform
distribution.

Assume now that L ¢ P/poly. We will pad it to bring the language from PSPACE down to polynomial
complexity while keeping it above the complexity n*. We will also supply the inputs with the number that
we will use as the acceptance threshold for the instance checker. Namely, consider the language

L'={(z,p,2)| p < 2902l |z| is a power of two,
3 circuit C Pr[M%(x) =1] > ) A
e < 101 < (21el) ).



Note that if we drop the requirement on the size of C, put p = 290%D) and let C be the circuit for L, then we
will obtain a padded version of L. Then it is clear that for some length of z the size of this circuit will fall
between the size constraints. However, for “wrong” circuit C, which does not compute L (in particular, for
“wrong” length of z), it is not clear how to check (z, 291D 2) without possibly violating the bounded-error
promise. When we allow p to be arbitrary, we allow to violate promise for some values of p while satisfying
the bounded-error requirement for most other values. This is formalized in the following protocol showing
that (L', U) € HeurMA.

1. Receive circuit C' from Merlin.
If |C| & [|z[F*1, (2]2])**1) return 0.
2. If § > 55y then

(a) Run % times M (), calculate the fraction ¢ of accepts.
(b) If ¢ > 5% then return 1 else return 0.
3. If § < 55t then
(a) Evaluate q = Pr[M%(z) = 1] by running M on all possible random bits.

(b) If ¢ > 5% then return 1 else return 0.

Let us show that the size of the set S§ where the protocol succeeds is large enough. If § < the protocol

217(77) ’
always works correctly. Otherwise put S§ = {(z,p, 2)| |q(z)— 5| > 2}, where ¢(z) = maxc Pr[M ¢ (x) = 1].
If (z,p, 2) € LNSE, Merlin sends the correct C' (with highest acceptance probability) and if (z,p, z) € LNSE,
we can assume that Merlin maximizes the probability of acceptance and sends us a circuit that maximizes ¢
(we may assume this because Merlin needs to convince us that the probability of acceptance is higher than
3¢y )- Then by Chernoff bound Pr[|q —q(z)| >8] < 2¢"% = 2¢~2. Hence if lg(x) — 55| > 3, then the
probability of error is less than i 3

We now turn to proving that (L', U) ¢ Heur,_ 1, Size(nk).

Let b be the constant from the definition of a self—correctlble PSPACE—complete language (Def. 1). Let
a = b+ 3. Assume, for the sake of contradiction, that L' € Heur, _ 1 Size(n k). Let s(n) be the worst-case
circuit complexity of L and let y, be such that y*+! < s(n ) < (2y,)**L. Consider f,(z,r17m2) = (x, 1r1,72)
where |r1| = g(|z]) — 1 and |r2| = y,,. Note that f, is a ziz-heuristic reduction (because the encodings of
triplets form a % fraction of the set of all strings and because we fix the first bit in the second part of triplet),
then by Lemma 5 L € Heur,__Size(((y, + g(n) + 2log(n) + n)* + (n+ g(n) + yn +2log(n) + 1))poly(n)).

Since L is b-self-correctible, by Lemma 2 we have L € Size((n + y,, + g(n) + log(n) + 1)¥poly(n)), which
contradicts the definition of s(n) (note that since L € P/poly, y,, is infinitely often superpolynomial). O

Further directions

All previous results in the same direction are closed under complement (for example, Santhanam’s lower
bound [San07] for MA/1 is actually a lower bound for (MA N co-MA)/1. It would be interesting to
strengthen the result of this paper to a lower bound for HeurMA N Heur co-MA..

Another open question is to replace the error 1 — i by 1 5+ L (possibly for every a > 0).

Switching to AM(= BP - NP) and decreasing the number of random bits in the protocol would deran-
domize Theorem 1 down to heuristic NP and lead consequently to the lower bound NP ¢ Size(n*) for
classical computations.
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