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Abstract. Santhanam (2007) proved that MA/1 does not have circuits of size nk. We translate his
result to the average case setting by proving that there is a constant a such that for any k, there is a
language in AvgMA that cannot be solved by circuits of size nk on more than the 1 − 1

na
fraction of

inputs.
In order to get rid of the non-uniform advice, we supply the inputs with the probability threshold that
we use to determine the acceptance. This technique was used by Pervyshev (2007) for proving a time
hierarchy for heuristic computations.

1 Introduction

A widely known counting argument shows that there are Boolean functions that have no polynomial-size
circuits. However, all attempts to prove a superpolynomial lower bound for an explicit function (that is,
function in NP) failed so far.

This challenging problem was attacked in three directions. The most obvious direction to prove weak
lower bounds for specific functions did not yield anything better than the bound 3n − o(n) [Blu83] (the
bound was improved to 5n − o(n) for circuits in de Morgan basis [ILMR02]). Another direction, to prove
strong lower bounds for restricted classes of circuits yielded exponential bounds for monotone [Raz85] and
bounded-depth circuits [Ajt83,H̊as86], but did not attain superpolynomial bounds for circuits without such
restrictions, and even for de Morgan formulas (of unrestricted depth).

Yet another way is to prove lower bounds for smaller and smaller complexity classes (aiming at NP).
The exponential lower bound obtained by counting needs doubly exponential time. Buhrman et al. [BFT98]
showed that it can be also done in MAEXP. A less ambitious goal is to prove lower bounds of the form nk

(for each k), called fixed-polynomial lower bounds. This line of research was started by Kannan [Kan82] who
showed that for each k there is a language in Σ2P ∩Π2P that has no circuits of size nk. This was pushed
down to S2P [Cai01]. However, attempts to push it down further to MA ended up in lower bounds for the
classes PromiseMA, MA/1 [San07], which are not “normal” classes in the sense that PromiseMA is not a
class of languages, and MA/1 is not a uniform class.

The obstacle that prevents proving the result for MA is typical for proving structural results (hier-
archy theorems, the existence of complete problems) for semantic classes: Santhanam’s construction does
not always satisfy the bounded-error condition (the promise) of MA. A similar obstacle was overcome by
Pervyshev [Per07] for a hierarchy theorem for heuristic bounded-error randomized computations and many
other heuristic classes and by Itsykson [Its09] for the existence of a AvgBPP-complete problem (though the
existence of AvgMA-complete problems remained open).

In this paper we translate Santhanam’s result to the heuristic setting. Namely, we prove fixed-polynomial
circuit lower bounds for AvgMA: there is a number a > 0 such that for every k, there exists a language L
such that
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(1) there is a average polynomial-time Merlin-Arthur protocol for solving L under the uniform distribution
on the inputs, i.e., a Merlin-Arthur protocol that gets a confidence parameter δ, runs in time polynomial
in δ−1 and the size of the input, and correctly (with bounded probability of error) accepts or rejects a
fraction 1− δ of the inputs and with high probability return failure on all other inputs;

(2) no nk-size circuit can solve L on more than a fraction 1− 1
na of the inputs.

Similarly to Santhanam’s proof, our proof consists of two parts. The easier part is conditioned on
PSPACE ⊆ P/poly, and it follows from the resulting collapses. The main part is the construction of
a hard language based on the assumption PSPACE 6⊆ P/poly. In order to get rid of the non-uniform
advice, we supply the inputs with the probability threshold that we use to determine the acceptance. (This
technique was used by Pervyshev [Per07] for proving a time hierarchy for heuristic computations.) It follows
that the fraction of the resulting inputs that have a “bad” threshold is small.

Organization of the paper. In Sect. 2 we give the definitions and recall the necessary background results.
In Sect. 3 we prove the main result.

2 Definitions

We first introduce some notation.
For two sets S1, S2 ⊆ {0, 1}n denote ∆(S1, S2) = |(S1∪S2)\(S1∩S2)|

2n .
For language L ⊆ {0, 1}∗, denote L=n = L ∩ {0, 1}n.
The characteristic function of L is denoted by L(x).

The main idea of the proof of our result is to take a hard language that is self-correctable and instance-
checkable, and turn it into a language that has a AvgMA protocol while remaining sufficiently complex on
the average. The self-correctness property is needed to convert a worst-case hard function into a function
that is hard on the average. The instance checkability is needed to design a Merlin-Arthur protocol (where
Arthur simulates the instance checker and Merlin sends a circuit family computing the oracle). We now
formally define these two properties.

Definition 1 ([TV02]). Let b ∈ Q+. A language L is b-self-correctable if there is a probabilistic polynomial-
time oracle algorithm A (self-corrector for L) such that for all languages L′ if ∆(L=n, L′=n) < 1

nb
, then

∀x ∈ {0, 1}n, Pr[AL
′=n

(x) = L(x)] > 3
4 . We call a language self-correctable if it is b-self-correctable for some

constant b.

This definition informally means that if we have oracle access to language that is close enough to L then we
can probabilistically decide L in polynomial time.

Definition 2 ([TV02]). A language L is f -instance-checkable if there is a probabilistic polynomial-time
oracle algorithm M (instance checker for L) such that for all x ∈ {0, 1}n:

– if x ∈ L then Pr[ML=f(n)

(x) = 1] = 1 (perfect completeness);

– if x 6∈ L then for all L′ the following holds Pr[ML′=f(n)

(x) = 1] < 1
2n (correctness).

Definition 3. Denote by U the ensemble of uniform distributions on {0, 1}n (if |x| = n then Un(x) = 1
2n ).

Also we need definition of classes languages which decided by circuits.

Definition 4. 1. Language L contains in Size[f(n)] iff there is family of circuits Cn such that |Cn| < f(n)
and C|x|(x) = L(x).

2. Language L contains in BPSize[f(n)] iff there is family of randomized circuits Cn such that |Cn| < f(n)
and Pr[C|x|(x) = L(x)] > 3

4 (probability taken over the randomness of the Cn).
3. Language L contains in Heurδ(n)Size[f(n)] iff there is family of circuits Cn such that |Cn| < f(n) and

Pr
x←Un

[C|x|(x) = L(x)] ≥ 1− δ(n).
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4. Language L contains in Heurδ(n)BPSize[f(n)] iff there is family of randomized circuits Cn such that

|Cn| < f(n) and Pr
x←Un

[Pr[C|x|(x) = L(x)] > 3
4 ] ≥ 1− δ(n) (inner probability taken over the randomness

of the Cn).

Lemma 1. For all functions δ : N→ [0; 1] and t : N→ N,

Heurδ(n)BPSize[t(n)] ⊆ Heurδ(n)Size[poly(n)t(n)].

Proof. A trivial extension of Adleman’s theorem (BPP ⊆ P/poly) yields the result. ut

Lemma 2. If language L is a-self-correctable and L ∈ Heur1− 1
na

Size[f(n)], then L ∈ Size[f(n)poly(n)].

Proof. We apply the standard transformation of a Turing machine that computes the self-corrector of L to
a randomized circuit B. We assume that instead of making oracle requests B uses a circuit that heuristically
computes L. Hence L ∈ BPSize[f(n)poly(n)] and L ∈ Size[f(n)poly(n)] by Lemma 1. ut

Classes AvgC make a errorless and “uniform” version of classes Heurδ(n)C: namely, the “confidence”
parameter δ(n) is given to the decision algorithm as part of the input, and the algorithm is required to work
in polynomial time both in the input size and δ(n)−1. For clarity,we give the definition for the specific case
of Merlin-Arthur protocols.

Definition 5. A language L has a heuristic Merlin-Arthur protocol (in short L ∈ HeurMA) iff there is a
probabilistic algorithm A(x, y, δ) (here x is the input, y is Merlin’s proof, and δ is the confidence parameter)
and a family of sets {Snδ ⊆ {0, 1}n}δ∈Q+,n∈N (large sets of inputs where the protocol behaves correctly) such
that for all n and δ,

– Un(Snδ ) ≥ 1− δ,
– A(x, y, δ) runs in time poly(nδ ), and
– for every x in Snδ :

x ∈ L⇒ ∃y Pr[A(x, y, δ) = 1] >
2

3
,

x 6∈ L⇒ ∀y Pr[A(x, y, δ) = 0] >
2

3
.

A language L has an average-case Merlin-Arthur protocol (in short L ∈ AvgMA) if in addition the
following holds: for all x not in Snδ , then our protocol does not gave wrong answer:

x ∈ L⇒ ∃y Pr[A(x, y, δ) = 1] >
2

3
∨ Pr[A(x, y, δ) =⊥] >

1

6
,

x 6∈ L⇒ ∀y Pr[A(x, y, δ) = 0] >
2

3
∨ Pr[A(x, y, δ) =⊥] ≥ 1

6
.

For the first case of our proof we need a PSPACE language with high heuristic circuit complexity (a
collapse will put it into MA).

Lemma 3 ([San07]). There is a constant a such that for all k,

PSPACE 6⊆ Heur1− 1
na

Size[nk]

For the second case we need a PSPACE-complete language with good properties.

Lemma 4 ([San07]). There exists a PSPACE-complete language that is self-correctable and n-instance-
checkable.
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We need reductions somewhat similar yet different from randomized heuristic search reductions [BT06]:
we do not need polynomial-time computability of the reduction (we will formulate a specific complexity
requirement when needed), the disjointness of its images for different random strings and the uniformness of
the distribution for each input.

Definition 6. Let L and L′ be two languages, and c : N → R be a function. A collection of functions
fn : {0, 1}n × {0, 1}yn → {0, 1}mn where mn ≥ n is called a c(n)-heuristic reduction of L to L′ if for all x
(|x| = n),

x ∈ L⇒ ∀r ∈ {0, 1}yn fn(x, r) ∈ L′,
x 6∈ L⇒ ∀r ∈ {0, 1}yn fn(x, r) 6∈ L′, (correctness)

and

∀n ∀S ⊆ {0, 1}n × {0, 1}yn |fn(S)|
2mn

> c(n)
|S|

2n+yn
(domination)

Lemma 5. For all a if L′ ∈ Heur1− 1

na+l+1
Size[p(n)] and there is a d

nl
-heuristic reduction of L to L′ com-

putable by circuits of size q(n), then L ∈ Heur1− 1
na

Size[(p(mn)+q(n))poly(n)] (where mn is as in Definition

6 and d is a constant).

Proof. Let Dn be a q(n)-size circuit that computes the reduction fn, and let Cn be a circuit that decides
L′=n with error 1

na+l+1 . By Lemma 1 it suffices to prove that for sufficiently large n, Prx[Prr[C(D(x, r)) 6=
L(x)] ≥ 1

4 ] < 1
na (here and in what follows C and D stands for Cn and Dn for appropriate n). Assume the

contrary. Then
|{(x, r)|C(D(x, r)) 6= L(x)}|

2n+yn
≥ 1

4na
.

However, using the correctness and the domination conditions we get

|{y|C(y) 6= L′(y)}|
2mn

≥ |{D(x, r)|C(D(x, r)) 6= L′(D(x, r))}|
2mn

= (by correctness)

|{D(x, r)|C(D(x, r)) 6= L(x))}|
2mn

≥ (by domination)

d

nl
|{(x, r)|C(D(x, r)) 6= L(x)}|

2n+yn
≥

d

4na+l
≥ 1

na+l+1
≥ 1

ma+l+1
n

,

which contradicts the assumption on C. ut

3 Lower bounds for HeurMA

In order to work in the heuristic setting, we need to pay the attention to the probabilities of the inputs.
Because of that, we need a function that encodes triples without increasing the length too much.

Definition 7. Denote by 〈·, ·, ·〉 the function from {0, 1}n×{0, 1}g(n)×{0, 1}yn to {0, 1}2 log(n)+n+g(n)+yn+2

defined by 〈x, p, z〉 = n̂11xpz, where ̂x1x2 . . . = x10x20 . . . and g is a polynomial.

Lemma 6. For all polynomials g, f , integer k and randomized algorithm A that receive parameters x, y, z
and use g(|x|) random bits, for the following language

L = {〈x, p, z〉| |p| = g(|x|),∃C Pr[A(x,C, z) = 1] ≥ 0.p ∧ |C| < f(|x|, |z|)}

we have that L ∈ AvgMA (hence L ∈ HeurMA).

Proof. Consider the following protocol showing that L ∈ AvgMA.
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1. Receive C from Merlin.
If |z| > f(|x|, |z|) return 0.

2. If δ > 1
2g(|x|)

then

(a) Run 16
δ2 times A(x,C, z), calculate the fraction q̄ of accepts.

(b) If q̄ ≥ 0.p+ δ
4 then return 1;

(c) if q̄ ≤ 0.p− δ
4 then return 0;

(d) else return ⊥.
3. If δ ≤ 1

2g(|x|)
then

(a) Evaluate q = Pr[A(x,C, z) = 1] by running A(x,C, z) on all possible random bits.
(b) If q ≥ 0.p then return 1 else return 0.

Let us show that the size of the set Snδ where the protocol succeeds is large enough. If δ ≤ 1
2g(|x|)

, the protocol

always works correctly. Otherwise put Snδ = {〈x, p, z〉 ∈ {0, 1}n| |q(x, z)− 0.p| > δ
2} (note that Snδ ≥ 1− δ),

where q(x, z) = maxz Pr[A(x,C, z) = 1]. Let us q(x,C, z) = Pr[A(x,C, z) = 1]. If x ∈ Snδ then consider the
following cases:

1. 〈x, p, z〉 ∈ L : if Merlin sends C such that Pr[A(x,C, z) = 1] > 0.p+ δ
2 . Then by Chernoff bound Arthur

rejects with probability Pr[q̄ < 0.p− δ
4 ] < 2e−2

δ2

4
16
δ2 = 2e−8 < 1

3 ;

2. 〈x, p, z〉 6∈ L : for all C we have that Pr[A(x,C, Z)] < 0.p− δ
2 , hence by Chernoff bound Arthur accepts

with probability Pr[q̄ > 0.p+ δ
4 ] < 2e−2

δ2

4
16
δ2 = 2e−8 < 1

3 .

Otherwise if x 6∈ Snδ then consider the following cases:

1. 〈x, p, z〉 ∈ L : if Merlin sends C such that Pr[A(x,C, z) = 1] > 0.p. Then by Chernoff bound Arthur

rejects with probability Pr[q̄ ≤ 0.p − δ
4 ] < 2e−8 < 1

6 , hence if Arthur accepts with probability Pr[q̄ ≥
0.p+ δ

4 ] ≤ 2
3 , then Arthur returns ⊥ with probability Pr[|q̄ − 0.p| < δ

4 ] > 1
6 ;

2. 〈x, p, z〉 6∈ L : for all C we have that Pr[A(x,C, z) = 1] ≤ 0.p. Then by Chernoff bound Arthur accepts

with probability Pr[q̄ ≥ 0.p+ δ
4 ] < 2e−8 < 1

6 , hence if Arthur rejects with probability Pr[q̄ ≥ 0.p− δ
4 ] ≤ 2

3 ,

then Arthur returns ⊥ with probability Pr[|q̄ − 0.p| < δ
4 ] > 1

6 .
ut

Lemma 7. If PSPACE ⊆ P/poly then there is constant a > 0 such that for all k we have that MA 6⊆
Heur1− 1

na
Size[nk].

Proof. It is well known that from PSPACE ⊆ P/poly follows that MA = PSPACE (because the prover
in the interactive protocol for QBF [Sha90] can be replaced by a family of circuits sent by Merlin). Then
Lemma 3 gives a language in MA that has high heuristic complexity w.r.t. the uniform distribution. ut

Theorem 1. There is a constant a > 0 such that for all k ∈ Q+,

AvgMA 6⊆ Heur1− 1
na

Size[nk].

Proof. Let L be as in Lemma 4 and M be its instance checker (Def. 2). Fix any k ∈ Q+. Assume that M
uses g(n) random bits for n-bit inputs. If L ∈ P/poly then PSPACE ⊆ P/poly, and Lemma 6 implies
desirable result.

Assume now that L 6∈ P/poly. We will pad it to bring the language from PSPACE down to polynomial
complexity while keeping it above the complexity nk. We will also supply the inputs with the number that
we will use as the acceptance threshold for the instance checker. Namely, consider the language

L′ = {〈x, p, z〉| |p| = g(|x|),∃ circuit C Pr[MC(x) = 1] ≥ 0.p ∧ |C| < (|z|+ 1)k+1}.
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Remark: Note that if we drop the requirement on the size of C, put p = 2g(|x|) and let C be the circuit
for L, then we will obtain a padded version of L (by perfect completeness of instance-checker).

It is easy to see that by Lemma 6 L′ ∈ AvgMA.
We now turn to proving that L′ 6∈ Heur1− 1

na
Size[nk].

Let b be such a constant that L is b-self-correctable. Let a = b+ 3. Assume, for the sake of contradiction,
that L′ ∈ Heur1− 1

na
Size[nk]. Let s(n) be the worst-case circuit complexity of L and let yn be such that

yk+1
n ≤ s(n) < (yn + 1)k+1. Consider fn : {0, 1}n × {0, 1}g(n)+yn−1 → {0, 1}2 log(n)+2+n+g(n)+yn such that
fn(x, r1r2) = 〈x, 1r1, r2〉, where |r1| = g(|x|) − 1 and |r2| = yn. Let us prove that fn is a 1

8n2 -heuristic
reduction from L to L′.

– The domination condition holds because the encodings of triplets form a 1
4n2 fraction of the set of all

strings and because we fix only the first bit in the second part of the triplet.
– The correctness condition is satisfied for x ∈ L since there is a circuit for L with size between yk+1

n and
(yn + 1)k+1, hence by perfect completeness of instance checker for all r1, 〈x, 1r1, r2〉 ∈ L′.
For x 6∈ L, there are no circuits that force the instance checker to accept x with probability more than
1
2n (note that by fixing the first bit of the second part of the triplet to 1 we require the probability more
than 1

2 ). Hence 〈x, 1r1, r2〉 6∈ L′

So Lemma 5 for l = 2 and d = 1
8 implies L ∈ Heur1− 1

nb
Size[((yn+g(n)+2 log(n)+n+2)k+(n+g(n)+yn+

2 log(n)+2))poly(n)]. Since L is b-self-correctable, by Lemma 2 we have L ∈ Size[(n+yn+g(n)+2 log(n)+
2)kpoly(n)] ⊆ Size[yknpoly(n)]. Hence yk+1

n < s(n) < yknpoly(n) and hence yn is bounded by polynomial
therefore L ∈ P/poly; contradiction with our assumption. ut

Further directions

All previous results in the same direction are closed under complement (for example, Santhanam’s lower
bound [San07] for MA/1 is actually a lower bound for (MA ∩ co -MA)/1. It would be interesting to
strengthen the result of this paper to a lower bound for HeurMA ∩Heur co -MA.

Another open question is to replace in Theorem 1 the error 1− 1
na by 1

2 + 1
na (possibly for every a > 0).

Switching to AM(= BP · NP) and decreasing the number of random bits in the protocol would de-
randomize Theorem 1 down to heuristic NP and lead consequently to the lower bound NP 6⊆ Size[nk] for
classical computations. However, as shown in Section 3, this needs non-relativizable techniques.

Acknowledgement

The author is grateful to Edward A. Hirsch for bringing the problem to his attention, to Dmitry Itsykson and
anonymous referees for their comments that significantly improved the (initially unreadable) presentation.

Bibliography

References

[Ajt83] Miklos Ajtai. Σ1
1 -formulae on finite structures. Annals of Pure and Applied Logic, 24:1–48, 1983.

[BFT98] Harry Buhrman, Lance Fortnow, and Thomas Thierauf. Nonrelativizing separations. In IEEE Conference
on Computational Complexity, pages 8–12. IEEE Computer Society, 1998.

[Blu83] Norbert Blum. A boolean function requiring 3n network size. Theoretical Computer Science, 28(3):337 –
345, 1983.

[BT06] Andrej Bogdanov and Luca Trevisan. Average-case complexity. In in Foundations and Trends in Theoretical
Computer Science Volume 2, Issue 1, 2006.

[Cai01] Jin-Yi Cai. S2P ⊆ ZPPNP. Proceedings of the 42nd Annual Symposium on Foundations of Computer
Science, pages 620–629, 2001.

6



[H̊as86] Johan H̊astad. Almost optimal lower bounds for small depth circuits. In ACM STOC, pages 6–20, 1986.
[ILMR02] Kazuo Iwama, Oded Lachish, Hiroki Morizumi, and Ran Raz. An explicit lower bound of 5n - o(n) for

boolean circuits. In Proceedings of MFCF, pages 353–364. Springer-Verlag, 2002.
[Its09] Dmitry Itsykson. Structural complexity of AvgBPP. In Proceedings of the Fourth International Computer

Science Symposium in Russia on Computer Science - Theory and Applications, CSR ’09, pages 155–166,
Berlin, Heidelberg, 2009. Springer-Verlag.

[Kan82] Ravi Kannan. Circuit-size lower bounds and non-reducibility to sparse sets. Information and Control,
55(1):40–56, 1982.

[Per07] Konstantin Pervyshev. On heuristic time hierarchies. IEEE Conference of Computational Complexity,
pages 347–358, 2007.

[Raz85] Alexander Razborov. Lower bounds for the monotone complexity of some boolean functions. Doklady
Akademii Nauk SSSR, 281(4):798–801, 1985.

[San07] Rahul Santhanam. Circuit lower bounds for Merlin-Arthur classes. In ACM STOC, pages 275–283, 2007.
[Sha90] Adi Shamir. IP = PSPACE. In FOCS, pages 11–15, 1990.
[TV02] Luca Trevisan and Salil Vadhan. Pseudorandomness and average-case complexity via uniform reductions.

In Proceedings of the 17th Annual IEEE Conference on Computational Complexity, pages 129–138, 2002.

7

 

ECCC                 ISSN 1433-8092 

http://eccc.hpi-web.de 


