
On the sum of L1 influences
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Abstract

For a multilinear polynomial p(x1, ...xn), over the reals, the L1-influence is defined to be∑n
i=1 Ex

[
|p(x)−p(xi)|

2

]
, where xi is x with i-th bit swapped. If p maps {−1, 1}n to [−1, 1], we

prove that the L1-influence of p is upper bounded by a function of its degree (and independent
of n). This resolves affirmatively a question of Aaronson and Ambainis (Proc. Innovations in
Comp. Sc., 2011).

We give an application for this theorem for maximal deviation of cut-value of graphs. We
also present the connection between the sum of L1 influences and quantum query complexity
which was the original context where Aaronson and Ambainis encountered this question.

1 Introduction

Let p : {−1, 1}n → R. The L1 influence of i-th variable of a function p : {−1, 1}n → R is defined as

Infi(p) = Ex[|p(x)− p(xi)|/2],

where xi is x with i-th variable swapped. The total L1 influence is Inf(p) =
∑n

i=1 Infi(p). For any
function p we define Ap = maxx p(x)−minx p(x).

Every function p : {−1, 1}n → R has a unique representation as a multilinear polynomial. Let

p(x) =
∑
S⊆[n]

βS χS(x),

where χS(x) =
∏
i∈S xi, is the monomial corresponding to the set S, be such a representation of p.

Let deg(p) be the degree of the polynomial of p or, in other words, the maximum of |S| such that
βS 6= 0.

In [1] Aaronson and Ambainis asked whether the total L1 influence of p can be bounded by a
polynomial in deg(p) and Ap. One of the motivations for this question is the analogy to well-known
L2 version of this inequality. L2 version of this inequality says that if p : {−1, 1}n → R is a degree-d
polynomial such that −1 ≤ p(x) ≤ 1 for all x ∈ {−1, 1}n, then Infsq(p) ≤ dE[p(x)2] ≤ d, where

Infsq(p) =
∑n

i=1 Infsqi (p) and Infsqi (p) = Ex

[(
p(x)−p(xi)

2

)2]
. For a proof of this simple fact and

some of its applications, see the surveys by O’Donnel and de Wolf [5, 9] and also the paper by Shi
[8] for an application in quantum complexity.

In this work we resolve the question Aaronson and Ambainis affirmatively.
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Theorem 1.1 Let p : {−1, 1}n → R and deg(p) = d. Then we have

Inf(p) = O(Apd
3 log d).

In section 5, we show how we can use our inequality to give a proof of the following result of Erdös,
Goldberg and Pach [4] on cut-deviation of the graphs.

Theorem 1.2 Given a graph G = (V,E) with density ρG = |E|/
(
n
2

)
there always exist a cut (S, Sc)

such that
|E(S, Sc)− ρG|S||Sc|| = Ω(min(ρG, 1− ρG)n

3
2 ).

We prove this result by applying our inequality to the following polynomial,

gG(x) :=
|E|
2
− ρG

|V |(|V | − 1)

4
+
ρG
2

∑
i<j

xixj − (1/2− ρG/2)
∑
i∼j

xixj .

One nice feature of this example is that it shows that Theorem 1.1 can be more powerful than its
L2 counterpart. More precisely, applying the L2 inequality to polynomial gG would only show the
existence of cuts with deviation Ω(n) rather than Ω(n3/2).

In section 6, we present the connection between sum of L1 influences and quantum query com-
plexity which was the original context where the question of the relation between the degree and
the sum of L1 influences originally arose. [1] This connection is as follows: Given a quantum algo-
rithm that queries X and accepts X with probability p(X), the number of queries will be at least

Ω

((
Inf(p)

log(Inf(p))

)1/3)
. Improving our inequality will immediately improve this bound which in turn

improves some of the theorems in Aaronson and Ambainis paper [1].

In the last section, we give some future directions and open problem related to sum of L1 influences.

2 Preliminaries

In this work, we use concepts from the analysis of function over the hypercubes {−1, 1}n. For an
introduction to analysis of Boolean functions and its application to complexity theory we refer to
the surveys [5, 9]. It is well-known that any function f : {−1, 1}n → R can be represented as a
polynomial with real coefficients over the monomials χS(x) =

∏
i∈S xi. The notion of influence of

a variable is well-known in the context of the analysis of Boolean functions. For a Boolean valued
function g : {−1, 1}n → {−1, 1} the influence of ith coordinate is defined to be infi(g) = Prx[g(x) 6=
g(xi)], where xi ∈ {−1, 1}n is the point x with ith coordinate flipped.

For more more general non-Boolean functions p : {−1, 1}n → R the notion of influence is usually
extended in L2 form by following definition,

Infsqi (p) = Ex

[(
p(x)− p(xi)

2

)2
]
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In this work, we work with a different generalization of notion of influences to non-Boolean functions,
that of L1 influences.

Infi(p) = Ex

[
|p(x)− p(xi)|

2

]
Although for Boolean functions p : {−1, 1}n → {−1, 1} the L2 and L1 influences will always
coincide, for a general bounded function p : {−1, 1}n → [−1, 1] the sum of L1 influences can be
much larger than sum of L2 influences.

This separation is one reason why upper bounding the sum of L1 influences in terms of degree is a
harder problem that in the L2 case.

We will use the noise operator.

Definition 2.1 Noise operator with rate ρ ∈ R applied to polynomial p is the following polynomial:

Tρp(x) =
∑
S⊆[n]

βSρ
|S|χS(x).

We will later use the fact that for |ρ| ≤ 1 we have Tρ p(x) = Ey∼ρx[p(y)], where y ∼ρ x means that
for every i: yi = xi with probability (1 + ρ)/2 and yi = −xi with the remaining probability.

3 The case of homogeneous polynomials

Recall that p(x) =
∑

S⊆[n] βsχS(x) is a homogeneous polynomial if βS = 0 for all S such that
|S| ≤ deg(p). In this section we prove the following theorem.

Theorem 3.1 Let p : {−1, 1}n → R of deg(p) = d be a homogeneous polynomial. Then we have,

Inf(p) = O(Apd
2 log d).

Let p(x) =
∑

R⊆[n] βRχR(x) be homogeneous polynomial of degree d. Let S ⊆ [n]. Critical to our
analysis is the following polynomial

qS(x) =
∑

R⊆[n]:|R∩S|=1

βRχR(x).

Lemma 3.2 For all S ⊆ [n],

qS(x) = O(Apd log d).

Proof

We define vα ∈ Rd such that for any 1 ≤ k ≤ d: (vα)k = PrP [|P ∩ [k]| ≡ 1(mod 2)], where we
choose set P by putting each i ∈ [n] in it independently with probability α.

(vα)k =
∑

i:i≡1(mod 2)

αi(1− α)k−i
(
k

i

)
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=
1

2

(
((1− α) + α)k − ((1− α)− α)k)

)
= (1− (1− 2α)k)/2.

Let S ⊆ [n] and S′ ⊆ S be chosen by including every i ∈ S independently with probability α. Then

Ap ≥ ES′ [p(x)− p(xS′)] = 2
∑

R⊆[n]:|R∩S|≥1

βR · (vα)|R∩S|χR(x).

We will choose α1, α2, ..., αd and x1, x2, ..., xd such that
∑n

i=1 vαixi = −→e and
∑d

i=1 |xi| = O(d log d),
where −→e is d-dimensional vector with the first entry 1 and with the remaining entries 0. This gives

qS(x) =
∑

R⊆[n]:|R∩S|=1

βRχR(x) =

d∑
i=1

xi
∑

R⊆[n]:|R∩S|=1

βRχR(x)(vαi)|R∩S|

≤ Ap
2

d∑
i=1

|xi| = O(Ad log d).

For any −1 ≤ γ ≤ 1 we consider vectors v′γ with (v′γ)k = γk for −1 ≤ γ ≤ 1. Notice that since v1/2
is the vector of all 1/2 entries, v′γ = 2

(
v1/2 − v(1−γ)/2

)
. So instead of working with vα’s directly we

instead choose to work with v′γ .

If d is even we choose γi = −1/2 + (i−1)/d for i ≤ d/2 and γi = (i−d/2)/d for i > d/2. If d is odd
we choose γi = −1/2 + (i− 1/2)/d for i ≤ (d− 1)/2 and γi = (i+ 1/2− d/2)/d for i ≥ (d+ 1)/2.
Consider matrix M with v′γ as columns. We have to solve Mx = −→e . Notice that M is similar to
Vandermonde matrix. Using Cramer’s rule we obtain

|xk| =

∣∣∣∣∣γ1...γk−1γk+1...γd
γk

1∏
j 6=k(γj − γk)

∣∣∣∣∣ .
Now because of the choice of γs we get |γ1...γk−1γk+1...γd| ≤ |

∏
j 6=k(γj − γk)|. Thus

∑
i |xi| ≤∑

i
1
|γi| = O(d log d). 1

Now we shall prove Theorem 3.1.

Proof of Theorem 3.1

Consider

B = ES

ExSc

∑
i∈S

∣∣∣∣∣∣
∑

R:R∩S={i}

βRχR\{i}(x)

∣∣∣∣∣∣
 ,

where in the first expectation we choose S by putting each i ∈ [n] in it with probability 1/d
and in the second expectation we choose values of variables in complement of S uniformly and
independently at random. Now if for every i ∈ S we choose

xi = sgn

 ∑
R:R∩S={i}

βRχR\{i}(x)

 ,

1Numerical experiments shows that if we choose γk = cos
(
kπ
d

)
then

∑
i |xi| = d for odd d. Thus it is probably

possible to remove log factor from our upper bound.

4



we can use the previous upper bound and conclude that B = O(Apd log d) as well.

Now we lower bound B:

B =
1

d− 1

n∑
i=1

Ex,z

∣∣∣∣∣ ∑
R:i∈R

βRχR(x)χR(z)

∣∣∣∣∣
= Ω

(
1

d

n∑
i=1

Ex

∣∣∣∣∣ ∑
R:i∈R

βRχR(x)

∣∣∣∣∣
)
,

where we choose each zi = 0 with probability 1/d and 1 with the remaining probability. In the
last equality we moved expectation over z inside the absolute value and then used Ez[χR(z)] =
(1− 1/d)d = Ω(1). (We use the fact that there is no αR 6= 0 with |R| < d.)

Now it remains to notice that

Inf(p) =

n∑
i=1

Ex
[
|p(x)− p(xi)|/2

]
=

n∑
i=1

Ex

∣∣∣∣∣ ∑
R:i∈R

βRχR(x)

∣∣∣∣∣ .

4 Proof of Theorem 1.1

Now we will modify the proof of Theorem 3.1 to solve the case of non-homogeneous polynomial
(Theorem 1.1).

To prove the theorem we also need another lemma:

Lemma 4.1 Let q be a degree-d polynomial in ρ such that |q(ρ)| ≤ 1 for −1 ≤ ρ ≤ 1. Then the

following equality holds: q

(
1

1− 1
d2

)
= O(1).

Lemma 4.1 follows from properties of Chebyshev polynomials and lemma of Paturi [6].

Proposition 4.2 ([7]) Define Pd as follows

Pd = {p ∈ R[x] | deg(p) ≤ d , max
x∈[−1,1]

|p(x)| ≤ 1}

Then we have
∀p ∈ Pd, x /∈ [−1, 1] |p(x)| ≤ |Td(x)|

Where Td is the d-th Chebychev polynomial of the first kind.

Td(ρ) =
1

2

((
ρ+

√
ρ2 − 1

)d
+
(
ρ−

√
ρ2 − 1

)d)
.

Lemma 4.3 (Paturi) Td(1 + γ) ≤ e2d
√

2γ+γ2 for all γ ≥ 0.
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Proof [3] Td(1 + γ) ≤ (1 + γ +
√

2γ + γ2)d ≤ (1 + 2
√

2γ + γ2)d ≤ e2d
√

2γ+γ2 .

Proof of Theorem 1.1

Now Combining Lemma 3.2 and Lemma 4.1 with the fact that for all −1 ≤ ρ ≤ 1 we have
maxx Tρp(x) ≤ maxx p(x) and minx Tρp(x) ≥ minx p(x) (Those inequalities follows from Tρp(x) =
Ey∼ρx[p(y)].) we get that ∑

R⊆[n]:|R∩S|=1

βR ρ
′|R| χR(x) = O(Apd log d),

where ρ′ = 1/(1 − 1/d2). (We fix x and consider TρqS(x) as a polynomial in ρ and then apply
Lemma 4.1.)

Consider

B = ES

ExSc

∑
i∈S

∣∣∣∣∣∣
∑

R:R∩S={i}

βRρ
′|R|χR\{i}(x)

∣∣∣∣∣∣
 ,

where in the first expectation we choose S by putting each i ∈ [n] in it with probability 1/d2

and in the second expectation we choose values of variables in complement of S uniformly and
independently at random. Now if for every i ∈ S we choose

xi = sgn

 ∑
R:R∩S={i}

βRρ
′|R|χR\{i}(x)

 ,

we can use the previous upper bound and conclude that B = O(Apd log d) as well.

Now we lower bound B:

B =
1

d2 − 1

n∑
i=1

Ex,z

∣∣∣∣∣ ∑
R:i∈R

βRρ
′|R|χR(x)χR(z)

∣∣∣∣∣
= Ω

(
1

d2

n∑
i=1

Ex

∣∣∣∣∣ ∑
R:i∈R

βRχR(x)

∣∣∣∣∣
)
,

where we choose each zi = 0 with probability 1/d2 and 1 with the remaining probability. In the
last equality we moved expectation over z inside the absolute value and then used Ez[ρ

′|R|χR(z)] =
ρ′|R|(1− 1/d2)|R| = 1.

5 A Corollary on Maximal Deviation of Cut-value of Graphs

In this section we use a very special case of our original theorem to reprove a theorem of Erdös
et al [4] on the maximum discrepancy of cut-values in graphs. In a graph G = (V,E), by Sc we
denote V \ S and we write u ∼ v if and only if (u, v) ∈ E.
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Definition 5.1 For any graph G = (V,E) and 0 ≤ p ≤ 1 the cut-deviation Dp(G) is the maximum
over all cuts (S, V \S) of the discrepancy between the cut-value |E(S, Sc)| and the expected cut-value
p|S|(|V | − |S|) (where we choose each edge independently with probability p), i.e.,

Dp(G) = max
S⊆V
||E(S, Sc)| − p|S||Sc|| .

We are interested in lower bounding the quantity Dp(G). Given a G = (V,E), let ρG := |E|/
(|V |

2

)
be the edge density. Notice that for any p 6= ρG a random cut will already give a deviation of Ω(n2)
for Dp(G). So the interesting case is when p = ρG. For this choice of the parameter we prove the
following Theorem,

Theorem 5.2 For every graph G = (V,E),

DρG(G) = Ω(min(ρG, 1− ρG)n
3
2 ).

We note that the above inequality is tight as it follows by applying standard tail inequalities to
Erodös-Renyi graphs G(n, p). Moreover, the one-sides variants of this inequality

max
S⊆V

E(S, Sc)− ρG|S||Sc| = Ω(min(ρG, 1− ρG)n
3
2 )

which holds for random graphs, does not hold in general as can be seen from the example of the
complement of complete bipartite graph Kn/2,n/2.

To prove this result we will use the following lemma.

Lemma 5.3 Let G = (V,E). For any S ⊆ V let xS ∈ {−1, 1}|V | be such that (xS)i = 1 iff i ∈ S
(assume that V = [n]). Then

gp(x) :=
|E|
2
− p |V |(|V | − 1)

4
+
p

2

∑
i<j

xixj − (1/2− p/2)
∑
i∼j

xixj

satisfies gp(xS) = E(S, Sc)− p|S||Sc|.

Proof

We check that |E(S, Sc)| = 1/2|E| − 1/2
∑

i∼j xixj and |S||Sc| = |V |(|V |−1)
4 − 1

2

∑
i<j xixj .

Proof of Theorem 5.2 Set p := ρG. First we notice that,

Agp = max
x

gp(x)−min
x
gp(x) ≤ 2 max

x
|gp(x)| = 2 max

S⊆[n]
|E(S, Sc)− p|S||Sc|| = 2Dp,

where in the third equality we use the previous lemma.

Theorem 1.1 implies

Inf(gp) =
n∑
i=1

Ex

[∣∣∣p/2∑
j�i

xj − (1− p)/2
∑
j∼i

xj

∣∣∣] = O
(

max
S⊆[n]

∣∣E(S, Sc)− p|S||Sc|
∣∣),
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where we use the fact that deg(gp) = 2.

Now we just need to lower bound the left hand side. For a particular i we have,

Ex

[∣∣∣p/2∑
j�i

xj − (1− p)/2
∑
j∼i

xj

∣∣∣] = Ω(min(p, 1− p)
√
n),

where the last equality follows when we consider random walk of length n− 1 with steps of length
p/2 or (1− p)/2.

6 Relation to quantum query complexity

We use the following well-known lemma,

Lemma 6.1 Let Q be a quantum algorithm that makes T queries to black-box X : [n] → {−1, 1}.
Then there exists a real-valued multilinear polynomial p(X) of degree at most 2T , which equals the
acceptance probability of Q when it is run on a black box containing X.

The proof of this Lemma 6.1 can be found for example in [3]. The idea of the proof is that if you
look at the expansion of the state of the computation |ψ〉 in computational basis right after the kth
query to X, the amplitude of each basis state is a polynomial of degree k in the coordinates of X.
This fact can be easily shown as each query will only multiply the amplitudes by a linear factors
and each unitary operation does not affect the degree. Since the final acceptance probability is
proportional to the square of the amplitudes of accepting states the lemma follows. Now combining
this lemma together with our result gives the following corollary,

Corollary 6.2 Any quantum algorithm with acceptance probability p(X) has to make Ω

((
Inf(p)

log(Inf(p))

)1/3)
queries.

7 Future Directions

The main open problem is to improve the bound in theorem 1.1. We believe that the bound is far
from optimal. The best lower bound we know is achieved by a single Fourier character: p(x) =
χS(x). For this polynomial equality Inf(p) = deg(p) holds. We conjecture that Inf(p) ≤ deg(p) for
any p. We believe that by optimizing our techniques it might be possible to improve the bound
1.1 by at least a logarithmic factor. It would also be very interesting to flesh out the connection to
quantum query complexity more. One possible candidate here is applications to quantum property
testing.

We also believe that this inequality can have further application for discrepancy theory. The
important fact here is that our result can be applied in black-box fashion in the sense that one
just needs to find the appropriate polynomial that captures the combinatorics of the problem and
estimate its L1 influence. We leave the exploration of applications of this inequality for discrepancy
theory for future work.
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