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Abstract

For a real-valued function p over the Boolean hypercube the L1-influence of p is defined to

be
∑n

i=1 Ex∈{−1,1}n
[
|p(x)−p(xi)|

2

]
, where the string xi is defined by flipping the i-th bit of x. For

Boolean functions the notion of L1 influence will coincide with the usual notion of influences
defined as

∑n
i=1 Ex∈{−1,1}n

[
|p(x)−p(xi)|2

4

]
. For general [−1, 1]-valued functions, however, the

L1-influence can be much larger than its L2 counterpart.
In this work, we show that the L1-influence of a bounded [−1, 1]-valued function p can be

controlled in terms of the degree of p’s Fourier expansion, resolving affirmatively a question of
Aaronson and Ambainis (Proc. Innovations in Comp. Sc., 2011). We give an application of
this theorem to the maximal deviation of cut-value of graphs. We also discuss the relationship
between the study of bounded functions over the hypercube and the quantum query complexity
of partial functions which was the original context in which Aaronson and Ambainis encountered
this question.

1 Introduction

The notion of the influence of a variable [13, 4] plays a fundamental role in the study of functions
over product probability spaces. One canonical example of such space, which we shall mostly
consider in this work, is the discrete cube {−1, 1}n equipped with the uniform probability measure.
Given a function f : {−1, 1}n → {0, 1}, the influence of the direction i is defined as

Infi(f) := Pr
x∈{−1,1}n

[f(x) 6= f(xi)],

where xi denotes the neighbor of x in the i-th direction, i.e., xi = (x1, x2, . . . , xi−1,−xi, xi+1, . . . , xn).
The notion of i-th influence of f has a clear geometric interpretation as the fraction of all the edges
of the hypercube in the i-th direction that lie on the edge boundary of supp(f). Hence, the sum
Inf(f) =

∑n
i=1 Infi(f) gives us the “total influence” of a function, measuring the total edge bound-

ary of the support.

Going beyond the Boolean valued functions, the notion of the influence of a variable can be general-
ized in several ways. The idea is to replace the term Pr[f(x) 6= f(xi)] with an analytical expression

such as E
[(
|f(x)−f(xi)|

2

)α]
for some non-zero α ∈ R. Notice that since for Boolean functions the

∗MIT. E-mail: backurs@mit.edu.
†MIT. E-mail: bavarian@mit.edu.

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 39 (2013)



term |f(x)−f(xi)|
2 is either 0 or 1, all these different notions of influences coincide in this case. Al-

though in this work we are concerned with the L1 influences which corresponds to the case of α = 1,
it is better to start off with the more familiar L2 influences and their properties.

The total L2 influence of a function f : {−1, 1}n → R is defined as the sum over all ith L2 influences

Infsqi (f) = E[(f(x)−f(x
i)

2 )2]. One reason for working with L2 influence is that simplicity of L2 norm
in Fourier analysis allows one to derive a nice characterization of L2 influence in terms of Fourier
coefficients of the function. More precisely, we have

Inf sq(f) =
∑
S⊆[n]

|S| f̂(S)2.

This alternative view of L2 influence as the average weight of Fourier coefficients is crucial in
proving the following simple but important fact.

Fact 1.1 Let f : {−1, 1}n → R. Denoting by deg(f) the size of largest |S| with f̂(S) 6= 0, we have

Inf sq(f) ≤ deg(f)‖f‖22 .

Aaronson and Ambainis [1] in their study of query complexity of partial functions raised the fol-
lowing question.

Question 1.2 Does an analogue of fact 1.1 holds for bounded functions if one replaces L2 influ-
ences with L1 influences? More precisely, does it hold that

Inf(f) = Ex

[
n∑
i=1

|f(x)− f(xi)|
2

]
= O(deg(f)O(1)),

for any function f : {−1, 1}n → [−1, 1]?

Certainly, the above inequality implies a related inequality for general functions as the restriction
of f taking values in [−1, 1] can be dropped by normalizing the right hand side of the inequality
by ‖f‖∞ term. One reason to work with bounded functions is that in the applications to complex-
ity theory and especially for randomized and quantum query complexity the functions that arise
naturally corresponds to quantities related to acceptance probability profile of an algorithm. Since
probabilities are bounded in [0, 1] these functions also have to be bounded in the corresponding
range. This is especially important in the context of bounded-error query complexity of partial
functions where usually not much information on other norms beside the L∞ norm of the acceptance
profile function is available.

There are two reasons to suspect that proving this variation of Fact 1.1 might be much harder.
First of all, bounded functions can have much asymptotically larger total L1 influence than L2
influence. In other words, although proving a bound on L1 influences in terms of degree implies
a corresponding upper bound for L2 influences of a bounded function, one cannot hope for a
reverse implication. The second difficulty relies on the fact that L1 influences do not have an easy
characterization in terms of Fourier coefficients. What allowed us to avoid this difficulty in the L2
case was the equivalent characterization of Inf sq(f) in terms of the Fourier coefficient, a luxury not
available in any case beside the case of L2 norm. Hence, to prove such a result one needs to relate
the L1 influences of a function, which is defined in terms of the values of the function, to its degree
that is most easily understood in the value of its Fourier coefficients.
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1.1 Results

Let p : {−1, 1}n → R. The L1 influence of the i-th variable of a function p : {−1, 1}n → R is
defined as

Infi(p) := Ex

[
|p(x)− p(xi)|

2

]
,

where xi = (x1, x2, . . . , xi−1,−xi, xi+1, . . . , xn). The total L1 influence is defined as the sum of all
individual i-th influences.

Inf(p) :=

n∑
i=1

Infi(p).

Every function p : {−1, 1}n → R has a unique representation as a multilinear polynomial in terms
of Walsh functions {χS}S⊆[n] where χS(x) =

∏
i∈S xi. Let

p(x) =
∑
S⊆[n]

p̂(S) χS(x)

be such a representation of p. Then we define deg(p) to be the maximal |S| with p̂(S) 6= 0.

In [1] Aaronson and Ambainis asked whether the total L1 influence of a [−1, 1]-valued function p
can be bounded by a polynomial in deg(p). In this work we resolve the question of Aaronson and
Ambainis affirmatively.

Theorem 1.3 Let p : {−1, 1}n → R and deg(p) = d. Then we have

Inf(p) = O(Apd
3 log d).

where we define Ap := maxx p(x)−minx p(x).

Notice that Ap ≤ 2‖p‖∞. The advantage of the parameter Ap over ‖p‖∞ is that Ap is invariant
under any shift p 7→ p+γ, which makes both sides of the inequality in Theorem 1.3 invariant under
this operation.

In section 5, we show how we can use the inequality above to prove the following result of Erdös,
Goldberg and Pach [10] on the cut-deviation of the graphs.

Theorem 1.4 Given a graph G = (V,E) with density ρG = |E|/
(
n
2

)
there always exists a cut

(S, Sc) such that

|E(S, Sc)− ρG|S||Sc|| = Ω
(

min(ρG, 1− ρG)n
3
2

)
.

We prove this result by applying our inequality to the following polynomial,

gG(x) :=
|E|
2
− ρG

|V |(|V | − 1)

4
+
ρG
2

∑
i<j

xixj −
(

1

2
− ρG

2

)∑
i∼j

xixj .

An interesting feature of the example above is that it exhibits a non-trivial Ω(
√
n) separation

between L1 and L2 influences. This, in turn, shows that the result of Theorem 1.4 cannot be
proved using the simple L2 influence inequality 1.1. More precisely, applying the L2 inequality
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to polynomial gG would only show the existence of cuts with deviation Ω(n) rather than Ω(n3/2).
This confirms the intuition that in some settings Theorem 1.3 can be much stronger than its L2
counterpart.

Finally, in the last section we give some future directions and open problems related to the sum of
L1 influences.

1.2 Related Work

The importance of concept of influences in the analysis of functions over product spaces was already
recognized in the pioneering work of Kahn, Kalail and Linial [13] and Bourgain, Kalai, Katznelson
and Linial [4]. Building upon these results, Friedgut [11] showed that a Boolean function with very
low total influence is somewhat “simple” as it can be approximated with a function depending on
few coordinates, showing that the total influence in some regime acts as a complexity measure of
functions. Bourgain [3] further studied the interaction between the condition of Boolean-valuedness
and influences proving very powerful results about the spectrum of such functions.1 Later, Dinur,
Friedgut, Kindler and O’Donnel [9] obtained a (exponentially weaker but optimal) generalization
of Bourgain’s result [3] for the [−1, 1]-valued functions.

Most of the results mentioned above, either implicitly or explicitly, investigated the effects of
Boolean-valuedness on the spectrum of functions. As most computational and learning problems
are specified by a truth table of the form f : {−1, 1}n → {0, 1}, one may assume understanding
the spectral properties of Boolean functions should be sufficient for the applications to complexity
theory. Indeed, for many applications such as the study of small-depth circuits, threshold cir-
cuits, decision trees and even, via an easy reduction, the bounded error query complexity of total
functions, this is sufficient. The main point here is the distinction between total functions versus
partial functions. A total function is a Boolean function f : {−1, 1}n → {0, 1} defined on the
whole hypercube whereas a partial function f : A → {0, 1} is only defined on a strict subset A
of the hypercube. The distinction between partial functions and total functions is crucial in the
applications to query and communication complexity. For example, although it has been known
since the work of Simon [21] that for partial functions quantum algorithms can be exponentially
more powerful than classical algorithms, for total functions quantum algorithms can only exhibit
at most a polynomial speedup. (See [5, 7] for further discussion and [12, 14, 24] for similar issues
in communication complexity.)

It turns out that the case of quantum and randomized query complexity of partial functions is
way less-understood than the case of total functions. The work of Aaronson and Ambainis [1] is
one of the first papers trying to investigate the relationship between the size and the structure
of the domain A of a partial function f , and the quantum versus classical advantage achievable
for computing f . The intuition is that unless the domain A is specially structured and rather
small, quantum algorithms should not be able to outperform classical algorithms by too much.
Unfortunately, our knowledge in this topic still remains in its infancy and the recent work [2] shows
that even partial functions arising from the restriction of very simple functions, such as parity, can
exhibit very interesting behavior.

1The spectrum of a function usually refers to the weight distribution of Fourier coefficients of a function. The
spectral properties refer to, for example, the behavior of S(m) =

∑
|S|≥m |f̂(S)|2 or h(p) =

∑
S⊆[n] |S|

p|f̂(S)|2 as a
function of m and p .
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One of the first complications that arise when trying to address the problems regarding the query
complexity of partial functions is that, instead of Boolean functions, one has to deal with more
general bounded functions. To see this, let us first recall how one usually associates a polynomial
to any (say, quantum) algorithm solving a query problem.

Lemma 1.5 (See [5]) Let Q be a quantum algorithm with a black box access to an input X ∈
{−1, 1}n trying to solve a problem f : {−1, 1}n → {0, 1, ∗}.2 If Q makes T queries to the black-box
before accepting or rejecting the input, its acceptance probability of each X ∈ {−1, 1}n can be seen
as a real-valued multilinear polynomial p(X) of degree at most 2T .

Hence, we see that if an algorithm manages to solve a query problem in few queries, this implies
the existence of a polynomial p(X) of low degree satisfying |p(X) − f(X)| ≤ 1/3 for any X in
the domain A of f . Hence, if the domain of f is a strict subset of Boolean hypercube one has
no information on p(X) for X ∈ Ac. Unlike the case of “essentially Boolean functions” with the
range [0, 1/3]∪ [2/3, 1], which can be studied by simple reductions to Boolean function, the spectral
properties of bounded functions can be different to those of Boolean functions as demonstrated by
the work of Dinur et al [9]. Thus it seems that one prerequisite for making progress on problems
regarding the tradeoffs between the size and the structure of the domain of a partial function and
the quantum and classical query complexity is to develop some analytical tools for studying the
properties of bounded functions over the hypercube.

Returning back to the study of influence of a variable, we should mention a series of recent devel-
opments surrounding the alternative notions of influences in the Gaussian setting by Keller, Mossel
and Sen [16, 17].(See also [15]) As pointed out by Cordero-Erausquin and Ledoux [8] the geometric
influences of Keller, Mossel and Sen can be seen as the “L1 influences” in the Gaussian setting. It
is interesting to further clarify the relation between the notions of influence in the Gaussian setting
introduced recently in above works with the L1 influences in discrete cube as studied in this paper.
Notice that it is well-known that the Gaussian space can be seen as a “special case” of the Boolean
case since as the central limit theorem indicates, Gaussian random variables can be simulated with
a number of independent Bernoulli random variables to very good precision.

Lastly, we should mention that [1] is not the first place where the notion of L1 influences has
appeared. In a seminal paper, Talagrand [22] obtained a very powerful generalization of KKL
theorem [13]. Talagrand’s inequality explicitly uses the notion of L1 influences. However, to our
knowledge, [1] is the first place where the question of the relationship between L1 influences and
the traditional complexity measure of Boolean functions such as the Fourier degree is raised.

2 Preliminaries

In this work, we use concepts from the analysis over the hypercube {−1, 1}n. For more extensive
introduction to the analysis of Boolean functions and its application to complexity theory we refer
to the surveys of de Wolf and O’Donnel [18, 23]. We also refer to [7] for extensive introduction
to the complexity measures of functions such as randomized, quantum and deterministic query
complexity and their relation to more analytic concepts such as degree, approximate degree, etc.

2 This is the alternative notation for partial query complexity problems with A = dom(f) consisting of points x
where f(x) 6= ∗. We say that an algorithm accepts an input if it outputs 1 and it rejects an input if it outputs 0.
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It is well-known that any function f : {−1, 1}n → R can be represented as a polynomial with
real coefficients over the monomials χS(x) =

∏
i∈S xi which are called Fourier-Walsh characters.

The notion of the influence of a variable is well-known in the context of the analysis of Boolean
functions. For a Boolean valued function g : {−1, 1}n → {−1, 1} the influence of i-th coordinate is
defined to be infi(g) = Prx[g(x) 6= g(xi)], where xi ∈ {−1, 1}n is the point x with ith coordinate
flipped.

For more more general non-Boolean functions p : {−1, 1}n → R the notion of influence is usually
extended in L2 form by following definition

Infsqi (p) = Ex

[(
p(x)− p(xi)

2

)2
]
.

In this work, we work with a different generalization of notion of influences to non-Boolean functions,

Infi(p) = Ex

[
|p(x)− p(xi)|

2

]
.

Notice that our notation differs from many other works in computer science literature where the
above typically represent the L2 influences which we denote by Infsqi (f) and Inf sq(f). But following
Aaronson and Ambainis [1] and since L1 influences are central to this work we choose to work with
above notation to simplify the writing.

Another central tool in our work is the noise operator which is defined as follows.

Definition 2.1 Noise operator with rate ρ ∈ R applied to polynomial p is the following polynomial:

Tρp(x) :=
∑
S⊆[n]

p̂(S) ρ|S|χS(x).

For ρ ∈ [−1, 1] there is an alternative characterization of Tρp which will be useful later. Consider
a bipartite distribution over (x, y) ∈ {−1, 1}n × {−1, 1}n defined as follows: we pick x ∈ {−1, 1}n
uniformly at random, and for each i independently we set yi = xi with probability (1 + ρ)/2
and yi = −xi with the remaining probability. It is not too hard to see [18, 23] that the above
distribution, denoted by x ∼ρ y, is symmetric in x and y and that the operator Tρ satisfies

Tρ p(x) = Ey∼ρx[p(y)],

for ρ ∈ [−1, 1]. This characterization has the a very useful consequence, for ρ ∈ [−1, 1] we have
‖Tρ(p)‖∞ ≤ ‖p‖∞ and in fact ‖Tρ(p)‖q ≤ ‖p‖q for all q ≥ 1.

3 The case of homogeneous polynomials

Recall that p(x) =
∑

S⊆[n] p̂(S)χS(x) is a homogeneous polynomial if p̂(S) = 0 for all S such that
|S| 6= deg(p). In this section we prove the following theorem.

Theorem 3.1 Let p : {−1, 1}n → R of deg(p) = d be a homogeneous polynomial. Then we have

Inf(p) = O(Apd
2 log d).
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Let p(x) =
∑

R⊆[n] p̂(R)χR(x) be a homogeneous polynomial of degree d. Let S ⊆ [n]. Critical to
our analysis is the following polynomial

qS(x) =
∑

R⊆[n]:|R∩S|=1

p̂(R)χR(x).

Lemma 3.2 For all S ⊆ [n],

qS(x) = O(Apd log d).

Proof

We define vα ∈ Rd such that for any 1 ≤ k ≤ d: (vα)k = PrP [|P ∩ [k]] ≡ 1(mod 2)], where we
choose set P by putting each i ∈ [n] in it independently with probability α.

(vα)k =
∑

i:i≡1(mod 2)

αi(1− α)k−i
(
k

i

)

=
1

2

(
((1− α) + α)k − ((1− α)− α)k)

)
= (1− (1− 2α)k)/2.

Let S ⊆ [n] and S′ ⊆ S be chosen by including every i ∈ S independently with probability α. Then

Ap ≥ ES′ [p(x)− p(xS′)] = 2
∑

R⊆[n]:|R∩S|≥1

p̂(R) · (vα)|R∩S|χR(x).

We will choose α1, α2, ..., αd and x1, x2, ..., xd such that
∑n

i=1 vαixi = −→e and
∑d

i=1 |xi| = O(d log d),
where −→e is d-dimensional vector with the first entry 1 and with the remaining entries 0. This gives

qS(x) =
∑

R⊆[n]:|R∩S|=1

p̂(R)χR(x) =

d∑
i=1

xi
∑

R⊆[n]:|R∩S|=1

p̂(R)χR(x)(vαi)|R∩S|

≤ Ap
2

d∑
i=1

|xi| = O(Ad log d).

For any −1 ≤ γ ≤ 1 we consider vectors v′γ with (v′γ)k = γk for −1 ≤ γ ≤ 1. Notice that since v1/2
is the vector of all 1/2 entries, v′γ = 2

(
v1/2 − v(1−γ)/2

)
. So instead of working with vα’s directly we

instead choose to work with v′γ .

If d is even we choose γi = −1/2 + (i−1)/d for i ≤ d/2 and γi = (i−d/2)/d for i > d/2. If d is odd
we choose γi = −1/2 + (i− 1/2)/d for i ≤ (d− 1)/2 and γi = (i+ 1/2− d/2)/d for i ≥ (d+ 1)/2.
Consider matrix M with v′γ as columns. We have to solve Mx = −→e . Notice that M is similar to
Vandermonde matrix. Using Cramer’s rule we obtain

|xk| =

∣∣∣∣∣γ1...γk−1γk+1...γd
γk

1∏
j 6=k(γj − γk)

∣∣∣∣∣ .
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Now because of the choice of γs we get |γ1...γk−1γk+1...γd| ≤ |
∏
j 6=k(γj − γk)|. Thus

∑
i |xi| ≤∑

i
1
|γi| = O(d log d).

Now we will prove Theorem 3.1.

Proof of Theorem 3.1

Consider

B = ES

ExSc

∑
i∈S

∣∣∣∣∣∣
∑

R:R∩S={i}

p̂(R)χR\{i}(x)

∣∣∣∣∣∣
 ,

where in the first expectation we choose S by putting each i ∈ [n] in it with probability 1/d
and in the second expectation we choose values of variables in complement of S uniformly and
independently at random. Now if for every i ∈ S we choose

xi = sgn

 ∑
R:R∩S={i}

p̂(R)χR\{i}(x)

 ,

we can use the previous upper bound and conclude that B = O(Apd log d) as well.

Now we lower bound B:

B =
1

d− 1

n∑
i=1

Ex,z

∣∣∣∣∣ ∑
R:i∈R

p̂(R)χR(x)χR(z)

∣∣∣∣∣
= Ω

(
1

d

n∑
i=1

Ex

∣∣∣∣∣ ∑
R:i∈R

p̂(R)χR(x)

∣∣∣∣∣
)
,

where we choose each zi = 0 with probability 1/d and zi = 1 with the remaining probability. In
the last equality we moved expectation over z inside the absolute value and then used Ez[χR(z)] =
(1− 1/d)d = Ω(1). (We use the fact that there is no αR 6= 0 with |R| < d.)

Now it remains to notice that

Inf(p) =
n∑
i=1

Ex
[
|p(x)− p(xi)|/2

]
=

n∑
i=1

Ex

∣∣∣∣∣ ∑
R:i∈R

p̂(R)χR(x)

∣∣∣∣∣ .

4 The case of general polynomials

Now we will modify the proof of Theorem 3.1 to solve the case of non-homogeneous polynomial
(Theorem 1.3).

To prove the theorem we also need another lemma:

Lemma 4.1 Let q be a degree-d polynomial in ρ such that |q(ρ)| ≤ 1 for −1 ≤ ρ ≤ 1. Then the

following equality holds: q

(
1

1− 1
d2

)
= O(1).
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Lemma 4.1 follows from properties of Chebyshev polynomials and lemma of Paturi [19].

Proposition 4.2 ([20]) Define Pd as follows

Pd = {p ∈ R[x] | deg(p) ≤ d , max
x∈[−1,1]

|p(x)| ≤ 1}

Then we have
∀p ∈ Pd, x /∈ [−1, 1] |p(x)| ≤ |Td(x)|

Where Td is the d-th Chebychev polynomial of the first kind.

Td(ρ) =
1

2

((
ρ+

√
ρ2 − 1

)d
+
(
ρ−

√
ρ2 − 1

)d)
.

Lemma 4.3 (Paturi) Td(1 + γ) ≤ e2d
√

2γ+γ2 for all γ ≥ 0.

Proof [6] Td(1 + γ) ≤ (1 + γ +
√

2γ + γ2)d ≤ (1 + 2
√

2γ + γ2)d ≤ e2d
√

2γ+γ2 .

Proof of Theorem 1.3

Now combining Lemma 3.2 and Lemma 4.1 with the fact that for all −1 ≤ ρ ≤ 1 we have
maxx Tρp(x) ≤ maxx p(x) and minx Tρp(x) ≥ minx p(x) (Those inequalities follow from Tρp(x) =
Ey∼ρx[p(y)].) we get that ∑

R⊆[n]:|R∩S|=1

p̂(R) ρ′|R| χR(x) = O(Apd log d),

where ρ′ = 1/(1 − 1/d2). (We fix x and consider TρqS(x) as a polynomial in ρ and then apply
Lemma 4.1.)

Consider

B = ES

ExSc

∑
i∈S

∣∣∣∣∣∣
∑

R:R∩S={i}

p̂(R) ρ′|R|χR\{i}(x)

∣∣∣∣∣∣
 ,

where in the first expectation we choose S by putting each i ∈ [n] in it with probability 1/d2

and in the second expectation we choose values of variables in complement of S uniformly and
independently at random. Now if for every i ∈ S we choose

xi = sgn

 ∑
R:R∩S={i}

p̂(R) ρ′|R|χR\{i}(x)

 ,

we can use the previous upper bound and conclude that B = O(Apd log d) as well.

Now we lower bound B:

B =
1

d2 − 1

n∑
i=1

Ex,z

∣∣∣∣∣ ∑
R:i∈R

p̂(R) ρ′|R|χR(x)χR(z)

∣∣∣∣∣
9



= Ω

(
1

d2

n∑
i=1

Ex

∣∣∣∣∣ ∑
R:i∈R

p̂(R)χR(x)

∣∣∣∣∣
)
,

where we choose each zi = 0 with probability 1/d2 and 1 with the remaining probability. In the
last equality we moved expectation over z inside the absolute value and then used Ez[ρ

′|R|χR(z)] =
ρ′|R|(1− 1/d2)|R| = 1.

5 A Corollary on Maximal Deviation of Cut-value of Graphs

In this section we use a very special case of our original theorem to reprove a theorem of Erdös et
al. [10] on the maximum discrepancy of cut-values in graphs. In a graph G = (V,E), by Sc we
denote V \ S and we write u ∼ v if and only if (u, v) ∈ E.

Definition 5.1 For any graph G = (V,E) and 0 ≤ p ≤ 1 the cut-deviation Dp(G) is the maximum
over all cuts (S, V \S) of the discrepancy between the cut-value |E(S, Sc)| and the expected cut-value
p|S|(|V | − |S|) (where we choose each edge independently with probability p), i.e.,

Dp(G) = max
S⊆V
||E(S, Sc)| − p|S||Sc|| .

We are interested in lower bounding the quantity Dp(G). Given a G = (V,E), let ρG := |E|/
(|V |

2

)
be the edge density. Notice that for any p 6= ρG a random cut will already give a deviation of Ω(n2)
for Dp(G). So the interesting case is when p = ρG. For this choice of the parameter we prove the
following Theorem,

Theorem 5.2 For every graph G = (V,E),

DρG(G) = Ω(min(ρG, 1− ρG)n
3
2 ).

We note that the above inequality is tight as it follows by applying standard tail inequalities to
Erodös-Renyi graphs G(n, p). Moreover, the one-sides variants of this inequality

max
S⊆V

E(S, Sc)− ρG|S||Sc| = Ω(min(ρG, 1− ρG)n
3
2 )

which holds for random graphs, does not hold in general as can be seen from the example of the
complement of complete bipartite graph Kn/2,n/2.

To prove this result we will use the following lemma.

Lemma 5.3 Let G = (V,E). For any S ⊆ V let xS ∈ {−1, 1}|V | be such that (xS)i = 1 iff i ∈ S
(assume that V = [n]). Then

gp(x) :=
|E|
2
− p |V |(|V | − 1)

4
+
p

2

∑
i<j

xixj − (1/2− p/2)
∑
i∼j

xixj

satisfies gp(xS) = E(S, Sc)− p|S||Sc|.

10



Proof

We check that |E(S, Sc)| = 1/2|E| − 1/2
∑

i∼j xixj and |S||Sc| = |V |(|V |−1)
4 − 1

2

∑
i<j xixj .

Proof of Theorem 5.2 Set p := ρG. First we notice that,

Agp = max
x

gp(x)−min
x
gp(x) ≤ 2 max

x
|gp(x)| = 2 max

S⊆[n]
|E(S, Sc)− p|S||Sc|| = 2Dp,

where in the third equality we use the previous lemma.

Theorem 1.3 implies

Inf(gp) =

n∑
i=1

Ex

[∣∣∣p/2∑
j�i

xj − (1− p)/2
∑
j∼i

xj

∣∣∣] = O
(

max
S⊆[n]

∣∣E(S, Sc)− p|S||Sc|
∣∣),

where we use the fact that deg(gp) = 2.

Now we just need to lower bound the left hand side. For a particular i we have,

Ex

[∣∣∣p/2∑
j�i

xj − (1− p)/2
∑
j∼i

xj

∣∣∣] = Ω(min(p, 1− p)
√
n),

where the last equality follows when we consider random walk of length n− 1 with steps of length
p/2 or (1− p)/2.

6 Conclusion and Open Problems

The main open problem is to improve the bound in Theorem 1.3. We believe that this bound
is far from optimal. It is conceivable that the total L1 influence of a [−1, 1]-valued function p is
always bounded by a linear function of the degree of p. We expect that optimizing our techniques
one could improve the bound in Theorem 1.3 by logarithmic factors. However, we suspect that
improving the upper bound to O(deg(p)) would require some new ideas.

As mentioned in the introduction, we hope that our results and techniques in this work would be
useful in the study of quantum versus classical query complexity of partial functions. However,
as demonstrated in Section 5, the applications of our inequality may not be limited to complexity
theory. There, we gave a proof of a purely combinatorial result of Erdös et al. by applying Theorem
1.3 to an appropriately chosen polynomial.

Another possible future direction is to clarify the relationship between the notion of L1 influence
in the discrete cube as studied in this work and the alternative notions of influence in the Gaussian
setting as discussed by [8, 16, 17].
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