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Abstract. For a function f over the discrete cube, the total L1 influence of f is defined as
řn
i“1 }Bif}1, where Bif denotes the discrete derivative of f in the direction i. In this work, we show

that the total L1 influence of a r´1, 1s-valued function f can be upper bounded by a polynomial
in the degree of f , resolving affirmatively an open problem of Aaronson and Ambainis (ITCS
2011). The main challenge here is that the L1 influences do not admit an easy Fourier analytic
representation. In our proof, we overcome this problem by introducing a new analytic quantity
Ippfq, relating this new quantity to the total L1 influence of f . This new quantity, which roughly
corresponds to an average of the total L1 influences of some ensemble of functions related to f , has
the benefit of being much easier to analyze, allowing us to resolve the problem of Aaronson and
Ambainis. We also give an application of the theorem to graph theory, and discuss the connection
between the study of bounded functions over the cube and the quantum query complexity of partial
functions where Aaronson and Ambainis encountered this question.

1. Introduction

The notion of the influence of a variable [3, 14] plays a fundamental role in the study of functions
over product probability spaces. A canonical example of a product probability space is the discrete
cube t´1, 1un equipped with the uniform probability measure. Given a Boolean function f :
t´1, 1un Ñ t´1, 1u, the ith influence of f is defined as the fraction of the edges in the direction i
where the value of f changes along the edge, i.e.

Infipfq :“ Pr
xPt´1,1un

“

fpxq ‰ fpxiq
‰

.

Here xi denotes the neighbor of the point x in the ith direction that is

xi “ px1, . . . , xi´1,´xi, xi`1, . . . , xnq.

The sum over all the influences is called the total influence, Infpfq “
řn
i“1 Infipfq, and has a clear

geometric meaning, as the total edge boundary between the set of points where f “ 1 and its
complement.

Going beyond the Boolean valued functions, the notion of the influence of a variable can be gen-
eralized in several ways. The idea is to replace the term Prrfpxq ‰ fpxiqs with an analytical

expression such as E
”´

|fpxq´fpxiq|
2

¯αı

for some non-zero α P R.1 Two important cases to consider

are: α “ 1 and α “ 2, which correspond to the L1 and L2 influences respectively. Since we are
concerned mostly with the L1 case here, following Aaronson and Ambainis [1], we take up the
following notation (for the notation see Section 3.).

Massachusetts Institute of Technology, Cambridge, MA, USA.
E-mail addresses: backurs@mit.edu , bavarian@mit.edu .

1Notice that for a t´1, 1u-valued function f , the term |fpxq´fpxiq|{2 is either 0 or 1; hence all these different notions
of influence of a variable coincide in this setting. .
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Definition 1.1. Given a function f : t´1, 1un Ñ R, we denote the ith discrete derivative of f by
Bifpxq “ pfpxq´ fpx

iqq{2. We denote the ith L1 influence of f by Infipfq “ }Bif}1 and the total L1

influence by Infpfq “
řn
i“1 }Bif}1. Note that the Fourier expansion of Bif can be recovered from

that of f as follows:

Bif “
ÿ

SQi

f̂pSqχS .

In [1], Aaronson and Ambainis asked whether the total L1 influence of a r´1, 1s-valued function
can be bounded in terms of a polynomial of the function’s Fourier degree. In this work, we resolve
their question affirmatively.

Theorem 1.2. Let f : t´1, 1un Ñ R and degpfq “ d. Then we have

Infpfq “ Opd3}f}8q.

Aaronson and Ambainis did not conjecture anything about the growth of that polynomial. It is
likely that in fact a linear bound Opdq is sufficient for the above result to hold.

Remark 1.3. Theorem 1.2 is most interesting when d is small compared to n, as it is straightfor-
ward to see that Infpfq “ Opn}f}8q. Hence, for concreteness it might be useful to think of d as

nop1q or even a large constant.

We should mention that we are not aware of any bound independent of n (say exppdq) which would
easily follow from the previous results in the literature.

To build intuition about the theorem, it is useful to first consider the analogous question over L2.
The total L2 influence of a function f : t´1, 1un Ñ R is defined as the sum over all directional L2

influences, i.e.,

Inf sqpfq “
n
ÿ

i“1

Infsq
i pfq “

1

4

n
ÿ

i“1

Erpfpxq ´ fpxiqq2s.

One reason for considering the L2 case is that the self-duality of L2 allows one to derive a nice
characterization of the L2 influences as the average weight of Fourier coefficients. More precisely,
we have

Inf sqpfq “
ÿ

SĎrns

|S| f̂pSq2. (1)

The dual expression (1) for the total L2 influence leads to a quick proof of an L2 analogue of
Theorem 1.2, which is

Inf sqpfq ď degpfq}f}22. (2)

Indeed, Aaronson and Ambainis’s question was based partly on the empirical evidence, and partly
on the fact that the similar statement holds in the L2 setting. However, it turns out that proving
the analogous statement in the L1 case is much more difficult. The main difficulty is due to the
fact that unlike the L2 influences, the L1 influences do not have an easy characterization in terms
of Fourier coefficients. Hence, to prove Theorem 1.2, one needs to relate the L1 influences of a
function, which is defined in terms of the values of the function, to its degree that is most easily
understood in terms of the values of its Fourier coefficients. Notice that this difficulty was not
present in the L2 case because of the dual characterization of L2 influences in equation (1), which
has no analogue in any setting beyond L2.

Techniques and the organization of the paper. Beside the main contribution of this paper,
which is the proof of Theorem 1.2, we believe the second significant contribution of this work lies
in the new definitions and techniques introduced on the way to the final result. The main technical
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machinery used in the proof of Theorem 1.2 is presented in Section 4. There we define and analyze
an auxiliary operator M“1

S , whose properties allow us to relate the total L1 influence to a more
tractable quantity Ippfq. The above operators and quantities turn out to be quite natural from a
mathematical point of view, and understanding their properties could be useful elsewhere. Once the
auxiliary quantities and operators are introduced and their properties investigated, Theorem 1.2
follows rather quickly. Almost all the main ingredients of the proof are already present in Section
4; the missing technical details are presented in Section 5 and 6 and in the appendix to complete
the proof.

After establishing Theorem 1.2, we apply this theorem to give a new proof of the following theorem
of Erdős, Goldberg and Pach from graph theory:

Theorem 1.4 (Erdős et al.). Given a graph G “ pV,Eq with density ρG “ |E|{
`

n
2

˘

, there always
exists a cut pS, Scq such that

|EpS, Scq ´ ρG|S||S
c|| “ Ω

´

minpρG, 1´ ρGqn
3
2

¯

.

The above is proved by applying Theorem 1.2 to

gGpxq :“
|E|

2
´ ρG

|V |p|V | ´ 1q

4

`
ρG
2

ÿ

iăj

xixj ´

ˆ

1

2
´
ρG
2

˙

ÿ

pi,jqPE

xixj .

The above example demonstrates that in some settings Theorem 1.2 can be much stronger than
its L2 counterpart — i.e. equation (1). To see this, note that when G is a random graph of some

fixed constant density (say ρG “ 1{2), the Ωpn3{2q bound in Theorem 1.4, proved via Theorem 1.2,
is tight. On the other hand, applying the L2 bound of equation (1) to gG, one only gets an inferior
lower bound of Ωpnq.2

2. Related work and background

The importance of the concept of influences in the analysis of functions over product spaces was
already recognized in the pioneering work of Kahn, Kalai and Linial [14] and Bourgain et al.
[3]. Building upon these results, Friedgut [12] showed that a Boolean function with very low
total influence is somewhat “simple” as it can be approximated with a function depending on
few coordinates, showing that the total influence in some regime acts as a complexity measure of
functions. Bourgain [2] further studied the interaction between the condition of Boolean-valuedness
and influences proving very powerful results about the spectrum of such functions.3 Later, Dinur
et al. [8] obtained a (exponentially weaker but optimal) generalization of Bourgain’s result [2] for
the r´1, 1s-valued functions.

Most of the results mentioned above, either implicitly or explicitly, investigated the effects of
Boolean-valuedness on the spectrum of functions. As most computational and learning problems

2Let us elaborate (see also Section 7) the polynomial gG is chosen such that }gG}8 is equal to the maximal cut

deviation of the graph G. Applying max-cutdevpGq “ }gG}8 ě }gG}2 “ ΩpInf sq
pggq

1
2 q only gives us Ωpnq bound.

Essentially, this is due to the fact that }gG}2 here is much smaller than }gG}8. Indeed, in this setting, equation
(1) seems more suitable for capturing the average case cut-deviation behavior, whereas Theorem 1.2 seems better at
capturing extremal cases.
3The spectrum of a function usually refers to the weight distribution of Fourier coefficients of a function. The spectral

properties refer, for example, to the behavior of Spmq “
ř

|S|ěm |f̂pSq|
2 or Rpkq “

ř

SĎrns |S|
k
|f̂pSq|2 as a function

of m and k.
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are specified by a truth table of the form f : t´1, 1un Ñ t0, 1u, one may assume that under-
standing the spectral properties of Boolean functions should be sufficient for the applications to
complexity theory. Indeed, for many applications such as the study of small-depth circuits, thresh-
old circuits, decision trees and even, via an easy reduction, the bounded error query complexity
of total functions, this is sufficient. The main point here is the distinction between total functions
versus partial functions. A total function is a Boolean function f : t´1, 1un Ñ t0, 1u defined on
the whole hypercube whereas a partial function f : A Ñ t0, 1u is only defined on a strict subset
A of the hypercube. The distinction between partial functions and total functions is crucial in the
applications to query and communication complexity. For example, although it has been known
since the work of Simon [21] that for partial functions quantum algorithms can be exponentially
more powerful than classical algorithms, for total functions quantum algorithms can only exhibit
at most a polynomial speedup. (See [4, 6] for further discussion and [13, 15, 23] for similar issues
in communication complexity.)

It turns out that the case of quantum and randomized query complexity of partial functions is
much less understood than that of total functions. The work of Aaronson and Ambainis [1] is
one of the first papers trying to investigate the relationship between the size and the structure of
the domain A of a partial function f , and the quantum versus classical advantage achievable for
computing f . The intuition is that unless the domain A is specially structured and rather small,
quantum algorithms should not be able to outperform classical algorithms by much. Unfortunately,
our knowledge in this topic is still quite limited.

One of the first complications that arises when trying to address the problems regarding the query
complexity of partial functions is that, instead of Boolean functions, one has to deal with more
general bounded functions. To see this, let us first recall how one usually associates a polynomial
to any (say, quantum) algorithm solving a query problem.

Lemma 2.1 (See [4]). Let Q be a quantum algorithm with a black box access to an input X P

t´1, 1un, trying to solve a problem f : t´1, 1un Ñ t0, 1, ˚u. 4 If Q makes T queries to the black-box
before accepting or rejecting the input, its acceptance probability of each X P t´1, 1un can be seen
as a real-valued multilinear polynomial ppXq of degree at most 2T .

Hence, we see that if an algorithm manages to solve a query problem in few queries, this implies
the existence of a polynomial ppXq of low degree satisfying |ppXq ´ fpXq| ď 1{3 for any X in the
domain A of f . Hence, if the domain of f is a strict subset of Boolean hypercube, one has no
information on ppXq for X P Ac. Unlike the case of essentially Boolean functions, i.e. functions
with the range r0, 1{3sYr2{3, 1s which in many respects resemble Boolean functions in their spectral
behavior (in fact, many of the same techniques used for studying Boolean functions also apply here),
the spectral properties of bounded functions can be quite different from those of Boolean functions
as demonstrated by the work of Dinur et al. [8]. Thus it seems that one prerequisite for making
progress on problems regarding the tradeoffs between the size and the structure of the domain of
a partial function and the quantum and classical query complexity is to develop more analytical
tools for studying the properties of bounded functions over the hypercube. The new results and
techniques in this paper are precisely along such lines.

Improved bounds and subsequent work. We shall note that an earlier version of this paper
proved slightly inferior bounds of Opd3 log dq for Theorem 1.2 and Opd2 log dq for Theorem 4.1.
The extra logarithmic factor in the bounds arose from a suboptimal construction of the measure
H in Lemma 5.3. In that same early version, We suggested that the extra logarithmic factor

4This is the alternative notation for partial query complexity problems with A “ dompfq, consisting of points x where
fpxq ‰ ˚. We say that an algorithm accepts an input if it outputs 1 and it rejects an input if it outputs 0.
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could perhaps be removed by a more careful choice of the measure H concentrated on the roots of
Chebyshev polynomials (as opposed to an arithmetic progression which was the basis of the original
construction). Y. Filmus in fact succeeded in constructing such a measure based on the roots of
Chebyshev polynomials; he communicated the proof to us and he kindly allowed us to include it in
this paper.

Although the cubic type bound seem to be the limit of our methods for Theorem 1.2, an improve-
ment on our results have been obtained by Y. Filmus and H. Hatami [11] via rather different and
interesting methods. However, an optimal bound of Opdq still remains open and (if true) it would
be quite interesting to prove. A counter-example, for linear type bound may also be very interesting
depending on the type of construction.

3. Preliminaries

In this work, we use concepts from analysis over the discrete spaces, specifically, the hypercube
t´1, 1un. For a good introduction to this area and its application to complexity theory, we refer to
the surveys of de Wolf and O’Donnell [19, 22]. We also refer to [6] for a good introduction to the
complexity measures of functions such as randomized, quantum and deterministic query complexity
and their relation to more analytic concepts such as degree and approximate degree, etc. We denote
by rns the set of integers between 1 to n. It is well-known that any function f : t´1, 1un Ñ R can
be represented as a polynomial with real coefficients over the Fourier-Walsh characters:

fpxq “
ÿ

SĎrns

f̂pSqχSpxq,

where χSpxq “
ś

iPS xi. The degree of f is defined as

degpfq :“ max
SĎrns: f̂pSq‰0

|S|.

Also, one of the tools used in the proof is the well-known noise operator:

Definition 3.1. The noise operator with rate ρ P R is given by

Tρfpxq :“
ÿ

SĎrns

pfpSq ρ|S|χSpxq.

For ρ P r´1, 1s, there is an alternative characterization of Tρf which is useful for us: consider a
bivariate distribution over px, yq P t´1, 1unˆt´1, 1un defined by choosing x P t´1, 1un uniformly at
random, and for each i P rns (independently) setting yi “ xi with probability p1`ρq{2, and yi “ ´xi
with the remaining probability. It is not too hard to see [19, 22] that the above distribution, denoted
by x „ρ y, is symmetric in x and y and that the operator Tρ satisfies

Tρ fpxq “ E
y„ρx

rfpyqs,

for ρ P r´1, 1s. This characterization has the following useful consequence: for ρ P r´1, 1s we have
}Tρpfq}8 ď }f}8 and in fact }Tρpfq}q ď }f}q for all q ě 1.

Notation 3.2 (Dirac delta). A Dirac delta or a point mass at a point t P R is a probability measure
µ “ δpx´ tq satisfying µpKq “ 1 if t P K Ď R, and otherwise µpKq “ 0. A weighted sum of Dirac
delta measures over R is called a discrete measure.
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4. Proof overview

The proof of Theorem 1.2 is best understood by focusing on the special case of homogeneous
polynomials. Recall that a function f is called homogeneous if all of f ’s non-zero Fourier coefficients
f̂pRq ‰ 0 satisfy |R| ď degpfq “ d. In fact, for homogeneous functions we can prove a better
estimate:

Theorem 4.1. Let f be a function f : t´1, 1un Ñ R that is homogeneous of degree d. Then

Infpfq “ Opd2 }f}8q.

Theorem 1.2 is proved by a slight tweaking of parameters in the proof of Theorem 4.1 (which costs
us a factor of d in the bound), and using some properties of the Chebyshev polynomials. Since the
essence of the argument is already present in the proof of Theorem 4.1, from now on we assume
the function f is homogeneous of degree d.

To prove Theorem 4.1, we introduce an operator M“1
S f , defined for each S Ď rns. The action of

M“1
S on a function is to keep the Fourier coefficients of the characters that have intersection size

1 with S intact, and to zero out the rest of the Fourier expansion. More precisely, the operator is
defined as follows:

Definition 4.2. Let S Ď rns. M“1
S is a linear operator on the space of functions over the discrete

cube t´1, 1un given by

M“1
S fpxq :“

ÿ

R: |RXS|“1

f̂pRqχRpxq.

One nice feature of M“1
S f is that InfipM“1

S fq for i P S has a particularly useful form as shown
below in Fact 4.9. Another important property of M“1

S is the following:

Proposition 4.3. For all f : t´1, 1un Ñ R with d “ degpfq and for all S, we have

}M“1
S f}8 “ Opd }f}8q.

The quantity }M“1
S }8Ñ8 “ supf‰0

}M“1
S f}8
}f}8

in general could be quite large; however, the above

proposition guarantees that this quantity is reasonably small if we restrict the supremum to the
bounded degree functions. The main idea for proving this proposition is to view the action of M“1

S
as a convolution:

M“1
S fpxq “ f ˚ PSpxq “ E

yPt´1,1un
fpyqPSpxyq.

5 (3)

If we wanted equation (3) to hold for all functions f , the function PS would be uniquely determined
from the definition of M“1

S . However, we shall use the freedom given by the fact that degpfq ď d
to choose a better PS .

Proposition 4.4. There exists a function PS : t´1, 1un Ñ R satisfying

(i) xPSptiuq “ 1 for i P S,

(ii) xPSpAq “ 0 for all A Ď S with |A| “ 0 or 2 ď |A| ď d,

(iii) PSpxq “ 0 whenever there exists i P Sc with xi ‰ 1,

such that }PS}1 “ Opdq.

5Here xy P t´1, 1un is the coordinate wise product of x and y, i.e. pxyqi “ xiyi.
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Consider the Fourier expansion of the function PS guranteed by the above proposition.

xPSpRq “ E
xPt´1,1un

rPSpxqχRpxqs

“
1

2n

ÿ

x: xi“1 @iPSc

rPSpxqχRpxqs

“ xPSpRX Sq,

where we use the fact that the sum is over x P t´1, 1un with xi “ 1 for all i P Sc to deduce

that χRpxq “ χRXSpxq. It follows from Proposition 4.4 that {PSpRq “ 1|RXS|“1. Here 1RXS“tiu is
a function which is 1 when R X S “ tiu and is otherwise zero. Notice that now Proposition 4.3
follows quickly because

{f ˚ PSpRq “ pfpRqxPSpRq “ pfpRq1|RXS|“1 “
{M“1

S fpRq.

On the other hand,
}f ˚ PS}8 ď }PS}1 }f}8 “ Opd }f}8q.

Having defined M“1
S f and investigated its properties, the next step is to define a quantity that

allows us to get a better handle on the total L1 influence. This quantity is denoted by Ippfq,
parametrized by p P r0, 1s . Here, p should be thought of as a probability parameter which would
be inverse polynomially related to the degree of f in our setting.

Definition 4.5. For a set A, we let S Ðp A be a random subset of A formed by including each
e P A to be in S independently with probability p. More formally, for any set U Ď A

Pr
SÐpA

rS “ U s “ p|U |p1´ pq|A|´|U |.

Definition 4.6. Let f : t´1, 1un Ñ R. We define

Ippfq :“ E
SÐprns

«

ÿ

iPS

Infi
`

M“1
S f

˘

ff

. (4)

The main hope here is that Ippfq would act as a proxy for Infpfq, while being more tractable
quantity to work with. More precisely, we want the following sandwiching relationship to hold for
some choice of p:

Infpfq

dOp1q
ď Ippfq ď dOp1q}f}8. (5)

Notice that equation (5) would prove (some form of) Theorem 4.1. Thus, for the rest of this section
we shall exclusively focus on the proof of these inequalities.

There are two inequalities in equation (5). The right hand side of the inequality, i.e. Ippfq ď
dOp1q}f}8, holds for any p P r0, 1s. This is because of the next proposition (which is in fact the
main reason we defined Ippfq originally).

Proposition 4.7. For any x P t´1, 1un, there exists some y P t´1, 1un such that
ÿ

iPS

|BiM“1
S fpxq| ďM“1

S fpyq.

We find the above proposition in some respects rather remarkable as it relates a (large) sum over
the derivatives of a function to the value of the function itself (evaluated possibly at some other
point of the discrete cube). Let us see how this proposition implies the right hand side of equation
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(5):

ÿ

iPS

InfipM“1
S fq “ E

xPt´1,1un

«

ÿ

iPS

ˇ

ˇ

ˇ
BiM“1

S fpxq
ˇ

ˇ

ˇ

ff

ď }M“1
S f}8.

Hence, by the definition of Ippfq and Proposition 4.3, it follows that

Ippfq “ E
SÐprns

«

ÿ

iPS

InfipM“1
S fq

ff

ď max
S
}M“1

S f}8

“ Opd }f}8q.

Hence, we proved the right hand side of equation (5).

Let us now move on to the left hand side of equation (5). The main intuition here is that for a
typical pair of S Ðp rns and i P S, we would have

Infipfq « InfipM“1
S fq.

Assuming this and recalling that for typical S we have |S| « pn (which should be thought of as
the same order as n), it would be reasonable to expect that Infpfq and

ř

iPS InfipM“1
S fq are closely

related. This intuition is in fact correct in the sense that we have:

Lemma 4.8. Suppose f : t´1, 1un Ñ R is a homogeneous of degree d. Then

Ippfq ě pp1´ pqd´1 Infpfq.

We shall instantiate this lemma with p “ 1
d , which is chosen to (roughly) minimize pp1´ pqd´1. To

prove this lemma we need the following fact:

Fact 4.9. Let S Ď rns and i P S.

Infi pM“1
S fq “ E

x

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

RĎrns

1RXS“tiu f̂pRq χRpxq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

The proof of this fact follows from the definition of M“1
S and is straightforward. For completeness,

a proof is given at the end of the section.

Proof of Lemma 4.8. The plan is to swap the expectation ESÐprns and
ř

iPS in equation (4). We
can do this by fixing i P rns and condition on the event i P S which occurs with probability p.
Conditioned on this event, we have S “ S1 Y tiu with S1 Ðp rnsztiu. Hence,

Ippfq “ p
n
ÿ

i“1

E
S1Ðprnsztiu

”

Infi

´

M“1

S1Ytiuf
¯ı

,

where the term p came from conditioning on the event i P S. Using Fact 4.9 in the above gives us

Ippfq “ p
n
ÿ

i“1

E
S1Ðprnsztiu
xPt´1,1un

«

ˇ

ˇ

ˇ

ˇ

ÿ

RQi

1RXS1“H f̂pRq χRpxq

ˇ

ˇ

ˇ

ˇ

ff

.
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Note that since S “ S Y tiu, we translated S X R “ tiu to i P R and S1 X R “ H. Noting that

|Rztiu| “ d´ 1 for all R with f̂pRq ‰ 0, we have for such R’s

E
S1Ðprnsztiu

“

1RXS1“H
‰

“ p1´ pqd´1. (6)

Now we use the triangle inequality to swap | ¨ | and ES1Ðprnsztiu. Substituting p1 ´ pqd´1 using
equation (6), we get

Ippfq ě pE
x

n
ÿ

i“1

«

ˇ

ˇ

ˇ

ˇ

ÿ

R: iPR

p1´ pqd´1 f̂pRq χRpxq

ˇ

ˇ

ˇ

ˇ

ff

,

which is precisely what we wanted to show. �

Hence, we have proved both sides of our central equation (5), finishing the proof of Theorem 4.1,
except for the proof of Propositions 4.3 and 4.7 given in Section 5.

To prove Theorem 1.2, the main thing that must be modified is the statement of Lemma 4.8. There,
the proof crucially depended on the fact that

E
S1Ðprnsztiu

“

1RXS1“H
‰

“ p1´ pqd´1

independently of R, which allowed us to take this term out of the expectation. When f is not
homogeneous, the above term, which is

E
S1Ðprnsztiu

“

1RXS1“H
‰

“ p1´ pq|R|´1,

cannot be pulled out of the expectation. The main trick is to apply the noise operator to f before
going through the computation of Lemma 4.8. More precisely, instead of working with equation
(5), we work with a slightly different inequality:

p Infpfq ď IppTp1´pq´1fq ď dOp1q}f}8. (7)

Going through the same computation as that of Lemma 4.8 with Tp1´pq´1f instead of f , allows
us to prove the left hand side of equation (7) with no modification. For the right hand side of
equation (7), we just need some facts about Chebyshev polynomials, specifically some estimates for
}Tp1´pq´1f}8 in terms of }f}8 and p. Notice that we are applying the noise operator with a rate

p1´ pq´1, which is larger than one, and so }Tp1´pq´1f}8 could be much larger than }f}8. Thus p
must be chosen well for this estimate to be useful.

Proof of Fact 4.9. By definition

Infi pM“1
S fq “ E

xPt´1,1un

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

RQi: |RXS|“1

f̂pRq χRpxq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

However, if |RX S| “ 1 and i P R,S, the above sum is over sets R with |RX S| “ tiu. Hence,

Infi pM“1
S fq “ E

x

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

R:RXS“tiu

f̂pRq χRpxq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

holds. In the above expression, all χRpxq have xi “ ˘1 as a common factor. Hence, we have the
freedom to replace R with Rztiu in the above expression, as we do elsewhere. �
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5. The case of homogeneous polynomials

As mentioned in Section 4, the plan is to prove Theorem 4.1 by proving the following two inequal-
ities:

Infpfq “ O
`

d I 1
d
pfq

˘

“ O
`

d2 }f}8
˘

.

Setting p “ 1
d in Lemma 4.8 gives one of the two inequalities; the second inequality follows from a

combination of Propositions 4.7, which gives

Ippfq “ E
SÐprns

«

ÿ

iPS

InfipM“1
S fq

ff

“ E
xPt´1,1un

«

ÿ

iPS

ˇ

ˇ

ˇ
BiM“1

S fpxq
ˇ

ˇ

ˇ

ff

ď }M“1
S f}8,

and Proposition 4.3, which gives }M“1
S f}8 “ Opd }f}8q.

Let us first prove Proposition 4.7.

Proof of Proposition 4.7. Fix x P t´1, 1un and i P S. By the definition of M“1
S f , we have

BiM“1
S fpxq “

ÿ

R:RXS“tiu

f̂pRqχRpxq (8)

“ xi
ÿ

R:RXS“tiu

f̂pRqχRztiupxq. (9)

Notice that since xi “ ˘1, and we are interested in the sum of the absolute value of the above
expression, i.e.

ř

iPS |BiM“1
S fpxq|, the term xi can be dropped from the left hand side of equation

(9). Define y P t´1, 1un by

yi “

#

xi if i R S.

sgn
´

ř

R:RXS“tiu f̂pRqχRztiupxq
¯

if i P S.

Notice that this choice of y implies
ÿ

iPS

|BiM“1
S fpxq| “

ÿ

iPS

ÿ

R: RXS“tiu

f̂pRqχRpyq

“
ÿ

R: |RXS|“1

f̂pRqχRpyq;

but the last term is precisely M“1
S fpyq. �

We need some new definitions in order to prove Proposition 4.3.

Definition 5.1. A measure H supported on B “ r´1, 1s is called d-admissible if it satisfies the
following conditions:

(i)
ş

B γ
m dHpγq “ 0 for m “ 0 and 2 ď m ď d,

(ii)
ş

B γ dHpγq “ 1.

Remark 5.2.
10



1. The measures in our case are discrete, i.e. they consist of a weighted sum of point masses as
H “

řm
i“1wi δpγ ´ αiq. This means for any A Ď R, HpAq “

ř

αiPA
wi. For a discrete measure H,

we define its absolute value, which is itself a measure with the same support as H, by

|H| :“
m
ÿ

i“1

|wi|δpγ ´ αiq.

2. We also define }H}1 :“ |H|pRq “
řm
i“1 |wi|.

The main lemma regarding the d-admissible measures we need is the following result proved in the
appendix.

Lemma 5.3. For any d ě 1, there exists a d-admissible measure as in Definition 5.1 with }H}1 “
Opdq.6

Lemma 5.3 in turn can be used to prove the next lemma which finishes the proof of Proposition
4.3, and hence the proof of Theorem 4.1.

Lemma 5.4. For any d-admissible measure H on r´1, 1s, we can construct a function PS :
t´1, 1un Ñ R satisfying the conditions of Proposition 4.3 with }PS}1 ď }H}1 “

ş

d|Hpγq|.

Proof. Consider PS : t´1, 1un Ñ R, specified as

PSpxq “
ź

iRS

p1` xiq

ż 1

´1

ź

iPS

p1` γxiq dHpγq, (10)

which can be easily seen to satisfy property (iii) in Proposition 4.3. Also, notice that xPSptiuq for
i P S is exactly the coefficient of the monomial xi in equation (10). By our guarantee on H’s

first moment, we have xPSptiuq “
ş1
´1 γ dHpγq “ 1 for i P S. Similarly for computing the Fourier

coefficient for xPSpAq for some A Ď S, we need to see what is the term we pick up from the second
product in equation (10). In general, we see that for any A Ď S

xPSpAq “

ż 1

´1
γ|A| dHpγq.

A moment of reflection reveals that actually for any A Ď rns,

xPSpAq “

ż 1

´1
γ|AXS| dHpγq

holds. This, combined with the properties guaranteed on moments of H, proves that the proposed
PS in equation (10) satisfies the conditions of Proposition 4.3. We are just left with the computation
of }PS}1 which is

E
xPt´1,1un

«

ź

iRS

|1` xi|
ˇ

ˇ

ˇ

ż 1

´1

ź

iPS

p1` γxiq dHpγq
ˇ

ˇ

ˇ

ff

.

6As noted in improved bounds and subsequent work part of Section 2, the earlier versions of this paper only showed
the existence a d-admissible measure with }H}1 “ Opd log dq which caused the final bound to suffer by a logarithmic
factor accordingly.
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For simplicity assume S “ rks Ď rns. Notice that |1`xi| “ 1`xi, and hence Er|1`xi|s “ 1. Using
independence of the random variables txiuiPS , and the triangle inequality, we see that

}PS}1 “ E
xPt´1,1uk

«

ˇ

ˇ

ˇ

ż 1

´1

k
ź

i“1

p1` γxiq dHpγq
ˇ

ˇ

ˇ

ff

ď E
xPt´1,1uk

«

ż 1

´1

k
ź

i“1

|1` γxi| d|Hpγq|

ff

“

ż 1

´1
d|Hpγq|

k
ź

i“1

E
xi
|1` γxi| “

ż 1

´1
d|Hpγq|,

which is }H}1. Here, we used the fact that |1` γxi| “ 1` γxi for γ P r´1, 1s and Erxis “ 0. The
above is exactly our desired result. �

6. The general case

The steps are completely analogous to the homogeneous case which we discussed in detail in Section
4 and 5. See the above sections for more explanations of the arguments.

Lemma 6.1. Let f : t´1, 1un Ñ R of degree d. We have

p Infpfq ď IppTp1´pq´1fq.

Proof. Using the definitions of Ipp¨q and the noise operator, and a triangle inequality we get

IppTp1´pq´1fq

“ p
n
ÿ

i“1

E
S1Ðprnsztiu

”

Infi

´

M“1

S1YtiuTp1´pq´1f
¯ı

“ p
n
ÿ

i“1

E
x,S1

ˇ

ˇ

ˇ

ˇ

ˇ

„

ÿ

RQi

p1´ pq´|R|1RXS1“Hf̂pRqχR



ˇ

ˇ

ˇ

ˇ

ˇ

ě p
n
ÿ

i“1

E
x

ˇ

ˇ

ˇ

ˇ

ˇ

„

ÿ

RQi

f̂pRqχRp1´ pq
´|R| E

S1Ðprnsztiu
r1S1XRs



ˇ

ˇ

ˇ

ˇ

ˇ

“
p

1´ p

n
ÿ

i“1

E
x

ˇ

ˇ

ˇ

ˇ

ˇ

„

ÿ

RQi

f̂pRqχR



ˇ

ˇ

ˇ

ˇ

ˇ

ě p Infpfq.

�

As a consequence of Proposition 4.3 we have

IppTp1´pq´1fq “ Opd}Tp1´pq´1f}8q. (11)

So we need to estimate }Tp1´pq´1f}8 in term of }f}8. Consider the point x P t´1, 1un such that
|Tp1´pq´1fpxq| “ }Tp1´pq´1f}8. Fix x and view Tρfpxq as a univariate polynomial of degree d in ρ.
Recall from the preliminaries that |Tρfpxq| ď }f}8 for all ρ P r´1, 1s. The crucial lemma is the
following which is a well-known fact from approximation theory.

Lemma 6.2. Suppose P is a polynomial of degree d. Then for x ą 1,

|P pxq| ď e2d
?
x2´1 max

tPr´1,1s
|P ptq|.
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Proof. By scaling we can assume |P | ď 1 for t P r´1, 1s. Classical properties of Chebyshev polyno-
mials [20] indicate that |P pxq| ď Tdpxq where Td is dth Chebyshev polynomial. We have

Tdpxq “
1

2

´

px`
a

x2 ´ 1qd ` px´
a

x2 ´ 1qd
¯

.

For x ě 1,
?
x2 ´ 1 ě x´ 1 and hence

Tdpxq ď px`
a

x2 ´ 1qd ď p1` 2
a

x2 ´ 1qd ď e2d
?
x2´1.

�

Setting p “ c
d2

for some c ą 0, and estimating p1´ pq´2 ´ 1 “ Θpc{d2q gives us

Infpfq “ Opc´1eΘp
?
cqd3}f}8q.

This finishes the proof of Theorem 1.2.

7. A corollary on maximal deviation of cut-value of graphs

In this section we use a special case of Theorem 1.2 to give a new proof of a theorem of Erdős et al.
[9] on the maximum discrepancy of cut-values in (unweighted) graphs. Given S Ď V a vertex subset
of a graph G “ pV,Eq, we denote V zS by Sc and we write u „ v if and only if pu, vq P E.

Definition 7.1. For any graph G “ pV,Eq and 0 ď p ď 1 the cut-deviation DppGq is the maximum
over all cuts pS, V zSq of the discrepancy between the cut-value |EpS, Scq| and the expected cut-value
p|S|p|V | ´ |S|q (where we choose each edge independently with probability p), i.e.,

DppGq “ max
SĎV

ˇ

ˇ

ˇ

ˇ

ˇEpS, Scq
ˇ

ˇ´ p|S||Sc|
ˇ

ˇ

ˇ
.

We are interested in lower bounding the quantity DppGq. For a G “ pV,Eq, let ρG :“ |E|{
`

|V |
2

˘

denote the edge density of G. Notice that for any p ‰ ρG a random cut will already give a deviation
of Ωpn2q for DppGq. So the interesting case is when p “ ρG. For this choice of the parameter we
prove the following theorem:

Theorem 7.2. For every graph G “ pV,Eq,

DρGpGq “ ΩpminpρG, 1´ ρGqn
3
2 q.

We note that the above inequality is tight which can be seen by applying Chernoff bound to Erdős-
Renyi graphs Gpn, pq. More formally, if G „ Gpn, pq for all S Ă V and some c, C ą 0, which may
depend on p, we have

Pr
”

ˇ

ˇEpS, Scq ´ p|S||Sc|
ˇ

ˇ ě αn
ı

ď Pr
”

ˇ

ˇEpS, Scq ´ p|S||Sc|
ˇ

ˇ ě α
b

|S||SC |
ı

ď c expp´Cα2q.

Taking α “ r
?
n for appropriate constant r in the above, and applying a union bound over all cuts

S Ă V , proves the tightness of Theorem 7.2. Moreover, the one-sided variant of this inequality

max
SĎV

EpS, Scq ´ ρG|S||S
c| “ ΩpminpρG, 1´ ρGqn

3
2 q

13



which holds for random graphs, does not hold in general; this can be seen from the example of
the complement of complete bipartite graph Kn{2,n{2. Thus, the result is optimal in this sense as
well.

To prove Theorem 7.2, we use the following:

Lemma 7.3. Let G “ pV,Eq with |V | “ n, and assume V “ rns. We associate to any S Ď V a
point x P t´1, 1un by setting xi “ 1 for i P S and xi “ ´1 for i P Sc. Then

gppxq :“
|E|

2
´ p

|V |p|V | ´ 1q

4
`
p

2

ÿ

iăj

xixj ´ 1{2
ÿ

i„j

xixj

satisfies gppxSq “ EpS, Scq ´ p|S||Sc|.

Proof. This is a standard computation; one checks that |EpS, Scq| “ 1{2|E| ´ 1{2
ř

i„j xixj and

|S||Sc| “ |V |p|V |´1q
4 ´ 1

2

ř

iăj xixj . �

Now we are ready for our final proof:

Proof of Theorem 7.2. Let p “ ρG since, as noted above, if p ‰ ρG, a random cut achieves a Ωpn2q

lower bound. Notice that

}gppGq}8 “ max
SĎrns

|EpS, Scq ´ p|S||Sc|| “ DppGq,

where in the first equality we used the previous lemma. Theorem 1.2 implies

Infpgpq “
n
ÿ

i“1

E
x

„

ˇ

ˇ

ˇ

p

2

ÿ

ji

xj ´
1´ p

2

ÿ

j„i

xj

ˇ

ˇ

ˇ



(12)

“ O
´

max
SĎrns

ˇ

ˇEpS, Scq ´ p|S||Sc|
ˇ

ˇ

¯

, (13)

where we use the fact that degpgpq “ 2.

Now we just need to a lower bound for the left hand side of the previous equation. Fix a particular
i˚ P V . We claim the expression

E
x

„

ˇ

ˇ

ˇ
p{2

ÿ

ji˚

xj ´ p1´ pq{2
ÿ

j„i˚

xj

ˇ

ˇ

ˇ



is Ω pminpp, 1´ pq
?
nq (in the above both sums are over j, for a fixed i˚). Note that at least one

of the sums has at least n{2 terms. Without loss of generality assume, |tj „ i˚u| ě n{2. From the
central limit theorem (or simple properties of binomial distributions) then follows that

E
„

ˇ

ˇ

ˇ

ÿ

j„i˚

xj
ˇ

ˇ



“ Θp
?
nq.

Now applying the Jensen’s inequality to take Exj for j  i˚ inside the expectation, and using
Erxjs “ 0, it follows that

E
x

„

ˇ

ˇ

ˇ

p

2

ÿ

ji˚

xj ´
1´ p

2

ÿ

j„i˚

xj

ˇ

ˇ

ˇ



ě
1´ p

2
E
„

ˇ

ˇ

ˇ

ÿ

j„i˚

xj

ˇ

ˇ

ˇ



“ Ω
`

minpp, 1´ pq
?
n
˘

.

�
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8. Conclusion

The main open problem is to improve the bound in Theorem 1.2. We believe that this bound is far
from optimal. It is conceivable that the total L1 influence of a r´1, 1s-valued function p is always
bounded by a linear function of the degree of p.

As mentioned in the introduction, we hope that our results and techniques in this work would be
useful in the study of quantum versus classical query complexity of partial functions. However,
as demonstrated in Section 7, the applications of our inequality may not be limited to complexity
theory. There, we gave a proof of a purely combinatorial result of Erdős et al. by applying Theorem
1.2 to an appropriately chosen polynomial.

Another possible future direction is to clarify the relationship between the notion of L1 influence
in the discrete cube as studied in this work and the alternative notions of L1 type influences in the
Gaussian setting as discussed in [7, 17, 18] and also the recent one in [10].
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Appendix A. Construction of optimal d-admissable measure on R

In this section we prove Lemma 5.3. Without loss of generality we can assume that the degree parameter
d ě 1 is an odd integer since this can be guaranteed by increasing d to d` 1; the only negative effect of this
is a slight worsening of the hidden constant in Op¨q in the conclusion of Lemma 5.3.

We start by showing that the resulting measure is optimal (as such improving this lemma cannot be used to
make much further progress in the bounds obtained in Theorem 1.2). To this end, we consider the Chebyshev
polynomial Tdpγq.

Theorem A.1. If H is d-admissible then }H}1 ě d. Furthermore, equality is only possible for the measures
supported on γt “ cos tπd for 0 ď t ď d.

Proof. Since |Tdpγq| ď 1, we have
ż 1

´1

d|Hpγq| ě

ˇ

ˇ

ˇ

ˇ

ż 1

´1

TdpγqdHpγq

ˇ

ˇ

ˇ

ˇ

“ d,

since Td has degree d and Tdpγq|γ0 “ 0 while Tdpγq|γ1 “ p´1qpd´1q{2d.

Equality is only possible for a measure concentrated on the values satisfying |Tdpγq| “ 1. If γ “ cos θ then
Tdpγq “ cospdθq, and so dθ “ tπ for some integer t. �

The measure we construct will actually be supported only on γ1, . . . , γd. For the rest of this section, we
consider the atomic measure supported on γ1, . . . , γd and given by

Hptγtuq “
p´1qpd´1q{2`t

d
¨

#

1, t “ d,

γ´2 ´ γ´1, t ă d.
(14)

We first show that H is d-admissible. We start by giving a formula which will help us calculate the required
integrals.

Lemma A.2. We have

p´1qpd´1q{2d

ż 1

´1

γk dHpγq “ p´1qk`1 ` Sk´2 ´ Sk´1,

where

S` “
d´1
ÿ

t“1

p´1qtγ`t .
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Proof. Follows straight from the definition of H, using γd “ cosπ “ ´1. �

We proceed to calculate S` for the relevant values of `, namely ´1 ď ` ď d´ 2.

Lemma A.3. When ` is even, S` “ 0.

Proof. Since cospπ ´ θq “ ´ cos θ, we have γ`t “ γ`d´t and so p´1qtγ`t ` p´1qd´tγ`d´t “ 0. �

Lemma A.4. When ` is odd,

S` “ ´1`
d
ÿ

t“1

pcos 2tπ
d q

`.

Proof. Using cospπ ´ θq “ ´ cos θ, we have

S` “
d´1
ÿ

t“1

p´1qtpcos tπd q
`

“

pd´1q{2
ÿ

t“1

pcos 2tπ
d q

` `

pd´1q{2
ÿ

t“1

p´ cos p2t´1qπ
d q`

“

pd´1q{2
ÿ

t“1

pcos 2tπ
d q

` `

pd´1q{2
ÿ

t“1

pcos pd´2t`1qπ
d q`

“

d´1
ÿ

t“1

pcos 2tπ
d q

`. �

In order to compute S`, we employ the residue calculus.

Lemma A.5. When ` ď d´ 2 is odd,

S` “ ´1´
ÿ

w : wd‰1

Respfpzq, z “ wq,

where fpzq “ dpz2`1q`

2`z``1pzd´1q
, where the sum is over all poles of fpzq other than those at dth roots of unity.

Proof. Consider the function

fpzq “

ˆ

z ` z´1

2

˙`
d

zd`1 ´ z
.

When |z| is large, |fpzq| “ Opz`´d´1q “ Opz´3q, and so if we integrate fpzq over a large circle around
the origin, the result will be Opz´2q and so will tend to zero as the radius tends to infinity. On the other
hand, the residue theorem implies that the integral equals the sum of residues of the function, over 2πi. We
conclude that the sum of residues equals zero. It is well-known that the function d{pzd`1 ´ zq has residue 1
at dth roots of unity, and so

Respfpzq, z “ exp 2tπi
d q “

ˆ

z ` z´1

2

˙`

“ pcos 2tπ
d q

`.

The lemma now follows from Lemma A.4. �

Using the formula obtained in the preceding lemma, we calculate S` for odd `, separately for ` ě 1 and
` “ ´1.

Lemma A.6. When 1 ď ` ď d´ 2 is odd, S` “ ´1.
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Proof. Using Lemma A.5, we have to compute the residue of the following function at z “ 0:

fpzq “
dpz2 ` 1q`

2`z``1pzd ´ 1q
.

Around z “ 0 we have

fpzq “ ´
dpz2 ` 1q`

2`z``1
p1`Opzdqq.

Opening the binomial coefficient, since all powers of z are even, we see that the coefficient of z´1 is zero. �

Lemma A.7. We have S´1 “ ´1` p´1qpd´1q{2d.

Proof. Using Lemma A.5, we have to compute the residues of the following function at the “non-trivial”
poles z “ ˘i:

fpzq “
2d

pz2 ` 1qpzd ´ 1q
.

Since the poles are simple, it is easy to compute

Respfpzq, z “ iq ` Respfpzq, z “ ´iq “
2d

2ipid ´ 1q

`
2d

p´2iqp´id ´ 1q
.

When pd´ 1q{2 is even,

Respfpzq, z “ iq ` Respfpzq, z “ ´iq “
d

ipi´ 1q

`
d

p´iqp´i´ 1q
“ ´d.

Therefore, in this case S´1 “ ´1 ` d. Similarly, when pd ´ 1q{2 is odd the sum of residues is d, and so
S´1 “ ´1´ d. �

The preceding two lemmas, together with Lemma A.2 and Lemma A.3, allow us to prove that H is d-
admissible.

Lemma A.8. The measure H is d-admissible.

Proof. We start with property (i). Lemma A.2 together with Lemma A.7 and Lemma A.3 show that

p´1qpd´1q{2d

ż 1

´1

γ dHpγq “ 1` S´1 ´ S0 “ p´1qpd´1q{2d.

Property (ii) is similar. Suppose first that 2 ď d ď k is even. Lemma A.2 together with Lemma A.6 and
Lemma A.3 show that

p´1qpd´1q{2d

ż 1

´1

γk dHpγq “ ´1` Sd´2 ´ Sd´1

“ ´1` 0´ p´1q “ 0.

Similarly, when 2 ď d ď k is odd we have

p´1qpd´1q{2d

ż 1

´1

γk dHpγq “ 1` Sd´2 ´ Sd´1

“ 1` p´1q ´ 0 “ 0. �

It remains to calculate }H}1. We do this in two steps.
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Lemma A.9. We have

}H}1 “
1

d

d
ÿ

t“1

1

pcos πkd q
2
.

Proof. By definition,

d}H}1 “ d

ż 1

´1

d|Hpγq| “ d
d
ÿ

t“1

|Hptγtuq|

“ 1`
d´1
ÿ

t“1

|γ´2
t ´ γ´1

t |.

We claim that γ´2
t ą γ´1

t for all 1 ď t ď d ´ 1. If γt is negative, this is clear. If γt is positive then since
γt ă 1, clearly γ´1

t ă γ´2
t . Therefore

d}H}1 “ 1`
d´1
ÿ

t“1

γ´2
t ´

d´1
ÿ

t“1

γ´1
t .

Since γt “ ´γd´t, the second sum vanishes, and we conclude

d}H}1 “ 1`
d´1
ÿ

t“1

γ´2
t “

d
ÿ

t“1

pcos πkd q
´2. �

We can evaluate the sum using the residue calculus.

Lemma A.10. We have
d
ÿ

t“1

1

pcos πkd q
2
“ d2.

Proof. Consider the function

fpzq “
4d

pz ` 1q2pzd ´ 1q
“

4z

pz ` 1q2
d

zd`1 ´ z
.

As in the proof of Lemma A.5, the sum of residues vanishes. The residue at a dth root of unity z “ exp 2tπi
d

is

4z

pz ` 1q2

ˇ

ˇ

ˇ

ˇ

z“exp
2tπi
d

“
2

1` pz ` z´1q{2

ˇ

ˇ

ˇ

ˇ

z“exp
2tπi
d

“
2

1` cos 2tπ
d

“
1

pcos tπd q
2
,

using the identity 2pcos θq2 “ 1` cosp2θq. In order to calculate the residue at ´1, we calculate instead the
residue of gpwq “ fpz ` 1q at w “ 0:

gpwq “
4d

w2ppw ´ 1qd ´ 1q
“

4d

w2p´2` dw `Opw2qq

“
´2d

w2p1´ pd{2qw `Opw2qq

“
´2d

w2
p1` d

2w `Opw
2qq.

Therefore Respfpzq, z “ ´1q “ Respgpwq, w “ 0q “ ´d2. The formula immediately follows. �

Hence, the main result of the section which is the proof of Lemma 5.3 follows.

19

 

ECCC                 ISSN 1433-8092 

http://eccc.hpi-web.de 


