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Abstract
The Parikh automaton model equips a finite automaton with integer registers and imposes a
semilinear constraint on the set of their final settings. Here the theories of typed monoids and of
rational series are used to characterize the language classes that arise algebraically. Complexity
bounds are derived, such as containment of the unambiguous Parikh automata languages in NC1.
Affine Parikh automata, where each transition applies an affine transformation on the registers,
are also considered. Relying on these characterizations, the landscape of relationships and closure
properties of the classes at hand is completed, in particular over unary languages.

Introduction

The Parikh automaton model was introduced in [21]. It amounts to a nondeterministic
finite automaton equipped with registers tallying up the number of occurrences of each
transition along an accepting run. Such a run is then deemed successful iff the tuple of
final register settings falls within a fixed semilinear set. An affine variant of the model in
which transitions further induce an affine transformation on the registers was considered
in [9]. An unambiguous variant of the model was considered in [8]. Expressivity of the
model was compared with that of other models, notably with reversal bounded counter
automata, in [21, 9]. Complexity of decision problems and equivalent formulations in terms
of expressions were studied in [15]. Tree Parikh automata and other variants were considered
in [20]. A model in which such tests are allowed in a controlled way during the run are
investigated in [17, 1].

Recall the tight connection between AC0, ACC0 and NC1 and aperiodic monoids, solvable
monoids and nonsolvable monoids respectively [2, 3]. This connection was refined and studied
in depth (see [28] for a lovely account), but the class TC0 ⊆ NC1 was left out of the picture
because the MAJ gate in circuits could not be translated into the operation of a finite
algebraic structure. Typed monoids were introduced in [24] as a means of capturing TC0

meaningfully in the algebraic framework.
In both the classical and the typed monoid framework, a compelling notion of a natural

class of monoids is that of a variety. In both frameworks, different monoid varieties capture
different classes of languages as inverse homomorphic images of an accepting subset of the
monoid [13, 5]. The internal structure of NC1 hinges on whether different monoid varieties
still capture different classes of languages when the classical notion of a homomorphism is
appropriately generalized to capture as above complexity classes such as ACC0, TC0 and
NC1.
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2 The Algebraic Theory of Parikh Automata

Our contributions revolve around algebraic characterizations of the language classes
defined by the deterministic and unambiguous variants of the Parikh automaton (called CA,
for “constrained automaton”) and the affine Parikh automaton. We show:

The class LDetCA of languages accepted by deterministic CA is the set of languages
recognized by typed monoids from Z+ ©̀M, i.e., by wreath products of the monoid of
integer vectors with some finite monoid; the smallest typed monoid variety generated by
Z+ ©̀M also captures LDetCA;
The class LUnCA of languages accepted by unambiguous CA is the set of languages
recognized by typed monoids from Z+ �M, i.e., by block products of the monoid of
integer vectors with some finite monoid; the smallest typed monoid variety generated by
Z+ �M also captures LUnCA;
The classes LDetAPA and LUnAPA, of languages accepted by deterministic and by unam-
biguous affine Parikh automata respectively (where an affine Parikh automaton generalizes
the constrained automaton by allowing each transition to perform an affine transformation
on the automaton registers), are similarly characterized using wreath and block products
of the monoid of integer matrices with some finite monoid;
The classes LDetAPA and LUnAPA coincide—this is shown in a purely algebraic way;
The class LDetAPA is the Boolean closure of the positive supports of rational series over
the integers, where the latter are the languages of words with a positive weight in a
weighted automaton over (Z,+,×).

The first two characterizations above add legitimacy to the theory of typed monoids, and they
suggest further relevance of that theory to our understanding of NC1. It follows from the
characterization of LUnCA that LUnCA ⊆ NC1, a fact which is not immediately obvious from
the operation of an unambiguous constrained automaton. From these characterizations, we
almost completely resolve the language-theoretic questions (expressiveness, closure properties)
left open so far concerning CA and APA—we delay to the conclusion two figures giving a
precise exposition of these.

The structure of this document is as follows. In Section 1, we introduce the language- and
automata-theoretic notions on which we base this work. The algebraic theory of languages,
together with the notions of typed monoids and block product, are also presented therein. In
Section 2, we develop normal forms for CA and APA that will allow for a uniform treatment
of the proofs of the forthcoming algebraic characterizations. Therein, Theorem 3 provides a
Chomsky-Schützenberger-like characterization of LCA (and thus of the languages of reversal
bounded counter automata) of independent interest. As a direct consequence, this shows
that LCA is the trio generated by the commutative closure of the Dyck languages. In
Section 3, we provide the algebraic characterizations that rely on typed monoids, and show
that LDetAPA = LUnAPA by algebraic means. In Section 4, a precise correspondence is given
between LDetAPA and rational power series. Finally, in Section 5, we focus on consequences
of the aforementioned characterizations, from which we complete our understanding of the
closure and expressiveness properties in particular of LDetAPA.

1 Preliminaries

Monoids, morphisms. A monoid is a set M with an associative operation, usually denoted
multiplicatively (x, y) 7→ xy, and an identity element denoted 1. For S ⊆M , we write S∗ for
the monoid generated by S, i.e., the smallest submonoid of M containing S. We write MR

for the reversed monoid (sometimes called the opposite monoid) of M , that is, the monoid
with the same base set as M , and the operation reversed: mn in M is equal to nm in MR.
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We naturally extend this notation to sets of monoids. The powerset of M , written P(M), is
endowed with a monoid structure given by the pointwise multiplication of M .

A (monoid) morphism from M to N is a map preserving product and identity. For two
monoids M1 and M2, we define πi : M1 ×M2 →Mi, with i = 1, 2, as the morphisms which
are the projections on the i-th component (i.e., π1(m1,m2) = m1, π2(m1,m2) = m2).

Languages. The symbols Σ and T (capital tau) will always implicitly refer to some alphabets,
i.e., finite sets of symbols. With concatenation as the operation, Σ∗, T∗ are monoids where ε,
the empty word, is the identity element. Subsets of these monoids are referred to as languages.
A morphism from Σ∗ need only be defined on the elements of Σ. For w ∈ Σ∗, we write wR

for the reversal of w ∈M , that is, the image of w under the isomorphism from Σ∗ to (Σ∗)R

which is the identity on Σ. For L ⊆ Σ∗, we write Pref(L) for the language {u | (∃v)[uv ∈ L]}.
We further say that a morphism h from Σ∗ is injective (resp. prefix-injective) on L if for any
u, v ∈ L (resp. u, v ∈ Pref(L)), h(u) = h(v) implies u = v. If h further maps to T∗, we say
that it is length-preserving if h(Σ) ⊆ T.

Integers, vectors, matrices. We write Z, Z+ for the sets of integers and positive integers,
respectively. Let d ∈ Z+ be some dimension. Vectors in Zd are noted in bold, e.g., v whose
elements are v1, v2, . . . , vd. We write ei ∈ {0, 1}d for the vector having a 1 only in position i,
and 0 for the all-zero vector, where the dimension d is implicit. We view Zd as the additive
monoid (Zd,+), with + the component-wise addition and 0 the identity element. We let
Md(Z), for d ≥ 1, be the monoid of square matrices of dimension d × d with values in Z,
under matrix multiplication. We will often speak of the reversal of this monoid, that we
simply write MR

d (Z). Denoting by M tr the transpose of a matrix M , it thus holds that
(MN)tr (in the monoidMd(Z)) is equal to the product of M tr and N tr inMR

d (Z).

Semilinear sets, Parikh image. A subset C of Zd is linear if there exist c ∈ Zd and a finite
P ⊆ Zd such that C = c + P ∗. The subset C is said to be semilinear if it is equal to a finite
union of linear sets: {4n+ 56 | n > 0} is semilinear while {2n | n > 0} is not. We will often
use the fact that the semilinear sets are the sets of vectors definable in first-order logic with
addition [16], i.e., a set C ⊆ Zd is semilinear iff there is a first-order formula ϕ(x1, x2, . . . , xd)
using addition, order, and constants, such that x ∈ C iff ϕ(x) holds true. Restricting this
view, a sign set is a subset of Zd that can be expressed as a Boolean combination of conditions
of the form xi > 0.

Let Σ = {a1, a2, . . . , an} be an (ordered) alphabet. The Parikh image is the morphism
Pkh : Σ∗ → Zn defined by Pkh(ai) = ei, for 1 ≤ i ≤ n, with in particular, Pkh(ε) = 0. For
w ∈ Σ∗ and ai ∈ Σ, we write |w|ai

for the i-th component of Pkh(w). The Parikh image of
a language L is defined as Pkh(L) = {Pkh(w) | w ∈ L}. The name of this morphism stems
from Parikh’s theorem [25], stating that for L context-free, Pkh(L) is semilinear; outside
language theory, it is also referred to as the commutative image. We call the commutative
closure of a language L the language Comm(L) = Pkh−1(Pkh(L)). An equivalent formulation
of Parikh’s theorem is that context-free and regular languages have the same commutative
closures.

Affine functions. A function f : Zd → Zd is a (total and positive) affine function of di-
mension d if there exist a matrix M ∈ Md(Z) and v ∈ Zd such that for any x ∈ Zd,
f(x) = Mx + v. We let Fd be the monoid of such functions under the operation � defined
by (f � g)(x) = g(f(x)), where the identity element is the identity function.
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Automata. An automaton is a quintuple A = (Q,Σ, δ, q0, F ) where Q is a finite set of states,
Σ is an alphabet, δ ⊆ Q × Σ × Q is a set of transitions, q0 ∈ Q is the initial state, and
F ⊆ Q is a set of final states. We view δ as an alphabet, and thus write δ∗ for the monoid
under concatenation of words over δ. For a transition t = (q, a, q′) ∈ δ, define From(t) = q

and To(t) = q′. We define LabelA : δ∗ → Σ∗ as the morphism given by LabelA(t) = a, with,
in particular, LabelA(ε) = ε, and write Label when A is clear from the context. The set of
accepting paths of A, i.e., the set of words over δ describing paths starting from q0 and
ending in F , is written Run(A). We assume that every state in Q appears along at least one
path in Run(A). The language of the automaton is L(A) = LabelA(Run(A)). An automaton
is unambiguous if LabelA is injective on Run(A), and deterministic if LabelA is prefix-injective
on Run(A).

A constrained automaton (CA) [9] is a pair (A,C) where A is an automaton with d

transitions and C ⊆ Zd is semilinear. Its language L(A,C) is the set of labels of accepting
paths ρ with Pkh(ρ) ∈ C, that is, the set LabelA(Run(A) ∩ Pkh−1(C)). The CA is said to be
deterministic (DetCA) if A is deterministic, and unambiguous (UnCA) if A is unambiguous.
We write LCA, LDetCA, and LUnCA for the classes of languages recognized by CA, DetCA, and
UnCA, respectively. Constrained automata are equivalent to a wealth of other computation
devices [22], notably Ibarra’s reversal-bounded counter machines [18], and enjoy a large
spectrum of desirable properties. For example, they are closed under intersection, morphisms,
inverse morphisms, and commutative closure—it is readily seen from this and the definition
of CA that LCA is the smallest class containing the regular languages and closed under
morphisms, inverse morphisms, intersection, and commutative closure.

An affine Parikh automaton (APA) [9] of dimension d is a triple (A,U,C) where A is
an automaton with transition set δ, U : δ∗ → Fd is a morphism, and C ⊆ Zd is semilinear.
Its language is L(A,U,C) = LabelA({ρ ∈ Run(A) | [U(ρ)](0) ∈ C}). The APA is said
to be deterministic (DetAPA) if A is deterministic, and unambiguous (UnAPA) if A is
unambiguous. We write LDetAPA and LUnAPA for the classes of languages recognized by
DetAPA and UnAPA, respectively.

The rest of this section is concerned with algebraic language theory, with a presentation
focused on typed monoids [24].

Typed monoids. A typed monoid [24] is a pair (S,S) where S is a finitely generated monoid
and S is a finite Boolean algebra of subsets of S (the types). We write this pair succinctly as
S[S], or simply S if the type set is implicit. If S ⊆ S, then S[S] is short for S[{∅,S,S, S}].
Every finite monoid M is seen as the typed monoid M [P(M)].

For two typed monoids M [M], N [N], their direct product M [M]×N [N] is the monoid
M×N equipped with the type set which is the Boolean closure of {M×N | M ∈M and N ∈
N}.

Recognition. A typed monoid S[S] recognizes a language L ⊆ Σ∗ if there are a morphism
h : Σ∗ → S and a type S ∈ S such that L = h−1(S). We write L(S[S]) for the class of
languages, over any alphabet, recognized by S[S] and extend this notation naturally to
classes of typed monoids. Over finite typed monoids, this definition is the same as the
traditional one of the theory of Eilenberg [13].

Varieties, recognition. A class of languages is said to be a variety of languages if it is
closed under the Boolean operations, inverse morphisms, and quotient by a word (u−1L =
{v | uv ∈ L} and its symmetric operation Lu−1). A class of typed monoids is said to be a
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(pseudo)variety of typed monoids if it is closed under division (M divides N if L(M) ⊆ L(N))
and direct products. We have:

I Theorem 1 ([5]). The languages recognized by the monoids of a variety of monoids form
a variety of languages. Conversely, the monoids recognizing the languages of a variety of
languages form a variety of monoids. This correspondence is one-to-one.

The traditional theorem of Eilenberg [13] provides a similar statement for varieties of finite
monoids and varieties of regular languages. In particular, a language is regular iff it is
recognized by a finite monoid.

Block and wreath products. The algebraic theory of languages is in largely based on construct-
ing complicated objects using simple ones and a product operation. In our presentation, we
will rely on block and wreath products, and we present the latter as a specialization of the
former.

Let M [M] be a typed monoid and N [N] a finite typed monoid.1 We describe their block
product M [M]�N [S] in two steps: first the (untyped) monoid and then the type set. The
monoid M �N is a subset of MN×N ×N with the following multiplication:

(f, n)×(M�N) (f ′, n′) = (f(•, n′•) +M f ′(•n, •), nn′) ,

where • is understood as a placeholder, that is, the right-hand function applied to x, y is
f(x, n′y) +M f ′(xn, y). The salient property of this multiplication is better seen on multiple
elements; for (fi, ni) ∈M �N , i ∈ [k], it holds that:

∏
i∈[k]

(fi, ni) =

∑
i∈[k]

fi(n1n2 · · ·ni−1•, •ni+1ni+2 · · ·nk), n1n2 · · ·nk

 .

In words, fi is applied to the pair consisting of the product of the “past” nj ’s, j < i, and the
“future” nj ’s, j > i. The type set of M �N is then the Boolean algebra generated by:

{(f, n) ∈ S | f(1, 1) ∈M∧ n ∈ N} for eachM∈M ∧N ∈ N .

The wreath product (resp. right wreath product) is the restriction of the block product in
which the values of the functions f should depend only on their left (resp. right) argument.
We write these products M [M] ©̀N [N] and M [M]©r N [N], respectively, and we see these
as subsets of MN ×N .

2 Normal forms of CA and APA

We will frequently focus on languages which do not contain the empty word. This is a
technical simplification which introduces no loss of generality, as all our classes of languages
at hand will contain {ε} and be closed under union. We provide some normal forms for CA
and APA languages that rely only on morphisms and regular languages. In the case of LCA,
this echoes a result of Kambites [19, Proposition 2], which shows a similar result for LCA,
therein called Zd-automata.

1 The restriction that N is finite is needed to preserve the property that the monoids at hand are finitely
generated. With more care, it is possible to define a sensible product of two infinite typed monoids,
see [24]. We will however only need this particular case.
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I Lemma 2. Let L ⊆ Σ+ be a CA language. There are a length-preserving morphism
h : T∗ → Σ∗, a regular language R ⊆ T∗, and a morphism g : T∗ → Zd such that:

L = h(R ∩ g−1(Z+
d)) .

Moreover, if L ∈ LUnCA (resp. L ∈ LDetCA), h can be chosen such that it is injective (resp.
prefix-injective) on R.

Proof. By definition, the language L of a CA (A,C) is:

L = LabelA(Run(A) ∩ Pkh−1(C)) ,

and LabelA is length-preserving and injective (resp. prefix-injective) on Run(A) if A is
unambiguous (resp. deterministic). Let us identify LabelA, Run(A) and Pkh−1 with the
notations of the statement of the lemma, and thus write:

L = h(R ∩ g−1(C)) ,

with no hypotheses on h,R, and g other than the ones given in the statement to be proven.
Our goal is to turn C into Z+

d while preserving these properties.
Recall (e.g., [14]) that for any semilinear set C ⊆ Zd, there is a Boolean combination

of expressions of the form:
∑
i∈[d] αixi > c and

∑
i∈[d] αixi ≡p c, with αi, c ∈ Z and p > 1,

which is true iff (x1, x2, . . . , xd) ∈ C. Note that the αi’s may be zero.
Let us thus assume that C is expressed as such a Boolean combination in disjunctive

normal form. Moreover, the negation of x ≡p c being
∨
c′∈[p]\{c} x ≡p c′, and the negation of∑

αixi > c being
∑

(−αi)xi > −c− 1, we may assume that negations do not appear in the
formula for C.

Let us now note that expressions of the form of the lemma’s statement are closed under
union. Indeed, assume h′, R′, g′, d′ and h′′, R′′, g′′, d′′ verify the lemma for two languages L′
and L′′, with h′ : (T′)∗ → Σ∗ and h′′ : (T′′)∗ → Σ∗ such that T′ ∩ T′′ = ∅ (we can always
ensure this condition). Then:

L′ ∪ L′′ = (h′ ·∪ h′′)((R′ ·∪R′′) ∩ f−1(Z+
d′+d′′)) ,

where f(b) = (g′(b), 1d′′) for b ∈ T′ and f(b) = (1d′ , g′′(b)) for b ∈ T′′. Moreover, if h′ and h′′
are injective on R′ and R′′, respectively, then h′ ∪ h′′ is injective on R′ ∪R′′; the same holds
for prefix-injectivity, showing the claimed closure property. Now, since we further have that:

h(R ∩ g−1(C ′ ∪ C ′′)) = h(R ∩ g−1(C ′)) ∪ h(R ∩ g−1(C ′′)) ,

the closure under ∪ allows us to assume that C is expressed as a single conjunctive clause.
We first get rid of the ≡p atomic formulas. Let C = C ′ ∩ C ′′ where C ′ is expressed by

the conjunction of all the ≡ atomic formulas appearing in C, and C ′′ the conjunction of the
other atomic formulas. Then:

h(R ∩ g−1(C)) = h(R ∩ g−1(C ′) ∩ g−1(C ′′)) .

Now R ∩ g−1(C ′) is itself a regular language, as an automaton reading w can compute
the vector g(w) modulo the different p’s appearing as ≡p in C ′, and check that g(w) ∈ C ′.
Further, if h is (prefix-) injective on R, it is (prefix-) injective on R ∩ g−1(C ′); we thus
suppose that C is of the form of C ′′, that is, expressed as a conjunction of expressions of the
form

∑
αixi > c.
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We now show how to replace the constant c appearing in an expression
∑
αixi > c

with a 0. Let Ṫ be a “dotted” version of T, that is, Ṫ = {ȧ | a ∈ T}. Let R′ ⊆ ṪT∗

be the language R where the first letter of each word is replaced with its dotted version;
accordingly, let h′ : (T ∪ Ṫ)∗ → Σ∗ be defined by h′(ȧ) = h′(a) = h(a), for all a ∈ T.
Further, let g′ : (T ∪ Ṫ)∗ → Zd+1 be defined by g′(a) = (g(a), 0) and g′(ȧ) = (g(a), c), for
all a ∈ T. Finally, define C ′ ⊆ Zd+1 as C where the expression under study is rewritten as∑
i∈[d+1] αixi > 0 by letting αd+1 = −1. Now clearly, h(R ∩ g−1(C)) = h′(R′ ∩ (g′)−1(C ′)).

Moreover, the property of h being (prefix-) injective on R is carried to h′ on R′. The process
just presented can be iterated so that C is expressed as a positive conjunction of expressions∑
αixi > 0. Let us thus assume this is the case.
As a last step, consider an atomic formula of the form

∑
αixi > 0; we let g com-

pute the sum in an additional component. Precisely, define g′ : T∗ → Zd+1 by g′(a) =
(g(a),

∑
i∈[d] αi(g(a))i), then for a word w, if (x1, . . . , xd) = g(w), then the last component

of g′(w) is
∑
i∈[d] αixi. Thus the atomic formula under study can be replaced by the single

test xd+1 > 0. This process can then be carried out for all such expressions, leading to a
conjunction of tests xi > 0. Finally, if i is a dimension that is not tested in this conjunction,
then the whole dimension can be removed, and C can thus be expressed as Zd, concluding
the proof. J

Recall Chomsky-Schützenberger’s theorem [12]: Any context-free language can be ex-
pressed as h(R∩Dk), where h is a morphism, R a regular language, and Dk the Dyck language
on k pairs of parentheses. We note, even though we will not make use of this, that similar
looking characterizations of LCA and related classes can be deduced from Lemma 2. Let us
spell out the particular case of LCA, and slightly strengthen it. Write D′k = Comm(Dk), the
commutative closure of Dk—it can be easily shown that this is not a context-free language.
Then:

I Theorem 3. Any LCA language can be expressed as h(R ∩D′k), for h a morphism and R
a regular language. As a consequence, LCA is the full trio2 generated by the languages D′k.

Proof. Let L ∈ LCA; by Lemma 2, L = h(R∩ g−1(Z+
d)) for R a regular language, h : T∗ →

Σ∗, g : T∗ → Zd two morphisms, and some d > 0.
Add d fresh letters a1, a2, . . . , ad to T, and modify h and g so that h erases them and

g(ai) is −ei. Define R′ = R · a+
1 a

+
2 · · · a

+
d , then clearly L = h(R′ ∩ g−1(0d)).

Now let Pd be the alphabet of D′d—we assume the symbols in Pd do not appear in
any other alphabet at hand. We order the pairs of parentheses of Pd arbitrarily. Define
g′ : T∗ → P ∗d as follows: if g(a) = (x1, x2, . . . , xd), then g′(a) is p1p2 · · · pd where pi consists
of xi times the i-th opening parenthesis if xi > 0, and −xi times the i-th closing parenthesis
otherwise, i ∈ [d]. It is readily seen that L = h(R′ ∩ (g′)−1(D′d)).

Let us now see T as a set of opening parentheses, and define Ṫ as the set of matching
closing parentheses. Let R′′ ⊆ (T ·∪ Ṫ ·∪Pd)∗ be the image of R′ by the morphism a 7→ aȧg(a),
where ȧ is the matching closing element of a in Ṫ. Extend h so that it erases all the letters of
Ṫ and Pd, and let D be the Dyck language on the set of parentheses Pd and (T ·∪ Ṫ). Letting
D′ = Comm(D), it holds that L = h(R′′ ∩D′).

The consequence that LCA is the full trio generated by the D′k is then immediate, as LCA
is closed under all the trio operations. J

2 A full trio or cone is a class of languages closed under morphisms, inverse morphisms, and intersection
with the regular languages.
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This is, to the best of our knowledge, the first Chomsky-Schützenberger theorem that
applies, in particular, to Ibarra’s reversal-bounded counter machines [18].

Our normal form for APA is similar, with the notable changes that g maps to matrices,
and the expression for the deterministic case is simpler. In the following, we shall consider
that a matrix M ∈Md(Z) is in a subset of Zd2 if the vector consisting of the concatenation
of the columns of M is in it.

I Lemma 4. Let L ⊆ Σ+ be an APA language. There are a length-preserving morphism
h : T∗ → Σ∗, a regular language R ⊆ T∗, a morphism g : T∗ → Md(Z), and a sign set
Z ⊆ Zd2 such that:

L = h(R ∩ g−1(Z)) .

Moreover, if L ∈ LUnAPA, then h can be chosen such that it is injective on R. If L ∈ LDetAPA,
then h and R can be chosen trivial, so that L = g−1(Z) (letting T = Σ).

Proof. Using [9, Lemma 24], then [9, Lemma 23], we obtain that for any L ⊆ Σ+ in LAPA,
there is an automaton A with transition set δ, a morphism g : δ∗ →MR

d (Z), for some d, a
vector s ∈ Zd, and a set C expressed as a Boolean combination of expressions of the form∑
αixi > c such that:

L = LabelA(Run(A) ∩ {ρ | g(ρ)s ∈ C}) .

Moreover, if L ∈ LUnAPA, then A is unambiguous (making LabelA injective on Run(A)), and
further relying on [9, Remark 35], if L ∈ LDetAPA, then:

L = {w | g(w)s ∈ C} .

We thus simply need to show that C can be turned into a sign set, while “incorporating” s
into g, so that only the output of g needs to be tested. As a final step, we will modify g
so that it works onMd(Z) instead ofMR

d (Z). We do this in the case of DetAPA—these
transformations are exactly the same for APA and UnAPA and in case h is injective on
Run(A), this is preserved.

First, we note that the closure under union of expressions of the form h(R ∩ g−1(C))
still holds, and that negations are not needed to express C. We thus focus on C being a
conjunction of expressions of the form

∑
i αixi > c.

We may assume that s contains a coordinate, say j, that is valued 1 and that is preserved
by all the matrices g(w)—if it is not the case, we can add an extra component to s and the
matrices given by g to obtain just that. As a consequence,

∑
i αixi > c can be written as∑

i αixi − c× xj > 0, hence an expression of the form
∑
i αixi > 0.

Now, consider one such expression, we extend g to compute the sum. For a ∈ Σ,
write g(a) = (R1, R2, · · · , Rd), the rows of g(a). Then define g′ : Σ∗ → MR

d+1(Z) by
g′(a) = ((R1, 0), (R2, 0), . . . , (Rd, 0), (

∑
i αiRi, 0)). As a result, if x = g(w)s for some word

w, then the last component of g′(w)s is precisely
∑
i αixi, and the expression under study

can be replaced by xd+1 > 0; repeating this process shows that C can be assumed to be a
sign set.

We then show that the product g(w)s can be computed within the matrices. For a ∈ Σ,
write the rows of g(a) as R1, R2, . . . , Rd, and define g′ : Σ∗ → MR

d+1(Z) as the morphism
mapping a ∈ Σ to the matrix consisting of rows (R1, R1.s), (R2, R2.s), . . . , (Rd, Rd.s),0.
Then for w ∈ Σ+, we have that g′(w)ed+1 = (g(w)s, 0). Thus checking that g(w)s ∈ C is
equivalent to checking that the last column of g′(w) is in C × Z. Hence L can be expressed
as g−1(C) for some sign set C.
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Finally, to reach the statement of the lemma, we turn g into a morphism mapping to the
correct monoid. Define g′ : Σ∗ →Md+1(Z) to be the morphism such that g′(a) = (g(a))tr

for all a ∈ Σ. Then, denoting matrix multiplication by a dot, we have inductively that
g′(ua) = g′(u).g′(a) = (g(u))tr.(g(a))tr = (g(a).g(u))tr = (g(ua))tr, recalling that in the
codomain of g, matrix multiplication is inverted.

Now let Z be the transpose of C seen as a set of matrices, then Z is still a sign set, and
L = (g′)−1(Z). J

3 Algebraic characterizations of determinism and unambiguity

Similar to the untyped algebraic theory of languages, if a typed monoid recognizes a
language, it also recognizes its complement. This implies that LCA, which is not closed under
complement, does not admit a typed monoid characterization. We show in this section that
deterministic and unambiguous classes do enjoy such a characterization.

3.1 Capturing LDetCA, LUnCA, LDetAPA, and LUnAPA

Let M be the variety of typed finite monoids. Let Z+ be the set of typed monoids
{Z[Z+]d | d ≥ 1}. Note that the types of Z[Z+]d are precisely the sign sets of dimen-
sion d.

I Theorem 5. L(Z+ ©̀M) = LDetCA and L(Z+ �M) = LUnCA.

Proof. We show the result for UnCA, the deterministic case following from simple modifica-
tions that we present at the end of each direction.

(LUnCA ⊆ L(Z+ �M)) Let L ⊆ Σ∗ be an UnCA language, that is, by Lemma 2:

L = h(R ∩ g−1(Z+
d)) ,

with h : T∗ → Σ∗ an injective length-preserving morphism on R, R a regular language,
g : T∗ → Zd a morphism. When w ∈ h(R), we see h−1(w) as a single element rather than a
singleton.

Let R be recognized by a monoid M , so that R = η−1(E) for some morphism η and a
subset E ⊆M . We write [u] for η(u).

We define a morphism ϕ : Σ∗ → Zd � P(M) that recognizes L, by, for a ∈ Σ:

ϕ(a) = (fa, Sa) where Sa = {[b] | b ∈ h−1(a)} and

fa(S, S′) =
{
g(b) if ∃!b ∈ h−1(a),∃m ∈ S,m′ ∈ S′,m.[b].m′ ∈ E
0d otherwise.

(1)

We want to show that if ϕ(w) = (fw, Sw) then (1) Sw = {[u] | u ∈ h−1(w)}, and (2) if
w ∈ h(R) (that is, Sw consists of a single element and it belongs to E), then fw(1, 1) =
g(h−1(w)) (recalling that h−1(w) is a single element by injectivity on R). If this holds, then
L = ϕ−1(T ) where T = {(f, S) | f(1, 1) ∈ Z+

d ∧ S ∩ E 6= ∅} is a type of Z[Z+]d � P(M),
showing the inclusion—note that 1 in the expression f(1, 1) refers to the identity of P(M),
that is, the singleton containing the identity of M .

Point (1) is shown by a simple induction. It holds by definition for |w| = 1. Now the
second component of ϕ(wa) is by induction the product of Sw = {[u] | u ∈ h−1(w)} and
Sa = {[b] | b ∈ h−1(a)}. An element of this set is thus of the form [u][b] = [ub] and we indeed
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have h(ub) = wa. Conversely, if h(ub) = wa, for some word ub, then h(u) = w and h(b) = a

as h is length-preserving, and thus [u] ∈ Sw and [b] ∈ Sa, proving (1).
We show (2). Suppose w ∈ h(R), and write w = a1a2 · · · an and h−1(w) = b1b2 · · · bn.

For all i ∈ [n], we show that fai(Sa1a2···ai−1 , Sai+1ai+2···an) = g(bi). This implies (2) by the
following chain of equalities:

fw(1, 1) = fa1(1, Sa2a3···an
) + fa2(Sa1 , Sa3a4···an

) + · · ·+ fan
(Sa1a2···an−1 , 1)

= g(b1) + g(b2) + · · ·+ g(bn)
= g(b1b2 · · · bn) = g(h−1(w)) .

Thus let i ∈ [n], and write u = a1a2 · · · ai−1, u′ = ai+1ai+2 · · · an and v, v′ their respective
counterparts in h−1(w), that is v = b1b2 · · · bi−1 and v′ = bi+1bi+2 · · · bn. Since uaiu′ ∈ h(R),
[h−1(uaiu′)] ∈ E, an element of the set [v].Sai

.[v′]. Now [v] ∈ Su and [v′] ∈ Su′ , thus it holds
that there is a b ∈ h−1(ai) and m ∈ Su,m′ ∈ Su′ such that m.[b].m′ ∈ E—bi is such a b.
Suppose now that there is another such b, say b′, for other values of m,m′, say µ, µ′. As
µ ∈ Su, by (1) there is an s ∈ T∗ such that h(s) = u and µ = [s]; a similar statement holds
for an s′ with respect to µ′. Thus on the one hand [v].[b].[v′] ∈ E (implying vbv′ ∈ R) and
h(vbv′) = w, and on the other hand [s].[b′].[s′] ∈ E (implying sb′s′ ∈ R) and h(sb′s′) = w.
By injectivity, vbv′ = sb′s′, and as h is length preserving, s = v, b = b′, and v′ = s′, showing
that the above value of b is unique, and thus that fai

(Su, Su′) = g(bi).
(Modifications for LDetCA ⊆ L(Z+ ©̀M)) If L is a DetCA language, then, by Lemma 2,

h is prefix-injective on R. Moreover, it always holds that w ∈ Σ∗ is such that π2(ϕ(w))∩E 6= ∅
if and only if w ∈ h(R). Now consider w = uau′ ∈ h(R) with a ∈ Σ and let v be the only
element in h−1(u) (by prefix-injectivity). By prefix-injectivity again, there is a unique b such
that b ∈ h−1(a) and vb can be extended on the right to a word in R. This means that there is
a unique b ∈ h−1(a) such that there is a m ∈ Su (which in fact consists of the single element
[v]) and a m′ ∈M such that m.[b].m′ ∈ E. This shows that the condition of Equation (1)
can be replaced by: “if ∃!b ∈ h−1(a),∃m ∈ S,m′ ∈ M,m.[b].m′ ∈ E,” hence the functions
fa can be defined so as not to depend on their second argument. This in turn implies that
L ∈ L(Z+ ©̀M).

(L(Z+ �M) ⊆ LUnCA) Let L ⊆ Σ∗ be recognized by Z[Z+]d �M using a type T and
a morphism h : Σ∗ → Zd �M , and write for convenience h(w) = (fw,mw). As LUnCA is
closed under the Boolean operations, we may assume that the type T is of the form:

T = {(f,m) | f(1, 1) ∈ Z ∧m ∈ E} ,

for some sign set Z and E ⊆M .
For any (s1, s2) ∈M ×M , let A(s1, s2) be the automaton (M ×M,Σ, δ, (s1, s2),M ×{1})

where:

δ ={((m1,m2), a, (m′1,m′2)) |
m′1 = m1ma and mam

′
2 = m2 ∈M and a ∈ Σ} .

Note that w ∈ L(A(s1, s2)) implies mw = s2. We argue that A(s1, s2) is unambiguous for
any (s1, s2) ∈ M ×M . We show that for any w ∈ Σ∗ and any (s1, s2) ∈ M ×M , w is the
label of at most one accepting path in A(s1, s2), by induction on |w|. If w = ε, then every
A(s1, s2) has at most one accepting path labeled w. Now let w = a · v for v ∈ Σ∗. Suppose
w ∈ L(A(s1, s2)). This implies that mw = s2. The states that can be reached from (s1,mw)
reading a are all of the form (s1ma,m), m ∈M . Now v should be accepted by the automaton
A where the initial state is set to one of these states; thus there is only one state fitting,
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(s1ma,mv). By induction hypothesis, there is only one path in A(s1ma,mv) recognizing
v, thus there is only one path in A(s1,mw) recognizing w. This shows that for any s1, s2,
A(s1, s2) is unambiguous.

Let C be the semilinear set consisting of the elements:

(x1, x2, . . . , x|δ|) s.t.
∑
i∈[|δ|]

xi × fLabel(ti)(π1(From(ti)), π2(To(ti))) ∈ Z . (2)

We show that
⋃
m∈E L(A(1,m), C) is L, concluding the proof as LUnCA is closed under

union. Let w = w1w2 · · ·wn ∈ Σ∗. There is a unique accepting path in A(1,mw) (and in no
other A(1,m)) labeled w, and it is going successively through the states (1,mw) = (mε,mw),
(mw1 ,mw2w3···wn

), . . . , (mw,mε) = (mw, 1).. For this path, the sum computed by the
semilinear set is: ∑

i∈[n]

fwi
(mw1···wi−1 , mwi+1···wn

) .

This is precisely fw(1, 1), and checking whether it is in Z amounts to checking whether
h(w) ∈ T , thus L =

⋃
m∈E L(A(1,m), C).

(Modifications for L(Z+ ©̀M) ⊆ LDetCA) First note that the automaton constructed
is deterministic when we consider its state set to be only the first copy of M . Now if
L ∈ L(Z+ ©̀M), then the elements of C from Equation (2) are definable with only the first
arguments of each f . This means that there is no need to keep the second component of the
state set, hence the resulting automaton is deterministic. J

Let ZMat+ be the set of typed monoidsMd(Z) for any d with the sign sets of dimension
d× d as types.

I Theorem 6. L(ZMat+) = LDetAPA.

Proof. (LDetAPA ⊆ L(ZMat+)) This is a direct consequence of Lemma 4.
(L(ZMat+) ⊆ LDetAPA) First, the inclusion L(ZMat+) ⊆ L((ZMat+)R) is straight-

forward. Indeed, similarly to the proof of Lemma 4, we can rely on matrix transposition to
simulate the former by the latter.

Now, let L ∈ L((ZMat+)R), that is, L = h−1(Z), for h : Σ∗ → MR
d (Z), d ≥ 1, and a

sign set Z of dimension d× d; we show that L ∈ LDetAPA. As LDetAPA is closed under the
Boolean operations, we may assume that Z is expressed by a single expression xi,j > 0.

For any word w, we have that h(w) ∈ Z iff h(w)ej ∈ C where C is expressed as xi > 0.
Now let A = ({r, s},Σ, δ, r, {s}), with δ = {r, s} × Σ × {s}. Then let U : δ∗ → Fd for

q ∈ {r, s}, a ∈ Σ, and x ∈ Zd be defined by:

[U((q, a, s))](x) =
{
h′(a)ej if q = r,

h′(a)x otherwise.

This implies that for w ∈ Σ+ and ρ its unique accepting path in A, it holds that [U(ρ)](0) is
h(w)ej . Thus L(A,U,C) = h−1(Z). J

A proof mimicking the construction of Theorem 5 directly shows that L(ZMat+ ©̀M) ⊆
LDetAPA, hence Theorem 6 implies:

I Corollary 7. L(ZMat+ ©̀M) = L(ZMat+).

I Theorem 8. L(ZMat+ �M) = LUnAPA.
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Proof. LUnAPA ⊆ L(ZMat+ �M) is the same as LUnCA ⊆ L(Z+ �M) in Theorem 5,
thanks to Lemma 4.
L(ZMat+ �M) ⊆ LUnAPA is the same as L(Z+ �M) ⊆ LUnCA in Theorem 5 for the

automaton part, and the same as Theorem 6 for the constraint set and affine function
parts. J

I Remark. The properties of Lemmata 2 and 4 thus characterize the related classes. For
instance, with the notations of Lemma 2, any language expressible as h(R ∩ g−1(Z+

d)) with
h injective on R belongs to LUnCA.

3.2 LUnAPA collapses to LDetAPA

So as not to lead the reader into thinking that we need to keep treating LDetAPA and LUnAPA
separately, we provide a proof that these two classes coincide here, without delaying it
to Section 5, dedicated to the consequences of the algebraic characterizations. Although
an automata-theoretic proof of LDetAPA = LUnAPA is possible (with arguments similar
to [10, Lemma 5]), we provide a purely algebraic proof that relies on sensibly different
ideas. This sheds a different light on the reasons why unambiguity does not always provide
more expressiveness. The proof is articulated in two main steps: First, the block product
is decomposed into wreath and right wreath products; Second, we show the closure under
reversal of LDetAPA, which implies that Corollary 7 could have been stated with ©r rather
than ©̀. Making forward calls to the results of this section, we thus show:

I Theorem 9. LUnAPA = LDetAPA.

Proof. This follows from the following chain:

LUnAPA = L(ZMat+ �M) (By Theorem 8)
⊆ L((ZMat+©r M) ©̀M) (By Lemma 11)
= L((ZMat+ ©̀M) ©̀M) (By Lemma 13)
= L(ZMat+) (By Corollary 7 twice)
= LDetAPA (By Theorem 6.)

J

I Lemma 10. Let M,N be typed monoids. Then L ∈ L(M ©̀N) iff LR ∈ L(MR©r NR).

Proof. Let L ∈ L(M ©̀N) be recognized by a morphism h : Σ∗ →M ©̀N and a (type) set
E, that is, L = h−1(E). Let h′ be the morphism from Σ∗ to MR©r NR that agrees with h
on Σ. Write + for the operation of M and × for the operation of N , and +R and ×R for
their reversed versions, respectively.

We show that for all words w ∈ Σ∗, h(w) = h′(wR). If |w| = 1, this is immediate.
Let w = ua with a ∈ Σ, and write h(u) = (fu, nu) and h(a) = h′(a) = (fa, na). We first
deal with the first component. For h(ua), it is fu(•) + fa(• × nu). For h′((ua)R), it is
fa(nu×R •) +R fu(•) by the induction hypothesis, that is, fu(•) + fa(• × nu). We now
consider the second component. For h(ua), it is nu × na where na is the second component
of h(a) = h′(a). For h′((ua)R), it is na×R nu by the induction hypothesis, that is, nu × na,
proving the claim.

Hence w ∈ h−1(E) iff wR ∈ h′−1(E), thus LR ∈ L(MR©r NR). J

I Lemma 11. Let M be a typed monoid and N a finite typed monoid. Then:

L(M �N) ⊆ L((M ©r N) ©̀N) .
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Proof. Let h : Σ∗ →M �N be a morphism. We define a morphism h′ : Σ∗ → (M ©r N)©̀N

closely mimicking h as follows. For a ∈ Σ, write h(a) = (fa, na). Then h′(a) = (f ′a, na),
where for n ∈ N , f ′a(n) ∈M ©r N is defined by:

f ′a(n) = (f ′a,n, na) with f ′a,n(n′) = fa(n, n′) .

We now show that if h(w) = (fw, nw), then h′(w) = (f ′w, nw) where π1(f ′w(n))(n′) = fw(n, n′),
the part on nw being already clear.

Suppose w = a ∈ Σ, then we have π1(f ′a(n)) = f ′a,n, thus by definition, π1(f ′a(n))(n′) =
fa(n, n′).

Suppose now that w = ua, for u ∈ Σ+ and a ∈ Σ. Then fw = fu(•, na•) + fa(•nu, •).
Now h′(ua) = h′(u)h′(a), hence f ′w = f ′u(•) +(M©r N) f

′
a(•nu), and:

f ′w(n) = f ′u(n) +(M©r N) f
′
a(nnu)

= (f ′u,n, nu) +(M©r N) (f ′a,nnu
, na)

= (f ′u,n(na•) + f ′a,nnu
, nuna) .

The induction hypothesis implies that f ′u,n(n′) = fu(n, n′), hence:

π1(f ′w(n))(n′) = fu(n, nan′) + fa(nnu, n′) = fw(n, n′) .

Now let T be a type of M �N expressed as:

T = {(f, n) | f(1, 1) ∈M∧ n ∈ N} .

Then T1 = {(f, n) | f(1) ∈ M ∧ n ∈ N} is a type of M ©r N , and in turn, T2 = {(f, n) |
f(1) ∈ T1} is a type of (M ©r N) ©̀N . We then have that h−1(T ) = h′−1(T2), concluding
the proof. (If T is a Boolean combination of types, then we will obtain an equivalent Boolean
combination of types of (M ©r N) ©̀N .) J

I Proposition 12. LDetAPA is closed under reversal.

Proof. Let L ∈ L(ZMat+), there are h : Σ∗ → Md(Z) and a sign set Z ⊆ Zd2 such
that L = h−1(Z). Define h′ : Σ∗ → Md(Z) by h′(a) = (h(a))tr. Then for a word w,
h(w) = (h′(wR))tr, and thus h′(w) ∈ Ztr iff h(wR) ∈ Z, where we naturally extend the
transpose notation to set of matrices. Hence the reversal of L is (h′)−1(Ztr) ∈ L(ZMat+).

J

As LDetAPA = L(ZMat+ ©̀M), this goes on to show:

I Lemma 13. L(ZMat+ ©̀M) = L(ZMat+©r M).

Proof. Let L ∈ L(ZMat+ ©̀M). By Proposition 12, LR is also in L(ZMat+ ©̀M).
Lemma 10 then implies that (LR)R = L ∈ L((ZMat+)R©r MR), where clearly MR = M.
Now write the usual matrix implicitly and ·R for its reversed version, then M1 ·RM2 =
(M1

trM2
tr)tr. Let h : Σ∗ →MR

d (Z)©r N be a morphism for some finite monoid N . We define
h′ : Σ∗ →Md(Z)©r N recognizing the same language. For this, it is enough to transpose all
matrices appearing in the definition of h, that is, with h(a) = (fa, na):

∀a ∈ Σ, h′(a) = (f ′a, na) where f ′a(n) = (fa(n))tr .

We show that the above property of f ′a extends to words by induction, that is, writing
h(w) = (fw, nw) for any word w, it holds that h′(w) = (f ′w, nw) where f ′w(n) = (fw(n))tr.
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Let w = ua, u ∈ Σ+, a ∈ Σ. Then fw = fu · na ·R fa, thus fw(n) = fu(nan) ·R fa(n).
Now by induction hypothesis, f ′w(n) = (fu(nan))tr(fa(n))tr, which in turn implies that
f ′w(n) = (fu(nan) ·R fa(n))tr = (fw(n))tr.

Now if L = h−1(T ) with T a type, then:

L = h′−1(T ′) where T ′ = {(f ′, n) | (f, n) ∈ T with f(n) = (f ′(n))tr} ,

which clearly is a type of ZMat+©r M, showing that L ∈ L(ZMat+©r M). The converse
direction is similar. J

4 An alternative characterization of LDetAPA

In this section, we show that the languages of DetAPA are those expressible as a Boolean com-
bination of positive supports of Z-valued rational series. We derive an expressiveness lemma
that will be a key to showing the nonclosure and expressiveness properties of Section 5.2.

I Definition 14 (e.g., [6]). Functions from Σ∗ into Z are called (Z-)series. For such a series
r, it is customary to write (r, w) for r(w). We write supp+(r) for the positive support of r,
i.e., {w | (r, w) > 0}.

A linear representation of dimension d ≥ 1 is a triple (s, h,g) such that s ∈ Zd is a row
vector, g ∈ Zd is a column vector, and h : Σ∗ →Md(Z) is a morphism. It defines the series
r = ||(s, h,g)|| with (r, w) = sh(w)g.

A series is said to be rational if it is defined by a linear representation. We write Zrat〈〈Σ∗〉〉
for the set of rational series.

For a class C of languages, write BC(C) for the Boolean closure of C. We have:

I Theorem 15. Over any alphabet Σ, LDetAPA = BC(supp+(Zrat〈〈Σ∗〉〉)).

Proof. (LDetAPA ⊆ BC(supp+(Zrat〈〈Σ∗〉〉))) First note that there is a rational series r such
that supp+(r) = {ε}. Let L be in LDetAPA; we may thus suppose that ε /∈ L. By Lemma 4,
let h : Σ∗ → Md(Z) and Z a sign set such that L = h−1(Z). We wish to show that
L ∈ BC(supp+(Zrat〈〈Σ∗〉〉), thus we can assume that Z is expressed as a single expression
xi,j > 0. Hence the triple (ei, h, ej) is a linear representation of a rational series r which
associates w to the (i, j) entry of h(w), and thus L = supp+(r).

(BC(supp+(Zrat〈〈Σ∗〉〉)) ⊆ LDetAPA) As LDetAPA is closed under the Boolean operations,
we need only show that supp+(Zrat〈〈Σ∗〉〉) ⊆ LDetAPA. Let (s, h,g) be a linear representation
of dimension d of a rational series r over the alphabet Σ. As in Lemma 4, we can embed
the computation of sh(w)g into h. More precisely, we described in the proof thereof how we
can build h′ : Σ∗ →Md+1(Z) such that the last column of h′(w) is h(w)g. Thus (r, w) is
the last entry of sh′(w). Applying the same technique to (g(w))tr.str, there is a morphism
g : Σ∗ →Md+2(Z) such that the last component of the last column of g(w) is (r, w), hence
g−1(Z(d+2)2−1 × Z+) = supp+(r). By Theorem 6, this shows that supp+(r) ∈ LDetAPA. J

I Remark. The class of positive supports of Z-rational series is the class of Q-stochastic
languages (see, e.g., [27]). We note that the fact that unary Q-stochastic languages are
not closed under union [27] implies, as any regular language is Q-stochastic, that there are
nonregular unary languages in LDetAPA. As the unary languages of LCA are precisely the
regular ones [22], this in turn implies that LCA ( LDetAPA over unary languages. The typical
shape of these languages is based on having an in the language if sin(n× 2πθ) > 0 with some
transcendental number θ.
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We note that expressing LDetAPA using linear representations allows for a translation of an
expressiveness result of Q-stochastic languages appearing in [27, Theorem III.4.7]. Therein, a
certain measure, that we call the prefix diversity of a language, is shown to be polynomially
bounded for Q-stochastic languages. We conclude this section with the formal definition of
this measure and the expressiveness lemma that lifts the aforementioned polynomial property
to DetAPA languages.

I Definition 16 (Prefix diversity). Let L ⊆ Σ∗ and write χL : Σ∗ → {0, 1} for its characteristic
function (i.e., χL(w) = 1 iff w ∈ L). The prefix diversity of L is the function pdL : Z+ → Z+
defined by:

pdL(n) = max
v1,v2,...,vn∈Σ∗

|{(χL(v1v), χL(v2v), . . . , χL(vnv)) | v ∈ Σ∗}| .

I Lemma 17. The prefix diversity of any DetAPA language is polynomially bounded.

Proof. This statement holds for Q-stochastic languages, see, e.g., [27, Theorem III.4.7]. Let
L be a DetAPA language. Now L is the Boolean combination of Q-stochastic languages
L1, L2, . . . , Lk and the value of χL(w) depends only on χL1(w), χL2(w), . . . , χLk

(w).
Let n > 0 be an integer and v1, v2, . . . , vn be distinct words. Then:

|{(χL(v1v), χL(v2v), . . . , χL(vnv)) | v ∈ Σ∗}|

<
∏
i∈[k]

|{(χLi(v1v), χLi(v2v), . . . , χLi(vnv)) | v ∈ Σ∗}|

<
∏
i∈[k]

pdLi
(n) .

This concludes the proof, as the latter product is polynomially bounded. J

5 Algebra, complexity, and language properties

We now provide consequences of these characterizations, with a special focus on completing
our understanding of the class LDetAPA. To this end, we rely on the property presented in
Lemma 17, which we use to show that some languages do not belong to LDetAPA. The proofs
of nonmembership being quite similar in structure, we group them into one proposition.
Let b be the infinite word consisting of the concatenation of the binary representations
of the positive natural numbers, i.e., b = 1 10 11 100 · · · , and define Lbin = {ai | bi = 1}.
Independently, let L= = ∪nan# · (a+#)∗ ·#an#. Lastly, let L× = {anbnmc≥m | n,m ∈ Z+}.

I Proposition 18. The languages Lbin, L= · (a+ #)∗, (L=)∗, and L× are not in LDetAPA.

Proof. We rely on Lemma 17 in each case. Suppose to the contrary that Lbin (resp.
L= · (a+ #)∗, (L=)∗, or L×) is in LDetAPA, and write χ for its characteristic function and
pd for its polynomially bounded prefix diversity. Pick any n such that 2n > pd(n). For each
language, we successively define v1, v2, . . . , vn, and then for any r ∈ {0, 1}n, an additional
word v, in such a way that:

(χ(v1v), χ(v2v), . . . , χ(vnv)) = r .

(Case Lbin) We let vi = ai for any i, and v = a` with ` the first position in b such that
b`+1b`+2 · · · b`+n = r;

(Cases L= · (a+ #)∗ and (L=)∗) We let vi = ai#, and v = (va1)2(va2)2 · · · (vak
)2 where

a1, a2, . . . , ak are the positions at which r is 1.



16 The Algebraic Theory of Parikh Automata

(Case L×) We let vi = api with pi the i-th prime number, and v = bpa1pa2 ···pak cp1p2···pk

where a1, a2, . . . , ak are the positions at which r is 1.
This in turn implies that:

|{(χ(v1v), χ(v2v), . . . , χ(vnv)) | v any word}| = 2n > pd(n) .

This contradicts the definition of pd, hence Lbin, L= · (a+ #)∗, (L=)∗, and L× are not in
LDetAPA. J

5.1 On Z+ ©̀M, Z+ �M, and ZMat+

It is easily shown [23] that for any three typed monoids M , N , and N ′, it holds that:

L((M �N)�N ′) ⊆ L(M � (N �N ′))
and L((M ©̀N) ©̀N ′) ⊆ L(M ©̀ (N ©̀N ′)) .

This immediately implies, by Theorem 1, and as M�M = M ©̀M = M:

I Proposition 19. The smallest variety containing Z+ ©̀M (resp. Z+ �M, ZMat+ �M)
is closed under wreath (resp. block) product on the right with M (i.e., if M is in the variety
and N is a finite typed monoid, then M ©̀N is also in the variety).

Theorem 9, stating that DetAPA and UnAPA recognize the same languages, has thus
the following corollary:

I Corollary 20. The smallest variety containing ZMat+ is closed under block product with
M on the right.

We may naturally ask whether these varieties are closed under wreath product with M
on the left. To show this is not the case, let U1 = ({0, 1},×), then:

I Proposition 21. The language L× /∈ LCA ∪ LDetAPA of Proposition 18 is recognized by3
(U1)2 ©̀ Z[Z+]d for some d > 0.

Proof. First, we note that L× /∈ LCA is immediate since Pkh(L×) is not semilinear.
Let us now define a morphism h : {a, b, c}∗ → U1 ©̀ Z[Z+]3 as follows:

h(a) = (1,Ma) with Ma =

 1 1 0
0 1 0
0 0 1


h(b) = (1,Mb) with Mb =

 1 0 1
0 1 0
0 0 1


h(c) = (fc,Mc) with Mc =

 1 0 0
0 1 −1
0 0 1


and fc(M) = 0 iff (MMc)1,3 = 0 ,

3 A wreath product with an infinite typed monoid on the right results in an uncountable monoid, an
undesirable property that was circumvented in [24]. We note that Theorem 21 stays true with a
definition of wreath product mimicking that of [24].
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where the function 1 is the constant function mapping any matrix to 1. Now for a word
aibjck, it holds that:

h(aibjck) = (f,Mi,j,k) where Mi,j,k =

 1 i j − ik
0 1 −k
0 0 1

 .

On the other hand, we have:

f(1) = fc(Mi,j,0)× fc(Mi,j,1)× · · · × fc(Mi,j,k−1) .

This value is 0 precisely when there is a j′ < k such that fc(Mi,j,j′) = 0. By definition, this is
the case if Mi,j,j′Mc = Mi,j,j′+1 has a 0 in the top right corner, that is, if j = i(j′+ 1). Thus
f(1) is 0 iff j = i×j′ for some j′ ≥ k. This shows that a∗b∗c∗∩h−1({(f,M) | f(1) = 0}) = L×.
Augmenting the matrices Ma,Mb, and Mc to check that the input is in a∗b∗c∗ is then easy
using an extra copy of U1, showing that L× is recognized by (U1)2 ©̀ Z[Z+]d. J

I Corollary 22. None of the smallest varieties containing Z+ ©̀M, Z+ �M, or ZMat+

are closed under wreath product with M on the left.

5.2 Complexity of UnCA and DetAPA languages
We assume some familiarity with the basic notions of circuit complexity and descriptive
complexity. We follow the notations of Straubing [28]. For instance, in the formula ∃x(∃y(x <
y ∧Qax ∧Qby)), the variables x and y range over the positions in a word, and Qax means
that there is an a at that position; thus the formula describes the language of words over
{a, b} that have a b appearing after an a. The main circuit complexity class we will rely on
is NC1, the class of languages recognized by circuits of polynomial size, logarithmic depth,
and constant fan-in.

From Theorem 5, we derive a logical characterization of LUnCA and deduce a complexity
upper bound for it. Let MSO[<] be the monadic second-order logic with < as the unique
numerical predicate, a logic that expresses exactly the regular languages [7]. Now define
the extended majority quantifier M̂aj, introduced in [4], as: w |= M̂aj x 〈ϕi〉i=1,...,m iff∑
j∈[|w|] |{i | wx=j |= ϕi}| − |{i | wx=j 2 ϕi}| > 0. Further, let B(M̂aj ◦ MSO[<]) be the set

of formulas that are Boolean combinations of formulas of the form:

M̂aj x 〈ϕi〉i=1,...,m ,

where each ϕi is an MSO[<] formula. Then:

I Theorem 23. A language is in LUnCA iff it is expressible as a B(M̂aj ◦ MSO[<])-formula.
Hence, LUnCA ( NC1.

Proof. We first show that the languages recognized by Z[Z+] are those expressible as a
formula of the form (or negation of) M̂aj x 〈QAix〉i=1,...,m where Ai ⊆ Σ, and QAix is short
for
∨
a∈Ai

Qax.
Let L ∈ L(Z[Z+]), i.e., let h : Σ∗ → Z be a morphism and suppose L = h−1(Z+) (if

L = h−1(Z+), then the negation of the formula we obtain here will describe L). We suppose
moreover, w.l.o.g., that each h(a), a ∈ Σ, is even. Now let m be max{|h(a)| | a ∈ Σ} and
define, for 1 ≤ i ≤ m:

Ai = {a ∈ Σ | m+ h(a) ≥ 2× i} .
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Now let w ∈ Σ∗ be a word and 1 ≤ x ≤ |w|. Then it holds that:

h(wx) = |{i | wx ∈ Ai}|︸ ︷︷ ︸
(m+h(a))/2

− |{i | wx /∈ Ai}|︸ ︷︷ ︸
m−(m+h(a))/2

.

Thus for w ∈ Σ∗, h(w) > 0 iff w |= M̂aj x 〈QAix〉i=1,...,m, thus the language expressed by
this latter formula is h−1(Z+) = L.

Conversely, consider a formula M̂aj x 〈QAi
x〉i=1,...,m. Then let h : Σ∗ → Z be the

morphism defined by h(a) = |{i | a ∈ Ai}| − |{i | a /∈ Ai}|, for a ∈ Σ. We have that for
w ∈ Σ∗, h(w) > 0 iff the formula under consideration holds true, implying that the language
recognized by the formula is h−1(Z+).

It follows that the languages recognized by Z+ are the Boolean combinations of languages
expressible as such formulas. Now the languages (with one free variable) recognized by finite
monoids are those recognized by MSO[<] formulas. Thus the block product principle [23,
Theorem 3.40] implies that the languages of LUnCA = L(Z+ �M) are those expressible as
Boolean combinations of formulas of the form of the statement of the lemma. Similarly, the
regular languages (with one free variable) are recognized by NC1 circuits, and a formula or
negation of a formula of the form M̂aj x 〈QAix〉i=1,...,m can be expressed by a threshold circuit.
Now [23, Lemma 4.29] implies that LUnCA ⊆ NC1. Strictness is implied by Theorem 21. J

I Remark. The (non)closure properties observed in Section 5.1 can be interpreted, thanks
to [23, Chapter 4], in terms of expressiveness of some logics. Proposition 19 is equivalent to
the following (trivial) statement: Replacing a subformula of a B(M̂aj ◦ MSO[<])-formula by
an MSO[<] formula preserves the fact that the language is expressed by a B(M̂aj ◦ MSO[<])-
formula. Proposition 21 implies that there is a a B(M̂aj ◦ MSO[<])-formula ϕ(x, y) such
that ∃x∃y(ϕ(x, y)) is not expressible as a B(M̂aj ◦ MSO[<])-formula.

Let #NC1 be the class of functions computed by DLOGTIME-uniform arithmetic circuits
over {+,×} of polynomial size and logarithmic depth and PNC1 be the class of languages
expressible as {w | f(w) > 0} for f ∈ #NC1 (see [11]). Note that PNC1 is included in
deterministic logspace. As iterated matrix multiplication can be done in #NC1 and PNC1 is
closed under the Boolean operations, it is readily seen from Theorem 15 (and Proposition 18
for the strictness) that:

I Corollary 24. LDetAPA ( PNC1.

5.3 New expressiveness and nonclosure properties of DetAPA
This section relies on Proposition 18 to complete our understanding of LDetAPA. Although
LDetAPA ⊆ LAPA is immediate, it was not known whether the two classes differ; we show
that they do, in particular over unary languages:

I Theorem 25. There are unary languages expressible by APA which are not in LDetAPA.

Proof. We show that the language Lbin from Proposition 18, that we know lies outside
LDetAPA, is an APA language.

We first note that a DetAPA can store the integer value of its binary input into a register.
Indeed, reading b ∈ {0, 1}, a register x can be updated with 2× x+ b, and at the end of the
computation, x will hold the correct value.

Let Σ = {0, 1} × ({0, 1} ∪ {0, 1}2). The inc-representation of a number n > 0 is the
following word over Σ∗:(

b1
b′0b
′
1

)(
b2
b′2

)
· · ·
(
bk
b′k

)
∈ ({0, 1} × {0, 1}2)({0, 1} × {0, 1})∗ ,
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with b1b2 · · · bk the binary representation of n with a leading 1 and b′0b
′
1b
′
2 · · · b′k a binary

representation of n+ 1. Define then L′ as the set of words w1w2 · · ·wn where each wi is the
inc-representation of i, for all n > 0.

Assume L′ ∈ LDetAPA, we first show how this allows us to show that Lbin ∈ LAPA. With
the same notation as above, let L′′ be the language of words of the form w1w2 · · ·wnu where
u is a prefix of the binary expansion of n+ 1; we show L′′ ∈ LAPA. The APA for L′′ runs
the DetAPA for L′, and guesses nondeterministically that it is reading wn, the last of the
inc-representations. It then stores the integer value of the binary encoding b′0b′1 · · · b′` into
an additional register x, where ` is a guessed value. Thus x contains the integer value of a
prefix of the binary value of n+ 1. After reading wn, the APA continues by reading over
the alphabet {0, 1} the binary expansion of a value y, with a leading 1, then accepts if
x = y. Thus this suffix is accepted iff it is a prefix of the binary expansion of n + 1, and
the language recognized is L′′. The language Lbin is then obtained as the morphic image
of L′′ ∩ Σ∗{0, 1}∗1 under the length-preserving morphism mapping every letter to a. This
shows that Lbin ∈ LAPA by the closure properties of APA [9].

To show that L′ ∈ LDetAPA, we rely on a technique that is already exploited in [9,
Lemma 4.13]: a DetAPA can check an unbounded number of times that some registers are
zero, in such a way that an extra register holds 0 iff all the tests succeeded. To do so, the
DetAPA is equipped with the extra register x and maintains the property that x is either
zero or greater in absolute value than any other registers. The register x is modified on two
occasions: 1. When a register y is being tested for equality with 0, x is updated with x+ y;
2. At each step of the execution of the automaton, x is multiplied by a large constant to
preserve the aforementioned property. 1 and 2 combined ensure that x is zero iff all the
tested values y were 0. In a similar way, a DetAPA can check an unbounded number of times
that two registers are equal.

The DetAPA for L′ then works as follows. It initializes a register c to 1. Then it reads
a word w ∈

( 1
{0,1}{0,1}

)({0,1}
{0,1}

)∗
that cannot be extended on the right, and checks that the

integer value of the first component of w is c, and the second component c + 1. It then
loops back to the reading the next w, while incrementing c, and accepts if all the tests
succeeded. J

Over unary languages, LCA = LDetCA ( LDetAPA (the equality coming from [10], and the
strict inclusion from Remark 4). Over larger alphabets, it is known that LCA 6⊆ LDetAPA [9,
Proposition 28], but the reverse noninclusion was left open. We show:

I Proposition 26. There is a language in LCA which is not in LDetAPA.

Proof. The language L= ·#(a+ #)∗ of Proposition 18 is not in LDetAPA, but it is in LCA:
the automaton simply counts the number n of a at the beginning of the word, and guesses a
position at which the second an appears. J

We can now state the precise relationship among all the classes studied here and in
previous works:

I Theorem 27. Over a unary alphabet, the following holds:

LDetCA = LUnCA = LCA ( LDetAPA = LUnAPA ( LAPA .

Over a nonunary alphabet, the following holds:

LDetCA ( LUnCA ( LCA ( LAPA .
( 6⊆

6⊆

(
LDetAPA = LUnAPA
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The landscape of closure properties of LDetAPA was also left with some holes in previous
works. We thus complete [9, Fig. 1], refined in [8], by showing:

I Theorem 28. LDetAPA is not closed under concatenation with regular languages, starring,
and commutative closure.

Proof. This is a consequence of Proposition 18. Indeed, the language L= is in LUnCA, as an
automaton can unambiguously guess that it is reading the last block of a’s, hence in LDetAPA.
However, L= · #(a + #)∗ /∈ LDetAPA, hence LDetAPA is not closed under concatenation.
Similarly, (L=)∗ /∈ LDetAPA, hence LDetAPA is not closed under starring. Finally, it is not
hard to see that the language L = {ancmbmnc∗ | m,n ∈ Z+} is a DetAPA language. However,
Comm(L) ∩ a∗b∗c∗ is L× /∈ LDetAPA, thus Comm(L) /∈ LDetAPA. J

I Remark. Similarly, one could show that the DetAPA language L = {am#bn#cmn | m,n ∈
N} verifies a∗ · L /∈ LDetAPA, thus LDetAPA is even closed under concatenation with regular
unary languages.

6 Conclusion

Connections between variants of the Parikh automaton and different algebraic formalisms
were investigated. As a main consequence of this study, we completed our knowledge of the
interrelationships and closure properties of the language classes that arise. These properties
are summed up in Figures 1 and 2.

Further, natural characterizations of the language classes defined by deterministic and
unambiguous constrained automata, in the theory of typed monoids, were obtained. Given the
tight link between typed monoids and circuit complexity, we hope that these characterizations
will suggest refinements that help to better understand the classes PNC1 and NC1.

An additional characterization of one of our central classes of focus, LDetAPA, relies on
formula power series and may further shed light on Q-stochastic languages. In particular,
DetAPA may offer a different perspective on recent developments in the study of unary
Q-stochastic languages [26]. Independently, the notion of prefix diversity (Definition 16),
singled out as a central tool to show nonmembership, could play an important role in the
study of the complexity of these unary languages. As such, studying this measure may be a
worthwhile endeavor. A striking shortcoming of this measure, as noted by Turakainen [29], is
that it is linear of the Dyck language over {a, ȧ}, but exponential of D1 · a(a+ ȧ)∗, although
we conjecture that D1 /∈ LDetAPA.

Bridging questions on circuits and on unary languages, we note that the unary languages
in LDetAPA, and indeed the bounded languages in LDetAPA, can be shown to belong to the
DLOGTIME-DCL-uniform variant of NC1. Recall that the latter is not known to equal what
is commonly referred to as DLOGTIME-uniform NC1 (see [30, p. 162]), or ALOGTIME. Yet
we were unable to show that the unary languages in LDetAPA belong to the latter—do they?
An intriguing related question is whether Lfib = {an | n is a Fibonacci number} belongs to
LDetAPA; it is indeed possible to show [31] that Lfib is the positive support of a rational
R-series—as opposed to a Z-series—but we conjecture that Lfib /∈ LDetAPA.

Acknowledgments. We thank Michael Blondin and Charles Paperman for comments on early
versions of this article. Part of this work was done during the Dagstuhl Seminar 15401
“Circuits, Logic and Games.”
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CSL ∩NP

NC1 APA

UnAPA
DetAPA

CA
UnCA
DetCA
Reg

Periodic
with

irrational
period

Lbin (Sec. 5)

|Σ| = 1

CSL ∩NP

PNC1 APA

UnAPA
DetAPA

L(ZMat+ �M)
L(ZMat+)

BC(supp+(Zrat〈〈Σ∗〉〉))

NC1

UnCA
L(Z+ �M)

DetCA
L(Z+ ©̀M)

REG

{anbn}

{a,#}∗ · {an#an}

CA
RBCA

h(Reg ∩ Comm(Dyck)

{ww | w ∈ Σ∗}
{a,#}∗ · {#an#an} · {a,#}∗

{w#w | w ∈ Σ∗}
{a,#}∗ · {#an#an} · {a,#}∗

|Σ| ≥ 2

Figure 1 Class relationships. Left: over a unary alphabet. Right: over a nonunary alphabet.
Classes in the same box are equal. Dashed lines indicate inclusions, bottom to top. Solid lines
denote strict inclusions, and witnesses are given on the line.

∪ ∩ · h hε/ h−1 Comm L∗ L−1 LR

DetCA Y Y Y N N N Y Y N Y N
UnCA Y Y Y N N N Y Y N Y Y
CA Y Y N Y Y Y Y Y N Y Y

DetAPA Y Y Y N N N Y N N N Y
APA Y Y N1 Y N Y Y Y Y N Y

Figure 2 Closure properties (union, intersection, complement, concatenation, morphisms, non-
erasing morphisms, inverse morphism, commutative closure, starring, quotient, reversal). In bold,
properties proven here, the other properties being found in [22, 9]. 1 Assuming EXP 6= NEXP.
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