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Abstract

It is shown that complexity of implementation of prefix sums of
m variables (i.e. functions x1 ◦ . . . ◦ xi, 1 ≤ i ≤ m) by circuits of
depth dlog2 me in the case m = 2n is exactly

3.5 · 2n − (8.5 + 3.5(n mod 2))2bn/2c + n + 5.

As a consequence, for an arbitrary m an upper bound (3.5 − o(1))m
holds. In addition, an upper bound

(
3 3

11 − o(1)
)
m for complexity of

the minimal depth prefix circuit with respect to XOR operation is
obtained. Some new bounds under different restrictions on the circuit
depth are also established.

1 Introduction

Let ◦ be a binary associative operation over a set G. A set of functions

x1 ◦ . . . ◦ xi, 1 ≤ i ≤ m, (1)

is a system of prefixes (or prefix sums) of an ordered set of variables x1, . . . , xm

attaining values in G. Circuits of functional elements which implement (1)
over the basis {◦} are often called prefix circuits. The notions of circuit depth
and complexity one can find in [4, 8].

Prefix circuits are exploited in various theoretic and applied problems
of synthesis, e.g. in the problem of constructing of binary adders, sorting
networks, in solving linear recurrences. These and other applications of prefix
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ON THE COMPLEXITY OF PARALLEL PREFIX CIRCUITS 2

circuits are highlighted in [1]. Some of these problems include synthesis of
parallel prefix circuits, i.e. circuits of depth O(log2m).

If not stated otherwise, under a prefix circuit we will understand a “uni-
versal” prefix circuit. A circuit is universal if it computes all prefix sums over
an arbitrary set G with an associative operation ◦. That is, such circuits
cannot use any specific properties of elements of G or of the operation ◦
itself, besides its associativity. Universality will be important in the lower
bound proofs.

Let L(m) denote the complexity of (i.e. the number of gates in) a minimal
universal m-input prefix circuit of depth dlog2me.

Several simple constructions of prefix circuits of complexity O(m logm)
were proposed in 1950–70’s (see e.g. [14, 6]). In 1978 Ladner and Fischer [7]
obtained a linear upper bound

L(m) ≤ (4− o(1))m.

In the case m = 2n they proved a more accurate bound

L(2n) ≤ 4 · 2n − Φn+5 + 1 = 4 · 2n −O(ϕn).

Here Φk is a k-th Fibonacci number1, and ϕ = (1+
√

5)/2 (the golden ratio).
Somewhat later, Fich [2, 3]2 proved the following lower and upper bounds:(

31
3
− o(1)

)
2n ≤ L(2n) ≤

(
3421

792
− o(1)

)
2n.

In the present paper we improve these bounds to:

L(2n) = 3.5·2n−(8.5+3.5(n mod 2))2bn/2c+n+5, L(m) ≤ (3.5−o(1))m.

A slight weakening of the restriction of minimality of the circuit depth
allows to significantly reduce the complexity as well as some other important
characteristics, e.g. the fan-out. However, there is a limit for complexity to
decrease. The limit is determined by the well-known inequality

L+D ≥ 2m− 2, (2)

valid for any m-input prefix circuit of complexity L and depth D.3 A circuit
achieving a lower bound (2) is called optimal (or zero-deficiency) circuit.

1Fibonacci number Φk is a closest integer to ϕk/
√

5.
2The author didn’t have an opportunity to get a look at [2], so further Fich results are

cited following [3].
3Apparently, the inequality (2) was originally obtained by Fich [3] for a substantial

particular case. The general formulation is due to Snir [15], however his proof is somewhat
cumbersome.
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Synthesis of optimal prefix circuits with various additional properties is a
popular direction in circuit design.

It is not difficult to construct an optimal circuit of depth 2dlog2me −
2 (see e.g. [9]). The minimal possible depth for optimal prefix circuits is
logϕm−O(1). Such circuits were constructed in [16].4

Let us denote by L(m, k) the minimal complexity of an m-input prefix
circuit of depth dlog2me + k. As mentioned above only case k ≤ logϕm −
log2m−O(1) is nontrivial. In [7, 3] circuits were constructed, which satisfy
additional condition of implementation of the longest prefix x1 ◦ . . .◦xm with
the minimal possible depth dlog2me. We denote by L′(m, k) the minimal
complexity of a prefix circuit of this sort. Clearly, L(m, k) ≤ L′(m, k).

The following bounds are obtained in [7]:

L′(m, k) < (2 + 21−k)m− 2, L′(2n, k) ≤ (2 + 21−k)2n − Φn+5−k − k + 1,

and the next are from [3]:(
2 + 1

3
· 21−k − o(1)

)
2n ≤ L′(2n, k) ≤

(
2 + 421

792
· 21−k − o(1)

)
2n − k.

We improve these bounds to

L′(2n, k) = (2 + 2−k)2n − (5 + 2((n− k) mod 2))2b(n−k)/2c − k + 2,

L′(m, k) ≤ (2 + 2−k − o(1))m.

The last inequality is valid when 1 ≤ k ≤ dlog2me − 2 and m→∞.
Another way to reduce complexity of a prefix circuit is a weakening of the

universality condition. As an example, we consider “modulo 2” prefix cir-
cuits, that is, prefix circuits over basis {⊕}, where ⊕ is an associative binary
operation satisfying identity x⊕y⊕y = x (particularly, XOR is an operation
of such kind)5. We introduce analogous notation L⊕(m) and L′⊕(m, k) for
the case of modulo 2 circuits.

It will be shown below that

L⊕(m) ≤
(
3 3

11
− o(1)

)
m, L′⊕(m, k) ≤

(
2 + 3

11
· 41−k − o(1)

)
m,

where 1 ≤ k ≤ d(log2m)/2e − 1 and m→∞.
Results of the article were reported at the seminar “Mathematical Prob-

lems of Cybernetics” (Moscow State University, March 27, 2009) and were
published in a shortened form (without proofs) in [10, 11].

4To be exact, it is shown in [16], that an optimal m-input prefix circuit of depth d
exists iff m ≤ Φd+3 − 1.

5A prefix circuit over (GF (2), ⊕) implements a mapping from the Gray encoding to
the ordinary binary encoding, see [5] for more details.
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The paper is organized as follows. In §2 we introduce notions to describe
the structure of a prefix circuit. In §3 and §4 we prove lower and upper
bounds for L(2n) respectively. In §5 some corollaries for the complexity of
prefix circuits of various depths are obtained. In §6 we establish an upper
bound for L⊕(2n) and analogous corollaries. In §7 we collected some remarks
on parallel prefix circuits with restriction on the fan-out of circuit gates.

2 Preliminary notions

Here we introduce some notions (generally taken from [3]) useful for analysis
of the structure of a prefix circuit.

First notice that in a universal prefix circuit gates connected with outputs
of the circuit via oriented paths compute functions of form xi ◦xi+1 ◦ . . . ◦xj.

Indeed, for otherwise it would exist a formula, implementing some prefix
sum from (1) and such pair of variables xj, xk, where j < k, that symbol xk

in the formula precedes symbol xj. We now show that such formula can not
implement any prefix sum over a noncommutative group (G, ◦) with elements
of infinite order (e.g. group of symmetries of circumference). Assign xj = a,
xk = b and xi = e for all i 6= j, k, where a, b, e ∈ G and e is the group unit.
Prefix sum of these arguments attains value a ◦ b whereas the value of the
formula is either b ◦ a or al1 ◦ bl2 ◦ al3 ◦ . . ., where all li ≥ 0 and

∑
i li ≥ 3.

In the first case, choose a and b so that a ◦ b 6= b ◦ a. In the second case,
one of numbers la =

∑
l2i−1, lb =

∑
l2i is greater than 1. Assuming w.l.o.g.

that la > 1, assign an element of infinite order to a and set b = e. As a
consequence of ala 6= a, values of the prefix sum and the formula do not
match.

Therefore, we can restrict our attention to circuits with all gates imple-
menting functions of the form xi ◦ xi+1 ◦ . . . ◦ xj.

If a function xi ◦ . . . ◦ xj is implemented at the output of a gate v, then
we attribute label λ(v) = [i; j] to v. An input xi of a circuit is attributed
with label [i; i]. Notation l(v) = i and r(v) = j stands for the left and right
ends of the label respectively. Denote by w(v) = r(v)− l(v) + 1 a number of
summands in a sum computed by v. It will be referred to as a width of v.

Let a gate v take input edges from v′ and v′′. Then for one of these gates
(let us assume that for v′) l(v′) = l(v) holds, and r(v′′) = r(v) holds for
another one. Let us call v′ the left parent and v′′ the right parent of gate v.
Evidently, w(v) = w(v′) +w(v′′). Denote by d(v) the depth of v in a circuit.

Let us classify gates of a prefix circuit S. We call subcircuit computing
the longest prefix sum x1 ◦ . . .◦xm skeleton subcircuit. It is a tree containing
m− 1 gates, among them at most D+ 1 outputs of S, where D is the depth

4
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of the skeleton subcircuit. We name skeleton gates such gates of the skeleton
subcircuit which are not outputs of S. A gate of S which is neither skeleton
nor output is called an extra gate.

It is straightforward that prefix circuits with no extra gates and with the
depth of the longest prefix equal to the circuit depth constitute exactly the
set of optimal circuits defined in the introduction. (This argument can be
easily transformed into the proof of (2). Note that (2) remains valid if one
replace D by the longest prefix depth.)
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Fig. 1

Fig. 1 represents a 8-input prefix circuit (edges are oriented top-down).
Output gates, skeleton gates and an extra gate are marked with symbols
“O”, “S”, “E” respectively.

Skeleton subcircuit of a 2n-input prefix circuit of depth n is defined
uniquely. Gates of a skeleton subcircuit have labels [i2k +1; (i+1)2k], where
i = 0, . . . , 2n−k − 1 and k = 1, . . . , n.

3 Lower bound

Initial idea of the structure of a minimal prefix circuit is given by the following
lemma. Denote by Sr(m, d) a set of m-input prefix circuits of depth at most d
whose outputs depending on at least r + 1 circuit inputs have greater depth
than an output implementing x1 ◦ . . . ◦ xr.

Lemma 1 (Fich [3]). Let S have minimal complexity among circuits from
Sr(m, d). Then an output u∗ of S which implements x1 ◦ . . . ◦xr is connected
via oriented path with any output depending on more than r circuit inputs.

Proof. If the last condition is violated for some minimal circuit, then the
circuit contains gates which are not outputs and depend on each of inputs xr

and xr+1. Transform the circuit in the following way. Remove any such
gate v and connect free ends of its outgoing edges to the right parent of v.
Replace any edge (u′′, u′) satisfying r(u′′) < r(u∗) < r(u′) by an edge (u, u′).
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One can easily check that the new circuit belongs to Sr(m, d) and has
less complexity. See details in [3].
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Fig. 2. Structure of S2n

Evidently, any minimal 2n-input prefix circuit S2n of depth n belongs
to
⋂n−1

i=0 S2i(2n, n). In particular, S2n ∈ S2n−1(2n, n). Then it contains as
a subcircuit a minimal circuit S2n−1 implementing prefix sums of 2n−1 vari-
ables x2n−1+1, . . . , x2n . Furthermore, any output u′ of S2n with w(u′) > 2n−1

has an output u implementing x1 ◦ . . . ◦ x2n−1 as a left parent and a gate
labeled by [2n−1 + 1; r(u′)] as a right parent. The latter one is an output of
subcircuit S2n−1 (see Fig. 2).

Next, like in [3], we bound from below the number of extra gates in S2n .
The proof of the following lemma is based on the simple observation: if

d(v) = h, then w(v) ≤ 2h. Conversely, if w(v) > 2h−1, then d(v) ≥ h.

Lemma 2. Let a gate v in circuit S have depth h. Suppose that the circuit
does not contain skeleton gates whose right ends of labels are r(v) and whose
depths are greater than k, where k < h. Suppose w(v) > 2h − 2h−s + 2k.
Then the circuit contains s extra gates v1, . . . , vs such that r(vi) = r(v) and
w(vi) ≥

(
w(v) mod 2h−i

)
> 2h−i − 2h−s + 2k. Yet, v1 is a parent of v, and

for any i, gate vi is a parent of vi−1, and d(vs) ≤ h− s.

Proof. The proof is by induction on s. If s = 0, then there is nothing to
prove.

Take s ≥ 1 and suppose that the lemma is already proven for all less
values of s. Let v′ and v1 be left and right parents of v respectively. It
follows from w(v) = w(v′) + w(v1) and w(v′) ≤ 2h−1 that

w(v1) ≥ w(v)− 2h−1 =
(
w(v) mod 2h−1

)
> 2h−1 − 2h−s + 2k.

Since w(v1) > 2k, the gate v1 is not skeleton, so it is extra. Clearly d(v1) ≤
h − 1. Moreover, if s > 1, then v1 satisfies conditions of the lemma (there
replace h by h− 1 and s by s− 1). Then by the induction hypothesis there
exist s− 1 extra gates v2, . . . , vs, and the following condition is satisfied:

w(vi) ≥
(
w(v1) mod 2(h−1)−(i−1)

)
≥
(
w(v) mod 2h−i

)
> 2h−i − 2h−s + 2k.

6
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Any vi is a parent of vi−1. Further, d(vs) ≤ d(v1)− (s− 1) ≤ h− s.
In particular, the proven lemma justifies an extra gate in the circuit from

Fig. 1 under condition that the depth of an output v labeled by [1; 7] is 3.
In what follows, S means any 2n-input prefix circuit of depth n. The

following lemma is crucial in the lower bound proof.

Lemma 3 (main). Suppose k,N,R ∈ N, N < 2k and R < 2n−2k−1, R is
not a power of 2. Then S contains at least N extra gates with right ends of
labels from interval

JN,R,k = [N2n−k−1 +R2k, N2n−k−1 + (R + 1)2k − 1]. (3)

In fact, the proof of the lower bound [3] exploits special case N = 1 of
the above lemma.

To prove Lemma 3 we need some additional notions. But first of all we
clarify the meaning of parameters.

Lemma 4. Under conditions of Lemma 3 for any skeleton gate e of circuit S
with r(e) ∈ JN,R,k, the inequality w(e) < R2k holds.

Proof. Note that w(e) ≤ 2ν , where 2ν is the largest power of two divid-
ing r(e) (see §2). It follows from 0 < r(e) − N2n−k−1 < 2n−k−1 that
2ν |

(
r(e)−N2n−k−1

)
. If R is not a power of two, then r(e) − N2n−k−1 =

R2k + R0, where 0 ≤ R0 < 2k is also not a power of two. Hence,
2ν ≤ (R2k +R0)/3 < R2k. Finally, one has w(e) ≤ 2ν < R2k.

Write N as a (k + 1)-digit binary number:

N = 0 . . . 0︸ ︷︷ ︸
p1

1 . . . 1︸ ︷︷ ︸
s1

0 . . . 0︸ ︷︷ ︸
p2

. . . . . . 1 . . . 1︸ ︷︷ ︸
sq

0 . . . 0︸ ︷︷ ︸
pq+1

. (4)

Here N is divided into blocks of consecutive zeros and ones: p1 zeros in the
most significant bits, then follows a block of s1 ones, etc. By definition,
pq+1 ≥ 0, other numbers pi and si are positive.

The following lemma sets conditions for an application of Lemma 2.
Firstly, define Pt =

∑t−1
i=1(pi + si) + pt and

Nt = N −
(
N mod 2k+1−Pt

)
= N −

(
2k+1−Pt − 2k+1−Pt−st

)
,

where t = 1, . . . , q + 1 (here and further everywhere a sum of no summands
is assumed to be zero).

Lemma 5. Suppose t ≤ q and a gate v of circuit S satisfies r(v) ∈ JN,R,k,
d(v) = n − Pt and l(v) ≤ Nt2

n−k−1 + 1. Then the circuit contains st extra
gates v1, . . . , vst which are different from v and satisfy r(vi) = r(v), d(v) >
d(v1) > . . . > d(vst) and l(vst) ≤ Nt+12

n−k−1 + 1.

7
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Proof. Indeed,

w(v) ≥ r(v)−Nt2
n−k−1 ≥ (N −Nt)2

n−k−1 +R2k =

=
(
N mod 2k+1−Pt

)
2n−k−1 +R2k ≥

≥
(
2k+1−Pt − 2k+1−Pt−st

)
2n−k−1 +R2k > 2n−Pt − 2n−Pt−st + 2k0 ,

where k0 is the maximal depth of skeleton gates with right ends of labels
in JN,R,k. The latter inequality is justified by Lemma 4. Thus, Lemma 2
provides st required extra gates together with inequalities d(vst) ≤ n−Pt−st

and

w(vst) ≥
(
w(v) mod 2n−Pt−st

)
≥
(
(r(v)−Nt2

n−k−1) mod 2n−Pt−st
)

=

= r(v)−N2n−k−1 +
(
(N −Nt)2

n−k−1 mod 2n−Pt−st
)

=

= r(v)−N2n−k−1 +
((
N mod 2k+1−Pt

)
2n−k−1 mod 2n−Pt−st

)
=

= r(v)−N2n−k−1 +
(
N mod 2k+1−Pt−st

)
2n−k−1 =

= r(v)−N2n−k−1 +
(
N mod 2k+1−Pt+1

)
2n−k−1 = r(v)−Nt+12

n−k−1.

Consequently, l(vst) ≤ Nt+12
n−k−1 + 1.

3.1 Connection graph

For a prefix circuit S and an interval JN,R,k we introduce a notion of connec-
tion graph GN,R,k(S). The notion includes three components: a graph itself,
nonnegative integer numbers attributed to its vertices (types of vertices) and
a correspondence between vertices of the graph and a subset of gates in the
circuit S.

We construct an oriented graph GN,R,k(S) step by step as follows. Initial
graph consists of 2k isolated vertices zi, where i = 0, . . . , 2k−1. Each vertex zi

corresponds to an output gate v0,i of the circuit S labeled by [1;N2n−k−1 +
R2k + i]. All vertices in GN,R,k(S) are initially of type 0.

Then a sequence of steps 0, . . . , q is performed, where q is defined by (4).
Step t consists in the following.

For any vertex zi of type t in decreasing order by i, take an appropriate
of three choices below and follow instructions.

1) If i 6= 0 and the right parent of vt,i is either skeleton gate or input of
the circuit, do the following. Denote the left end of its label by N2n−k−1 +
R2k + i′ + 1. Let vt,i′

0 be the left parent of vt,i. If a gate vt,i′ has been defined

already, then (re-)denote by vt,i′ that of gates vt,i′ , vt,i′

0 which has less depth
(in the case of equal depths the assignment is arbitrary). Otherwise, assign

8
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vt,i′ = vt,i′

0 . Set up a correspondence between zi′ and vt,i′ . Remove an edge
outgoing from zi, if such edge exists. Include an edge (zi, zi′) and assign
type t to zi′ .

2) (The following instruction is not performed at the step q.) If d(vt,i) =
n−Pt+1, then assign type t+1 to a vertex zi. Apply Lemma 2 with parameters
v = vt,i and s = st+1 to the circuit S and denote by vt+1,i a gate which plays
a role of vs in the lemma. Set up a correspondence between zi and vt+1,i.

3) Otherwise, do nothing.
Note that conditions of the choices 1) and 2) do not hold simultaneously

since in the case d(vt,i) = n− Pt+1 a right parent of vt,i is extra.
By the above procedure, all connected components of a connection graph

are rooted trees. A rooted tree is defined as an oriented tree containing a
vertex with no outgoing edges (a root) and all other vertices connected with
the root via oriented paths.

Also note that while moving along edges of a connection graph a type of
a vertex does not decrease.

The structure of graph GN,R,k(S) allows us to bound from below the
number of extra vertices in S with right ends of labels in JN,R,k. Next we
state a few preliminary observations.

Lemma 6. a) All gates vt,i defined after completing the procedure of con-
structing of a connection graph are distinct.

b) All gates vt,i with t > 0 are extra.
c) d(vt,i) ≤ n− Pt+1 + pt+1. If t < q, then d(vt,i) ≥ n− Pt+1.
d) For any t < q, a connection graph does not contain an oriented chain

connecting pt+1 + 1 vertices of type t.
e) If i > 0 and a vertex zi of type t is a root, then the right parent of vt,i

is extra gate.

Proof. Claim a) holds since gates with distinct first indices have different
depths (it follows from the claim c) and gates with distinct second indices
have different right ends of labels.

Claim b) holds since t > 0 implies that vt,i is neither output nor skeleton
gate. The latter follows from Lemma 4. Indeed, l(vt,i) ≤ N2n−k−1 + 1 by
Lemma 5; hence, w(vt,i) ≥ R2k.

Clearly, claim c) holds in the case t = 0: gates v0,i are outputs of S. In
the case of an arbitrary gate vt,i, an upper bound n−Pt−st = n−Pt+1+pt+1

for d(vt,i) is provided by that of choices 1) and 2) which defines vt,i. The
lower bound follows from the bound on width of vt,i. By Lemma 5, l(vt,i) ≤
Nt+12

n−k−1 + 1. As a consequence, for t < q,

w(vt,i) ≥ 2n−Pt+1 − 2n−Pt+1−st+1 +R2k > 2n−Pt+1−1.

9
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Claim d) follows immediately from the claim c) and conditions of the
choice 2).

Claim e) holds since a vertex zi does not satisfy conditions of the choice 1)
at the step t.

Now we approach to estimation of the number of extra gates in the con-
sidered fragment of a circuit S (that is, gates with right ends of labels in
JN,R,k). Looking at the structure of a connection graph and types of its
vertices, we are able to display some extra vertices with right end of labels
N2n−k−1 +R2k + i, where i = 0, . . . , 2k − 1.

Let vertex zi be of type t. Let it take an edge from a vertex of type
t′ > 0. Then an extra gate vt′,i is defined after completing the connection
graph constructing. If a vertex zi is preceded by a chain of pt′ vertices of
type t′ − 1, then a gate vt′−1,i is also defined and equality d(vt′−1,i) = n− Pt

holds by Lemma 6, claim c). Consequently, by conditions of choice 2) there
exist extra gates vt′−1,i, vt′,i and another st′ − 1 extra gates settled between
former two gates (with respect to depth). Moreover, any of the latter gates
does not coincide with any vt′′,i by Lemma 6, claim c). If a vertex zi, i > 0,
is a root, then one can indicate another extra gate, the right parent of vt,i.

Since vertex z0 is always a root, we can write the number of extra gates
counted above as

IN,R,k(S) = µ(GN,R,k(S))− 1 +
∑
z∈G

q∑
t=1

c(z, t), (5)

where µ(G) denotes the number of connected components of G and function
c(z, t) is defined for t ≥ 1 as

c(z, t) =


st, vertex z is preceded by a chain of pt vertices of type t− 1;

1,
else, if z is of type t or z takes

an edge from a vertex of type t;

0, otherwise.

The lack of measure IN,R,k(S) is its dependence on both topology and
types of vertices of the connection graph. Our next step is to replace IN,R,k(S)
with a more convenient measure depending on the connection graph topology
only.

3.2 Cost of a graph

Denote by ∆ a set of graphs will all connected components be rooted trees.
Depth dG(z) of a vertex z in graph G ∈ ∆ is defined as the maximal length

10
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(number of edges) of an oriented path from a leaf of G to the vertex z. (As
usual, under a leaf of a graph we understand a vertex with no input edges. Its
depth is zero.) We will use notation G′ ⊂ G to express that G′ is a subgraph
of graph G.

For a graph G ∈ ∆ we introduce a notion of (p1, s1, . . . , pq, sq)-cost, where
pi, si ∈ N for all i = 1, . . . , q. Previously, we define integer intervals:

Mt(p1, . . . , pq) =

[
t∑

i=1

pi,
t+1∑
i=1

pi − 1

]
, 0 ≤ t < q,

Mq(p1, . . . , pq) =

[
q∑

i=1

pi, +∞

)
.

Next, we define a (p1, s1, . . . , pq, sq)-cost of a vertex z of graph G as

CG
p1,s1,...,pq ,sq

(z) =

q∑
t=1

cGp1,s1,...,pq ,sq
(z, t),

where

cGp1,s1,...,pq ,sq
(z, t) =


st,

vertex z takes an edge from a vertex z′

such that dG(z′) =
∑t

i=1 pi − 1;

1,
else, if z takes an edge from a vertex z′

such that dG(z′) ∈Mt(p1, . . . , pq);

0, otherwise.

Finally, we define a (p1, s1, . . . , pq, sq)-cost of graph G as

Cp1,s1,...,pq ,sq(G) = µ(G)− 1 +
∑
z∈G

CG
p1,s1,...,pq ,sq

(z).

Speaking formally, cost is also defined for q = 0 as CG(z) = 0 and C(G) =
µ(G)− 1.

Before clarifying a connection between the cost and introduced above
measure IN,R,k(S) we will establish a simple relation between the type and
the depth of a vertex of the connection graph.

Lemma 7. Let dGN,R,k(S)(z) ≥
∑t

i=1 pi, where parameters N,R, k are given
by Lemma 3 and pi are determined by (4). Then the type of z is at least t.

Proof. Consider an oriented chain determining the depth of vertex z: by the
given condition the chain contains at least

∑t
i=1 pi + 1 vertices including, by

Lemma 6 claim c), at most pi+1 vertices of any type i. It follows that the
type of z is at least t.

11
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Lemma 8. Let parameters N,R, k be defined as in Lemma 3 and pi, si

be determined by (4). Suppose that all vertices of graph GN,R,k(S) have
minimal possible types in the sense of Lemma 7. Then IN,R,k(S) =
Cp1,s1,...,pq ,sq(GN,R,k(S)).

Proof. The statement of lemma follows from coinciding of values of c(z, t)
in (5) with cGp1,s1,...,pq ,sq

(z, t).
It follows from the proven lemma that the cost of the connection

graph GN,R,k(S) is IN,R,k(S) in the case when all its vertices have mini-
mal possible types (in view of Lemma 7). But speaking generally, measure
Cp1,s1,...,pq ,sq(GN,R,k(S)) does not serve as a lower bound for IN,R,k(S). How-
ever, a weaker statement holds that allows us to use cost to bound IN,R,k(S)
from below.

It is natural to extend the notion and notation of cost to a nonempty set
of graphs Γ ⊂ ∆:

Cp1,s1,...,pq ,sq(Γ) = min
G∈Γ

Cp1,s1,...,pq ,sq(G).

(We stress that the minimum should be here.)
For an oriented graph T define

δ(T ) = {G | G ⊂ T,G contains all vertices of T} ∩∆.

Lemma 9. Let N,R, k be defined by Lemma 3 and pi, si be determined by (4).
Then

IN,R,k(S) ≥ Cp1,s1,...,pq ,sq(δ(GN,R,k(S))).

Proof. We propose a procedure of removing some edges of connection graph
GN,R,k(S) resulting in a graph with the cost not exceeding IN,R,k(S).

We denote by G′ a graph in the process of transformations. Having in
mind an assignment of types to vertices of G′ let us define quantities c′(z, t)
and I(G′) analogously to c(z, t) and IN,R,k(S) defined for a connection graph.
Initially, G′ = GN,R,k(S) and I(G′) = IN,R,k(S).

Next, for any vertex zi in decreasing order by i, perform the following
iteration. If type t of the vertex zi in G′ is not minimal in the sense of
Lemma 7 (which is to be applied to graph G′ instead of GN,R,k(S)), then
reduce the type to minimal and remove an outgoing edge, if the latter is
present.

Note that a coefficient c′(zi, t) is positive before the iteration and it turns
to zero afterwards. Other coefficients c′(z, t′), z ∈ G′, t′ = 1, . . . , q, do not in-
crease (only possible changes are decreasing ones: either a coefficient c′(z′, t)
can decrease, where vertex z′ takes an edge from zi, or a coefficient c′(z′′, t+1)

12
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can decrease, where z′′ is a vertex in a chain beginning in zi). Hence, the
iteration does not increase I(G′), since c′(zi, t) strictly decreases and µ(G′)
increases at most by 1.

The order of enumeration of vertices provides that all vertices with
indices greater than i have minimal types. Finally, we obtain a graph
G ∈ δ(GN,R,k(S)) satisfying conditions of Lemma 8 (up to notations). Con-
sequently, I(G) = Cp1,s1,...,pq ,sq(G). Thus, the statement of lemma follows due
to I(G) ≤ IN,R,k(S).

The proven lemma allows to reduce our consideration to the universal
cost measure, that is, applicable to any graph in ∆ and independent of a
circuit S.

Our further strategy is to show that the minimal cost among acceptable
graphs is delivered by graphs of a certain kind, namely, by subgraphs of a
hyperpair. Calculation of the minimal value of cost of such graphs should
lead us to a lower bound on the cost of connection graph GN,R,k(S) and
farther to a lower bound on the number of extra gates in the considered
fragment of the circuit S given by Lemma 3.

3.3 A set of acceptable graphs. Hyperpairs

Now we determine a set of acceptable graphs, that is, a set containing graphs
isomorphic to any possible connection graph. Denote by Tk a graph consisting
of vertices z0, . . . , z2k−1 which contains an edge (zi, zi′) iff i− i′ = 2t and 2t | i
for some t ≥ 0.

Lemma 10. GN,R,k(S) ∈ δ(Tk).

Proof. By definition, graph Tk contains an edge (zi, zi′) iff a vertex of S
labeled by [N2n−k−1 + R2k + i′ + 1;N2n−k−1 + R2k + i] is either skeleton
gate or input. Consequently, graph Tk contains any edge which might occur
in graph GN,R,k(S) (here, independently of N and R). Hence, GN,R,k(S) ⊂
Tk.

Lemma shows that δ(Tk) is appropriate choice for a set of acceptable
graphs. The following claim is immediate from the latter lemma and
Lemma 9.

Corollary 1. Let N,R, k be defined by Lemma 3 and pi, si be determined
by (4). Then

IN,R,k(S) ≥ Cp1,s1,...,pq ,sq(δ(Tk)).

For convenience of further arguments we propose another, recursive way
of definition of graph Tk. In passing, we define sets of marked vertices, right
and wrong edges. Graph T0 is a single vertex which is marked. Graph Tk

13
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is constructed of two graphs Tk−1 in the following way. Add edges from the
root of the first graph Tk−1 to all marked vertices of the second graph. (The
root of Tk is uniquely defined since the graph is connected.) A set of marked
vertices of Tk is constituted by all marked vertices of the first graph and the
root of the second graph. The latter vertex also occurs to be a root of Tk. A
set of right edges of Tk is formed by right edges of both graphs Tk−1 and an
edge connecting roots of graphs. Other edges are defined to be wrong.

Simplest graphs in the family {Tk} are shown on Fig. 3: non-vertical
edges are oriented from left to right, vertical edges are oriented upwards,
marked vertices and right edges are distinguished.
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Fig. 3

One can establish a congruence of two definitions via numerating of ver-
tices in the second definition. Let vertex of T0 be not numbered. Further,
while constructing graph Tk of two graphs Tk−1 we attach digit 1 from the
left to numbers of all vertices of the first graph and attach digit 0 to numbers
of all vertices of the second graph. Then a vertex zi from the first definition
corresponds to a vertex numbered by i in the second definition.

It can be easily checked that each vertex of graph Tk takes at most one
wrong input edge, to be more precise, marked vertices take only right edges
and each of other vertices takes besides right edges exactly one wrong edge.

Let us define another important family of graphs, hyperpairs.
Hyperpair Hk is a rooted tree defined recursively as follows. Hyperpair H0

is a single vertex which is the root. For k > 0, hyperpair Hk is composed
of two hyperpairs Hk−1 via connecting of its roots by an edge. Simplest
hyperpairs are shown on Fig. 4 (edges are oriented upwards).

Note that hyperpair Hk can be obtained from Tk by removing all wrong
edges.

Let a graph H ∈ ∆ have one of its roots marked as the main root. We
define a composition T ◦H of graphs T ∈ ∆ and H as a graph obtained by
joining of main roots of graphs isomorphic to H into graph T (see Fig. 5,
edges are oriented upwards). Note that T ◦H ∈ ∆.

14



ON THE COMPLEXITY OF PARALLEL PREFIX CIRCUITS 15

r r
r

r
r r

r

r
r r

r

r
r r

r r r
�
�
�
�

�
�
�
�

�
�
�
�

!!
!!
!

!!
!!
!

d d d d d

H0 H1 H2 H3
Hk

Hk−1

Hk−1

Fig. 4. Hyperpairs

rr
r rd

r rr
r rr r r r rr r rr r

�
�
@

@
��
�
�

HH
H
H

H T
T ◦H

Fig. 5. Composition of graphs

In what follows, if a choice of main root of graph H is clear from context,
we omit word “main”. In particular, a unique root in a rooted tree is certainly
main. If a graph H ′ is to be chosen from a set δ(H), H ∈ ∆, then we assign
the main root of H to be the main root of H ′ as well.

Next, we list some simple properties of hyperpairs.
1) Composition of two hyperpairs is a hyperpair: hyperpair Hk1+k2 is

isomorphic to Hk1 ◦Hk2 .
2) For any vertex z of hyperpair Hk, the largest connected subgraph

containing given vertex as a root is a hyperpair Hd, where d = dHk
(z).

3) The depth of the root of hyperpair Hk is k. The root takes k input
edges.

In graph Tk (as well as in Hk) each vertex is a root of some subgraph Ti

(respectively, Hi). Let us define an order of vertex z in graph Tk (Hk) as the
maximal index i such that Tk (Hk) contains a subgraph isomorphic to Ti (Hi)
with root z (in similar cases below we will name “graph isomorphic to Ti”
simply “graph Ti”). According to definition of Tk there is an alternative
way of definition of order of vertex as the number of right input edges. As
mentioned above, an order of vertex z in a hyperpair Hk is dHk

(z).
By the construction, a vertex of order i in graph Tk puts out a right edge

to a vertex of greater order and it puts out wrong edges (in the case i > 0)
to vertices of orders 0, . . . , i − 1, where latter vertices form a chain of right
edges.

15
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In what follows under isomorphism in the set of graphs {Tk} and their
subgraphs we understand both topological coincidence and coincidence of
orders of corresponding vertices except roots. In particular, we want the
phrase “subgraph Ti with root v in graph Tk” to point explicitly to a graph
from the described above recursive procedure of constructing Tk (it is the
only subgraph to have such orders of vertices as in definition of Ti).

Our next goal is to determine values Cp1,s1,...,pq ,sq(δ(Hk)). The following
paragraph contains technical Lemmas 12, 13, 14 providing a technique for all
further arguments.

3.4 Cost of a set of subgraphs of a composition of
rooted trees

We say that an edge ρ′ of graph G ∈ ∆ depends on an edge ρ if removing
of ρ leads to decreasing of the depth of a vertex emitting ρ′.

Lemma 11. a) A set of edges of G ∈ ∆ depending on an edge ρ forms an
oriented chain (possibly empty) beginning in a vertex which takes ρ.

Let this chain consist of j edges ρ1, . . . , ρj, connecting subsequently ver-
tices z0, . . . , zj. Let z be a vertex emitting edge ρ and G′ be a graph obtaining
from G by removing ρ.

b) dG(zi) = dG(z) + i+ 1 for any j > 0 and i < j.
c) For any i = 1, . . . , j, a set of edges depending on ρi is exactly

ρi+1, . . . , ρj.
d) If z′ 6= zi for any i = 0, . . . , j, then CG′

p1,s1,...,pq ,sq
(z′) = CG

p1,s1,...,pq ,sq
(z′).

Proof. Claim a) follows from a simple investigation of vertices whose depths
can change after removing ρ.

Claim b) holds since the (unique) longest oriented chain from a leaf of G
to a vertex zi passes through z.

To verify claim c), denote by G′′ a graph obtaining from G via removing
an edge ρi. For any i′ ≥ i, one has dG′′(zi′) ≤ dG′(zi′) since a set of leaves
connected with zi′ via oriented chains in G′′ is contained in the analogously
defined set of graph G′. Therefore, for i ≤ i′ < j we have dG′′(zi′) < dG(zi′).

One observes two possibilities for the vertex zj: either it is a root or
dG′(zj) = dG(zj). In the first case, there is nothing to prove. In the second
case, note that G contains an oriented chain of length dG(zj) beginning in
a leaf and terminating in the vertex zj, and the chain does not contain ρj

and, as a consequence, it does not contain any of edges ρi. Hence, dG′′(zj) =
dG(zj).

16
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Claim d) holds since depths of vertices putting out edges to z′ do not
change after removing ρ.

Lemma 12. One can remove an arbitrary edge ρ from a graph G ∈ ∆ and
possibly remove some edges depending on ρ so that the cost of the graph
increases at most by 1.

Proof. The proof is by induction on number j of edges depending on ρ.
If j = 0, then costs of vertices of the graph do not increase after removing

the edge. Only number of connected components increases by 1, so the
statement of lemma holds in this case.

For the induction step from j − 1 to j, we use notation of Lemma 11.
Clearly, CG′

p1,s1,...,pq ,sq
(z0) ≤ CG

p1,s1,...,pq ,sq
(z0). Consider two cases.

a) Suppose CG′
p1,s1,...,pq ,sq

(z0) < CG
p1,s1,...,pq ,sq

(z0). Note that exactly j − 1
edges in G depend on ρ1. Thus, by induction hypothesis we can remove ρ1

from G and also remove some edges in {ρi} so that the cost of the graph
increases at most by 1. Next we remove ρ: the cost will not increase since
increasing of the number of connected components is compensated by de-
creasing of the cost of the vertex z0.

b) Suppose CG′
p1,s1,...,pq ,sq

(z0) = CG
p1,s1,...,pq ,sq

(z0). Let dG(z) ∈Mt(p1, . . . , pq).

Then cG
′

p1,s1,...,pq ,sq
(z0, t

′) = cGp1,s1,...,pq ,sq
(z0, t

′) for t′ < t and t′ > t+1, since the
presence of edge ρ does not matter for the above coefficients.

Assuming dG(z) =
∑t+1

i=1 pi − 1 and having in mind dG′(z0) < dG(z0) we
conclude cG

′
p1,s1,...,pq ,sq

(z0, t) ≤ cGp1,s1,...,pq ,sq
(z0, t) and cG

′
p1,s1,...,pq ,sq

(z0, t + 1) =

0 < st+1 = cGp1,s1,...,pq ,sq
(z0, t + 1). But it contradicts the equal costs of ver-

tex z0 in graphs G and G′. Therefore, dG(z) 6=
∑t+1

i=1 pi − 1, consequently,
cG

′
p1,s1,...,pq ,sq

(z0, t + 1) = cGp1,s1,...,pq ,sq
(z0, t + 1) = 0. Then cG

′
p1,s1,...,pq ,sq

(z0, t) =

cGp1,s1,...,pq ,sq
(z0, t) 6= 0. So it follows that dG′(z0) ∈Mt(p1, . . . , pq).

By relations

dG′(z0) + i− 1 ≤ dG′(zi−1) < dG(zi−1) = dG(z0) + i− 1

equalities cG
′

p1,s1,...,pq ,sq
(zi, t) = cGp1,s1,...,pq ,sq

(zi, t) and

cG
′

p1,s1,...,pq ,sq
(zi, t+ 1) = cGp1,s1,...,pq ,sq

(zi, t+ 1) = 0,

as well as CG′
p1,s1,...,pq ,sq

(zi) = CG
p1,s1,...,pq ,sq

(zi) remain true for all i ≤ j′, where

either j′ = j or dG(zj′) =
∑t+1

i=1 pi − 1.
b.1) In the case j′ = j, after removing ρ costs of all vertices in graph

remain intact and the cost of the entire graph increases by 1 due to increasing
of the number of connected components. Thus, the statement of lemma holds
in this case.

17
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b.2) Else if dG(zj′) =
∑t+1

i=1 pi − 1, then

cG
′

p1,s1,...,pq ,sq
(zj′+1, t+ 1) ≤ cGp1,s1,...,pq ,sq

(zj′+1, t+ 1) = st+1,

where equality is possible only when j′ + 1 = j. Then CG′
p1,s1,...,pq ,sq

(zj) =

CG
p1,s1,...,pq ,sq

(zj) and we can apply an argument of item b.1).

If j′+1 < j, then cG
′

p1,s1,...,pq ,sq
(zj′+1, t+1) = 0, hence, CG′

p1,s1,...,pq ,sq
(zj′+1) <

CG
p1,s1,...,pq ,sq

(zj′+1). By analogy with item a) and by induction hypothesis we
can remove an edge ρj′+2 and some edges in {ρi} from G to increase the cost
of graph at most by 1. Next, we remove the edge ρ: the cost of graph does not
increase since the cost of vertex zj′+1 decreases. Case b) is completed.

Lemma 13. Suppose that a graph G ∈ ∆ contains a subgraph H with root z
and G contains no edges connecting a vertex from H \ {z} and a vertex
from G \ H. Let H ′ ∈ ∆ and graph G′ be obtained from G via replacement
of H by a graph H ′ (the root of H ′ must be superposed with the vertex z).
Suppose dH(z) ≥ dH′(z) and dG(z), dG′(z) ∈Mt(p1, . . . , pq) for some t, and(

CG
p1,s1,...,pq ,sq

(z)− CH
p1,s1,...,pq ,sq

(z)
)

+ Cp1,s1,...,pq ,sq(H) =(
CG′

p1,s1,...,pq ,sq
(z)− CH′

p1,s1,...,pq ,sq
(z)
)

+ Cp1,s1,...,pq ,sq(H
′).

Then there exists a graph G′′ obtained from G′ via removing some edges in
an oriented chain beginning in z, which satisfies inequality

Cp1,s1,...,pq ,sq(G
′′) ≤ Cp1,s1,...,pq ,sq(G).

Proof. The condition of disposition of subgraph H inside G (subgraph H is
connected with the rest of the graph only via vertex z) implies that a change
of cost of G produced by replacement ofH byH ′ is a sum of three summands:
difference of costs of these subgraphs, a change of the cost of vertex z (one
must keep in mind that the cost of a vertex is included partially in the cost
of subgraph) and change of costs of vertices in a chain beginning in z.

It is easy to see that the cost of the subgraph together with the cost of z
is A2 − A1, where

A1 =
(
CG

p1,s1,...,pq ,sq
(z)− CH

p1,s1,...,pq ,sq
(z)
)

+ Cp1,s1,...,pq ,sq(H)

(cost of a fragment in the question before replacement) and

A2 =
(
CG′

p1,s1,...,pq ,sq
(z)− CH′

p1,s1,...,pq ,sq
(z)
)

+ Cp1,s1,...,pq ,sq(H
′)

18
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(cost after replacement). By conditions of lemma, A1 = A2. Consequently,
the difference in costs of graphs G and G′ is determined by the cost of vertices
in the chain beginning in z.

If vertex z does not have outgoing edges, then Cp1,s1,...,pq ,sq(G
′) =

Cp1,s1,...,pq ,sq(G). Therefore, assign G′′ = G′. Otherwise, consider a sequence
of vertices z = z0, z1, z2, . . . in the oriented chain beginning in z.

If dG(z) = dG′(z), then costs of vertices in the chain remain intact. So we
can also assign G′′ = G′. In the opposite case note that since dH(z) ≥ dH′(z),
the inequality dG(zj) ≥ dG′(zj) holds for any j.

If dG(zj) ∈ Mt(p1, . . . , pq) for some j ≥ 1, then CG
p1,s1,...,pq ,sq

(zj) =

CG′
p1,s1,...,pq ,sq

(zj), since dG(zj−1), dG′(zj−1) ∈ Mt(p1, . . . , pq) due to the con-
dition dG(z), dG′(z) ∈ Mt(p1, . . . , pq). Hence, if dG(zj) ∈ Mt(p1, . . . , pq) for
all vertices in the chain, then the replacement of H by H ′ preserves the cost
of the graph. So, assign G′′ = G′.

Otherwise, let zk be the first vertex in the chain with dG(zk) ≥
∑t+1

i=1 pi.
The only case when quantity CG

p1,s1,...,pq ,sq
(zk) changes after the replacement

is dG(zk−1) =
∑t+1

i=1 pi − 1 > dG′(zk−1), and the only change can occur is
decreasing owing to a change of the coefficient cGp1,s1,...,pq ,sq

(zk, t+ 1).
If dG′(zk) = dG(zk), then Cp1,s1,...,pq ,sq(G

′) ≤ Cp1,s1,...,pq ,sq(G). So, assign
G′′ = G′.

Otherwise, i.e. in the case dG′(zk) < dG(zk), note that dG(zk) =
∑t+1

i=1 pi.
Consequently,

cGp1,s1,...,pq ,sq
(zk, t+ 1) = st+1 > 0 = cG

′

p1,s1,...,pq ,sq
(zk, t+ 1)

and further, CG
p1,s1,...,pq ,sq

(zk) > CG′
p1,s1,...,pq ,sq

(zk). In this case, remove an edge
going out of vertex zk of graph G, if the edge exists, via the method of
Lemma 12. Next, replace H by H ′ and denote obtained graph by G′′. Pos-
sible increasing by 1 of the graph cost after removing the edge is compen-
sated by the following decreasing of the cost of vertex zk after replacement.
Costs of other vertices in the chain remain intact. Thus, Cp1,s1,...,pq ,sq(G

′′) ≤
Cp1,s1,...,pq ,sq(G).

Conditions dG(z), dG′(z) ∈ Mt(p1, . . . , pq) and A1 = A2 (actually, A1 ≥
A2) can be withdrawn in favour of additional assumptions on the graph H ′.

Lemma 14. Suppose that a graph G ∈ ∆ contains a subgraph H with root z
and G contains no edges connecting a vertex from H \ {z} and a vertex
from G \ H. Let H ′ ∈ ∆ and graph G′ be obtained from G via replacement
of H by the graph H ′ (the root z′ of H ′ must be superposed with the vertex z).
Let dH(z) ∈ Mt(p1, . . . , pq), dH′(z′) ∈ Mt′(p1, . . . , pq) and CH′

p1,s1,...,pq ,sq
(z′) =∑t′

i=1 si.
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Also suppose that{
Cp1,s1,...,pq ,sq(H

′) < Cp1,s1,...,pq ,sq(H), if dH′(z′) > dH(z)

Cp1,s1,...,pq ,sq(H
′) +

∑t
t′+1 si ≤ Cp1,s1,...,pq ,sq(H), if dH′(z′) ≤ dH(z)

.

Then there exists a graph G′′ obtained from G′ via removing some edges in
an oriented chain beginning in z, which satisfies inequality

Cp1,s1,...,pq ,sq(G
′′) ≤ Cp1,s1,...,pq ,sq(G).

Additionally, if z is a root of G and dG(z) < dG′′(z), then

Cp1,s1,...,pq ,sq(G
′′) < Cp1,s1,...,pq ,sq(G).

Proof. a) Consider the case dH′(z′) > dH(z). By the method of Lemma 12
remove from G an edge going out from the vertex z, if the edge exists, and
replace subgraph H by H ′. Assign obtained graph to be G′′. Now we prove
the choice to be correct.

Consider a change of the cost of vertex z. By conditions of lemma,
cH

′
p1,s1,...,pq ,sq

(z′, i) = si for any i ≤ t′. Hence, for any i, cH
′

p1,s1,...,pq ,sq
(z′, i) ≥

cHp1,s1,...,pq ,sq
(z, i). As a consequence,

CG′

p1,s1,...,pq ,sq
(z)− CH′

p1,s1,...,pq ,sq
(z′) ≤ CG

p1,s1,...,pq ,sq
(z)− CH

p1,s1,...,pq ,sq
(z).

So the cost of the graph increases at most by 1 as a result of removing
an edge and decreases by A1 − A2 after replacement of H by H ′, where

A1 =
(
CG

p1,s1,...,pq ,sq
(z)− CH

p1,s1,...,pq ,sq
(z)
)

+ Cp1,s1,...,pq ,sq(H),

A2 =
(
CG′

p1,s1,...,pq ,sq
(z)− CH′

p1,s1,...,pq ,sq
(z′)
)

+ Cp1,s1,...,pq ,sq(H
′).

The argument above together with conditions of lemma shows that A1 > A2.
Therefore, the described transformation does not increase the cost of graph.

If z is a root of G, then the cost strictly decreases, since removing an edge
going out of z is unnecessary.

b) Let dH′(z′) ≤ dH(z) (it means that t′ ≤ t). We estimate the difference
in costs of fragments of graphs G and G′ with root z:

A1 =
(
CG

p1,s1,...,pq ,sq
(z)− CH

p1,s1,...,pq ,sq
(z)
)

+ Cp1,s1,...,pq ,sq(H) ≥

≥
q∑

i=t+1

cGp1,s1,...,pq ,sq
(z, i) + Cp1,s1,...,pq ,sq(H

′) +
t∑

i=t′+1

si ≥

≥
q∑

i=t′+1

cG
′

p1,s1,...,pq ,sq
(z, i) + Cp1,s1,...,pq ,sq(H

′) =

=
(
CG′

p1,s1,...,pq ,sq
(z)− CH′

p1,s1,...,pq ,sq
(z′)
)

+ Cp1,s1,...,pq ,sq(H
′) = A2.
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If A1 > A2, then a reasoning is the same as in item a).
Otherwise, by the above computations equality A1 = A2 is possible only

under the following conditions:

cG
′

p1,s1,...,pq ,sq
(z, i) = cGp1,s1,...,pq ,sq

(z, i), i > t,

cG
′

p1,s1,...,pq ,sq
(z, i) = cGp1,s1,...,pq ,sq

(z, i) = si, t′ + 1 ≤ i ≤ t.

Therefore, dG(z), dG′(z) ∈ Mt′′(p1, . . . , pq) for some t′′. So, conditions of
Lemma 13 are satisfied. Thus, we can remove some edges from G′ in a chain
beginning in vertex z, if necessary, and produce a graph G′′ with no larger
cost than that of the graph G.

From now on we denote the number of vertices in a graph G by |G|.

Lemma 15. Let T,H ∈ ∆. Suppose that the depth of the main root z′ of
graph H satisfies condition dH(z′) = d+

∑t−1
i=1 pi ∈Mt−1(p1, . . . , pq). Then

Cp1,s1,...,pq ,sq(T ◦H) = Cpt−d, st,...,pq ,sq(T ) + |T |Cp1,s1,...,pq ,sq(H).

Proof. In compliance with the definition of composition consider graph T ◦H
as an outer graph T which is built on the roots of inner graphs isomorphic
to H. Denote by ZT a set of vertices of the outer subgraph and denote by ZH

a set of other vertices of the graph T ◦H.
Let z ∈ ZT . The following relations are easy to check:

µ(T ◦H) = µ(T ) + |T |(µ(H)− 1),

CT◦H
p1,s1,...,pq ,sq

(z) = CT
pt−d, st,...,pq ,sq

(z) + CH
p1,s1,...,pq ,sq

(z′).

As a consequence, one obtains

Cp1,s1,...,pq ,sq(T ◦H) =

= µ(T ◦H)− 1 +
∑
z∈ZT

CT◦H
p1,s1,...,pq ,sq

(z) +
∑

z∈ZH

CT◦H
p1,s1,...,pq ,sq

(z) =

= µ(T )− 1 + |T |(µ(H)− 1)+

+
∑
z∈ZT

(
CT

pt−d, st,...,pq ,sq
(z) + CH

p1,s1,...,pq ,sq
(z)
)

+
∑

z∈ZH

CH
p1,s1,...,pq ,sq

(z) =

= Cpt−d, st,...,pq ,sq(T ) + |T |Cp1,s1,...,pq ,sq(H).

Next lemma is principal for establishing the cost of a set of subgraphs of a
hyperpair. We state it rather generally to involve different situations arising
during analysis of the cost of such set. Before the formulation we introduce
some notions motivated by Lemma 14.
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Let T be a rooted tree with the root z. Define

θp1,s1,...,pq ,sq(T ) =

min{dG(z) | G ∈ δ(T ), Cp1,s1,...,pq ,sq(G) = Cp1,s1,...,pq ,sq(δ(T ))},

δt
p1,...,pq

(T ) = δ(T ) ∩ {G |dG(z) ∈Mt(p1, . . . , pq)} ,

Ωt
p1,s1,...,pq ,sq

(T ) =

{
min

G∈δt
p1,...,pq

(T )
Cp1,s1,...,pq ,sq(G), δt

p1,...,pq
(T ) 6= ∅

+∞, δt
p1,...,pq

(T ) = ∅
.

Lemma 16. Let T,H be rooted trees,

θp1,s1,...,pq ,sq(H) = d+
t′∑

i=1

pi ∈Mt′(p1, . . . , pq)

and for any t ≥ t′,

Cp1,s1,...,pq ,sq(δ(H)) +
t∑

i=t′+1

si ≤ Ωt
p1,s1,...,pq ,sq

(H). (6)

Let H0 be a graph of minimal cost in δ(H) and z′ be its root. Suppose

dH0(z′) = θp1,s1,...,pq ,sq(H) and CH0

p1,s1,...,pq ,sq
(z′) =

∑t′

i=1 si. Then the minimum
of (p1, s1, . . . , pq, sq)-cost in the set δ(T ◦H) and the minimum of the depth of
the root of a graph of minimal cost are achieved on a graph from δ(T ) ◦H0.
In addition,

Cp1,s1,...,pq ,sq(δ(T ◦H)) = Cpt′+1−d, st′+1,...,pq ,sq(δ(T )) + |T |Cp1,s1,...,pq ,sq(δ(H)),

θp1,s1,...,pq ,sq(T ◦H) = θpt′+1−d, st′+1,...,pq ,sq(T ) + θp1,s1,...,pq ,sq(H).

Proof. As above, consider graph T ◦H as an outer graph T which is built on
the roots of inner graphs isomorphic toH. We are going to show the existence
of an optimal cost graph from δ(T ◦ H) which contains optimal subgraphs
of inner graphs and also delivers the minimum of the root depth. It suffices
to prove that one can take an arbitrary graph G ∈ δ(T ◦H) and replace its
fragment at the intersection with any inner graph H by the graph H0 and
remove some edges in the outer subgraph, if necessary, so that the cost of
the entire graph will not increase.

Denote by Hz a fragment of graph G at the intersection with some inner
graph with root z. Subgraph Hz of graph G together with a graph G′ ob-
tained from G via replacement of Hz by H0 satisfy conditions of Lemma 14.
Actually, if dHz(z) < θp1,s1,...,pq ,sq(H) = dH0(z′), then Hz is not a graph of
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minimal cost in δ(H). Hence, Cp1,s1,...,pq ,sq(Hz) > Cp1,s1,...,pq ,sq(H
0). Other-

wise, i.e. if dH0(z′) ≤ dHz(z) ∈Mt(p1, . . . , pq), then

Cp1,s1,...,pq ,sq(Hz) ≥ Cp1,s1,...,pq ,sq(H
0) +

t∑
i=t′+1

si

by (6).
Replace Hz by H0 via the method of Lemma 14. The method provides

that removed edges does not lie in other inner subgraphs of graph G.
Do the same with all inner subgraphs of G. By Lemma 14 increasing of

the depth of the root of G occurs only when the cost decreases, so initial
graph G is not optimal.

Now we can reduce our attention to graphs G ∈ δ(T )◦H0. The above ar-
gument shows that such a graph delivers both minimum of cost and minimum
of root depth among minimal cost graphs.

So, the cost of the set δ(T◦H) is the same with the cost of the set δ(T )◦H0.
The latter cost is determined by Lemma 15. The claim of lemma concerning
quantity θp1,s1,...,pq ,sq(T ◦H) follows immediately.

3.5 Cost of a set of subgraphs of hyperpair

We now establish some simple relations on the cost of sets δ(Hk).

Lemma 17. For all l ≤ p1 − 1 and t > 0,

Cp1,s1,...,pq ,sq(δ(Hl)) = 0, θp1,s1,...,pq ,sq(Hl) = l, Ωt
p1,s1,...,pq ,sq

(Hl) = +∞.

Moreover, for any k ≥ l,

Cp1,s1,...,pq ,sq(δ(Hk)) = C1,s1,...,pq ,sq(δ(Hk−l)),

θp1,s1,...,pq ,sq(Hk) = θ1,s1,...,pq ,sq(Hk−l) + l.

Proof. The first claim is easy to verify. Indeed, graph Hl is the only minimal
cost graph in δ(Hl). The second claim can be proved via application of
Lemma 16 to the graph Hk = Hk−l ◦Hl.

Lemma 18. Consider a connected subgraph of hyperpair Hk, which contains
l > 0 vertices taking edges from leaves of the subgraph. Then it contains
totally at most l(k − 1) + 2 vertices.
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Proof. Let l = 1 and t be an order of (the only) vertex connected with a leaf.
Then, all that the given subgraph contains are edges (at most t) going into
the vertex and an oriented chain beginning in this vertex (the length of the
chain is at most k− t). Hence, the subgraph contains at most k+ 1 vertices.

Note that if a connected subgraph of hyperpair Hk does not contain an
edge connecting root of the hyperpair with a vertex of order k− 1, then it is
a subgraph of hyperpair Hk−1 (see Fig. 4).

Now we prove the induction step from l − 1 to l. One can represent a
graph containing l vertices connected with leaves as a union of a graph with
l − 1 such vertices and a graph with the only vertex with this property. For
instance, an appropriate choice of the second graph is a vertex of depth 1
with a bunch of input edges together with a chain of edges (possibly empty)
beginning in this vertex and containing only vertices not connected with
leaves.

Surely, one of graphs is a subgraph of hyperpair Hk−1. By induction
hypothesis, the first graph contains at most (l− 1)(k− 1) + 2 vertices (or at
most (l− 1)(k− 2) + 2 in the case of subgraph of Hk−1). While uniting with
the second graph, we add at most k − 1 (respectively, at most k) vertices
since the resulting graph must be connected. Then the number of vertices in
the entire graph is at most

max{(l − 1)(k − 1) + 2 + (k − 1), (l − 1)(k − 2) + 2 + k} ≤ l(k − 1) + 2.

Lemma 19. Let k ≤ s1. Then

C1,s1,...,pq ,sq(δ(Hk)) = 2k − 1, θ1,s1,...,pq ,sq(Hk) = 0.

Moreover,

C1,s1,...,pq ,sq(δ(Hs1+1)) = 2s1+1 − 2, θ1,s1,...,pq ,sq(Hs1+1) = 1

and for any t ≥ 1,

Ωt
1,s1,...,pq ,sq

(Hk) ≥ 2k − 1 + (s1 − k) +
t∑

i=2

si,

Ωt
1,s1,...,pq ,sq

(Hs1+1) ≥ 2s1+1 − 2 +
t∑

i=2

si.
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Proof. Let graph G ∈ δ(Hk) contain connected components G1, . . . , Gj being
not isolated vertices. The case j = 0 is trivial, so we proceed with the case
j ≥ 1. W.l.o.g. assume that Gi ∈ δ(Hk−1) for i > 1. Let graph Gi contain
li vertices connected with leaves. Thus, by Lemma 18 it contains at most
li(k − 2) + 2 vertices in the case i > 1, and at most l1(k − 1) + 2 vertices in
the case i = 1.

Exploiting relations

µ(G) = |G| −
j∑

i=1

(|Gi| − 1), C1,s1,...,pq ,sq(Gi) ≥ lis1,

we can bound the cost of G as

C1,s1,...,pq ,sq(G) = µ(G)− 1 +

j∑
i=1

C1,s1,...,pq ,sq(Gi) ≥

≥ |G| − 1 +

j∑
i=1

(lis1 − |Gi|+ 1) ≥

≥ 2k − 1 + l1(s1 − k + 1)− 1 +

j∑
i=2

(li(s1 − k + 2)− 1). (7)

When k ≤ s1, one has C1,s1,...,pq ,sq(G) ≥ 2k − 1. The bound 2k − 1 is
achieved on the graph formed by all isolated vertices. So, the first claim of
lemma follows. If the depth of the root of G is at least 1, then by setting
l1 ≥ 1 in (7) we obtain Ω1

1,s1,...,pq ,sq
(Hk) ≥ 2k − 1 + (s1 − k).

For k = s1 +1, we derive a bound C1,s1,...,pq ,sq(G) ≥ 2k−2, where equality
is possible only when |G1| = l1(k − 1) + 2; hence, the root of hyperpair Hk

is not an isolated vertex in graph G. The above bound is achieved on the
graph formed by a bunch of edges going into the root of hyperpair and a
set of isolated vertices. Consequently, C1,s1,...,pq ,sq(δ(Hs1+1)) = 2s1+1 − 2 and
θ1,s1,...,pq ,sq(Hs1+1) = 1.

We are left to prove final relations of lemma for t ≥ 2. Graph G ∈
δt
1,p2,...,pq

(Hk) contains vertices z2, . . . , zt such that dG(zj) = 1+
∑j

i=2 pi. The

required relations follow: just take into account summands cG1,s1,...,pq ,sq
(zj, j) =

sj in the cost of the graph.

Lemma 20. Let p1 ≤ k < p1 + s1. Then

Cp1,s1,...,pq ,sq(δ(Hk)) = 2k−p1+1 − 1, θp1,s1,...,pq ,sq(Hk) = p1 − 1.

Let k ≥ p1 + s1. Then

Cp1,s1,...,pq ,sq(δ(Hk)) = 2k−p1−s1+1(2s1 − 1) + Cp2,s2,...,pq ,sq(δ(Hk−p1−s1)),
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θp1,s1,...,pq ,sq(Hk) = p1 + θp2,s2,...,pq ,sq(Hk−p1−s1).

Proof. In the first case, consider hyperpair Hk as a composition Hk−p1+1 ◦
Hp1−1. In the second case, consider it as a composition Hk−p1−s1 ◦ Hs1+1 ◦
Hp1−1. Next, apply Lemma 16 exploiting relations of Lemmas 17 and 19.

Let us summarize the above series of lemmas.

Lemma 21. Let k =
∑t

i=1(pi +si)+k
′ and either k′ < (pt+1 +st+1) or t = q.

Then

Cp1,s1,...,pq ,sq(δ(Hk)) =
t∑

t′=1

2
k′+1+

t∑
i=t′+1

(pi+si)

(2st′ − 1)+

+

{
0, k′ < pt+1

2k′−pt+1+1 − 1, k′ ≥ pt+1
,

θp1,s1,...,pq ,sq(Hk) =
t∑

i=1

pi +

{
k′, k′ < pt+1

pt+1 − 1, k′ ≥ pt+1
.

In addition, there exists a graph H0
k of minimal cost in δ(Hk) with root z

satisfying condition

C
H0

k
p1,s1,...,pq ,sq(z) =

t∑
i=1

si, dH0
k
(z) = θp1,s1,...,pq ,sq(Hk).

Proof. Apply Lemma 20 while possible. Graph H0
k has a form of (a multiple)

composition of graphs of minimal costs produced in Lemmas 17 and 19.
One can easily deduce that the proven relation for the cost can be rewrit-

ten in a more compact form.

Corollary 2. Define (k + 1)-bit number N as

N = 0 . . . 0︸ ︷︷ ︸
p1

1 . . . 1︸ ︷︷ ︸
s1

0 . . . 0︸ ︷︷ ︸
p2

. . .

Then
Cp1,s1,...,pq ,sq(δ(Hk)) = N.

3.6 Optimality of hyperpairs

To proceed, we need the following extension of Lemma 14.
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Lemma 22. Suppose that a graph G ∈ ∆ contains a subgraph W = H ◦ F
with root z and G contains no edges connecting a vertex from W \ {z} and a
vertex from G \W . Let H ′ ∈ ∆, |H ′| = |H|, W ′ = H ′ ◦ F and graph G′ be
obtained from G via replacement of subgraph W by the graph W ′ (the root z′

of W ′ must be superposed with the vertex z). Denote by zF the main root of F .
Suppose dF (zF ) = d +

∑t−1
i=1 pi ∈ Mt−1(p1, . . . , pq) and CF

p1,s1,...,pq ,sq
(zF ) =∑t−1

i=1 si.
Set (p′1, s

′
1, . . . , p

′
q′ , s

′
q′) = (pt − d, st, . . . , pq, sq). Denote by zH and z′H

main roots of graphs H and H ′ respectively. Suppose that dH(zH) ∈
Mτ (p

′
1, . . . , p

′
q′), dH′(z′H) ∈Mτ ′(p

′
1, . . . , p

′
q′) and CH′

p′1,s′1,...,p′
q′ ,s

′
q′
(z′H) =

∑τ ′

i=1 s
′
i.

Suppose also that{
Cp′1,s′1,...,p′

q′ ,s
′
q′
(H ′) < Cp′1,s′1,...,p′

q′ ,s
′
q′
(H), dH′(z′H) > dH(zH)

Cp′1,s′1,...,p′
q′ ,s

′
q′
(H ′) +

∑τ
τ ′+1 s

′
i ≤ Cp′1,s′1,...,p′

q′ ,s
′
q′
(H), dH′(z′H) ≤ dH(zH)

.

Then one can remove some edges from G′ in an oriented chain beginning in
vertex z so that the cost of the resulting graph G′′ satisfies inequality

Cp1,s1,...,pq ,sq(G
′′) ≤ Cp1,s1,...,pq ,sq(G).

Proof. Our goal is to reduce the present lemma to Lemma 14. Consider a
change A2−A1 of the cost of vertex z together with the cost of subgraph W
inside graph G after replacement of W by W ′:

A1 =
(
CG

p1,s1,...,pq ,sq
(z)− CW

p1,s1,...,pq ,sq
(z)
)

+ Cp1,s1,...,pq ,sq(W ),

A2 =
(
CG′

p1,s1,...,pq ,sq
(z)− CW ′

p1,s1,...,pq ,sq
(z′)
)

+ Cp1,s1,...,pq ,sq(W
′).

By conditions of lemma for all i < t,

cGp1,s1,...,pq ,sq
(z, i) = cWp1,s1,...,pq ,sq

(z, i) = cG
′

p1,s1,...,pq ,sq
(z, i) = cW

′

p1,s1,...,pq ,sq
(z′, i) = si.

Moreover, it follows from Lemma 15 that

Cp1,s1,...,pq ,sq(W )− Cp1,s1,...,pq ,sq(W
′) = Cp′1,s′1,...,p′

q′ ,s
′
q′
(H)− Cp′1,s′1,...,p′

q′ ,s
′
q′
(H ′).

Thus, A1 − A2 = A′
1 − A′

2, where

A′
1 =

(∑
i≥t

cGp1,s1,...,pq ,sq
(z, i)− CH

p′1,s′1,...,p′
q′ ,s

′
q′
(zH)

)
+ Cp′1,s′1,...,p′

q′ ,s
′
q′
(H),
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A′
2 =

(∑
i≥t

cG
′

p1,s1,...,pq ,sq
(z, i)− CH′

p′1,s′1,...,p′
q′ ,s

′
q′
(z′H)

)
+ Cp′1,s′1,...,p′

q′ ,s
′
q′
(H ′).

Basing on the latter relation the proof can be proceeded with the repeat-
ing of argument of the proof of Lemma 14 (this argument in the considered
case is suitable up to some re-notation).

Lemma 23. Cp1,s1,...,pq ,sq(δ(Tk)) = Cp1,s1,...,pq ,sq(δ(Hk)).

Proof. We will show that an arbitrary graph G ∈ δ(Tk) can be transformed
to a graph G′ ∈ δ(Hk) with no larger cost. Recall that condition G ∈
δ(Tk) \ δ(Hk) implies that G contains wrong edges, i.e. edges from vertices
with greater order to vertices with smaller order.

To characterize the “wrong” of a graph G ⊂ Tk, i.e. the property G 6⊂ Hk,
we introduce a numeric quantity e(G) defined as follows. Let ρ = (v, v′) be
an edge of graph G. Assign e(ρ) = 0 if ρ is right, and assign e(ρ) as the
difference of orders of vertices v and v′ in graph Tk if ρ is wrong. Next,
define e(G) =

∑
ρ∈G e(ρ). Particularly, e(G) = 0 if G ⊂ Hk and e(G) > 0

otherwise.
Thus, to prove the lemma it suffices to obtain a transformation of a graph

G ∈ δ(Tk) \ δ(Hk) that decreases e(G) and does not increase the graph cost.
The proof strategy is to choose an appropriate wrong edge ρ in an arbi-

trary graph G ∈ δ(Tk) \ δ(Hk) and perform a transformation which either
removes ρ or redirects it to a vertex with greater order and which does not
increase the cost and does not insert new wrong edges.

Let vertex z′ have minimal order j′ among vertices of graph G emitting
wrong edges. Denote by ρ = (z′, z) a (wrong) edge in the question. Let j be
the order of vertex z. Denote by z∗ the vertex taking right edge from z in
graph Tk (denote that edge by ρ1). Note that ρ∗ = (z′, z∗) ∈ Tk by definition
of Tk.

Denote by Hz and Hz∗ intersections of graph G with subgraphs Tj of
graph Tk with roots z and z∗ respectively. All these subgraphs are uniquely
defined, see above in subsection 3.3. The introduced notation and a suitable
fragment of graph G are illustrated by Fig. 6.

rz′����ρ rz
Hz

p p p p p p p p p pρ1 rz∗
Hz∗

Fig. 6
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Note that Hz, Hz∗ ∈ δ(Hj) since all inner vertices of Hz and Hz∗ have
orders smaller than j′. Therefore, the fragment of graph G on Fig. 6 can be
connected with the rest of graph G only via vertices z′ and z∗.

Let j =
∑r−1

i=1 (pi + si) + a, where 0 ≤ a < pr + sr. Represent graph Hj as
a composition Hl ◦Hj2r−1 ◦ . . .◦Hj2 ◦Hj1 , where for i < r we set j2i−1 = pi−1
and j2i = si + 1; j2r−1 = min{pr − 1, a}, l = a− j2r−1. By the construction,
0 ≤ l ≤ sr.

With the use of Lemma 22 we are going to show that subgraphs Hz

and Hz∗ can be replaced by graphs from δ(Hl) ◦H0
j−l, where H0

k is optimal
cost and minimal root depth graph from Lemma 21 so that the cost of G
will not increase. We restrict our attention to subgraph Hz (the case of
subgraph Hz∗ is analogous).

Initially, set F = H0
0 and (p′1, s

′
1, . . . , p

′
q′ , s

′
q′) = (p1, s1, . . . , pq, sq).

Represent graph Hj as a composition T ◦ U of an outer graph T = Hl ◦
Hj2r−1 ◦ . . . ◦Hj2 and an inner graph U = Hj1 . Note that Hz = Hz ◦ F . In
graph Hz consider any subgraph H ◦ F with root z0 (the root belongs to
an outer graph) formed as an intersection of Hz with a corresponding inner
subgraph of graph Hj. By Lemma 22 one can replace subgraph H by graph
H ′ = H0

j1
and remove some edges depending on z0, if necessary, so that the

cost of G will not increase. Necessary conditions for Lemma 22 are provided
by Lemma 17 (actually, at this first step one can use Lemma 14 instead of
Lemma 22). Applying the above transformation to all inner subgraphs of Hz

one finally transform Hz to a graph of form T ′ ◦H ′ ◦ F , T ′ ∈ δ(T ).
Update notation:

Hz := T ′ ◦H ′ ◦ F, F := H ′ ◦ F, p′1 := p′1 − j1.

If r > 1, then proceed further. In this case, p′1 = 1, j2 = s′1 + 1.
Now rewriteHj = T ◦U , where T = Hl◦Hj2r−1◦. . .◦Hj3 and U = Hj2◦Hj1 .

In graph Hz consider any subgraph H ◦ F ∈ δ(U) with root z0 formed as
an intersection of Hz with a corresponding inner subgraph of graph Hj. Via
the method of Lemma 22 replace subgraph H ◦ F by graph H ′ ◦ F , where
H ′ = H0

j2
. Lemma 19 provides conditions for an application of Lemma 22.

Do the same with all inner subgraphs of graph Hz. Finally, one obtains a
graph of form T ′ ◦H ′ ◦ F , T ′ ∈ δ(T ), instead of Hz.

Update notation:

Hz := T ′ ◦H ′ ◦ F, F := H ′ ◦ F, (p′1, s
′
1, . . . , p

′
q′ , s

′
q′) := (p′2, s

′
2, . . . , p

′
q′ , s

′
q′).

Proceed in the same manner, while Hz is not from δ(Hl) ◦H0
j−l.

The above argument restricts us to the case Hz = H ◦H0
j−l, H

∗
z = H∗ ◦

H0
j−l, where H,H∗ ∈ δ(Hl). Set

(p′1, s
′
1, . . . , p

′
q′ , s

′
q′) = (pr − j2r−1, sr, . . . , pq, sq).
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Recall that l ≤ s′1. Note that either p′1 > 0 and l = 0 or p′1 = 1.
Further, consider several cases.
a) Suppose dG(z′) < dH0

j−l
(z0) = θp1,s1,...,pq ,sq(Hj−l) =

∑r−1
i=1 pi + j2r−1,

where z0 is the root of H0
j−l. Since C

H0
j−l

p1,s1,...,pq ,sq(z
0) =

∑r−1
i=1 si, one can

replace edge ρ by edge ρ∗ preserving the cost of graph G. The latter is due
to the fact that replacement preserves the number of connected components,
depths of all vertices and, consequently, costs of all vertices except z and z∗.
It remains to note that costs of z and z∗ are independent of presence of
edges ρ and ρ∗.

From now on assume dG(z′) ≥ θp1,s1,...,pq ,sq(Hj−l). Next, we consider some
transformations of the fragment of graph G shown on Fig. 6. Transforma-
tions involve edges ρ, ρ1, ρ

∗ and outer subgraphs H and H∗ of graphs Hz

and H∗
z . Additionally, we may remove some edges in a chain beginning in z∗

via methods of Lemmas 12 and 13. A change in the cost of graph which
occurs outside the considered fragment, may be estimated by Lemmas 12
and 13. A change inside the fragment is actually determined by a change of
(p′1, s

′
1, . . . , p

′
q′ , s

′
q′)-cost of a graph W represented on Fig. 7a, where we de-

fine formally the depth of vertex z′ as d = dG(z′)− θp1,s1,...,pq ,sq(Hj−l) (more
formal explanation see below).

rz′����ρ rz
H

p p p p p p p p p pρ1 rz∗
H∗

rz′����ρ∗ rz∗
�
�ρ1rz rz′��������ρ∗

rz∗
H∗

rz
H0

l

rz′��������ρ∗
rz∗
H1

l

rz ����ρ1

H0
l

a) W b) W+ [l = 0] c) W− d) W×

Fig. 7

Define

A = Cp′1,s′1,...,p′
q′ ,s

′
q′
(H) +

(
CW

p′1,s′1,...,p′
q′ ,s

′
q′
(z)− CH

p′1,s′1,...,p′
q′ ,s

′
q′
(z)
)
. (8)

b) Let ρ1 /∈ G and A ≥ Cp′1,s′1,...,p′
q′ ,s

′
q′
(δ(Hl))+ 1. Then remove edge ρ and

replace subgraph H by graph H0
l . Increasing of the number of connected

components as a result of removing an edge is compensated by the subsequent
decreasing of the cost of subgraph.

c) Else, if ρ1 ∈ G and A ≥ Cp′1,s′1,...,p′
q′ ,s

′
q′
(δ(Hl)) + 2, then remove edge ρ1

via the method of Lemma 12, next remove ρ and replace subgraph H by
graph H0

l .
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From now on we assume that either ρ1 /∈ G and A = Cp′1,s′1,...,p′
q′ ,s

′
q′
(δ(Hl))

or ρ1 ∈ G and A ≤ Cp′1,s′1,...,p′
q′ ,s

′
q′
(δ(Hl)) + 1.

Next, we discuss several ways of transformation of graph G into graph G′

derived via replacement of W by one of graphs shown on Fig. 7b–d. Any
replacement causes a change of the cost of graph G which is a sum of four
summands:

Cp1,s1,...,pq ,sq(G
′)− Cp1,s1,...,pq ,sq(G) = σ1 + σ2 + σ3 + σ4,

where σ1 is a change of cost of vertex z together with subgraph H, σ2 is
a change of cost of vertex z∗ together with subgraph H∗, σ3 is a change of
the number of connected components via possible insertion or removing of
edge ρ1, σ4 is a change of cost of vertices in a chain beginning in z∗.

Denote by H ′
z and H ′

z∗ graphs derived from subgraphs Hz and Hz∗ of
graph G after a replacement. Quantities σ1 and σ2 satisfy the following
formulae:

σ1 =
(
CG′

p1,s1,...,pq ,sq
(z)− CH′

z
p1,s1,...,pq ,sq

(z)
)

+ Cp1,s1,...,pq ,sq(H
′
z)−

−
(
CG

p1,s1,...,pq ,sq
(z)− CHz

p1,s1,...,pq ,sq
(z)
)
− Cp1,s1,...,pq ,sq(Hz) =

= Cp′1,s′1,...,p′
q′ ,s

′
q′
(H0

l )− A,

σ2 =
(
CG′

p1,s1,...,pq ,sq
(z∗)− C

H′
z∗

p1,s1,...,pq ,sq(z
∗)
)

+ Cp1,s1,...,pq ,sq(H
′
z∗)−

−
(
CG

p1,s1,...,pq ,sq
(z∗)− CHz∗

p1,s1,...,pq ,sq
(z∗)

)
− Cp1,s1,...,pq ,sq(Hz∗).

By the condition on A we also have σ1 ∈ {0, −1}. Evidently, σ3 ∈
{0, ±1}. Note also that if vertex z∗ in graph G does not have outgoing
edges, then σ4 = 0.

d) Suppose p′1 > 1 and l = 0. In this case, graphs H and H∗ are single
vertices.

Consider graph G′ derived from G via replacement of W by W+, see
Fig. 7b.

d.1) Let ρ1 /∈ G. Note that in this case CW
p′1,s′1,...,p′

q′ ,s
′
q′
(z) = 0. Remove

an edge going out of vertex z∗, if the edge is present, via the method of
Lemma 12, and replace subgraph W by W+. It does not increase the cost
since possible increasing caused by removing the edge is compensated while
the replacement of W by W+: σ1 = σ2 = 0 (as costs of vertices z and z∗

remain unchanged) and σ3 = −1.
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d.2) Let ρ1 ∈ G. In this case, CW
p′1,s′1,...,p′

q′ ,s
′
q′
(z) ≤ 1 and σ3 = 0. It occurs

that σ1 + σ2 ≤ 0 since

CW+

p′1,s′1,...,p′
q′ ,s

′
q′
(z) = 0, CG′

p1,s1,...,pq ,sq
(z∗) ≤ CG

p1,s1,...,pq ,sq
(z∗) + CW

p′1,s′1,...,p′
q′ ,s

′
q′
(z).

d.2.1) If σ1 + σ2 < 0, then do the same as in item d.1).
d.2.2) Else, that is, if σ1 + σ2 = 0,

CG′

p1,s1,...,pq ,sq
(z∗) = CG

p1,s1,...,pq ,sq
(z∗) + CW

p′1,s′1,...,p′
q′ ,s

′
q′
(z). (9)

One can check that it implies dG(z∗), dG′(z∗) ∈ Mt(p1, s1, . . . , pq, sq) for
some t. Indeed, assume the converse. By the construction, dG(z∗) − 1 ≤
dG′(z∗) ≤ dG(z∗), hence, dG(z∗) = dG′(z∗) + 1 =

∑t
i=1 pi for some t. But it

follows that

CG′

p1,s1,...,pq ,sq
(z∗) ≤ CG

p1,s1,...,pq ,sq
(z∗)− st + CW

p′1,s′1,...,p′
q′ ,s

′
q′
(z),

which leads us to contradiction.
Consider an arbitrary subgraph U of graph G with root z∗ containing the

fragment shown on Fig. 6 and which is connected with the rest of graph G
only via vertex z∗. Lemma 13 allows us to replace it by graph U ′, derived
from U via replacement of W by W+, not increasing the cost of graph G. The
lemma condition dU(z∗) ≥ dU ′(z∗) holds since ρ1 ∈ G. The last condition
of Lemma 13 holds since costs of graphs U and U ′ differ only in costs of
vertices z and z′, or speaking formally,

Cp1,s1,...,pq ,sq(U)− Cp1,s1,...,pq ,sq(U
′) =

= CU
p1,s1,...,pq ,sq

(z)− CU ′

p1,s1,...,pq ,sq
(z) + CU

p1,s1,...,pq ,sq
(z∗)− CU ′

p1,s1,...,pq ,sq
(z∗),

and due to the relation

CG
p1,s1,...,pq ,sq

(z∗) + CU
p1,s1,...,pq ,sq

(z) = CG′

p1,s1,...,pq ,sq
(z∗) + CU ′

p1,s1,...,pq ,sq
(z)

provided by (9).
e) Otherwise, suppose p′1 = 1.
By Lemma 19 inequality A ≤ Cp′1,s′1,...,p′

q′ ,s
′
q′
(δ(Hl)) + 1 implies either l ≥

s′1− 1 or A = Cp′1,s′1,...,p′
q′ ,s

′
q′
(δ(Hl))+ 1 and dH(z) = 0. The second possibility

means d, dW (z) ∈Mτ (p
′
1, . . . , p

′
q′) for some τ .

Indeed, if l ≤ s′1 − 2, then dH(z) = 0. Otherwise, Cp′1,s′1,...,p′
q′ ,s

′
q′
(H) ≥

Cp′1,s′1,...,p′
q′ ,s

′
q′
(δ(Hl)) + 2. Therefore, CW

p′1,s′1,...,p′
q′ ,s

′
q′
(z) − CH

p′1,s′1,...,p′
q′ ,s

′
q′
(z) ≥ 1,
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where equality possible only in the case d, dW (z) ∈Mτ (p
′
1, . . . , p

′
q′) for some τ .

At the same time it implies A = Cp′1,s′1,...,p′
q′ ,s

′
q′
(δ(Hl)) + 1.

e.1) Let A = Cp′1,s′1,...,p′
q′ ,s

′
q′
(δ(Hl)) + 1 and dH(z) = 0. Recall that ρ1 ∈ G.

Consider graph G′ derived from G via replacement of W by W−, see
Fig. 7c. One has σ1 = −1, σ3 = 1. It follows from what mentioned above
that dG(z′), dG(z) ∈Mt(p1, . . . , pq) for some t. Then σ2 satisfies the formula

σ2 = CG′

p1,s1,...,pq ,sq
(z∗)− CG

p1,s1,...,pq ,sq
(z∗) = −cGp1,s1,...,pq ,sq

(z∗, t+ 1) ≤ 0.

e.1.1) In the case σ2 < 0, remove an edge going out of vertex z∗, if the
edge is present, via the method of Lemma 12 and replace W by W−.

e.1.2) If σ2 = 0, then dG(z∗), dG′(z∗) ∈ Mt′(p1, . . . , pq) for some t′. With
the use of Lemma 13 replace W by W− in graph G in the same manner as
in item d.2.2).

e.2) Suppose l ≥ s′1 − 1.
Consider graph G′ derived from G via replacement of W by W× (see

Fig. 7d: graph H1
l contains a bunch of edges going into the root and all

other vertices being isolated).
In this case, σ3 ∈ {0,−1}. To estimate σ2, we list few relations. By the

construction,

Cp1,s1,...,pq ,sq(H
′
z∗)−Cp1,s1,...,pq ,sq(Hz∗) = Cp′1,s′1,...,p′

q′ ,s
′
q′
(H1

l )−Cp′1,s′1,...,p′
q′ ,s

′
q′
(H∗)

and, as one can easily check,

Cp′1,s′1,...,p′
q′ ,s

′
q′
(H1

l ) = Cp′1,s′1,...,p′
q′ ,s

′
q′
(H0

l ) + (s′1 − l).

Let dH∗(z∗) ∈Mt(p
′
1, . . . , p

′
q′). By Lemma 19 for t ≥ 1, one has

Cp′1,s′1,...,p′
q′ ,s

′
q′
(H∗) ≥ Cp′1,s′1,...,p′

q′ ,s
′
q′
(H1

l ) +
t∑

i=2

s′i, (10)

and for t = 0 (i.e. dH∗(z∗) = 0),

Cp′1,s′1,...,p′
q′ ,s

′
q′
(H∗) ≥ Cp′1,s′1,...,p′

q′ ,s
′
q′
(H1

l )− (s′1 − l). (11)

Lemma 19 permits us to conclude the following. If σ1 = 0, i.e. A =
Cp′1,s′1,...,p′

q′ ,s
′
q′
(δ(Hl)), then l = s′1 and dW (z) ∈ M1(p

′
1, . . . , p

′
q). In the case

σ1 = −1, according to item e.1) we may assume dH(z) > 0. Three situa-
tions are possible: either dW (z) ∈ M1(p

′
1, . . . , p

′
q), or l = s′1 and d, dW (z) ∈

Mτ (p
′
1, . . . , p

′
q′) for some τ , or s′2 = 1, l = s′1 and dW (z) ∈ M2(p

′
1, . . . , p

′
q).
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Comparing summands of the cost of vertex z∗ in graphs G and G′, we obtain
the following bound valid in all four cases:

CG′

p1,s1,...,pq ,sq
(z∗) ≤

r−1∑
i=1

si + s′1 +
t∑

i=2

s′i +
∑

i≥r+t

cGp1,s1,...,pq ,sq
(z∗, i) ≤

≤
r−1∑
i=1

si + CG
p1,s1,...,pq ,sq

(z∗)− CHz∗
p1,s1,...,pq ,sq

(z∗) + s′1 +
t∑

i=2

s′i =

= CG
p1,s1,...,pq ,sq

(z∗)− CHz∗
p1,s1,...,pq ,sq

(z∗) + C
H′

z∗
p1,s1,...,pq ,sq(z

∗) +
t∑

i=2

s′i. (12)

Taking into account (10), (11) we deduce from (12) that σ2 ≤ s′1 − l in the
former three cases and σ2 ≤ 0 in the latter case (when σ1 = −1, s′2 = 1,
l = s′1 and dW (z) ∈M2(p

′
1, . . . , p

′
q)).

Consequently, σ1+σ2+σ3 ≤ 0, with equality possible only if σ2 = s′1−l =
−σ1 and σ3 = 0. Latter equalities imply ρ1 ∈ G and either σ1 = 0 or σ1 = −1
and τ = 1.

e.2.1) Let σ1 +σ2 +σ3 < 0. Remove an edge going out of vertex z∗, if the
edge is present, via the method of Lemma 12 and replace W by W×.

e.2.2) Let σ1 + σ2 + σ3 = 0, that is, σ2 = s′1 − l = −σ1 and σ3 = 0.
Equality σ2 = s′1 − l implies that inequality (12) turns into equality and

further that dG′(z∗) ≥
∑r+t−1

i=1 pi and cGp1,s1,...,pq ,sq
(z∗, i) = cG

′
p1,s1,...,pq ,sq

(z∗, i)
for any i ≥ r + t. Thus, dG(z∗), dG′(z∗) ∈Mt′(p1, . . . , pq) for some t′.

In this case, replace W by W× in graph G via the method of Lemma 13.
Lemma 13 is applied in the same manner as in item d.2.2).

The proven lemma together with corollaries 1 and 2 immediately implies
the main Lemma 3.

3.7 Final of the proof

Theorem 1. L(2n) ≥ 3.5 · 2n − (8.5 + 3.5(n mod 2))2bn/2c + n+ 5.

Proof. It follows from Lemma 1 that a minimal circuit S2n has a form shown
on Fig. 2. It contains a similar subcircuit S2n−1 which implements a set of
prefix sums of variables x2n−1+1, . . . , x2n with minimal depth n−1, and it also
contains a subcircuit S1

2n−1 which implements a set of prefix sums of variables
x1, . . . , x2n−1 with depth n, and, in addition, it contains 2n−1 output gates.
So,

L(2n) ≥ L(2n−1) + L
(
S1

2n−1

)
+ 2n−1.
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Subcircuit S1
2n−1 contains 2n−1 − 1 output gates and 2n−1 − n skeleton

gates. It remains to bound the number of extra gates in the subcircuit.
Exploiting Lemma 3 we will show that the number is at least the cardinality
of the set

{(N,R, k) | N < 2k, N is odd, R < 2n−2k−1, R is not a power of 2} ∩ N3.
(13)

We apply Lemma 3 subsequently increasing parameter k. Let k = 1.
Then for an appropriate choice of parameters N = 1 (other values are im-
possible in this case) and R the lemma provides an extra gate with the right
end of label in a suitable interval of two values.

Further, each triple (N = 2N ′ + n0, R, k > 1), where n0 ∈ {0, 1}, satis-
fying conditions of Lemma 3, informs us about presence of 2N ′ extra gates
with right ends of labels from interval JN,R,k (see (3)) being accounted earlier
via triples with less values of the first parameter, and in the case n0 = 1,
it reveals one more extra gate with the right end of label from the con-
sidered interval. Indeed, each of triples (N ′, R′ = n02

n−2k−2 + 2R, k − 1)
and (N ′, R′ + 1, k − 1) counts N ′ extra gates in the corresponding inter-
vals JN ′,R′,k−1 and JN ′,R′+1,k−1. The union of these intervals is JN,R,k.

Hence, we established a bijection between triples (N,R, k) with odd N ’s
and a subset of extra gates of circuit S1

2n−1 . Thus, the problem is reduced to
computation of the cardinality of the set (13).

Clearly, a given k allows 2k−1 choices of an odd N and independently
2n−2k−1 − n + 2k choices of the parameter R, where we assume k < bn/2c.
As a consequence, the number of extra gates in subcircuit S1

2n−1 is bounded
from below by

bn/2c−1∑
k=1

2k−1
(
2n−2k−1 − n+ 2k

)
=

=

bn/2c−1∑
k=1

2n−k−2 − n

bn/2c−1∑
k=1

2k−1 +

bn/2c−1∑
k=1

k2k =

=
(
2n−2 − 2n−bn/2c−1

)
− n

(
2bn/2c−1 − 1

)
+ (bn/2c − 2)2bn/2c + 2 =

= 2n−2 − (2.5 + (n mod 2))2bn/2c + n+ 2.

Therefore, we are given the following recurrence for L(2n):

L(2n) ≥ L(2n−1) + 3.5 · 2n−1 − (2.5 + (n mod 2))2bn/2c + 1. (14)

Evidently, L(1) = 0, so the statement of the theorem holds for n = 0.
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Let us proceed with induction step.

L(2n) ≥ 3.5 · 2n−1 − (12− 3.5(n mod 2))2dn/2e−1 + n+ 4+

+ 3.5 · 2n−1 − (2.5 + (n mod 2))2bn/2c + 1 =

= 3.5 · 2n − (12− 3.5(n mod 2))2dn/2e−1 − (2.5 + (n mod 2))2bn/2c + n+ 5.

The identity

(12− 3.5(n mod 2))2dn/2e−1 = (6 + 2.5(n mod 2))2bn/2c

is easy to verify and it completes the proof of the induction step and of the
entire theorem.

4 Upper bound

Now we show that the bound of Theorem 1 is tight. For this, we propose an
optimal way of constructing of circuits S1

2k , which is, in fact, a modification
of method [3].

Denote by Q2k a minimal (in fact, free of extra gates) 2k-input prefix
circuit of complexity 2k+1 − k − 2 and depth 2k − 2, which implements the
longest prefix x1 ◦ . . . ◦ x2k with depth k. Such circuit is easy to construct,
see [7, 3].

For i = 1, . . . , dn/2e set li = 2n − 2n+1−i and ldn/2e+1 = 2n. Additionally,
for i = 1, . . . , dn/2e − 1, set mi = n− 2i and mdn/2e = 1− (n mod 2). Define
a family of circuits S1

2n according to Fig. 8–9.
Some comments are required. Circuit S1

2n (Fig. 8) contains dn/2e sub-
circuits denoted by Pi,n. Subcircuit Pi,n contains outputs of circuit S1

2n with
right ends of labels from li + 1 to li+1. Each subcircuit also implements a
function βi = xli+1 ◦ . . . ◦ xli+1

utilized by subcircuits Pj,n, where j > i.
If i > 1, then the subcircuit Pi,n takes as inputs functions β1, . . . , βi−1

and γi−1 = x1 ◦ . . . ◦ xli , not counting variable inputs.
Variable inputs of subcircuit Pi,n are divided into groups: each of first

two groups includes 2i−1 inputs each, any other group includes 2i inputs (see
Fig. 9). Circuits Q2i−1 and Q2i are involved to compute prefix sums in every
group. These sums are denoted by αi,j,k, where

αi,j,k =

{
xli+2i−1+1 ◦ . . . ◦ xli+k, j = 1, k > 2i−1

xli+(j−1)2i+1 ◦ . . . ◦ xli+(j−1)2i+k, otherwise
.

Each function αi,j,k is implemented with the depth at most 2i− 2 ≤ n.
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Fig. 8. Structure of circuit S1
2n

Outputs of gates implementing functions αi,1,2i−1 ◦αi,1,2i and αi,j,2i , where
j > 1 (all gates have depth i), are connected with inputs of the subcir-
cuit S1

2mi . The longest prefix output of the subcircuit implements func-
tion βi. Thus, for any i < dn/2e, function βi is computed with the depth
at most i + mi = n − i, and function βdn/2e is computed with the depth
dn/2e+mdn/2e = n− (dn/2e − 1).

Output of the gate implementing function αi,0 = αi,1,2i−1 and outputs
αi,1, . . . , αi,2mi of the subcircuit S1

2mi are connected with inputs of subcir-
cuit Wi. Subcircuit Wi computes sums αi,k ◦ β1 ◦ . . . ◦ βi−1 including γi

(when k = 2mi) with the depth at most n. Clearly, outputs of subcircuit Wi

implement sums x1◦ . . .◦xk, where k ∈ {li+2i−1}∪{li+j2i | j = 1, . . . , 2mi}.
Consequently, depth of any subcircuit Pi,n is at most n+ 1.

Lemma 24. The complexity of circuit S1
2n is

L(S1
2n) = 5 · 2n−1 − (3.5− (n mod 2))2dn/2e + 1.

Proof. Calculate the complexity of Pi,n:

L(Pi,n) = L(S1
2mi ) + 2L(Q2i−1) + (2mi − 1)L(Q2i) + 1+

+ (2mi + 1)(i− 1) + 2(2i−1 − 1) + (2mi − 1)(2i − 1) =

= L(S1
2mi ) + 2(2i − i− 1) + (2mi − 1)(2i+1 − i− 2)+

+ (2mi + 1)(i− 1) + 2mi(2i − 1) =

= L(S1
2mi ) + 2mi(3 · 2i − 4)− 1.
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Fig. 9. Structure of circuit Pi,n

Regarding values L(S1
1) = 0 and L(S1

2) = 1 as a base of induction, let us
prove the induction step.

L(S1
2n) =

dn/2e∑
i=1

L(Pi,n) =

dn/2e∑
i=1

(
L(S1

2mi ) + 2mi(3 · 2i − 4)− 1
)

=

=

dn/2e∑
i=1

(
5 · 2mi−1 − (3.5− (mi mod 2))2dmi/2e + 2mi(3 · 2i − 4)

)
=

=

dn/2e∑
i=1

(
3(2mi+i − 2mi−1)− (3.5− (mi mod 2))2dmi/2e) .
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Set mi = n− 2i and calculate the sum of first dn/2e − 1 summands:

Σ1 =

dn/2e−1∑
i=1

(
3(2mi+i − 2mi−1)− (3.5− (mi mod 2))2dmi/2e) =

=

dn/2e−1∑
i=1

3(2n−i − 2n−2i−1)−
dn/2e−1∑

i=1

(3.5− (n mod 2))2dn/2e−i =

= 3(2n − 2bn/2c+1)−
(
2n−1 − 21−(n mod 2)

)
− (3.5− (n mod 2))(2dn/2e − 2) =

= 5 · 2n−1 − (3.5− (n mod 2))2dn/2e − 3 · 2bn/2c+1 + 9− 3(n mod 2).

Given mdn/2e = 1− (n mod 2), the latter summand of the initial sum can
be computed as

Σ2 = 3
(
2dn/2e+1−(n mod 2) − 2−(n mod 2)

)
− (2.5 + (n mod 2))21−(n mod 2) =

= 3 · 2bn/2c+1 − (4 + (n mod 2))21−(n mod 2) = 3 · 2bn/2c+1 − 8 + 3(n mod 2).

Summing up Σ1 and Σ2 one obtains the required complexity value.

Theorem 2. L(2n) ≤ 3.5 · 2n − (8.5 + 3.5(n mod 2))2bn/2c + n+ 5.

Proof. Make use of the corollary of Lemma 1 (see Fig. 2):

L(2n) ≤ L(2n−1) + L(S1
2n−1) + 2n−1.

With the above circuits S1
2k satisfying Lemma 24, one has a recurrence

L(2n) ≤ L(2n−1) + 3.5 · 2n−1 − (2.5 + (n mod 2))2bn/2c + 1.

It is solved as (14) up to the inequality sign.
Theorems 1 and 2 together establish tight complexity of a minimal 2n-

input prefix circuit of depth n. Ladner—Fischer circuits [7] appear to be
non-minimal for n ≥ 6. Recently, a sequence of 2n-input prefix circuits
of depth n and complexity L(2n) (at least for n ≤ 25) was discovered by
Sheeran [12, 13] via computer programming.

Extracting from the constructed circuit a subcircuit depending on first
m variables, where 2n−1 < m ≤ 2n, one obtains

Corollary 3. For any m, L(m) ≤ (3.5− o(1))m.
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5 Almost minimal depth circuits

Theorem 3. For 1 ≤ k ≤ n− 2,

L′(2n, k) =
(
2 + 2−k

)
2n − (5 + 2((n− k) mod 2))2b(n−k)/2c − k + 2.

Proof. As follows from Lemma 1, to prove a lower bound it suffices to consider
a subcircuit of circuit S2n+k , depending on first 2n variables.

In the case k = 1, upper bound is achieved on the circuit S1
2n described

in §4. Exploiting this circuit and method [7] we obtain minimal circuits Sk
2n

for other values of k (see Fig. 10).
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Fig. 10. Structure of circuit Sk
2n

For an arbitrary m an upper bound can be obtained in a similar way as
in Corollary 3.

Corollary 4. For any m, k, where 1 ≤ k ≤ dlog2me − 2, with m→∞,

L′(m, k) ≤ (2 + 2−k − o(1))m.

6 Modulo 2 prefix circuits

We will show in the present paragraph that under some additional assump-
tions on the operation “◦” one can decrease the complexity of a parallel
prefix circuit as compared with the general case. As an example, we consider
an associative operation ⊕ with the axiom x ⊕ y ⊕ y = x. If ⊕ is a group
operation, then it can be interpreted as addition modulo 2.

The advantage of operation⊕ is a possibility to compute a sum xi⊕. . .⊕xj

by the formula

xi ⊕ . . .⊕ xj = (xi ⊕ . . .⊕ xj+k)⊕ (xj+1 ⊕ . . .⊕ xj+k).
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We construct a 2n-input prefix circuit Λ2n of depth n over basis {⊕}
according to Fig. 2, replacing circuit S1

2n by a circuit Λ1
2n . The structure of

circuit Λ1
2n is generally analogous to the structure of circuit S1

2n described
in §4. Distinction is in the following.

Circuits Q2k are replaced by circuits Ψ2k . Circuit Ψ2k has complexity
2k+1− 2k− 1 and depth k+ dk/2e− 1. It implements sums x1⊕ . . .⊕xi and
x2k−1+i ⊕ . . . ⊕ x2k , where i = 1, . . . , 2k−1, and also the sum x1 ⊕ . . . ⊕ x2k

with the depth k. A way to construct such a circuit is shown on Fig. 11.
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Fig. 11. Structure of circuit Ψ2k

For i = 1, . . . , n−dn/3e, set λi = 2n−2n+1−i, and also set λn−dn/3e+1 = 2n.
Circuit Λ1

2n consists of subcircuits Πi,n, where i = 1, . . . , n − dn/3e, which
are similar to circuits Pi,n (see Fig. 8), and which are connected similarly.

Subcircuit Πi,n contains output gates of circuit Λ1
2n with right ends of

labels in the interval from λi + 1 to λi+1. Subcircuit Πi,n also computes a
sum βi = xλi+1 ⊕ . . . ⊕ xλi+1

. If i > 1, then subcircuit Πi,n takes as inputs
functions β1, . . . , βi−1 and γi−1 = x1⊕ . . .⊕xλi

, not counting variable inputs.
A structure of subcircuit Πi,n resembles the structure of subcircuit Pi,n

(see Fig. 9) with minor differences. Variable inputs are divided into groups:
each of first two groups contains 2di/2e inputs, any other group contains
2di/2e+1 inputs. Every group is supplied with a suitable circuit from the
family {Ψ2k}. Outputs of these circuits, which implement longest prefixes,
are connected to inputs of subcircuit Λ1

2µi , where µi = n − i − di/2e − 1 for
i < n− dn/3e, and µn−dn/3e = 2dn/3e+ bn/3c − n.

The last difference between circuits Πi,n and Pi,n concerns a final level
where output sums x1 ⊕ . . .⊕ xj are computed (it corresponds to bunches of
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gates at the bottom of Fig. 9). If variable xj is an input of subcircuit Ψ2k ,
then a sum x1 ⊕ . . .⊕ xj is computed as (denote r = (j mod 2k)){

(x1 ⊕ . . .⊕ xj−r)⊕ (xj−r+1 ⊕ . . .⊕ xj), r ≤ 2k−1

(x1 ⊕ . . .⊕ xj+2k−r)⊕ (xj+1 ⊕ . . .⊕ xj+2k−r), r > 2k−1 ,

where the second “summand” is computed by a subcircuit Ψ2k .

Lemma 25. The complexity of circuit Λ1
2n is

L(Λ1
2n) = 2 3

11
· 2n − σn,

where σn is determined by a recurrence

σn = 2σn−3 + σn−4 + 1

with initial conditions

σ0 = 25
11
, σ1 = 39

11
, σ2 = 56

11
, σ3 = 79

11
.

Remark Clearly, it is possible to write down an explicit analytic formula
for σn, though it should be cumbersome. To do this, one can assign σn =
χn − 0.5 and determine χn from the recurrence χn = 2χn−3 + χn−4 with
appropriate initial conditions. The solution of the recurrence can be derived
as a linear combination of powers of roots of the polynomial x4 − 2x− 1. In
particular, σn ∼ cχn, where χ = 1, 3953 . . . is the maximal root with respect
to absolute value, and c = 2, 86 . . .

Proof. Let us calculate the complexity of circuit Πi,n for i > 1:

L(Πi,n) = L(Λ1
2µi ) + 2L(Ψ2di/2e) + (2µi − 1)L(Ψdi/2e+1) + 1+

+ (2µi + 1)(i− 1) + 2
(
2di/2e − 1

)
+ (2µi − 1)

(
2di/2e+1 − 1

)
=

= L(Λ1
2µi ) + 2

(
2di/2e+1 − 2di/2e − 1

)
+ (2µi − 1)

(
2di/2e+2 − 2di/2e − 3

)
+

+ (2µi + 1)(i− 1) + 2µi
(
2di/2e+1 − 1

)
=

= L(Λ1
2µi ) + 2µi

(
3 · 2di/2e+1 − (i mod 2)− 5

)
− (i mod 2).

Complexity of circuit Π1,n is the same but less by 1 due to the absence of
gate γ0 ⊕ x1 (bottom-left on Fig. 9).

It is easy to check that L(Λ1
20) = 0, L(Λ1

21) = 1, L(Λ1
22) = 4, L(Λ1

23) = 11.
Regarding these relations as a base of induction, let us prove the induction
step.

For convenience of writing, we introduce notation ω3(n) for an undetermi-
ned function depending only on (n mod 3). By definition, for any integer k,
one has ω3(n) = ω3(n+ 3k).
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L(Λ1
2n) =

n−dn
3 e∑

i=1

L(Πi,n) =

=

n−dn
3 e∑

i=1

(
L(Λ1

2µi ) + 2µi
(
3 · 2di/2e+1 − (i mod 2)− 5

)
− (i mod 2)

)
− 1 =

=

n−dn
3 e∑

i=1

(
2µi
(
3 · 2di/2e+1 − (i mod 2)− 2 8

11

)
− σµi

− (i mod 2)
)
− 1.

Set µi = n− i− di/2e − 1 and compute the sum of all summands except
the latter:

Σ1 = Σ1
1 − Σ2

1 − Σ3
1 − Σ4

1 − Σ5
1 − 1,

where

Σ1
1 =

n−dn
3 e−1∑

i=1

3 · 2µi+di/2e+1 = 3

n−dn
3 e−1∑

i=1

2n−i = 3(2n − 2dn/3e+1),

Σ2
1 =

n−dn
3 e−1∑

i=1

(i mod 2)2µi =

n−dn
3 e−1∑

i=1

(i mod 2)2n−i−di/2e−1 =

=

bn/3c∑
j=1

2n−3j = 1
7
· 2n + ω3(n),

Σ3
1 =

n−dn
3 e−1∑

i=1

2 8
11
· 2µi = 2 8

11

n−dn
3 e−1∑

i=1

2n−i−di/2e−1 =

= 2 8
11

bn/3c∑
j=1

2n−3j +

n−dn
3 e−bn

3 c−1∑
j=1

2n−3j−1

 =

= 2 8
11

(
1
7
· 2n + 1

7
· 2n−1 + ω3(n)

)
= 45

77
· 2n + ω3(n),

Σ4
1 =

n−dn
3 e−1∑

i=1

σµi
=

n−dn
3 e−1∑

i=1

σn−i−di/2e−1, Σ5
1 =

n−dn
3 e−1∑

i=1

(i mod 2) = bn/3c.

43



ON THE COMPLEXITY OF PARALLEL PREFIX CIRCUITS 44

Since µn−dn/3e = 2dn/3e + bn/3c − n, the latter summand of the initial
sum is

Σ2 = 3 · 2µn−dn/3e+d(n−dn/3e)/2e+1 + ω3(n) = 3 · 2dn/3e+1 + ω3(n).

We finally obtain

L(Λ1
2n) = Σ1 + Σ2 = 2 3

11
· 2n − n/3−

n−dn
3 e−1∑

i=1

σn−i−di/2e−1 + ψ(n mod 3),

and consequently,

σn =

n−dn
3 e−1∑

i=1

σn−i−di/2e−1 + n/3− ψ(n mod 3) =

= σn−3+σn−4+1+

(n−3)−dn−3
3 e−1∑

i=1

σ(n−3)−i−di/2e−1+
n− 3

3
−ψ((n−3) mod 3) =

= σn−3 + σn−4 + 1− L(Λ1
2n−3) + 2 3

11
· 2n−3 = 2σn−3 + σn−4 + 1.

The proven lemma leads to the following

Theorem 4. L⊕(2n) ≤ 3 3
11
· 2n − τn, where

τn =
σn+3 + σn+2 + σn+1 − σn − n− 7

2
.

Remark Taking into account Remark after Lemma 25 we conclude that
τn ∼ c′χn, where c′ = 7, 235 . . .

The proof of the following corollary is analogous to that of Corollary 3.

Corollary 5. For any m, L⊕(m) ≤
(
3 3

11
− o(1)

)
m.

In the case k ≥ d(log2m)/2e− 1, it can be easily shown that L′⊕(m, k) =
2m − dlog2me − 2. The lower bound follows from the relation between the
complexity and the longest prefix depth in a prefix circuit [3, 15] consid-
ered in §2. To prove an upper bound one divides all inputs in groups of 4,
computes sums in each group and delivers these sums to inputs of analogous
dm/4e-input circuit. Remaining prefixes can be implemented with additional
depth 1 with respect to depths of outputs of the inner subcircuit.

To prove the following corollary, one can exploit Lemma 25 and the
method of [7] with only difference that inputs must be divided into groups
of 4.
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Corollary 6. For any m, k, where 1 ≤ k ≤ d(log2m)/2e − 1, with m→∞,

L′⊕(m, k) ≤
(
2 + 3

11
· 41−k − o(1)

)
m.

It is of interest, whether the upper bound of Theorem 2 can be improved
under different assumptions on operation ◦. Specific operations to attract
more attention are commutative operations, idempotent operations (x ◦ x =
x) and, particularly, Boolean disjunction and conjunction.

7 Notes on bounded fan-out prefix circuits

The problem of synthesis of prefix circuits with bounded fan-out is stimulated
by electronics. (A restriction q on the fan-out of inputs and inner gates of a
circuit is given and fan-out of output gates must not exceed q−1.) To design
such circuits one use functional gates ◦ together with branching gates O.
In the case q = 2, the latter type of gates is generally unavoidable in the
synthesis of parallel prefix circuits.

To denote a complexity of prefix circuits with fan-out bounded by q we
use notation introduced above but supplemented with subscript q.

Fich [3] investigated the complexity of parallel prefix circuits under vari-
ous restrictions q. In the case q ≥ 3, she proposed prefix circuits of minimal
depth and linear complexity O(m). She also proved that in the case q = 2
complexity is superlinear, L2(m) = Θ(m logm). Specifically, for m = 2n the
following bounds were obtained:

(n+ 1− o(1))2n−1 ≤ L2(2
n) ≤ (3n− 3.5− o(1))2n−1.

Note however, that a better upper bound is known since 1973 and is
due to Kogge and Stone [6]. The complexity of the Kogge—Stone circuit is
(n− 0.5)2n (including (n− 1)2n + 1 functional gates ◦). The 8-input circuit
is shown on Fig. 12.
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Basing on the Kogge—Stone circuit one can design a 2n-input prefix cir-
cuit of depth n + k and complexity (n − k − 3)2n−k + 5 · 2n−1 − k via the
method of [7] (as on Fig. 10). Therefore,

L2(2
n) ≤ (n− 0.5)2n, L′

2(2
n, k) ≤ (n− k − 3)2n−k + 5 · 2n−1 − k.

The second bound can be slightly improved with the use of modification of
the Kogge—Stone circuit shown on Fig. 13 (its complexity is (n− 0.5)2n as
well, though it can be completed to a circuit with zero fan-out of outputs,
which has lower complexity (n− 0.25)2n). Thus,

L′
2(2

n, k) ≤ (n− k − 3.25)2n−k + 5 · 2n−1 − k. (15)

(Details of the proof are easy to reproduce.)
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For a small k the bound (15) is approximately 2 times greater than a
lower bound (n − 2)2n−k−1 + 2n − O(n(n + k)2−k) from [3]. When k � n it
is asymptotically 1.25 times greater than a standard lower bound 2n+1. At
the same time, a slightly modified construction from [15] allows to reach a
bound L′

2(2
n, n − 1) . 2.3 · 2n. With the use of it one can design a circuit

of complexity (2 + o(1))2n and depth (2 + o(1))n. On the whole, asymptotic
behavior of functions L2(2

n) and L′
2(2

n, k) still remains unclear.
The author is grateful to S. B. Gashkov and Stasys Jukna for helpful

comments.
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