
Just a Pebble Game

Siu Man Chan∗

UC Berkeley

March 24, 2013

Abstract

The two-player pebble game of Dymond–Tompa is identified as a barrier for existing tech-
niques to save space or to speed up parallel algorithms for evaluation problems.

Many combinatorial lower bounds to study L versus NL and NC versus P under different
restricted settings scale in the same way as the pebbling algorithm of Dymond–Tompa. These
lower bounds include,

• the monotone separation of m-L from m-NL by studying the size of monotone switching
networks in Potechin ’10;

• a new semantic separation of NC from P and of NCi from NCi+1 by studying circuit depth,
based on the techniques developed for the semantic separation of NC1 from NC2 by the
universal composition relation in Edmonds–Impagliazzo–Rudich–Sgall ’01 and in H̊astad–
Wigderson ’97; and

• the monotone separation of m-NC from m-P and of m-NCi from m-NCi+1 by studying

– the depth of monotone circuits in Raz–McKenzie ’99; and

– the size of monotone switching networks in Chan–Potechin ’12.

This supports the attempt to separate NC from P by focusing on depth complexity, and
suggests the study of combinatorial invariants shaped by pebbling for proving lower bounds.
An application to proof complexity gives tight bounds for the size and the depth of some
refinements of resolution refutations.

1 Introduction

Memory space and parallel time are two important resources of deterministic computation. To
study these two resources, researchers considered different approaches. This paper focuses on the
approach of analyzing pebble games and the approach of analyzing concrete combinatorial models
of computation.

It turns out that there is an unobserved connection between the two approaches. Namely, many
of the combinatorial approaches for studying L versus NL and NC versus P under different restricted
settings implicitly proved a lower bound scaling in the same way as the pebbling algorithms. This
combinatorial coincidence for different analyses under different restrictions calls for further studies.

∗siuman@cs.berkeley.edu. This material is based upon work supported by the National Science Foundation
under Grant No. CCF-1017403 and Grant No. CCF-0830797.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 42 (2013)

1.1 Pebble Games

Pebble games were introduced for studying programming languages and compiler construction.
The dependency in data flow is modeled by a directed acyclic graph of bounded in-degree, and
the pebble games emulate the register allocation and resource usage in the flow of data over the
graph. As another closely related example in database systems, a directed acyclic graph models
the referential structure of tables in a database,1 and the pebble games emulate the data access
pattern executed by a certain query.

In terms of computational resources, deterministic space is traditionally emulated by the number
of (black) pebbles required in a one-player pebble game [PH70, Set75], and parallel time (or more
accurately, alternating time) is traditionally emulated by the time required in a two-player pebble
game introduced by Dymond and Tompa [DT85].

Upper Bounds The study of these pebble games led to non-trivial algorithms, upper bound-
ing resource requirements. For space, Hopcroft, Paul, and Valiant [HPV77] showed that any
graph of bounded in-degree on t vertices requires at most O(t/ log t) pebbles in the one-player
game, implying that a time t (deterministic) computation requires at most O(t/ log t) space, i. e.,
DTime[t] ⊆ DSpace[t/ log t].

For parallel time, Dymond and Tompa [DT85] showed that any graph of bounded in-degree
on t vertices requires at most O(t/ log t) time in the two-player game, strengthening the above
result to imply that a time t (deterministic) computation requires at most O(t/ log t) alternating
time,2 i. e., DTime[t] ⊆ ATime[t/ log t]. Alternating time measures the time spent on an alternating
machine [CKS81], which is a natural model of (deterministic) parallel computation, and hence the
result of Dymond and Tompa implied speedups of parallel time (when the number of processors is
unbounded).

Pebble Games and Complexity Classes Also, certain relationships among different re-
sources of computation can be recast as pebbling results. For example, (a slight variant of) the
two-player pebble game of Dymond and Tompa [VT89] (1) exactly characterizes the parallelism
of different complexity classes (e. g., NC and P); and (2) can re-derive known complexity results,
including the simulation of Savitch [Sav70] showing that NL ⊆ DSpace[log2 n].

Lower Bounds and Trade-Offs The study of pebble games also gave lower bounds on
resource requirements or indicating trade-offs of different resources in restricted models of compu-
tation.

Paul, Tarjan, and Celoni [PTC76] constructed a graph of bounded in-degree on t vertices which
requires Ω(t/ log t) pebbles in the one-player game emulating space; and by a simulation argument in
pebble games, this graph also requires Ω(t/ log t) time in the two-player game emulating alternating
time [DT85]. These lower bounds are tight given the upper bounds on pebble games. To the best
of our knowledge, we still don’t know how to save more space or alternating time (a measure of
parallel time) than the pebbling algorithms for a P-complete problem.3

In addition to the black pebble game and the Dymond–Tompa pebble game, two other
pebble games were used in the combinatorial approach for proving restricted lower bounds (to be
discussed in § 1.3).

Raz–McKenzie pebble game Raz and McKenzie [RM99] introduced a two-player pebble
game over a directed acyclic graph, motivated by the depth complexity of decision trees solving

1In reality, the referential structure can have cycles and have large in-degree. We ignore such complications in
this exposition.

2The result on alternating time is stronger, since ATime[t] ⊆ DSpace[t] [CKS81].
3For example, concerning circuit depth (to be introduced next), although there are some non-pebbling algorithms

for trading circuit depth for (semi-unboundedness of) fan-in [LV03,Wil05], those algorithms do not give a saving in
depth when simulated on circuits of bounded fan-in.

2

search problems [LNNW95]. The pebble game was first used for proving lower bounds on monotone
alternating time (see §1.3). Later, it was applied to proof complexity, e. g., [BEGJ98], and inspired
the use of pebbling contradictions which form the basis of most time-space trade-offs and many
separation results in proof complexity (to be discussed in §1.5). Elias and McKenzie [EM10] made
explicit the role of the pebble game in the monotone results, and initiated a study of the pebble
cost over different directed acyclic graphs.

Reversible pebble game Bennett [Ben73] initiated the study of reversible computation
as a possibility to eliminate (or significantly reduce) energy dissipation in logical computation.
Reversible computation is increasingly important (i) because computing chips are getting smaller
and energy dissipation is becoming an issue; and (ii) because observation-free quantum computation
is inherently reversible. Bennett studied the time and space complexity in reversible simulation of
irreversible computation, and as an abstraction mentioned reversible pebble game [Ben89], which
is the reversible version of the black pebble game. This led to the study of the reversible pebble
game over different directed acyclic graphs [LV96,Krá01b] and its relation to time-space trade-offs
in reversible simulation of irreversible computation [LTV97, LMT00, Wil00, BTV01]. Later, in the
combinatorial approach, Potechin [Pot10] independently and implicitly used the reversible pebble
game (made explicit in [CP12]) for proving lower bounds on monotone space complexity (see §1.3).

The reader is referred to the literature for further discussions on the black pebble game [Nor12,
Krá01b], the Dymond-Tompa pebble game [DT85,VT89], the Raz–McKenzie pebble game [RM99,
EM10], and the reversible pebble game [Ben89,Krá01b].

1.2 Our Results in Pebble Games

Theorem 1 (Just a Pebble Game). The Dymond–Tompa pebble game, the Raz–McKenzie pebble
game, and the reversible pebble game of Bennett have the same pebble cost. That is, for any directed
acyclic graph having a unique sink vertex, the following are equivalent for pebbling the sink vertex:

• it takes h time in the Dymond–Tompa pebble game (§ 3.1);

• it takes h time in the Raz–McKenzie pebble game (§ 3.2);4 and

• it takes h pebbles in the reversible pebble game of Bennett (§ 3.3).5

Corollary 1.1 (Upper Bounds on Pebble Costs). Any directed acyclic graph on n vertices with
bounded in-degree has cost at most O(n/ log n) in the Raz–McKenzie pebble game or the reversible
pebble game.

Corollary 1.2 (Raz–McKenzie versus Black Pebbling). The Raz–McKenzie pebble cost is at least
the (irreversible) black pebble cost.5

Remark 1.3 (Connections in Pebble Games). Theorem 1 establishes a connection among different
pebble games introduced for very different reasons.

1. It strengthens and explains the simulation result of Dymond–Tompa [DT85], which states
that the Dymond–Tompa pebble cost of a graph is at least the black pebble cost of a graph,
mirroring the inclusion ATime[t] ⊆ DSpace[t]. It is because the reversible pebble cost is at
least the black pebble cost.

4This solves an open problem raised in Elias–McKenzie [EM10] for connecting their pebble game with other
pebble games.

5In the reversible pebble game, it is required to pebble the sink vertex and to remove pebbles on all other vertices.

3

2. It explains some of the known results in computational complexity to be reviewed next (§1.3).

3. It explains some of the known results in proof complexity to be reviewed next. In particular,
Corollary 1.2 gives a new connection between two pebble games studied in proof complexity
(see § 1.5).

4. It connects the pebbling results in the Dymond–Tompa pebble game [DT85], the Raz–
McKenzie pebble game [RM99,EM10], and the reversible pebble game [LV96,Krá01b,Pot10,
CP12] over different directed acyclic graphs, e. g., line graphs, pyramid graphs, butterfly
graphs, or the hard-to-pebble graph in [PTC76]. For example, this transfers the tight bound
of Θ(n/ log n) pebbles for the graph in [PTC76] over the Dymond–Tompa pebble game to the
Raz–McKenzie pebble game and to the reversible pebble game, which was not known before.

To better understand the connection between pebble games and complexity, we next review the
combinatorial approach for proving lower bounds.

1.3 Combinatorial Models of Computation

We briefly recall two combinatorial models of computation which characterize parallel time and
memory space. We ignore the issues of uniformity in this paper, by assuming that the combinatorial
models are sufficiently uniform. Alternatively, the reader may want to append /poly to every
machine-based complexity class.

Circuits Parallel time is modeled by the depth of a circuit: ATime[t] = Depth[t] [Ruz81].
Recall that ATime[·] refers to alternating time, a measure of parallel time on alternating machines.
This paper considers boolean circuits of bounded fan-in unless otherwise noted.

Switching Networks Memory space of a deterministic computation is modeled by the size
of a switching network: DSpace[s] = SNSize[2Θ(s)]. A switching network computes by reachability
in a symmetric way, where the symmetry/reversibility mirrors determinism [LMT00, Rei08]. The
direction DSpace[s] ⊆ SNSize[2Θ(s)] is folklore [Lee59] (e. g., see [Pot10, §2]), and SNSize[2Θ(s)] ⊆
DSpace[s] is proved by Reingold [Rei08].

Researchers commonly add restrictions to the combinatorial models to get lower bounds in
restricted settings. We recall two such restrictions below.

Monotone Restriction A boolean function is monotone if flipping an input bit from False
to True cannot flip the output bit from True to False. When computing monotone boolean
functions, it is common to add a monotone restriction to the model, which is to disallow logical
negation. Monotone restriction applies to circuits and switching networks naturally (as opposed to
e. g., Turing machines).

Problem-Specific Restriction In addition to the syntactic restriction of monotonicity,
researchers also studied different semantic restrictions. Sometimes, the semantic restriction is
designed with the computational problem in mind. We give one example below.

Karchmer and Wigderson [KW90] characterized the depth complexity of circuits as the com-
munication complexity of a two-party game. To explore the intuition given by the communication
game, and in particular whether depth complexity scales with iterated composition of hard functions
(i. e., direct-sum phenomenon), Karchmer, Raz, and Wigderson [KRW95, §6] invented a communi-
cation game called universal composition relation to model iterated composition of hard functions,
where the structure of iterated composition forms a tree (of branching factor and height about
log n). Roughly, the universal composition relation is similar to a standard communication game,
except that the parties are required to output a bit on some leaf node of the tree (intuitively,
the parties need to locate a branch of the tree leading to the leaf node, hence the communication

4

complexity should scale with the height of the tree). Note that this restriction makes sense only
for the problem of universal composition relation (unlike the monotone restriction, which applies
to any monotone boolean function), and also only in the model of communication game.

Previous Results

For the depth complexity of semantically restricted circuits, Edmonds, Impagliazzo, Rudich, and
Sgall [EIRS01] employed an information-theoretic counting argument to show that the universal
composition relation of d levels of k-bit boolean function requires dk−O

(
d2(2 log k)1/2

)
bits of com-

munication when d = log n/ log logn and k = log n. H̊astad and Wigderson [HW97] subsequently
constructed a sub-additive measure to show that the universal composition relation of d levels of
k-bit boolean function requires

(
1 − o(1)

)
dk bits of communication when d = o(

√
k/ log k) and

k = log n. Both results suggest the semantic analogue of the separation NC1 ⊂ NC2, where NCi are
circuits of polynomial size and of O

(
logi(n)

)
depth.

For the depth complexity of monotone circuits, Karchmer and Wigderson [KW90] introduced the
communication game framework to prove that the NL-complete problem of directed connectivity
requires Ω(log2 n) depth on monotone circuits,6 implying m-NC1 ⊂ m-NL ⊆ m-NC2. Raz and
McKenzie [RM99] extended the information-theoretic argument of Edmonds–Impagliazzo–Rudich–
Sgall to reprove the directed connectivity result of Karchmer–Wigderson,6 and in addition showed
the separation of m-NC ⊂ m-P and of m-NCi ⊂ m-NCi+1, by studying the P-complete problem
of Generation. Subproblems of Generation with additional restrictions on the structure of ‘the
generation graph’ are complete for smaller complexity classes like non-deterministic logspace (NL)
and Nick’s class (NC) [JL74,BM91], where the generation graph refers to the structure of certificate
in the Yes-instances (see e. g., [CP12, § 3.2]).7

The results on monotone circuits were subsequently strengthened to monotone switching net-
works, i. e., from (monotone) alternating time to (monotone) deterministic space.8 Departing from
the communication game of Karchmer–Wigderson which forms the basis of most results concerning
circuit depth [BS90, KW90, GH92, RW92, KRW95, GS95, RM99, EIRS01, Joh01], Potechin [Pot10]
introduced a Fourier analytic framework, proving that directed connectivity requires monotone
switching networks of size nΩ(logn), which can be interpreted as proving m-L ⊂ m-NL on monotone
switching networks.9 The Fourier analytic framework is recently reinterpreted as describing an
enumerative-combinatorial invariant [CP12], and the lower bound of Raz–McKenzie on Generation
is strengthened to monotone switching networks. For further discussion on the switching network
model or the Generation problem, see the references in [CP12].

As mentioned in § 1.1, two pebble games were used in the monotone results. In general, the
monotone circuit depth for Generation scales as Ω(h log n) when h ≤ nO(1) is the Raz–McKenzie
pebble cost of the generation graph [EM10]; and the monotone switching network size for the

6Karchmer–Wigderson [KW90] and Raz–McKenzie [RM99] in fact proved the same lower bound of Ω(log2 n) for
the depth of monotone circuits solving undirected connectivity, which is L-complete [Rei08].

7We focus on the depth complexity of efficient problems, i. e., inside P or m-P under suitable restrictions, and
did not mention, e. g., the lower bounds of k-clique [Raz85,AB87,GH92,Hak95,RM99,CP12] or matching [RW92] on
monotone circuits.

8By a simulation argument mirroring ATime[t] ⊆ DSpace[t] (see e. g., [CP12, §1]), a lower bound of 2Ω(t) on the
size of (monotone) switching networks translates to a lower bound of Ω(t) on the depth of (monotone) circuits, hence
the result on monotone switching network is stronger.

9It should be noted that there are at least two combinatorial models for (non-uniform) m-L in the literature:
as monotone (boolean) circuits (of bounded fan-in) of logarithmic width and polynomial size [GS95, Gri91], or as
monotone switching networks of polynomial size [Raz91,Pot10]. It appears that the two models are not comparable.
This work focuses on monotone switching networks of polynomial size as the combinatorial model for (non-uniform)
m-L.

5

Generation problem scales as nΩ(h) when h ≤ nO(1) is the reversible pebble cost of the generation
graph [CP12].10

1.4 Our Results in Computational Complexity

Theorem 1 has the following consequence by the discussion in § 1.3

Corollary 1.4 (Improved Bounds for Generation). For any directed acyclic graph G, for the sub-
problem of Generation where the generation graph is restricted to G, the lower bound on the size
of monotone switching networks [CP12] implies the lower bound on the depth of monotone cir-
cuits [EM10] up to constant factors.

In addition, at a high level, we combine the semantic separation of circuit depth [HW97,EIRS01]
with the framework of Dymond–Tompa game. Instead of considering the iterated multiplexor
problem of universal composition relation with a tree structure [KRW95, §6], we consider the
iterated indexing problem over any directed acyclic graph. This minor twist completely changed the
combinatorics of the problems. Our computational problem, called DAG evaluation (Definition 4.1),
is a generalization of the tree evaluation problem considered by Cook, McKenzie, Wehr, Braverman,
and Santhanam [CMW+12].11 The DAG evaluation problem is a slight variant of the P-complete
problem of circuit evaluation, and it captures the combinatorial essence of the Generation problem
discussed above [McK10,EM10].

For this computational problem, we consider a problem-specific restriction called output-relevant
circuits (§4.2). Roughly, in terms of the two-party communication game of Karchmer and Wigder-
son [KW90], a circuit is output-relevant if the two parties are required to output a relevant bit,
which is a more natural restriction (than the output-leaf restriction in the universal composition
relation) for studying depth complexity.12 In particular, it is unclear how to turn the universal
composition relation into a proper Karchmer–Wigderson game (so that it corresponds properly to
circuit depth), which is not the case for output-relevant circuits.

Theorem 2 (Pebbling is Optimal). Consider a directed acyclic graph G whose Dymond–Tompa
game takes h time. Any output-relevant circuit solving the DAG evaluation problem over G of
bit-length k has depth Ω(hk) when 2k ≥ |V |Θ(1).

Theorem 2 is complemented by a matching upper bound, that there is a circuit of depth O(hk)
implementing the pebbling algorithm of Dymond–Tompa. Unlike previous bounds on monotone
circuits [RM99, Joh01, EM10] which are tight up to nΘ(1), our bounds on restricted circuits are
tight up to multiplicative factors. The tight bound can be interpreted as the semantic separation
of NC from P and of NCi from NCi+1, by considering the pyramid graph of height Θ(logi n). In
terms of circuit depth,13 Theorem 2 gives an exponential improvement on an incomparable (but
more natural12) model over previous results [EIRS01, HW97], which suggested only a semantic
separation of NC1 from NC2.

10The proof in the journal vesrion of [CP12] clearly works for any directed acyclic graph.
11The generalization to DAG is also considered by Wehr [Weh11]. For comparison, Wehr studied the branching

program model, and proved a lower bound (instead of a tight bound) in terms of the black pebble cost of the directed
acyclic graph under a relatively restricted setting.

12Output-relevance is motivated by the efficiency of shallowly packing certificates for use by two competing
provers, the alternation of which governs the combinatorial recurrence behind both the Dymond–Tompa game and
the Karchmer–Wigderson game. For further justification, see Remark 4.9.

13We will discuss some related approaches for separating complexity classes in §6, including approaches that con-
sider both the size and depth of a circuit, e. g., by algebro-geometric invariants [Mul99,MS01,MS08], multi-party com-
munication complexity [Cha07,BC08], competing-prover protocols [KR13], and block-respecting simulations [LW12].

6

Remark 1.5 (Circuit Depth and NC versus P). Theorem 2 supports the attempt to separate NC from
P (and NCi from NCi+1) by focusing on circuit depth. By connecting (non-monotone but restricted)
circuit depth with the Dymond–Tompa game, Theorem 2 gives evidence to support the attempt to
study circuit depth alone (as opposed to a combination of depth and size) for separating NC from
P,13 due to very similar recurrence in the minimization of the depth complexity in the Karchmer–
Wigderson game and in the Dymond–Tompa game.14 More importantly, now Theorems 1 and 2
together put many of the existing combinatorial lower bounds concerning circuit depth for sepa-
rating NC from P [KRW95, EIRS01, HW97, RM99, Joh01, Pot10, CP12] into the Dymond–Tompa
game framework. This connection explains the same scaling in lower bounds given by apparently
different pebble games: there is just one pebble game in disguise.15 However, this raises an interest-
ing follow-up question: why do the different analyses for different combinatorial arguments under
different restricted settings converge to the same pebble game (which basically characterizes par-
allelism)? Also, the Dymond–Tompa game lower bounds the depth complexity on these restricted
computational models, so how far (i. e., how general a model) does this correspondence hold?

We next briefly review the motivation for studying proof complexity, before we state our results
on the depth of resolution refutations.

1.5 Proof Complexity

The study of proof complexity was initiated by Cook and Reckhow [CR79], who showed that NP =
co-NP iff there is an efficient (i. e., polynomially bounded) proof system. Since its introduction,
proof complexity has been studied by many researchers. We mention below two such motivations
relevant to this paper.

Combinatorial methods for studying computational complexity One way to ap-
proach the distant goal of separating P from NP is to show that NP 6= co-NP (since P = co-P),
by proving super-polynomial lower bounds on successively stronger proof systems for propositional
tautologies. Hence proving combinatorial lower bounds on proof systems can be seen as sharpening
our combinatorial tools for eventually separating complexity classes, if possible.

Analysis of practical automated theorem-provers Lower bounds and trade-off results
for seemingly weak and restricted proof systems already apply to the performance characteristics
of most of the automated theorem-provers used in practice. For example, after failing to search for
a satisfying assignment, the execution of the proof search algorithm in [DP60, DLL62] (known as
DLL or DPLL) corresponds to a refinement (i. e., a restricted version) of resolution refutation whose
structure forms a tree, hence called a tree-like resolution. Resolution refutation is a weak proof
system in theory but widely used in practice. The study of trade-off results, or the comparison
of different variants of proof systems (e. g., tree-like versus general), have consequences to the
performance of different proof search strategies used in practice (see, e. g., [JMNŽ12]).

14Another evidence was the monotone separation of m-NC from m-P (and of m-NCi from m-NCi+1) by Raz–
McKenzie [RM99], where the lower bound on depth holds regardless of size (also implied by its strengthening [CP12]),
although this monotone evidence is weak due to known exponential separations of monotone depth from non-monotone
depth, e. g., for matching [RW92].

15For example, this may explain why in the Fourier analytic framework [Pot10], it is sufficient to consider reversible
pebbling configurations [CP12] instead of knowledge sets [Pot10]. Also, Corollary 1.4 completes the picture of
simulation results between circuits and switching networks, for the subproblem of Generation whose generation
graph is any directed acyclic graph (in addition to the line graphs or the pyramid graphs known previously).

7

Resources: Size, Space, and Rank

Out of the many resources considered for studying proof complexity, we mention below three
resources relevant to this paper.

Size The size of a refutation is the number of clauses,16 or equivalently (up to a factor of
two) the number of derivation steps. Hence the size complexity lower bounds the running time of
a certain class of proof search algorithms (even allowing non-determinism). The size complexity is
widely regarded as the most important complexity measure.

Space Among others, the space of a refutation may count the number of clauses (clause
space) or the number of variables (variable space17) in any configuration in a refutation. Hence the
space complexity measures the memory requirement (which is often a limiting resource for clause
learning) of a certain class of proof search algorithms. Space complexity (in the configuration-style)
was introduced by Esteban and Torán [ET01] and extended by Alekhnovich, Ben-Sasson, Razborov,
and Wigderson [ABSRW02].

Rank The rank of a refutation measures the sequentiality of a certain class of proof search al-
gorithms, e. g., for resolution-based proof systems, it is depth; and for semi-algebraic proof systems
(i. e., polynomial threshold proof systems like Gomory–Chvátal cutting planes or Lasserre/Posi-
tivstellensatz), it is the number of rounds. At a high level, the rank of many proof systems may
be related: the rank (depth) of the weak proof system of resolution is related to another measure
called width [Urq11, Ber12], which in certain cases can be used for proving a rank (round) lower
bound on the very strong proof system of Lasserre/Positivstellensatz [Gri01,Sch08,Tul09,Cha12].18

The depth of resolution refutations was first systematically studied by Urquhart [Urq11], and the
number of rounds of different semi-algebraic proof systems have been routinely studied, e. g., in
proof complexity [BOCIP02,BOGH+06] or in hardness of approximation [Sch08,Tul09,Cha12].

There are some known relationships among different resources, connecting the most important
resource of size to other resources. This gives another justification for studying space and rank.

Space and Size Clause space upper bounds (with some loss and via another measure width)
the logarithm of size for resolution [AD08]. As a partial converse, the logarithm of size upper bounds
clause space for tree-like resolution [ET01]. As for variable space, a lower bound on variable space
can be escalated to a lower bound on clause space via substitution [BSN11], and this connection
yielded one of the tightest size-space trade-offs currently known in proof complexity by studying
pebbling contradictions [BSN11].

Rank and Size Urquhart argued that rank is significant since “all proofs of resolution
size lower bounds implicitly prove depth lower bounds” [Urq11]. In practice, there are natural
rank-based procedures for generating refutations in some proof systems, e. g., the Davis–Putnam
procedure for resolution [DP60], (a variation of) the Gröbner basis algorithm for Polynomial Cal-
culus [CEI96], and the semi-definite programming of Lasserre/Positivstellensatz [Gri01,Las01]. In
this sense, rank measures the time needed for deterministically generating refutations in many
practical proof systems, and for them rank may be as important as size (e. g., in [Gri01, Las01,
Sch08,Tul09,Cha12]).

16Some literature calls this measure length, reserving size as the total number of symbols in a refutation (see e. g.,
the survey by Nordström [Nor12]). The two measures are polynomially related, and are used interchangeably in this
paper.

17The term variable space was used in the literature to mean two related but different concepts: the number of
literals counted with repetitions, or the number of variables counted without repetitions. The latter meaning, which
is recently becoming the standard usage [Nor12, Footnote 5], is used here.

18A paper even suggests that any rank lower bound on resolution can be directely translated (with some loss) into
a rank lower bound on some strong proof systems including Lasserre [BHP10], but an anonymous reviewer claims
that this proof is broken.

8

Previous Results

The pebbling approach is routinely studied in proof complexity, in the form of pebbling contradic-
tions, i. e., an unsatisfiable formula with one boolean variable per vertex, stating that (1) all source
variables are true; (2) truth propagates through the graph; and (3) some sink variable is false.
Often, certain pebbling properties (e. g., time and space) of the underlying graph is escalated to
the formula via substitution [BSN11] or lifting [HN12].

The study of pebbling contradictions gave many of the best known separations (of different
proof systems) and trade-offs (of different resources). In particular, the Raz–McKenzie pebble
game has been used for separating tree-like and general cutting plane refutations [BEGJ98], and
the (irreversible) black pebble game has been used for separating tree-like and general resolution
size [BSIW04, Urq11], regular and general resolution size [AJPU07], DPLL (tree-like resolution)
and a theoretical proof system based on clause learning algorithms [BIPS10], Nullstellensatz and
Polynomial Calculus degree [BOCIP02], and the hierarchy of tree-like k-DNF-resolution and general
resolution size [EGM04].19

1.6 Our Results in Proof Complexity

Let ΣG denote the pebbling contradiction over G (Definition 5.2, see also [Nor12, Urq11]). The
substitution construction of Alekhnovich–Razborov [BS09] is denoted Σ⊕ below; for generalizations,
see [BSN11]. Denote Val(G) as the value of the graph G, i. e., the pebble cost in the Dymond–
Tompa game, or equivalently, in the Raz–McKenzie pebble game or in the reversible pebble game
(Theorem 1).

Theorem 3 (Depth of Pebbling Contradictions). Fix a directed acyclic graph G = (V,E) with a
unique sink τ. The depth complexity of resolution refutation for ΣG is exactly the pebble cost in
the Raz–McKenzie pebble game to pebble the sink vertex of Ĝ, where Ĝ := (V ∪ {τ̂}, E ∪ {(τ, τ̂)})
is G augmented with an extra vertex τ̂ as the new sink.

It is easy to see that the variable space needed for resolution refutation of ΣG is at most the
(irreversible) black pebble cost of G by simulating a black pebbling strategy. Take G to be the line
graph on n vertices, this gives a separation of variable space (at most 2) and depth (at least log n),
solving an open problem raised by Urquhart [Urq11, Problem 7.2].

Theorem 4 (Tight Size Bounds for Tree-Like Resolution). The tree-like resolution refutation of
Σ⊕G has size complexity 2Θ(Val(G)).

Remark 1.6 (Decision Tree and Reversible Pebble Game). Theorem 3 gives an exact characteri-
zation, improving on the lower bound of Urquhart [Urq11]. Exact combinatorial characterization
can be useful for translating results to different settings, e. g., Berkholz [Ber12] recently connected
the exact combinatorial characterization of resolution width [AD08] with the combinatorial game
of Kasai–Adachi–Iwata [KAI79, AIK84], proving an unconditional time lower bound. Theorem 4
can be seen as a result in this direction.

Moreover, this shows that the lower bounds in previous works [BSIW04, BIPS10, EGM04], in
particular those concerning the depth of resolution refutations [Urq11], the degree of Polynomial
Calculus [BOCIP02]20, and the size of tree-like cutting plane refutations [BEGJ98], morally follow

19We did not mention the use of black-white pebbling for time-space trade-offs [BS09,BSN11], see e. g., [Nor12].
20Buresh-Oppenheim, Clegg, Impagliazzo, and Pitassi only claimed the result in terms of the (irreversible) black

pebble game, but it appears that their proof [BOCIP02, Lemma 4.10] works also in terms of the reversible pebble
game, due to its combinatorial recurrence (Proposition 3.18 and Corollary 3.26).

9

from the pebble cost of a single pebble game, wearing different costumes listed in Theorem 1. Since
the Dymond–Tompa game and the Raz–McKenzie pebble game were introduced for studying depth
complexity, this may explain the use of the (reversible) black pebble game in Theorem 3 and in
previous works.

Recall that k-DNF-resolution (Definition 5.3) extends the usual resolution.

Theorem 5. Any k-DNF-resolution refutation of ΣG has depth at least 1 + (Val(G)− 1)/k.

It is not hard to see that the lower bound should worsen with k, the arity of the DNF resolution.
For constant k (which roughly corresponds to the case of boolean circuits of bounded fan-in), this
lower bound is tight up to constant factors.

1.7 Techniques

The equivalence of the pebble games is proved by simulation arguments, on observing their similar-
ities in combinatorial recurrence. The results on restricted models fall into three categories: (1) cir-
cuits under semantic restriction (thrifty circuits versus output-relevant circuits); (2) computational
models under monotone restriction (monotone circuits versus monotone switching networks); and
(3) weak proof systems (resolution refutations versus k-DNF-resolution refutations). Note that in
all cases, the second model simulates (thus is stronger than) the first model.

All the upper bounds proved in this work are given by a pebbling strategy (of one of the
pebble games listed in Theorem 1),21 implemented in the weaker models. As for the lower bounds
in slightly stronger models, although the computation appears not to follow a pebbling strategy,
morally we can always decode an underlying strategy (or a family of strategies). In other words,
the hardness of pebbling is escalated to the hardness in the respective, slightly stronger models.

As for the actual execution of the lower bound arguments, we consider the specifics of the
models: (1) for circuits under semantic restriction, our lower bound is based on the extension by
Raz–McKenzie [RM99] of the information-theoretic adversary argument by Edmonds–Impagliazzo–
Rudich–Sgall [EIRS01]; (2) for computational models under monotone restriction, the lower bounds
are based on the extension by Chan–Potechin [CP12] of the framework of invariants by Potechin [Pot10]
or the extension by Raz–McKenzie [RM99] mentioned above (first proved in [EM10], see Theo-
rem 13); and (3) for weak proof systems, our lower bound is an adversary argument based on the
recurrence of the Raz–McKenzie pebble game.

1.8 Organization

Preliminary definitions and conventions are collected in § 2.
The three pebble games are introduced, and proved equivalent, in § 3. The equivalence of the

three pebble games (Theorem 1) follows from Theorems 6 and 7.
The DAG evaluation problem is treated in § 4, which proves the lower bound of Theorem 2

as Theorem 10, based on the information theoretic counting arguments in Appendix A. The lower
bound is complemented by a matching upper bound, proved as Theorem 9. Proposition 4.10 shows
that output-relevant circuits simulate thrifty circuits.

The complexity of resolution refutations is studied in § 5, which proves Theorems 3 to 5.
Other approaches for separating complexity classes around P are discussed in § 6, and future

directions are listed in § 7.

21Note that the upper bound for the problem of Generation on monotone models is not given by an optimal
pebbling strategy, unlike other problems considered here, e. g., graph reachability and the DAG evaluation problem.

10

The Appendix B studies the nondeterministic version of the computational problem, proving
Theorem 13 via the Dart game framework of Raz–McKenzie [RM99].

2 Preliminaries

Denote [n] := {0, 1, . . . , n − 1}. A subset S of a set A is identified with its indicator function
χS ∈ 2A ∼= {0, 1}A, where χS(i) = 1 iff i ∈ S.

Notation 2.1 (Restriction). The notation � will be overloaded for different (non-conflicting) defi-
nitions. In general, for a tuple x in a product space X := AB where A and B are sets, x�b := xb ∈ A
denotes the entry of x indexed by b ∈ B. However, there are two exceptions: (1) for instances to
the evaluation problem BDEPkG (Notation 4.5); (2) for instances to the specialized Dart game DartkG
over G (Notation B.3). In any case, for a subset C ⊆ B, x�C denotes the tuple 〈x�c〉c∈C ∈ AC ; for
a subset Y ⊆ X, Y �b := {y�b}y∈Y for b ∈ B and Y �C := {y�C}y∈Y for C ⊆ B.

This work focuses on boolean circuits of fan-in two having a single output gate, and the main
concern is their depth complexity, measured by the number of edges on the longest path from an
input gate to the output gate (which may be zero), where negation costs no increase in depth.

We fix our notation for directed acyclic graphs below. For brevity, immediate predecessors are
called in-neighbors here, and immediate successors are called out-neighbors.

Notation 2.2 (Directed Acyclic Graph). Consider a directed acyclic graph (DAG) G = (V,E).
For every vertex a ∈ V , denote its in-neighbors as δin(a) := {b ∈ V : (b, a) ∈ E} and out-neighbors
as δout(a) := {b ∈ V : (a, b) ∈ E}, and in-degree as degin(a) := |δin(a)|. For the DAG G, its
source vertices are U := U(G) := {a ∈ V : δin(a) = ∅} and sink vertices are W := W (G) := {a ∈
V : δout(a) = ∅}.

3 Equivalence of Pebble Games

We first informally review the three pebble games (§§ 3.1 to 3.3), and then show their equivalence
(§§ 3.4 and 3.5).

To avoid confusion with the two-party communication games of Karchmer–Wigderson (see §4.1)
or of Raz–McKenzie (called Dart game, see Appendix B.1), this paper refers to Pebbler and Chal-
lenger (or Colorer) as the two players in a Dymond–Tompa game (or Raz–McKenzie pebble game).

3.1 Dymond–Tompa Game

The following version of the Dymond–Tompa game is needed, where Pebbler only pebble one vertex
in each round, similar to the variant used in [BCGR92]. Concerning the number of pebbles, this
one-pebble-per-round version is clearly equivalent to the original multiple-pebble-per-round version
by Dymond and Tompa (by a simulation argument). The informal Definition 3.1 is is formalized
as Definition 3.4 in § 3.4. Its pebble cost is the time needed.

Definition 3.1 (Dymond–Tompa Game [DT85]). Fix a DAGG. The Dymond–Tompa game (DTG)
over G is a two-player (competitive) game as follows. The two players, Pebbler and Challenger,
alternate to move. The Pebbler begins by pebbling a sink vertex of G, which is then challenged by
Challenger. In all subsequent rounds, Pebbler places a pebble on a vertex of G, then Challenger
either (1) rechallenges the currently challenged vertex; or (2) challenges the vertex pebbled by
Pebbler. The game is over when Challenger challenges a ∈ V , but all in-neighbors of a are pebbled.
A game takes h time if Pebbler needs h pebble moves to win, against an optimal Challenger play.

11

3.2 Raz–McKenzie Pebble Game

Raz–McKenzie [RM99] employed the following pebble game in their adversarial strategy for proving
lower bounds on the depth of monotone circuits. Elias–McKenzie [EM10] initiated the study of
the pebble game over different directed acyclic graphs. The informal Definition 3.2 is formalized as
Definition 3.15 in § 3.4. Its pebble cost is the time needed.

Definition 3.2 (Raz–McKenzie Pebble Game). Fix a DAG G. The Raz–McKenzie pebble game
(RMG) over G is a two-player (competitive) game as follows. The two players, Pebbler and Colorer,
alternate to move. The Pebbler begins by pebbling a sink vertex of G, which is then colored red by
Colorer. In all subsequent rounds, Pebbler places a pebble on a vertex of G, then Colorer colors
this vertex either (1) as red; or (2) as blue. The game is over when some vertex a ∈ V is colored
red, but all in-neighbors of a are colored blue. A game takes h time if Pebbler needs h pebble
moves to win, against an optimal Colorer play.

3.3 Reversible Pebble Game

Bennett [Ben89] mentioned reversible pebble game as an abstraction for a reversible simulation of
irreversible computation. The informal Definition 3.3 is formalized as Definition 3.20. Its pebble
cost is the number of pebbles needed.

Definition 3.3 (Reversible Pebble Game). Fix a DAG G. The reversible pebble game over G
is a one-player game as follows. Each vertex of G can store at most one pebble, and the game
begins with no pebbles on G. In each move, Pebbler applies one of the following rules: (1) if all in-
neighbors of a are pebbled, Pebbler may place a pebble on a (to pebble a); or (2) if all in-neighbors
of a are pebbled, Pebbler may remove a pebble from a (to unpebble a). The game is over when
the sink vertex is pebbled, but all other vertices are unpebbled. A game takes h pebbles if Pebbler
needs h pebbles to finish the game.

3.4 When Dymond–Tompa meet Raz–McKenzie

This section formalizes the Dymond–Tompa game (§ 3.4.1) and the Raz–McKenzie pebble game
(§ 3.4.2), and proves their equivalence (§ 3.4.3).

3.4.1 Dymond–Tompa Game

Definitions 3.4 and 3.5 formalize the intuitive Definition 3.1 for the Dymond–Tompa Game.

Definition 3.4 (Dymond–Tompa Game Tree). Fix a DAG G = (V,E). A configuration of the
Dymond–Tompa game (DTG) over G is a tuple 〈〈P, r, c〉〉, where P ⊆ V are the pebbled vertices,
r ∈ P ∪ {⊥} is the vertex just pebbled, and c ∈ P is the vertex under challenge. The player taking
the turn in 〈〈P, r, c〉〉 is Pebbler if r = ⊥, and is Challenger if r ∈ P .

The initial configuration for G is CG := 〈〈{τ},⊥, τ〉〉,22 and the game is over in a configuration
〈〈P, r, c〉〉 if r = ⊥ and δin(c) ⊆ P . A configuration C := 〈〈P, r, c〉〉 moves to a configuration C ′ :=
〈〈P ′, r′, c′〉〉 (denoted as C ` C ′), if (1) r = ⊥ and r′ ∈ V \ P (Pebbler moves in C and then
Challenger moves in C ′),23 and the game is not over in C and P ′ = P ∪ {r′} and c′ = c; or (2)

22Recall that G is assumed to have a unique sink vertex τ.
23Note that r′ ∈ V \ P in item (1) in the definition of `, i. e., Pebbler is required to pebble an unpebbled

vertex. The game is effectively the same with or without this requirement, since Challenger can always rechallenge
the last challenged vertex if Pebbler repebbles a pebbled vertex, hence an optimal Pebbler strategy should obey this
requirement. This requirement is added here to avoid working with an infinite game tree, so as to simplify subsequent
definitions while not affecting the values of subgames.

12

r ∈ P and r′ = ⊥ (Challenger moves in C and then Pebbler moves in C ′), and c′ ∈ {c, r} and
P ′ = P .

In the Dymond–Tompa game tree (GameTreeG) for DTG, every node is labeled with a config-
uration. First construct the root node of GameTreeG, labeled with the initial configuration CG.
And for any node x labeled with C, for every C ′ such that C ` C ′, construct a child node x′ of x
labeled with C ′. The game tree is finite since Pebbler is required to pebble an unpebbled vertex.23

Definition 3.5 (Value of a (Sub)-Game). For a node x on GameTreeG, define its value

Val(x) :=

1 if x is a leaf node,

minx′ : child of xVal(x′) if Pebbler moves at internal node x,

1 + maxx′ : child of xVal(x′) if Challenger moves at internal node x.

Then DTG takes h time if Val(root of GameTreeG) = h.

Intuitively, an optimal game play should focus only on the effective predecessors Vc(P) of the
currently challenged vertex c (Definition 3.6). This is formalized as Lemma 3.8, by an induction
on Lemma 3.9.

Definition 3.6 (Effective Predecessors). Relative to any S ⊆ V , for vertices a and b in V , define
the transitive relation a S b if there is a directed path (possibly of zero length) from a to b
avoiding S, i. e., there exists {v0, v1, . . . , v`} ⊆ V \ S such that v0 = a and v` = b and vi ∈ δin(vi+1)
for 0 ≤ i < `. When c is under challenge and P are the pebbled vertices, define the (not necessarily
proper) effective predecessors of c avoiding P as Vc(P) := {a ∈ V : a (P\{c}) c}.

Proposition 3.7 (Effective Predecessors). We have the following:

1. Vc(P) ∩ P = {c} when c ∈ P ;

2. If a ∈ Vc(Q), then Va(Q) ⊆ Vc(Q);

3. If c ∈ Q ⊆ R, then Vc(Q) ⊇ Vc(R); and

4. If c ∈ Q ⊆ R and (R \Q) ∩ Vc(Q) = ∅, then Vc(Q) = Vc(R).

Lemma 3.8 (Predecessors Determine a Subgame). The value of a subgame depends only on the
effective predecessors of the challenged vertex, i. e., if Vc(Q) = Vc(R), then Val(〈〈Q,⊥, c〉〉) =
Val(〈〈R,⊥, c〉〉).24

Proof. Let P = Q ∪
(
V \ Vc(Q)

)
= R ∪

(
V \ Vc(R)

)
, then Q ⊆ P and R ⊆ P , now do an induction

using Lemma 3.9 to show Val(〈〈Q,⊥, c〉〉) = Val(〈〈P,⊥, c〉〉) = Val(〈〈R,⊥, c〉〉). More precisely,
recall that for a subset S ⊆ V , a sink vertex s of S satisfies s ∈ S and δout(s) ∩ S = ∅. Enumerate
P \ Q =: {s1, s2, . . . , s`} ⊆ V \

(
Q ∪ Vc(Q)

)
so that si is a sink of Si where S` := P and Si :=

Si+1 \ {si+1} for 0 ≤ i < `, and apply Lemma 3.9 to get Val(〈〈Si,⊥, c〉〉) = Val(〈〈Si+1,⊥, c〉〉).

Lemma 3.9 (Predecessors Determine Adjacent Subgames). If R = Q ∪ {q} for some sink q of
V \

(
Q ∪ Vc(Q)

)
, then Val(〈〈Q,⊥, c〉〉) = Val(〈〈R,⊥, c〉〉).24

24Clearly the subtree rooted at (and hence the value of) a node x on GameTreeG depends only on the configuration
labeled at x, thus it makes sense to talk about the value of a configuration, although in general there can be multiple
nodes on GameTreeG labeled with the same configuration.

13

Proof. Say two Pebbler configurations C1 := 〈〈P1,⊥, c1〉〉 and C2 := 〈〈P2,⊥, c2〉〉 form an adjacent
pair (denoted 〈C1, C2〉) if c1 = c = c2 for some c ∈ V and P2 = P1 ∪ {q} for some sink q of
V \

(
P1 ∪ Vc(P1)

)
. In this case Vc(P1) = Vc(P2) by Proposition 3.7. For two configurations C and

C ′, say C is a descendant of C ′ (denoted C � C ′) if there are configurations {C1, . . . , C`}, such
that Ci+1 ` Ci for 1 ≤ i < ` and C1 = C and C` = C ′.25 This partial order on configurations
induces a partial order on adjacent pairs by 〈C1, C2〉 � 〈C ′1, C ′2〉 if C1 � C ′1 and C2 � C ′2.

Do an induction following the � order on adjacent pairs 〈Q,R〉 to show that Val(Q) = Val(R).
When Vc(Q) = Vc(R), note that δin(c) ⊆ Q iff Vc(Q) = {c} iff Vc(R) = {c} iff δin(c) ⊆ R, i. e., the
game is over in 〈〈Q,⊥, c〉〉 iff it is over in 〈〈R,⊥, c〉〉. If the game is over, then Val(〈〈Q,⊥, c〉〉) = 1 =
Val(〈〈R,⊥, c〉〉), establishing the base case. Otherwise, the game is not over. Expand and compare

Val(〈〈Q,⊥, c〉〉) = min
r/∈Q

Val(〈〈Q ∪ {r}, r, c〉〉) and Val(〈〈R,⊥, c〉〉) = min
r/∈R

Val(〈〈R ∪ {r}, r, c〉〉) .

For an r ∈ V \Q, there are two cases.

• r /∈ R: Note that 〈〈〈Q ∪ {r},⊥, c〉〉, 〈〈R ∪ {r},⊥, c〉〉〉 ≺ 〈〈〈Q,⊥, c〉〉, 〈〈R,⊥, c〉〉〉, and since q is a
sink of V \

(
Q ∪ Vc(Q)

)
and q 6∈ Vr(Q ∪ {r}), we have 〈〈〈Q ∪ {r},⊥, r〉〉, 〈〈R ∪ {r},⊥, r〉〉〉 ≺

〈〈〈Q,⊥, c〉〉, 〈〈R,⊥, c〉〉〉, hence induction hypothesis gives

Val(〈〈Q ∪ {r}, r, c〉〉) = 1 + max
{

Val(〈〈Q ∪ {r},⊥, r〉〉) , Val(〈〈Q ∪ {r},⊥, c〉〉)
}

= 1 + max
{

Val(〈〈R ∪ {r},⊥, r〉〉) , Val(〈〈R ∪ {r},⊥, c〉〉)
}

= Val(〈〈R ∪ {r}, r, c〉〉) ;

• r = q ∈ R \Q: Then

Val(〈〈Q ∪ {q}, q, c〉〉) = Val(〈〈R, q, c〉〉)
= 1 + max

{
Val(〈〈R,⊥, q〉〉) , Val(〈〈R,⊥, c〉〉) }

> Val(〈〈R,⊥, c〉〉) .

Now

Val(〈〈Q,⊥, c〉〉) = min
r/∈Q

Val(〈〈Q ∪ {r}, r, c〉〉)

= min
{

min
r/∈R

Val(〈〈Q ∪ {r}, r, c〉〉) , Val(〈〈Q ∪ {q}, q, c〉〉)
}

= Val(〈〈R,⊥, c〉〉) .

Since the game should only focus on the effective predecessors Vc(P) of the currently challenged
vertex c, an optimal game play should go from the sink to the sources of G (Claims 3.11 and 3.13,
see Definition 3.10).

Definition 3.10 (Upstream Strategies). Say a strategy for Pebbler is upstream if Pebbler only
pebbles an effective predecessor of the currently challenged vertex, and a strategy for Challenger is
upstream if Challenger only challenges an effective predecessor of the previously challenged vertex.
More precisely, for configurations C := 〈〈P, r, c〉〉 and C ′ := 〈〈P ′, r′, c′〉〉, say C moves upstream to C ′

(denoted as C ` C ′) iff C ` C ′ and if (1) r = ⊥ (Pebbler moves in C) then r′ ∈ Vc(P); or (2)
r ∈ P (Challenger moves in C) then c′ ∈ Vc(P). Then a Pebbler (resp. Challenger) strategy is
upstream if every Pebbler (resp. Challenger) move from C to C ′ satisfies C ` C ′.

25Hence C � C′ if some node labeled with C is a (not necessarily proper) descendant of some node labeled with
C′ on GameTreeG.

14

Claim 3.11 (Optimal Upstream Pebbler). Any subgame-optimal Pebbler strategy is upstream, i. e.,
if configurations C = 〈〈P,⊥, c〉〉 and C ′ satisfy C ` C ′ and Val(C) = Val(C ′),24 then C ` C ′.

Proof. Consider the Pebbler move from C =: 〈〈P,⊥, c〉〉 to C ′ =: 〈〈P ∪ {r}, r, c〉〉 where r /∈ P and
r 6∈ Vc(P) (hence C ` C ′ but C 6 ` C ′), either (1) challenging r is no worse for Challenger, i. e.,
Cr := 〈〈P ∪ {r},⊥, r〉〉 has Val(Cr) ≥ Val(C), then a subgame-optimal strategy of Pebbler would
avoid the move from C to C ′ (since Val(C ′) ≥ 1 + Val(Cr) > Val(C)); or (2) Cr is worse for
Challenger, i. e., Val(Cr) < Val(C), then Challenger may choose to rechallenge c by moving to
Cc := 〈〈P ∪ {r},⊥, c〉〉 so that Val(Cc) = Val(C) (by Proposition 3.7 and Lemma 3.8), hence
a subgame-optimal strategy of Pebbler would avoid the move from C to C ′ (since Val(C ′) ≥
1 + Val(Cc) > Val(C)).

Corollary 3.12 (Optimal Upstream Pebbler). If the game is not over in a Pebbler configuration
〈〈P,⊥, c〉〉, then Val(〈〈P,⊥, c〉〉) = minr∈Vc(P)\P Val(〈〈P ∪ {r}, r, c〉〉).

Claim 3.13 (Optimal Upstream Challenger). There exists an optimal Challenger strategy that is
upstream, i. e., if configurations C = 〈〈P,⊥, c〉〉 and C ′ = 〈〈P ∪ {r}, r, c〉〉 satisfy C ` C ′, then there
is a Challenger move from C ′ to C ′′ with C ′ ` C ′′ and Val(C ′′) ≥ Val(C)− 1.

Proof. If r ∈ Vc(P), then C ′ ` C ′′ implies C ′ ` C ′′. Now Definition 3.5 gives a C ′′ with C ′ `
C ′′ and Val(C ′′) ≥ Val(C ′) − 1 ≥ Val(C) − 1. Otherwise r 6∈ Vc(P), then consider C ′′ :=
〈〈P ∪ {r},⊥, c〉〉. Proposition 3.7 and Lemma 3.8 give Val(C ′′) = Val(C), and clearly C ′ ` C ′′.

Proposition 3.14 (Upstream is Monotone). Consider C1 ` C2 ` C3 where C1 =: 〈〈P1,⊥, c1〉〉 and
C3 =: 〈〈P3,⊥, c3〉〉. If C1 ` C2 or C2 ` C3, then c3 ∈ Vc1(P1) and Vc1(P1) ⊇ Vc3(P3).

3.4.2 Raz–McKenzie Pebble Game

Definitions 3.15 and 3.16 formalize the intuitive Definition 3.2 for the Raz–McKenzie pebble game.

Definition 3.15 (Raz–McKenzie Game Tree). Fix a DAG G = (V,E). A configuration of the
Raz–McKenzie game (RMG) over G is a tuple 〈〈P, r,B〉〉, where P ⊆ V are the pebbled vertices,
r ∈ P ∪ {⊥} is the vertex just pebbled, and B ⊂ P are the blue vertices (and P \ (B ∪ {r}) are the
red vertices). The player taking the turn in 〈〈P, r,B〉〉 is Pebbler if r = ⊥, and is Colorer if r ∈ P .

The initial configuration for G is CRM
G := 〈〈{τ},⊥, ∅〉〉,22 and the game is over in a configuration

〈〈P, r,B〉〉 if r = ⊥ and some d ∈ P \B has δin(d) ⊆ B. A configuration C := 〈〈P, r,B〉〉 moves to a
configuration C ′ := 〈〈P ′, r′, B′〉〉 (denoted as C ` C ′), if (1) r = ⊥ and r′ ∈ V \P (Pebbler moves in
C and then Colorer moves in C ′),26 and the game is not over in C and P ′ = P ∪ {r′} and B′ = B;
or (2) r ∈ P and r′ = ⊥ (Colorer moves in C and then Pebbler moves in C ′), and B ⊆ B′ ⊆ B∪{r}
and P ′ = P .

In the Raz–McKenzie game tree (GameTreeRMG) for RMG, every node is labeled with a con-
figuration. First construct the root node of GameTreeRMG , labeled with the initial configuration
CRM
G . And for any node x labeled with C, for every C ′ such that C ` C ′, construct a child node

x′ of x labeled with C ′. The game tree is finite since Pebbler is required to pebble an unpebbled
vertex.26

26Note that r′ ∈ V \ P in item (1) in the definition of `, i. e., Pebbler is required to pebble an unpebbled vertex.
The game is effectively the same with or without this requirement, since Colorer can always recolor a vertex with its
existing color if Pebbler repebbles a pebbled vertex, hence an optimal Pebbler strategy should obey this requirement.
This requirement is added here to avoid working with an infinite game tree, so as to simplify subsequent definitions
while not affecting the values of subgames.

15

Definition 3.16 (Value of a (Sub)-Game). For a node x on GameTreeRMG , define its value

Val(x) :=

1 if x is a leaf node,

minx′ : child of xVal(x′) if Pebbler moves at internal node x,

1 + maxx′ : child of xVal(x′) if Colorer moves at internal node x.

Then RMG takes h time if Val(root of GameTreeRMG) = h.

3.4.3 Dymond–Tompa equals Raz–McKenzie

Theorem 6 (Dymond–Tompa equals Raz–McKenzie). For any DAG G, DTG takes h time iff RMG

takes h time.

Proof. For the ⇐ direction, given an optimal Colorer strategy for RMG, we should construct a
Challenger strategy for DTG to make at least hmoves. In each move, when c is under challenge, after
Pebbler pebbles r ∈ V \P to a configuration 〈〈P ∪ {r}, r, c〉〉 in DTG, Challenger (1) challenges r if r ∈
Vc(P) and Colorer colors r red in response to Pebbler; and (2) rechallenges c otherwise. Challenger
strategy maintains the invariant that c is the only red vertex among its effective predecessors,
i. e., Vc(P) ∩ (P \ B) = {c} (by induction on Challenger moves). If the game DTG is over in a
configuration 〈〈P,⊥, c〉〉, then δin(c) ⊆ P . It follows that c is red but all of δin(c) are blue; for
otherwise, some r ∈ δin(c) is red, but then r is colored red by Colorer in a round when some d is
challenged, and both c and r are effective predecessors of d in that round (recall Proposition 3.14),
contradicting the Challenger strategy. So the game RMG is also over.

For the ⇒ direction, given an optimal Challenger strategy for DTG, we should construct a
Colorer strategy for RMG to make at least h moves. By Claim 3.13, assume that Challenger
strategy is upstream. In each move, when c is under challenge, after Pebbler pebbles r ∈ V \ P
to configurations 〈〈P ′, r, c〉〉 in DTG and 〈〈P ′, r, B〉〉 in RMG with P ′ = P ∪ {r}, if (1) Challenger
responses to Pebbler by challenging r 6= c (hence r ∈ Vc(P)), then Colorer colors r red; or (2)
Challenger responses by rechallenging c, then Colorer (i) colors r blue unless there are red vertices
d, d′ ∈ P \ B blocked by making r blue, i. e., d 6∈ Vd′(B ∪ {r}) but d ∈ Vd′(B); in which case
(ii) colors r red. Colorer strategy maintains the invariant that c is the only red vertex among its
effective predecessors, i. e., Vc(P) ∩ (P \ B) = {c}; and there is a blue-avoiding path covering all
red vertices, i. e., for any d, d′ ∈ P \B, d ∈ Vd′(B) or d′ ∈ Vd(B) (by induction on Colorer moves).
As a result, c is the first red vertex in this blue-avoiding path, i. e., c ∈ Vd(B) for any d ∈ P \B. If
the game RMG is over in a configuration 〈〈P,⊥, B〉〉, then δin(d) ⊆ B for some d ∈ P \B, thus d = c
is the vertex under challenge and δin(c) ⊆ P , so the game DTG is also over.

3.5 When Raz–McKenzie meet Bennett

The Raz–McKenzie pebble game (§ 3.5.1) is connected with the reversible pebble game of Bennett
(§ 3.5.2) by a simulation argument in § 3.5.3.

3.5.1 Reformulating Raz–McKenzie Pebble Game

Focusing on the Pebbler side of the Raz–McKenzie pebble game and interpreting it as a one-player
game, Definition 3.17 and Proposition 3.18 bring the Raz–McKenzie (two-player) pebble game to
a form closer to the (one-player) reversible pebble game.

Definition 3.17 (Reduced Configuration). Fix a DAG G = (V,E). A reduced configuration of
the Raz–McKenzie pebble game (RMG) over G is a pair LB,RM of blue B and red R vertices

16

(B,R ⊆ V) which are disjoint B ∩ R = {}. Any reduced configuration LB,RM corresponds to the
Pebbler configuration 〈〈R ∪B,⊥, B〉〉.

Proposition 3.18 (Value of Reduced Configuration).

Val(LB,RM) =

1 if ∃r ∈ R s.t. δin(r) ⊆ B,

1 + min
v∈V \(R∪B)

max

{
Val(LB,R ∪ {v}M),
Val(LB ∪ {v}, RM)

}
otherwise.

Proposition 3.19 (Monotonicity). If B1 ⊆ B2 and R1 ⊆ R2, then Val(LB1, R1M) ≥ Val(LB2, R2M).

3.5.2 Reversible Pebble Game

Following its usage in proof complexity [BSIW04, AJPU07, HU07, Urq11], the (reversible) black
pebble game is parameterized below with two extra sets of vertices S (extending the sources) and
T (extending the sinks) in Definition 3.20. By changing S and T as the induction step goes, and
by focusing on the progress in pebbling outside of S and T , this parameterization sets up the right
recurrence in its translation to and from the Raz–McKenzie pebble game (Lemmas 3.22 and 3.25).

Definition 3.20 (Reversible Pebble Game). Fix a DAG G = (V,E) and two vertex subsets S, T ⊆
V which are disjoint S ∩ T = {}. A configuration P in the reversible pebble game (RPG,S,T) is
a subset of pebbled vertices P ⊆ V . Two configurations P1 and P2 are adjacent in RPG,S,T if P1

and P2 differ by at most one vertex v ∈ V , all of whose in-neighbors are pebbled or in S, i. e.,
P1∆P2 ⊆ {v} where δin(v) ⊆ P1 ∪ S for some v ∈ V (in this case, equivalently δin(v) ⊆ P2 ∪ S).
Note that all of S are virtually pebbled, hence referred to as assuming S. Say a configuration
P precisely pebbles a vertex in T ⊆ V assuming S ⊆ V if P \ S = {t} for some vertex t ∈ T .
For two configurations Ps and Pt, a reversible (pebbling) strategy P = 〈P1, P2, . . . , P`〉 from Ps to
Pt in RPG,S,T is a sequence of adjacent configurations, i. e., Pj−1 is adjacent to Pj assuming S for
1 < j ≤ `, such that P1 = Ps and P` = Pt. A reversible (pebbling) strategy for RPG,S,T is a reversible
strategy from {} to some Pt in RPG,S,T where Pt precisely pebbles a vertex in T assuming S.

Definition 3.21 (Value of a Configuration). The value of a configuration P is Val(P) := |P |
the number of pebbles in P . The value of a reversible strategy P := 〈P1, P2, . . . , P`〉 is Val(P) :=
max1≤j≤`Val(Pj). The value of the reversible pebble game RPG,S,T is Val(RPG,S,T) := minP Val(P),
where the minimum is over all reversible strategy P for RPG,S,T (from {} to precisely pebble some
vertex in T assuming S in RPG,S,T).

3.5.3 Raz–McKenzie equals Bennett

Lemma 3.22 (Reversible Strategy from Raz–McKenzie Strategy, Induction). There is a reversible
strategy P for RPG,B,R of value Val(P) ≤ Val(LB,RM) =: h.

Proof. If h = 1, then some vertex r ∈ R has all its in-neighbors δin(r) ⊆ B. Now pebble r ∈ R
assuming B, i. e., P := 〈{}, {r}〉, establishing the base case.

If h > 1, fix v ∈ V \ (R ∪B) such that

Val(LB,RM) = 1 + max
{
Val(LB,R ∪ {v}M),Val(LB ∪ {v}, RM)

}
.

Since Val(LB,R ∪ {v}M) < h, there is a reversible strategy P1 =: 〈P1, P2, . . . , P`〉 for RPG,B,R∪{v}
(i. e., assuming B to precisely pebble a vertex in R∪{v}) of value Val(P1) < h. If a vertex in R is

17

precisely pebbled assuming B (P` \B = {r} for some r ∈ R), then we are done P := P1. Otherwise,
v is precisely pebbled assuming B (P` \B = {v}). Since Val(LB∪{v}, RM) < h, there is a reversible
strategy P2 for RPG,B∪{v},R (i. e., assuming B ∪ {v} to precisely pebble a vertex r ∈ R) of value
Val(P2) < h. Hence run P1, then run P2, and finally run P1 in reverse to forget v. That is, let
P := the concatenation of P1, P2 ∪{v}, and P←−

1
∪{r}; where P←−

1
:= 〈P`, P`−1, . . . , P1〉 reverses P1,

and P1 ∪ {r} := 〈P1 ∪ {r}, P2 ∪ {r}, . . . , P` ∪ {r}〉 denotes the configuration-wise union. Note that
P is a strategy from {} to precisely pebble r ∈ R assuming B.

Lemma 3.23 (Raz–McKenzie Strategy from Reversible Strategy). Any reversible strategy P =:
〈P1, P2, . . . , P`〉 for RPG,B,R has value Val(P) ≥ Val(LB,RM).

Proof. Let r ∈ R be precisely pebbled assuming B, i. e., P` \ B =: {r}. Without loss of generality
δin(r) ∩ R = ∅, for otherwise replace every configuration Pj containing r with Pj \ {r} ∪ {r′} for
some predecessor r′ of r such that δin(r′)∩R = ∅. Let m be the first time (i. e., least integer) such
that r is pebbled since Pm, i. e., Pb 3 r for m ≤ b ≤ `. Since P1 = {}, m > 1. So Pm−1 differs from
Pm by a reversible pebble move to pebble r ∈ R ∩ Pm assuming B. Thus δin(r) ⊆ Pm ∪ B. Let
P1 := 〈Pm, Pm+1, . . . , P`〉 be the strategy since Pm, and P←−

1
:= 〈P`, P`−1, . . . , Pm〉 be its reverse.

Note that δin(r) ⊆
(
Pm∩VR(B)

)
∪B (see Definition 3.24). Apply Lemma 3.25 on P←−

1
∩VR(B), where

P←−
1
∩ VR(B) := 〈P` ∩ VR(B), P`−1 ∩ VR(B), . . . , Pm ∩ VR(B)〉 is its configuration-wise intersection

with VR(B), to get Pb with m ≤ b ≤ ` satisfying the second inequality in

|Pb| ≥
∣∣(Pb ∩ VR(B)

)
\B
∣∣+ 1 ≥ Val(LB,RM),

since P`∩VR(B) = ∅ (thus P̃ = B in Lemma 3.25), and r ∈ Pb\VR(B) gives the first inequality.

The following is a pebbling argument by induction, with a twist in using the right ‘potential
function’ and the correct order for induction. First, since we are interested in pebbling R, it suffices
to restrict attention to predecessors of R in the pebbling strategy. Moreover, since B is assumed,
further restrict attention to those pebbling moves outside of B. The region of interest is denoted
VR(B) below. The induction step is applied to the pebbling move Pm where the first vertex (denoted
v below) is remembered till the end (i. e., P`) in the region VR(B) of interest. By further restricting
attention to V \ {v} (in the Pebbling Case below) or to Vv(v) (in the Unpebbling Case below), it
ensures the technical condition that B and R are disjoint when applying the induction hypothesis
(as witnessed by the support of a strategy).

Definition 3.24 (Predecessors, Support). Fix a DAG G = (V,E). Say u ∈ V is a (not necessarily
proper) predecessor of v ∈ V if there is a directed path (possibly of zero length) from u to v.27

Denote the predecessors by Vv := {u : u is a predecessor of v} for v ∈ V , and VR :=
(⋃

r∈R Vr
)

for
R ⊆ V . Define the predecessors of R relative to B as VR(B) := VR \ (R ∪ B). As a shorthand,
denote Vv(v) := V{v}({v}) as the proper predecessors of v.

For U ⊆ V , say a configuration P is U -supported if P ⊆ U , and say a strategy P :=
〈P1, P2, . . . , P`〉 is U -supported if each Pj is U -supported for 1 ≤ j ≤ `.

Lemma 3.25 (Raz–McKenzie Strategy from Reversible Strategy, Induction). Any VR(B)-supported
reversible strategy P =: 〈P1, P2, . . . , P`〉 in RPG,B,R where δin(r) ⊆ P` ∪ B for some r ∈ R, has a
configuration Pb for some 1 ≤ b ≤ `, so that

∣∣Pb \ P̃ ∣∣+ 1 ≥ Val(LP̃ , RM), where P̃ :=
(⋂

1≤j≤` Pj
)
∪

B.

27Hence the relation of predecessor is the reflexive transitive closure of the relation of immediate predecessor
(in-neighbor).

18

Proof. Decrease ` if necessary, let ` be the first time on P (i. e., least integer) so that δin(r) ⊆
P` ∪ B for some r ∈ R. If δin(r) ⊆ P̃ , then Val(LP̃ , RM) = 1, so any configuration on P would
do. Otherwise, δin(r) 6⊆ P̃ . Let P̃i :=

(⋂
i≤j≤` Pj

)
∪ B be the set of vertices remembered since

configuration Pi assuming B. Now δin(r) 6⊆ P̃ = P̃1 and δin(r) ⊆ P̃`, and P̃j−1 ⊆ P̃j for 1 < j ≤ `.
Let m := argmin{1 < j ≤ ` : P̃1 6= P̃j} indexes the earliest configuration so that P̃m−1 ⊂ P̃m, and let
v ∈ P̃m \ P̃m−1 = P̃m \ P̃1 be the first vertex remembered till the end. Let P1 := 〈Pm, Pm+1, . . . , P`〉
be the strategy since Pm, which is shorter than P.28 Now for any Pb on P1 (i. e., m ≤ b ≤ `),

|Pb \ P̃1| ≥ |Pb \ P̃m|+ 1 , (1)

since v ∈
(
Pb \ P̃1

)
\
(
Pb \ P̃m

)
. Note that P̃m = P̃1 ∪ {v} = P̃ ∪ {v}.

Clearly v /∈ P̃ . Also, v is pebbled by a reversible pebble move at Pm, hence δin(v) ⊆ Pm ∪ B.
It follows that v /∈ R; for otherwise v ∈ R, either it contradicts the minimality of `, or some
vertex before v is pebbled till v is pebbled, contradicting the minimality of m. By the recurrence
of Val(LP̃ , RM) (Proposition 3.18), at least one of the following is true.

• (Pebbling Case)
Val(LP̃ ∪ {v}, RM) + 1 ≥ Val(LP̃ , RM) . (2)

Note that VR(B∪{v}) = VR(B)\{v}. Hence P2 := P1 \{v} := 〈Pm \{v}, Pm+1 \{v}, . . . , P` \
{v}〉 is VR(B ∪ {v})-supported. Now P̃m =

(⋂
m≤j≤` Pj \ {v}

)
∪ B ∪ {v}. The induction

hypothesis on P2 in RPG,B∪{v},R gives a Pb (on P1) satisfying the inequality in

|Pb \ P̃m|+ 1 =
∣∣(Pb \ {v}) \ P̃m∣∣+ 1 ≥ Val(LP̃m, RM) = Val(LP̃ ∪ {v}, RM) . (3)

Finally |Pb \ P̃ |+ 1 ≥ Val(LP̃ , RM) by Inequalities 1 to 3.

• (Unpebbling Case)
Val(LP̃ , R ∪ {v}M) + 1 ≥ Val(LP̃ , RM) . (4)

In fact, δin(v) ⊆ (Pm ∩ Vv(v)) ∪ B. Let P←−
1

:= 〈P`, P`−1, . . . , Pm〉 be the reverse of P1,
and P2 := P←−

1
∩ Vv(v) := 〈P` ∩ Vv(v), P`−1 ∩ Vv(v), . . . , Pm ∩ Vv(v)〉 be its configuration-

wise intersection. Then P2 is VR∪{v}(B)-supported, and also Vv(v)-supported. Let P̃ ′ :=(⋂
m≤j≤` Pj ∩ Vv(v)

)
∪ B ⊆ P̃m \ {v} = P̃ . The induction hypothesis on P2 in RPG,B,R∪{v}

gives a Pb (on P1) satisfying the first inequality in

|Pb ∩ Vv(v) \ P̃ ′|+ 1 ≥ Val(LP̃ ′, R ∪ {v}M) ≥ Val(LP̃ , R ∪ {v}M) , (5)

where the last inequality follows from monotonicity (Proposition 3.19). Note that Pb∩Vv(v)\
P̃ ′ ⊆ Pb \ P̃m, since P̃m ∩ Vv(v) ⊆ P̃ ′. Finally |Pb \ P̃ |+ 1 ≥ Val(LP̃ , RM) by Inequalities 1, 4
and 5.

Corollary 3.26 (Raz–McKenzie equals Bennett). For any DAG G, subsets R,B ⊆ V which are
disjoint R ∩B = {}, we have Val(LB,RM) = Val(RPG,B,R).

Proof. By Lemmas 3.22 and 3.23.

Theorem 7 (Raz–McKenzie equals Bennett). For any DAG G with a unique sink τ, we have
Val(L{}, {τ}M) = Val(RPG,{},{τ}).

28Formally, the double induction argument does an outer induction on the length of P, then an inner induction
on Val(LP̃ , RM).

19

4 DAG Evaluation Problem

This section studies the DAG evaluation problem. We define below the computational problem
BDEPkG, the boolean version of the DAG evaluation problem of bit-length k over G. § 4.1 recalls
the two-party communication game of Karchmer–Wigderson, §4.2 introduces two classes of circuits
with restricted computational semantics for BDEPkG, § 4.3 proves an upper bound as Theorem 9,
§ 4.4 connects the two-player pebble game of Raz–McKenzie with the two-party communication
game of Karchmer–Wigderson, and § 4.5 proves a lower bound as Theorem 10.

The following computational problem naturally generalizes the Tree Evaluation Problem [CMW+12]
to any directed acyclic graph G. This problem can be seen as a parameterized version of the P-
complete circuit evaluation problem. By studying a slice of the problem (for a fixed graph G and
constant k), we can focus on the combinatorics of the ‘flow of values’ over the graph.

Definition 4.1 (DAG Evaluation Problem over G). Consider a DAG G and a bit-length parameter
k ∈ N. Denote the set of k-bit strings as {0, 1}k ∼= [K], where K := 2k. The DAG Evaluation
Problem over G (DEPkG) is specified by the following.

Input For every vertex a ∈ V , there is a function ta : [K]δ
in(a) → [K].29 The input to DEPkG

enumerates the n bits of 〈ta〉a∈V as n boolean variables where n := k
∑

a∈V K
degin(a).

‘Computation’ Define inductively the values 〈va〉a∈V ∈ [K]V by va := ta
(
v�δin(a)

)
∈ [K] for

a ∈ V . That is, the value va is the function ta applied to the values at the in-neighbors of a.29

Output The output of DEPkG is the tuple of values 〈vw〉w∈W ∈ [K]W .

Using terminologies of database systems, at every vertex a ∈ V , there is a table ta whose
dimension is the number of in-neighbors of a. The values at in-neighbors of a indexes the relevant
entry in ta, and we are interested in computing the values at the sinks.

Henceforth, without loss of generality, focus on DAGs with exactly one sink vertex τ. The
interest is in the boolean circuit depth complexity of computing a decision version of DEPkG (as
opposed to a [K]-valued function).

Definition 4.2 (Boolean DAG Evaluation Problem). Fix a non-constant boolean function σ on
k-bit strings σ : {0, 1}k → {0, 1}, say the zeroth bit σ(s) := s�0 for s ∈ {0, 1}k.30 The Boolean
DAG Evaluation Problem (BDEPkG) seeks to compute σ(vτ).

4.1 Karchmer–Wigderson Game

Boolean circuit depth complexity is studied here via the (co-operative) communication game of
Karchmer and Wigderson [KW90]. Recall that given a boolean function f : {0, 1}n → {0, 1} with
promises Y ⊆ f−1(1) and N ⊆ f−1(0), the Karchmer–Wigderson game (KWY,N) is a communi-
cation game between two parties defined as follows: Party 1 (the Yes party) is given a promised
Yes instance x ∈ Y , Party 0 (the No party) is given a promised No instance y ∈ N , and they
communicate to locate a bit position i ∈ [n] where the inputs differ (i. e., xi 6= yi). (So the commu-
nication protocols are computing relations rather than functions.) And the Karchmer–Wigderson
game for a boolean function f is KWf := KWf−1(1),f−1(0). Karchmer and Wigderson observed that
the communication complexity captures exactly the circuit depth.31

29Note that for a source vertex a ∈ U , its function ta degenerates to have a domain of [K]∅, hence the function
ta ∈ [K] can be treated as a k-bit string. Thus its value va is just its function ta ∈ 2[K] treated as a k bit-string.

30All non-constant boolean functions are equivalent with respect to the (restricted) lower bounds in this work.
The zeroth bit is chosen here since its computation is trivial, i. e., takes no extra depth.

31Also observed independently by Yannakakis and was implicit in [KPPY84], see [KW90].

20

Theorem 8 (Karchmer–Wigderson [KW90, Theorem 2.1]31). The depth complexity of f on boolean
circuits is exactly the communication complexity of KWf .

Notation 4.3 (Admissible Inputs). Consider the protocol Π (as a rooted binary tree) and a node
g ∈ Π. Denote f−1

g (1) as the set of inputs that can be given to Party 1 (the Yes party) at g and
f−1
g (0) as the set of inputs that can be given to Party 0 (the No party). That is, the combinatorial

rectangle associated with the node g is f−1
g (1)× f−1

g (0).

Notation 4.4 (Output Node). Given an instance (x, y) ∈ f−1(1) × f−1(0) and a protocol Π,
denote Π(x, y) as the output node (rather than just the value) after running the protocol Π on the
instance.

4.2 Thrifty and Output-Relevant Circuits

This subsection introduces two families of circuits with restricted computational semantics for
BDEPkG: thrifty circuits and output-relevant circuits.

When concerning depth complexity, a circuit can be assumed to be a formula without loss of
generality. Then a boolean formula C is isomorphic to a corresponding communication protocol Π
(denoted C ≡ Π) not only graph-theoretically (as a rooted binary tree), but also computationally
(subsets of Yes and No instances match the combinatorial rectangles, i. e., for every g ∈ C ≡ Π
under the graph isomorphism, any input x ∈ f−1

g (1) evaluates to 1 at gate g ∈ C and any input
y ∈ f−1

g (0) evaluates to 0 at gate g). Therefore certain computational notions for a formula (or
a circuit) C can equivalently be defined over the communication protocol Π under the Karchmer–
Wigderson correspondence ≡, as is done below for the notions of thrifty circuits and output-relevant
circuits.

Intuitively, a circuit for BDEPkG is thrifty if its computation depends only on the values va,
but not on other irrelevant bits (variables) of the functions ta (Definition 4.7), as an analogue
of thrifty branching programs [CMW+12]; and a circuit for BDEPkG is output-relevant if it only
outputs relevant bits (variables), similar to the players who only output leaves of the universal
composition relation [KRW95, §6]. Note that after taking away the output-relevant restriction, a
communication game for BDEPkG is a proper Karchmer–Wigderson game (so that it corresponds
properly to circuit depth). This is not the case for the universal composition relation.

Notation 4.5 (Values). For an input x ∈ {0, 1}n to BDEPkG, denote x�va as the va value of x (see
Definition 4.1). As a shorthand, write x�a for x�va , and x�S for 〈x�a〉a∈S when S ⊆ V .

Definition 4.6 (Thrifty Protocols and Circuits). A protocol Π for KWY,N is thrifty where Y ⊆
f−1(1) and N ⊆ f−1(0) for f := BDEPkG, if for any pair of promised Yes instances x, x′ ∈ Y ,
and any pair of promised No instances y, y′ ∈ N , such that x�V = x′�V and y�V = y′�V , we have
Π(x, y) = Π(x′, y′). A circuit C for f is thrifty, if there is a thrifty protocol Π for KWf isomorphic
to (the formula equivalent to) C (i. e., C ≡ Π).

Definition 4.7 (Relevant Bits). For an input x ∈ {0, 1}n to BDEPkG, an input bit (variable) is
relevant to x if (1) it is a variable specifying the 〈va′〉a′∈δin(a) entry of ta for a vertex a ∈ V ; or
equivalently (2) x′�V 6= x�V where x′ and x differ only on that bit.

Definition 4.8 (Output-Relevant Protocols and Circuits). A protocol Π for KWY,N is output-
relevant where Y ⊆ f−1(1) and N ⊆ f−1(0) for f := BDEPkG, if for any (x, y) ∈ Y ×N , the node
Π(x, y) outputs a bit (position) relevant to x and relevant to y. A circuit C for f is output-relevant,
if there is an output-relevant protocol Π for KWf isomorphic to (the formula equivalent to) C (i. e.,
C ≡ Π).

21

Remark 4.9 (Relevant Outputs as Certificates). Recall that the depth of a decision tree depends
on the certificate complexity, where a certificate for a particular input x ∈ {0, 1}n is a subset of
bits of x sufficient to witness the membership/non-membership of x in a language. For both the
Dymond–Tompa game (in particular the interpreted variant [VT89]) and the Karchmer–Wigderson
game [KW90], it is of interest to efficiently pack certificates (for different Yes/No-instances) into
(the leaves of) a shallow ‘winning strategy’ or (the output nodes of) a shallow protocol. And (the
alternation in) the minimization of depth in both games can be modeled by two competing provers,
who present bits of the certificates to witness membership/non-membership.

Specializing to the computational problem of BDEPkG, an efficient certificate for a particular
input x ∈ {0, 1}n should contain precisely the bits of the values relevant to x (at least when
k is large, because a certificate containing a full row or column in a table is expensive). This
combinatorial consideration motivates the definition of output-relevant circuits.

Proposition 4.10 (Thrifty is Relevant). For f := BDEPkG and Y ×N ⊆ f−1(1)×f−1(0), a correct
protocol Π for KWY,N (and hence a correct circuit C for f), if thrifty, is output-relevant.

Proof. If Π for KWY,N is not output-relevant, there is an instance (x, y) ∈ Y ×N such that Π(x, y)
outputs a bit position i ∈ [n] not relevant to (say) x. Flip that bit in x to get x′, then x′i 6= xi and
x�V = x′�V . If Π is thrifty, Π(x, y) = Π(x′, y), but then the protocol is incorrect on the instance
(x, y) or on (x′, y), since either xi = yi or x′i = yi.

4.3 Upper Bound for Evaluation

Theorem 9 implements a strategy for the Dymond–Tompa game DTG as a circuit for the evaluation
problem BDEPkG.

Theorem 9 (Upper Bound for Evaluation). For any directed acyclic graph G whose Dymond–
Tompa game takes h time, there is a (uniform) thrifty circuit C computing BDEPkG of depth (h −
1)
(
k + dlog2(k + 1)e

)
= O(hk).

Proof. Apply Lemma 4.12 on 〈〈{τ},⊥, τ〉〉, α ∈ [K]∅, j = 0, b = 1.

Definition 4.11 (Bit Equality). Let β : {0, 1}k × [k]× {0, 1} → {0, 1} be the bit-equality function
β(z, j, b) := z�j ⊕ b⊕ 1, where ⊕ denotes addition mod 2.

We recall Definitions 3.4 and 3.5 and Footnote 24, from § 3.4.

Lemma 4.12 (Upper Bound for Evaluation, Induction). For any configuration 〈〈P,⊥, c〉〉 of DTG
with Val(〈〈P,⊥, c〉〉) =: h, any values α ∈ [K]P\{c} on P \ {c}, any j ∈ [k], b ∈ {0, 1}, there is a
(uniform) thrifty circuit C for BDEPkG of depth (h− 1)

(
k + dlog2(k + 1)e

)
, so that any x ∈ {0, 1}n

with x�P\{c} = α satisfies C(x) = β(x�vc , j, b).

Proof. Since negation does not increase depth, assume b = 1. If h = 1, then δin(c) ⊆ P ,
hence α contains all va for a ∈ δin(c). Now the input gate at the jth position of the α�δin(c)

entry of ta is a circuit C of depth zero satisfying the conditions, establishing the base case. If
h > 1, let r ∈ Vc(P) \ P be such that max{Val(CL),Val(CR)} < h where CL := 〈〈P ′,⊥, r〉〉
and CR := 〈〈P ′,⊥, c〉〉 for P ′ := P ∪ {r} (Corollary 3.12). Let CΛ := 〈〈P ′ \ {c},⊥, r〉〉, then
Val(CΛ) = Val(CL) by Lemma 3.8. Consider a circuit C constructed as follows: for every
v ∈ [K] ∼= {0, 1}k, let αv ∈ [K]P

′\{c} be such that αv�P\{c} = α and αv�r = v. For any

i ∈ [k], induction hypothesis on 〈CΛ, α, i, v�i〉 gives a circuit Cv,iΛ , and induction hypothesis on

〈CR, αv, j, b〉 gives a circuit CvR, satisfying the conditions. Construct C :=
∨
v∈[K]

(
CvR ∧

∧
i∈[k] C

v,i
Λ

)
,

22

then depth(C) ≤ maxv∈[K]

{
depth(CvR),maxi∈[k]{depth(Cv,iΛ)}

}
+
(
k+ dlog2(k+ 1)e

)
, and for x with

x�P\{c} = α, C(x) = CvR(x) for v := x�r.

4.4 Adversary Argument: when Raz–McKenzie meet Karchmer–Wigderson

Our lower bounds are based on the extension by Raz–McKenzie [RM99] of the adversary argument
by Edmonds–Impagliazzo–Rudich–Sgall [EIRS01]. We construct below an interface between the
Karchmer–Wigderson (communication) game and the Raz–McKenzie (pebble) game. Note that
there is no direct mapping between the two parties in the Karchmer–Wigderson (co-operative) game
and the two players in the Raz–McKenzie (competitive) pebble game: the interface between the
two games is not straightforward. Also, unlike the case for monotone circuits where it is possible to
abstract away the adversary argument as a communication game (called Dart), it appears necessary
in the non-monotone case to directly run the adversary argument over the circuit.

Fix a DAG G whose Raz–McKenzie pebble game takes h time, and consider an output-relevant
protocol solving BDEPkG. It will be shown that the communication game of Karchmer–Wigderson
for the evaluation problem KWBDEPkG

must take Ω(hk) bits of communication for an output-relevant
protocol. Recall that the two parties in a communication game want to locate a bit where their
inputs differ. Intuitively, for an adversary to foil the two parties, the adversary wants to achieve
two conflicting goals: (1) to provide a pair of inputs satisfying the promise of being different; and
(2) to hide the difference of a particular input pair among many input pairs, so that the difference is
hard for the parties to locate. For hiding the difference, the adversary would maintain a symmetry
between the two parties, so that the many input pairs they get look similar (called same below).
To delay the discovery of the difference (called different below) by the two parties, the adversary
escalates the decision tree complexity of the Raz–McKenzie pebble game to the communication
complexity. For output-relevant protocols, it suffices for the adversary to hide the difference locally,
so that no different vertices have all its in-neighbors same (see Lemma 4.16).

We come up with an adversary (for the Karchmer–Wigderson game) that does the following (to
play the Raz–McKenzie pebble game for h moves): she keeps track of a set A of alive vertices over
G, and also a set C of common values over (effectively) A (i. e., va for a ∈ A) that can be given
to both parties (Notation 4.3). The adversary maintains the symmetry between the parties for all
the values over A (by keeping C large) until she is forced to kill some vertex in A. Whenever she
kills a vertex, she makes a move for Pebbler to pebble the newly killed vertex, and then makes a
move for Colorer under the optimal strategy against Pebbler. The parties must spend Ω(k) bits
of communication on average to force the adversary to kill a vertex. And the adversary against
an output-relevant protocol is still in good shape unless h vertices are dead (pebbled), because G
takes h time to play the Raz–McKenzie pebble game.

A bit more precisely, consider the product space X := [K]V with V := V (G), interpreted as the
set of possible values given to the two parties. At every node g of the protocol Π, any vertex a ∈ V
is either same (under symmetry) or different (symmetry is broken) for the two parties. Denote
S := Sg ⊆ V as the set of same vertices, and D := Dg := V \ S as the set of different vertices at
the node g.32 The meaning of same and different vertices is as follows (Definition 4.13): for every
different vertex d ∈ D, there are two non-empty sets P 0

d , P
1
d ⊂ X�d of disjoint promised values

(P 0
d ∩ P 1

d = ∅), such that P 1
d are some values at d that can be given to Party 1, and P 0

d are some
values at d that can be given to Party 0; and there is a set C := Cg ⊆ X�S of common values over S
that can be given to both parties. In addition, a sub-rectangle Y ×N := Yg×Ng ⊆ f−1

g (1)×f−1
g (0)

will be associated to a node g.

32Formally, the sets Y , N , S, D, C, and A can be different for different gate g, but for cleaner notation we may
drop the reference to a gate g when it is clear from the context.

23

Definition 4.13 (Coherent Data). The data
〈
Y,N, S,D,C, 〈P 0

d , P
1
d 〉d∈D

〉
, where D = V \ S and

C ⊆ X�S , is coherent at a node g if (i) Y ×N ⊆ f−1
g (1)× f−1

g (0); and (ii) for any common value
c ∈ C, there are Yes instance x ∈ Y and No instance y ∈ N , so that they agree with c over S
(i. e., x�S = c = y�S), and are as promised over D (i. e., for any different vertex d ∈ D, we have
x�d ∈ P 1

d and y�d ∈ P 0
d).

It will be shown in § 4.5 how the adversary maintains the data
〈
Y,N, S,D,C, 〈P 1

d , P
0
d 〉d∈D

〉
at

different nodes g of Π. Consider the subset of same vertices whose values have high entropy under
C, and call them alive.

Definition 4.14 (Alive Vertices). A vertex a ∈ V is said to be alive (under C) if AveDega(C) ≥
8 ·K19/20 (see Definition A.1). Let A := Ag ⊆ S be the set of alive vertices (at node g).

The idea is that, if the same vertices S, different vertices D, and the alive vertices A form a
safe configuration (Definition 4.15) and the data is coherent (Definition 4.13) at a node g, then the
adversary is in good shape at g: namely, node g cannot be an output node of the protocol Π, and
the two parties need to continue their communication (Lemma 4.16). Note that when 〈S,D,A〉 is
in a safe configuration at a node g, A is non-empty, hence |C�a| ≥ AveDega(C)� 0 for any a ∈ A
and C is non-empty.

Definition 4.15 (Safe Configuration). The triple 〈S,D,A〉 with ∅ ⊂ A ⊆ S ⊆ V and D = V \ S
is said to be in a safe configuration if every different vertex d ∈ D has at least one in-neighbor
d′ ∈ δin(d) such that d′ ∈ D ∪A is different or alive.

Lemma 4.16 (Adversary is in Good Shape). Consider a correct, output-relevant protocol Π for
KWf where f := BDEPkG. If at a node g of the protocol Π, there are sets Y ⊆ f−1

g (1), N ⊆ f−1
g (0),

S ⊆ V (same), D := V \ S (different), and common values C ⊆ X�S over the same vertices S,
and for any different vertex d ∈ D, there are non-empty sets P 0

d , P
1
d ⊂ X�d of disjoint promised

values (P 0
d ∩P 1

d = ∅) at d, such that (1) 〈S,D,A〉 forms a safe configuration where A are the alive
vertices (under C); and (2) the data

〈
Y,N, S,D,C, 〈P 0

d , P
1
d 〉d∈D

〉
is coherent at g, then the node g

cannot be an output node of Π.

Proof. Assume that g is a leaf node of Π outputting a bit position i ∈ [n]. The bit position i
specifies a variable of ta for some a ∈ V . Now consider separately whether a is same or different.

• a ∈ S is same: since C is non-empty, pick any c ∈ C, and by coherence there is an instance
(x, y) ∈ f−1

g (1)× f−1
g (0) so that x�S = c = y�S , hence x�a = y�a. If Π is output-relevant, i is

a bit (position) relevant to both x and y, so the relevant entries of x and y are the same at a
(i. e., x�δin(a) = y�δin(a), see item (1) of Definition 4.7) and xi = yi, so Π cannot be correct.

• a ∈ D is different: since 〈S,D,A〉 forms a safe configuration, a has an in-neighbor a′ ∈ δin(a)
which is different or alive.

– a′ ∈ D is different: since C is non-empty, pick any c ∈ C, and by coherence there is
an instance (x, y) ∈ f−1

g (1)× f−1
g (0) as promised at a′ (i. e., x�a′ ∈ P 1

a′ and y�a′ ∈ P 0
a′).

Since P 0
a′ is disjoint from P 1

a′ , x�a′ 6= y�a′ .

– a′ ∈ A is alive: note that |C�a′ | ≥ AveDega′(C)� 1, hence there are distinct c1 6= c0 ∈
C�a′ . Since A ⊆ S, a′ ∈ S is same, by coherence there is x ∈ f−1

g (1) with x�a′ = c1, and
by coherence there is y ∈ f−1

g (0) with y�a′ = c0. Hence x�a′ 6= y�a′ .

24

In both cases, there is an instance (x, y) ∈ f−1
g (1) × f−1

g (0) such that x�a′ 6= y�a′ , thus the
relevant entries of x and y are different at a (i. e., x�δin(a) 6= y�δin(a)). Then i cannot be a bit
(position) relevant to both x and y, and Π cannot be output-relevant.

To conclude this subsection, the above adversary argument is connected with the Raz–McKenzie
pebble game below.

Definition 4.17 (Initial Conditions). At the root node r of the protocol Π for KWf where f :=
BDEPkG, Yr := f−1

r (1) = f−1(1), Nr := f−1
r (0) = f−1(0), all vertices except the sink vertex τ are

same, so Dr := {τ} and Sr := V \ Dr. Let Cr := X�S , P 1
τ := k-bit strings whose zeroth bit is 1

and P 0
τ := k-bit strings whose zeroth bit is 0.

Note that initially, all same vertices are alive (Ar = Sr), the data
〈
Yr, Nr, Sr, Dr, Cr, 〈P 0

d , P
1
d 〉d∈D

〉
is coherent, and 〈Sr, Dr, Ar〉 is in a safe configuration. Throughout the protocol, dead vertices (i. e.,
non-alive vertices, V \A) are precisely the vertices pebbled by Pebbler in the Raz–McKenzie pebble
game, and the initial conditions correspond to the adversary making the first move of Pebbler to
pebble w, and making the first (forced) move of Colorer to color τ red (i. e., P = V \A throughout,
and the initial configuration is CRM

G in RMG, see Definition 3.15). Later in the protocol, when some
vertex a ∈ V loses too much entropy and dies, the adversary makes a move for Pebbler to pebble a,
and then makes a move for Colorer under the optimal strategy against Pebbler, and (1) keeps a as
same if Colorer colors a blue; or (2) marks a as different if Colorer colors a red. (Thus B = S \A
throughout, see Definition 3.15.)

Claim 4.18 (Safe Till it is Over). Till the Raz–McKenzie pebble game is over, 〈S,D,A〉 remains
a safe configuration.

Proof. If 〈S,D,A〉 is not safe, then some different vertex d ∈ D has all its in-neighbors same and
dead, i. e., δin(d) ⊆ S \A. Since dead vertices are pebbled V \A = P and dead vertices are blue if
same B = S \A (see Definition 3.15), it follows that d ∈ P \B is red while δin(d) ⊆ B are blue, so
the Raz–McKenzie pebble game is over.

4.5 Recursive Lower Bound

This subsection formally proves Theorem 10, by enforcing the pebbling strategy in §4.4 with infor-
mation theoretic (counting) arguments (Appendix A). Throughout this subsection, fix a directed
acyclic graph G = (V,E) whose Raz–McKenzie pebble game takes h time, and an output-relevant
protocol Π for KWf where f := BDEPkG. For any real number α ≥ 0 and integer 0 ≤ t ≤ |V |,
consider the set of all Karchmer–Wigderson games KWY,N satisfying

• there is a node g ∈ Π such that Y ⊆ f−1
g (1) and N ⊆ f−1

g (0), where the boolean function f

is BDEPkG;

• there are sets S ⊆ V , D = V \ S, and for every d ∈ D, there are disjoint sets P 0
d , P

1
d ⊂ X�d,

such that Y �d ⊆ P 1
d and N�d ⊆ P 0

d ;

• there is a large set C ⊆ X�A of values when restricted to a set A ⊆ S of alive co-ordinates
(under C, Definition 4.14), |A| = t, with at most α bits known about C, that is, α ≥
log2

(
|X�A|/|C|

)
= tk − log2(|C|);

• C is thick, Thickness(C) ≥ K17/20 (Definition A.2 in Appendix A);

• C is common to both Y and N over A, in the sense that C ⊆ (Y �A) ∩ (N�A);

25

• the data
〈
Y,N, S,D,C, 〈P 0

d , P
1
d 〉d∈D

〉
is coherent at g; and

• the pebble configuration corresponding to 〈S,D,A〉 has value at least t − |V | + h, i. e.,
Val(〈〈P,⊥, B〉〉) ≥ t− |V |+ h where P := V \A and B := S \A (Definitions 3.15 and 3.16).

Any such game KWY,N has data
〈
g, Y,N, S,D,C, 〈P 0

d , P
1
d 〉d∈D, A

〉
, and denote its communica-

tion complexity under output-relevant protocols by CCOutRel := CCOutRel(KWY,N). Note that
〈S,D,A〉 is in a safe configuration when t > |V |−h+ 1 by Claim 4.18. In this case the data satisfy
the conditions of Lemma 4.16. In addition to these data, the extra parameters α and t specify
respectively the amount of information known about the common values C and the number of alive
vertices |A|. Denote the collection of such games with parameters α and t as Games

[
α, t
]
.

Definition 4.19 (Complexity Measure). Let Comp
[
α, t
]

be the minimum communication com-
plexity by output-relevant protocols solving any Karchmer–Wigderson game in Games

[
α, t
]
. That

is,
Comp

[
α, t
]

:= min
KWY,N∈Games

[
α,t
]CCOutRel(KWY,N) .

The following lemma lower bounds the complexity measure, and follows the proof of the main
theorem of Raz and McKenzie [RM99, §6].

Claim 4.20 (Recursive Lower Bound). When K ≥ |V |20 and t > |V | − h+ 1,

Comp
[
α, t
]
≥ min

{
Comp

[
α+ 2, t

]
+ 1, Comp

[
α− 1

20k + 3, t− 1
] }

.

In particular,

Comp
[
α, t
]
≥ 1

2

[
(t− |V |+ h− 1)

(k
20
− 3
)
− α

]
.

Proof. Consider a Karchmer–Wigderson game KWY,N in Games
[
α, t
]

with data
〈
g, Y,N, S,D,C,

〈P 0
d , P

1
d 〉d∈D, A

〉
. There are two cases:

1. for every j ∈ A, AveDegj(C) ≥ 8 ·K19/20, and

2. for some j ∈ A, AveDegj(C) < 8 ·K19/20.

Then the first half of the lemma follows from Claims 4.21 and 4.22 below. Induction then gives the
second half.

Claim 4.21 (Recursive Lower Bound, Alive Case). Assume t > |V | − h + 1. If for every j ∈ A,
we have AveDegj(C) ≥ 8 ·K19/20, then

CCOutRel ≥ Comp
[
α+ 2, t

]
+ 1 .

Proof. Recall that Π denotes the output-relevant protocol solving the game. The node g cannot be
an output node of Π by Lemma 4.16. Assume without loss of generality that Player 1 transmits
the first bit at node g ∈ Π, which partitions Y into two sets Y0 and Y1 (respectively at nodes g0

and g1, children of g). Now, we have

|(Y0�A) ∩ (N�A)| ≥ |C|/2 or |(Y1�A) ∩ (N�A)| ≥ |C|/2 .

Assume the former without loss of generality, and let C ′ := (Y0�A) ∩ (N�A). The assumption on
average degree, together with Lemma A.3, gives AveDegj(C

′) ≥ 4 ·K19/20 for every j ∈ A. Now
Lemma A.6 gives a set C ′′ ⊆ C ′ with |C ′′| ≥ |C ′|/2 ≥ |C|/4 and Thickness(C ′) ≥ K17/20. Let
Y ′′ :=

{
x ∈ Y : x�A ∈ C ′′

}
be the subset of Y consistent with C ′′ when restricted to A. Then

KWY ′′,N is in Games
[
α+ 2, t

]
, and the lemma follows. (A bit more precisely, KWY,N is the same

as KWY ′′,N , except that g is updated to g0, Y to Y ′′, and C to C ′′.)

26

Claim 4.22 (Recursive Lower Bound, Dead Case). Assume that K ≥ |V |20. If for some j ∈ A,
we have AveDegj(C) < 8 ·K19/20, then

CCOutRel ≥ Comp
[
α− 1

20k + 3, t− 1
]
.

Proof. We have AveDegj(C) < 8 · K19/20 and Thickness(C) ≥ K17/20. Let A′ := A \ {j} and
C ′ := C�A′ . Now Lemmas A.4 and A.5 give

|C ′|
|X�A′ |

>
|C|
|X�A|

1

8
K1/20 and Thickness(C ′) ≥ K17/20 ,

hence log2

(
|X�A′ |/|C ′|

)
< α − 1

20k + 3. After making j dead, update 〈S,D,A〉 to 〈S′, D′, A′〉 so
that Val(〈〈P ′,⊥, B′〉〉) ≥ Val(〈〈P,⊥, B〉〉) − 1, where P ′ = V \ A′, B′ = S′ \ A′, P = V \ A, and
B = S \A (Definitions 3.15 and 3.16). In case j is made different, we need two new sets P 0

j , P
1
j of

promised values at j, as given by Claim 4.23 (together with Y ′, N ′). Otherwise, j is made same,
and let Y ′ := Y and N ′ := N . In either case, the game KWY ′,N ′ with data

〈
g, Y ′, N ′, S′, D′, C ′,

〈P 0
d , P

1
d 〉d∈D′ , A′

〉
is in Games

[
α− 1

20k + 3, t− 1
]
, and the lemma follows.

Claim 4.23 (Symmetry Breaking). For K ≥ |V |20, if Y , N , A and C are such that C ⊆ (Y �A) ∩
(N�A), given j ∈ A with MinDegj(C) ≥ K17/20, let A′ := A \ {j} and C ′ := C�A′, then there exist
Y ′ ⊆ Y , N ′ ⊆ N , and disjoint P 0

j , P
1
j ⊂ X�j, such that C ′ ⊆ (Y ′�A′) ∩ (N ′�A′) and Y ′�j ⊆ P 1

j and

N ′�j ⊆ P 0
j .

Proof. Randomly partition X�j into P 1
j and P 0

j , by including each string in P 1
j independently with

probability half, and let P 0
j := X�j \P 1

j . Let Y ′ be the subset of Y which when projected to j is in

P 1
j , and similarly define N ′ from N and P 0

j . Now C ′ ⊆ (Y ′�A′)∩(N ′�A′) fails to hold only when there

is a c′ ∈ C ′ such that all extensions of c′ are in P 1
j , or all are in P 0

j . Since MinDegj(C) ≥ K17/20,

this happens with probability at most |C ′|·2−K17/20+1 ≤ K |V | ·2−K17/20+1 ≤ 2K
1/20 log2 K−K17/20+1 �

1. Hence the claimed sets exist with overwhelming probability.33

Theorem 10 (Lower Bound for Evaluation). For any directed acyclic graph G whose Raz–McKenzie
pebble game takes h time, if 2k ≥ |V |20, then any output-relevant circuit computing BDEPkG has
depth at least (h− 1)(k40 − 2) = Ω(hk).

5 Resolution Refutations

5.1 Size Lower Bound from Depth

For further background on resolution refutations of unsatisfiable formulas, see e. g., [Urq11,Nor12].
The empty, unsatisfiable formula is denoted as ⊥.

Urquhart [Urq11] escalated the depth complexity of a resolution refutation to a size lower
bound on tree-like resolution refutations, based on the Prover/Delayer game introduced by Pudlák–
Impagliazzo [PI00] and employed by Ben-Sasson–Impagliazzo–Wigderson [BSIW04], with the sub-
stitution construction of Alekhnovich–Razborov [BS09] (denoted Σ⊕ below; for generalizations,
see [BSN11]).

Lemma 5.1 (Size Lower Bound from Depth [Urq11, Theorem 5.4]). If Depth(Σ ` ⊥) ≥ k, then
any tree-like resolution refutation of Σ⊕ has size at least 2k.

33Alternatively, the existence of the claimed set can be demonstrated by a deterministic greedy algorithm.

27

Based on Ben-Sasson–Wigderson [BSW01] which extends Raz–McKenzie [RM99], Urquhart
then constructed a pebbling contradiction formula [Urq11, Theorem 4.6] by escalating the hardness
of black pebble game [PTC76], separating the width and depth of resolution refutations. We will
see that it suffices to escalate the hardness of reversible black pebble game, which turns out to be
connected to the depth complexity of search problems.

Definition 5.2 (Pebbling Contradictions). Let ΣG denote the pebbling contradiction over G, which
is a CNF boolean formula defined as follows. ΣG has one boolean variable v for each vertex v ∈ G.
ΣG is the conjunction over the following clauses, and hence is unsatisfiable.

• for all source vertex v in G, ΣG has a clause with a single positive literal v;

• for all non-source vertex v in G having in-neighbors δin(v), ΣG has a clause v ∨
∨
u∈δin(v) ū;

and

• for the sink vertex τ of G, ΣG has a clause with a single negative literal τ̄.

5.2 Tight Bounds for Tree-Like Resolution

For an unsatisfiable formula Σ, we will need the well-known isomorphism between (regular) tree-like
resolution refutations for Σ and decision trees solving the search problem for Σ [BSIW04, Lemma 7].

Theorem 3 (Depth of Pebbling Contradictions). Fix a directed acyclic graph G = (V,E) with a
unique sink τ. The depth complexity of resolution refutation for ΣG is exactly the pebble cost in
the Raz–McKenzie pebble game to pebble the sink vertex of Ĝ, where Ĝ := (V ∪ {τ̂}, E ∪ {(τ, τ̂)})
is G augmented with an extra vertex τ̂ as the new sink.

Proof. Concerning depth complexity, assume the resolution refutation is tree-like without loss of
generality. Note that a minimum depth tree-like resolution must be regular (as pointed out by
Urquhart [Urq11], this is proved by Grigori Tseitin [Tse70], or alternatively this follows from a
simple tree pruning argument [Urq95]). Now it corresponds to a valid strategy in the Raz–McKenzie
pebble game over Ĝ. For the other direction, any valid strategy in the Raz–McKenzie pebble game
over Ĝ clearly gives a (regular) tree-like resolution refutation for ΣG.

Theorem 4 (Tight Size Bounds for Tree-Like Resolution). The tree-like resolution refutation of
Σ⊕G has size complexity 2Θ(Val(G)).

Proof. Since Val(Ĝ) ≥ Val(G), Lemma 5.1 and Theorem 3 give the lower bound. For the upper
bound, we show a tree-like resolution refutation of depth O

(
Val(G)

)
, using the fact that Val(Ĝ) ≤

Val(G)+1. Note that a Raz–McKenzie strategy over Ĝ of value Val(Ĝ) naturally gives a decision
tree for Σ⊕G of depth 2Val(Ĝ), which in turn gives a resolution refutation of depth 2Val(Ĝ).

Finally, we extend the lower bound on depth complexity to k-DNF-resolution refutations intro-
duced by Kraj́ıček [Kra01a]. For its motivation, see e. g., the survey by Nordström [Nor12]. We
follow the standard to treat a term (i. e., a conjunction of literals) dually as a collection of literals.

Definition 5.3 (k-DNF-Resolution). Lines in a k-DNF-resolution refutation are k-DNF formulas,
derived using the following inference rules (A and B denote k-DNF formulas, S and T denote
k-terms, and l1, . . . , lk denote literals):

28

k-cut
(l1 ∧ · · · ∧ lk′) ∨A ¬l1 ∨ · · · ∨ ¬lk′ ∨B

A ∨B
, where k′ ≤ k.

∧-introduction
A ∨ S A ∨ T
A ∨ (S ∧ T)

, where |S ∪ T | ≤ k.

∧-elimination
A ∨ S
A ∨ T

, where T ⊆ S.

Weakening
A

A ∨B
, for any k-DNF formula B.

Theorem 5. Any k-DNF-resolution refutation of ΣG has depth at least 1 + (Val(G)− 1)/k.

Proof. Imagine an adversary, who keeps track of a k-DNF formula Ad at ‘depth’ d in the refutation
and a restriction ρd, satisfying the invariant that (1) ρd falsifies Ad; and (2) the configuration
corresponding to ρd has value at least Val(Ĝ) − (d − 1)k, i. e., let Bd be the variables assigned
True under ρd, Rd False (the extra sink of Ĝ is always assumed False), then Val(LBd, RdM) ≥
Val(Ĝ)− (d− 1)k.

The adversary starts with the unsatisfiable k-DNF formula A1 := ⊥ and ρ1 := the unique sink
of Ĝ is False, satisfying the invariant at ‘depth’ d := 1. If the adversary hits an axiom formula Ad
from ΣG, then ρd falsifies Ad, i. e., Val(LBd, RdM) = 1, giving the required depth on the refutation.

Otherwise, we have Ad and ρd, where Ad is the result (i. e., on the bottom row) of an inference
rule. We will locate Ad+1 as one of the formulas on the top row of the inference rule, and update
ρd+1 appropriately. For the ∧-elimination rule and the weakening rule, the adversary takes Ad+1

as the only formula on the top row, and takes ρd+1 := ρd to maintain the invariant. For the ∧-
introduction rule, the adversary takes ρd+1 := ρd, and takes Ad+1 to be a formula on the top row
that is falsified by ρd+1.

For the remaining, interesting case of a k-cut rule, the adversary maintains Ad+1 and ρd+1 by
the recurrence of the Raz–McKenzie pebble game (Proposition 3.18). There are at most k fresh
variables among the literals l1, . . . , lk′ outside of the domain of ρd. At least one assignment to the
fresh variables gives an extension ρd+1 to ρd such that Val(LBd+1, Rd+1M) ≥ Val(LBd, RdM) − k,
and at least one formula Ad+1 on the top row is falsified by ρd+1.

6 Some Related Approaches

We recall below some related approaches for separating complexity classes mostly around P.
Multi-Party Communication Complexity As an approach to separate ACC0 from P,

researchers considered the multi-player pointer jumping problem [Cha07,BC08,VW09], with the aim
of proving a sufficiently strong lower bound in the number-on-forehead multi-party (simultaneous
message) communication model. A variant of the problem with a tree structure, called tree pointer
jumping problem [VW09], is like the tree evaluation problem with information flowing in the reverse
direction (from root to leaves).

Extension to Karchmer–Wigderson framework Aaronson–Wigderson [AW09] extended
the Karchmer–Wigderson framework [KW90] to consider a refereed communication game between
two parties (verifiers) and an additional prover, where a sufficiently strong lower bound on communi-
cation complexity would separate NL from NP. Kol–Raz [KR13] extended the Aaronson–Wigderson
framework of refereed communication game to a competing-prover protocol with two verifiers and
two provers, and suggested it as an approach for separating NC from P.

Block-Respecting Simulations Lipton–Williams [LW12] recently suggested that a suffi-
ciently strong lower bound on depth (e. g., n1−O(1)) may be able to separate NC from P, even with

29

a very weak lower bound on size (e. g., n1+Ω(1)), by using a block-respecting simulation to trade
depth for size and non-uniformity. The idea of proving lower bounds by trading depth for size was
due to Allender–Koucký [AK10].

Combinatorial Invariants Mulmuley–Sohoni [MS01,MS08] advocated the study of symme-
try and invariants of the computational problems as an approach for separating VP from VNP, the
non-uniform and algebraic analogue of P versus NP. One motivation is that Mulmuley [Mul99] ap-
plied semi-algebraic geometry to give a non-uniform and algebraic separation of alg-NC from alg-P
and alg-NCi from alg-NCi+1 on a restricted model of PRAM without bit operations, setting the stage
for proving stronger lower bounds. Another motivation is that properties described by certain com-
binatorial invariants are unlikely to be large or natural in the sense of Razborov–Rudich [RR97],
see e. g., Mulmuley [Mul11, §4.3].

Our Approach For comparison, our approach is closer to the competing prover proto-
cols [KR13] than to the multi-party communication complexity approach [Cha07, BC08, VW09],
due to the way that information is shared among the small number of parties involved (similar
to [KW90, AW09]). Also, the study of the DAG evaluation problem (BDEPkG) or the Generation
problem might provide the depth lower bounds required by block-respecting simulations [LW12]
(recall the pebbling results in § 1.1). In terms of combinatorial invariants, instead of consider-
ing representation-theoretic, algebro-geometric invariants [MS01,MS08], we have been considering
enumerative-combinatorial invariants shaped by pebbling strategies [Pot10, CP12] on monotone
models. Our approach is inspired by the consideration of thrifty branching programs [CMW+12].

7 Future Directions

Problem 7.1. Is the Bennett–Dymond–Tompa–Raz–McKenzie pebble game PSPACE-complete?

Problem 7.1 and the conjecture of Urquhart on the complexity of the minimum depth of reso-
lution refutations [Urq11, Problem 7.1] have been confirmed in an upcoming work of the author.
Namely, it is PSPACE-complete to compute the pebble cost in the Bennett–Dymond–Tompa–Raz–
McKenzie pebble game, and to compute the minimum depth of resolution refutations. The con-
nection in Theorem 1 may explain why the one-player (irreversible) black pebble game is PSPACE-
complete, while most PSPACE-complete games have two players.

Problem 7.2. Is it possible to connect other resources of the pebble games?

For example, this paper did not discuss the rounds in the Dymond–Tompa pebble game (or
Raz–McKenzie pebble game), or the time in the reversible pebble game. It is of interest, since
some resources of (the interpreted variant of) the Dymond–Tompa game [VT89] capture other
computational resources, e. g., bounded alternations.

Problem 7.3. Would it help to prove lower bounds by considering the uniformity of the circuits?

It is not hard to see that BDEPkG is not solvable by AC0 circuits when G is the pyramid graph
of height h = nΘ(1). Namely, when k ≈ 1

4 log n and h ≈ n1/4, the average sensitivity of BDEPkG
is nΘ(1) (while any function computed by AC0 circuits has average sensitivity logO(1) n [LMN93]).
It follows that BDEPkG is not computable by AC0-uniform AC0 circuits. Is it possible to relax the
uniformity or the complexity of the circuits in this lower bound?

Problem 7.4. The Dymond–Tompa game lower bounds the scaling in complexity, for the problem
of Generation on monotone switching networks, and for the problem of iterated indexing on output-
relevant circuits, over any directed acyclic graph and for a wide range of parameters. To what
extent, and on how general a model, does this correspondence hold?

30

The thrifty hypothesis of Cook, McKenzie, Wehr, Braverman, and Santhanam [CMW+12] can
be rephrased as the conjecture that this correspondence holds for the black pebble game on the
iterated indexing problem over the graph of binary trees, and on the model of branching programs,
up to constant factors.

It would be interesting to refute or to establish the optimality of (the interpreted variant of)
the Dymond–Tompa pebbling algorithms for space or parallel time: either (1) we get more space-
efficient algorithms for graph reachability, or faster parallel speed-up for any P-complete prob-
lem (e. g., linear programming, semi-definite programming, circuit evaluation);34 or (2) we get
very strong complexity results, e. g., L ⊂ NL ⊂ NC ⊂ P and NCi ⊂ NCi+1, and DTime[t] 6⊆
ATime

[
o(t/ log t)

]
.

Acknowledgements

The author thanks James Cook, Stephen Cook, Yuval Filmus, Pierre McKenzie, Aaron Potechin,
Robert Robere, and Dustin Wehr for their encouragements and their work on related research
projects leading to this work. The author also benefited from discussions with Luca Trevisan and
Ryan Williams, and from comments by Anand Bhaskar, Thomas Watson, and anonymous reviewers
of CCC ’2013.

References

[AB87] Noga Alon and Ravi B. Boppana, The monotone circuit complexity of boolean func-
tions, Combinatorica 7 (1987), no. 1, 1–22.

[ABSRW02] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigderson,
Space complexity in propositional calculus, SIAM Journal on Computing 31 (2002),
no. 4, 1184–1211.

[AD08] Albert Atserias and Vı́ctor Dalmau, A combinatorial characterization of resolution
width, Journal of Computer and System Sciences 74 (2008), no. 3, 323–334.

[AIK84] Akeo Adachi, Shigeki Iwata, and Takumi Kasai, Some combinatorial game problems
require Ω(nk) time, Journal of the ACM 31 (1984), no. 2, 361–376.

[AJPU07] Michael Alekhnovich, Jan Johannsen, Toniann Pitassi, and Alasdair Urquhart, An
exponential separation between regular and general resolution, Theory of Computing
3 (2007), no. 1, 81–102.

[AK10] Eric Allender and Michal Koucký, Amplifying lower bounds by means of self-
reducibility, Journal of the ACM 57 (2010), no. 3, 14:1–14:36.

[AW09] Scott Aaronson and Avi Wigderson, Algebrization: A new barrier in complexity theory,
ACM Transactions on Computation Theory 1 (2009), no. 1, 2:1–2:54.

[BC08] Joshua Brody and Amit Chakrabarti, Sublinear communication protocols for multi-
party pointer jumping and a related lower bound, 25th International Symposium on
Theoretical Aspects of Computer Science (STACS 2008) (Dagstuhl, Germany) (Su-
sanne Albers and Pascal Weil, eds.), Leibniz International Proceedings in Informatics

34Note that we consider ATime[·] as parallel time, so some improvements [LV03,Wil05] do not apply.

31

(LIPIcs), vol. 1, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2008, pp. 145–
165.

[BCGR92] Samuel R. Buss, Stephen A. Cook, Arvind Gupta, and Vijaya Ramachandran, An
optimal parallel algorithm for formula evaluation, SIAM Journal on Computing 21
(1992), no. 4, 755–780.

[BEGJ98] Maria Luisa Bonet, Juan Luis Esteban, Nicola Galesi, and Jan Johannsen, Exponential
separations between restricted resolution and cutting planes proof systems, FOCS (Palo
Alto, California, USA), IEEE Computer Society, 1998, pp. 638–647.

[Ben73] Charles H. Bennett, Logical reversibility of computation, IBM Journal of Research and
Development 17 (1973), no. 6, 525 –532.

[Ben89] , Time/Space trade-offs for reversible computation, SIAM Journal on Comput-
ing 18 (1989), no. 4, 766–776.

[Ber12] Christoph Berkholz, On the complexity of finding narrow proofs, FOCS, IEEE Com-
puter Society, 2012, pp. 351–360.

[BHP10] Paul Beame, Trinh Huynh, and Toniann Pitassi, Hardness amplification in proof com-
plexity, Proceedings of the 42nd ACM symposium on Theory of computing (New York,
NY, USA), STOC ’10, ACM, 2010, pp. 87–96.

[BIPS10] Paul Beame, Russell Impagliazzo, Toniann Pitassi, and Nathan Segerlind, Formula
caching in DPLL, ACM Transactions on Computation Theory 1 (2010), no. 3, 9:1–
9:33.

[BM91] David A. Mix Barrington and Pierre McKenzie, Oracle branching programs and
Logspace versus P, Information and Computation 95 (1991), no. 1, 96–115.

[BOCIP02] Joshua Buresh-Oppenheim, Matthew Clegg, Russell Impagliazzo, and Toniann Pitassi,
Homogenization and the polynomial calculus, Computational Complexity 11 (2002),
no. 3, 91–108.

[BOGH+06] Joshua Buresh-Oppenheim, Nicola Galesi, Shlomo Hoory, Avner Magen, and Toniann
Pitassi, Rank bounds and integrality gaps for cutting planes procedures, Theory of
Computing 2 (2006), no. 1, 65–90.

[BS90] Ravi B. Boppana and Michael Sipser, The complexity of finite functions, Handbook of
Theoretical Computer Science, Volume A: Algorithms and Complexity (A), Elsevier
and MIT Press, 1990, pp. 757–804.

[BS09] Eli Ben-Sasson, Size-space tradeoffs for resolution, SIAM Journal on Computing 38
(2009), no. 6, 2511–2525.

[BSIW04] Eli Ben-Sasson, Russell Impagliazzo, and Avi Wigderson, Near optimal separation of
tree-like and general resolution, Combinatorica 24 (2004), no. 4, 585–603.

[BSN11] Eli Ben-Sasson and Jakob Nordström, Understanding space in proof complexity: Sep-
arations and trade-offs via substitutions, ICS (Bernard Chazelle, ed.), Tsinghua Uni-
versity Press, 2011, pp. 401–416.

32

[BSW01] Eli Ben-Sasson and Avi Wigderson, Short proofs are narrow—resolution made simple,
Journal of the ACM 48 (2001), no. 2, 149–169.

[BTV01] Harry Buhrman, J. Tromp, and Paul Vitanyi, Time and space bounds for reversible
simulation, arXiv:quant-ph/0101133 (2001), Journal of Physics A: Mathematical and
General, 34(2001), 6821–6830.

[CEI96] Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo, Using the groebner basis
algorithm to find proofs of unsatisfiability, Proceedings of the twenty-eighth annual
ACM symposium on Theory of computing (New York, NY, USA), STOC ’96, ACM,
1996, pp. 174–183.

[Cha07] Amit Chakrabarti, Lower bounds for multi-player pointer jumping, IEEE Conference
on Computational Complexity, IEEE Computer Society, 2007, pp. 33–45.

[Cha12] Siu On Chan, Approximation resistance from pairwise independent subgroups, Elec-
tronic Colloquium on Computational Complexity (ECCC) 19 (2012), 110.

[CKS81] Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer, Alternation, Journal
of the ACM 28 (1981), no. 1, 114133.

[CMW+12] Stephen A. Cook, Pierre McKenzie, Dustin Wehr, Mark Braverman, and Rahul San-
thanam, Pebbles and branching programs for tree evaluation, ACM Transactions on
Computation Theory 3 (2012), no. 2, 4:1–4:43.

[CP12] Siu Man Chan and Aaron Potechin, Tight bounds for monotone switching networks
via fourier analysis, 2012, Journal version to appear in the Theory of Computing.

[CR79] Stephen A. Cook and Robert A. Reckhow, The relative efficiency of propositional
proof systems, The Journal of Symbolic Logic 44 (1979), no. 1, 36–50.

[DLL62] Martin Davis, George Logemann, and Donald Loveland, A machine program for
theorem-proving, Commun. ACM 5 (1962), no. 7, 394–397.

[DP60] Martin Davis and Hilary Putnam, A computing procedure for quantification theory,
Journal of the ACM 7 (1960), no. 3, 201–215.

[DT85] Patrick W. Dymond and Martin Tompa, Speedups of deterministic machines by syn-
chronous parallel machines, Journal of Computer and System Sciences 30 (1985),
no. 2, 149 – 161.

[EGM04] Juan Luis Esteban, Nicola Galesi, and Jochen Messner, On the complexity of resolution
with bounded conjunctions, Theoretical Computer Science 321 (2004), no. 2–3, 347–
370.

[EIRS01] Jeff Edmonds, Russell Impagliazzo, Steven Rudich, and Jiri Sgall, Communication
complexity towards lower bounds on circuit depth, Computational Complexity 10
(2001), 210–246, 10.1007/s00037-001-8195-x.

[EM10] Yara Elias and Pierre McKenzie, DAG evaluation and the red-blue problem, Advances
and Applications of Automata on Words and Trees, 2010, http://www.dagstuhl.de/
Materials/Files/10/10501/10501.McKenziePierre.Slides.pdf.

33

http://www.dagstuhl.de/Materials/Files/10/10501/10501.McKenziePierre.Slides.pdf
http://www.dagstuhl.de/Materials/Files/10/10501/10501.McKenziePierre.Slides.pdf

[ET01] Juan Luis Esteban and Jacobo Torán, Space bounds for resolution, Information and
Computation 171 (2001), no. 1, 84–97.

[GH92] Mikael Goldmann and Johan H̊astad, A simple lower bound for monotone clique using
a communication game, Information Processing Letters 41 (1992), no. 4, 221 – 226.

[Gri91] Michelangelo Grigni, Structure in monotone complexity, Ph.D. thesis, Massachusetts
Institute of Technology, June 1991.

[Gri01] Dima Grigoriev, Linear lower bound on degrees of positivstellensatz calculus proofs for
the parity, Theoretical Computer Science 259 (2001), no. 1–2, 613–622.

[GS95] Michelangelo Grigni and Michael Sipser, Monotone separation of logarithmic space
from logarithmic depth, Journal of Computer and System Sciences 50 (1995), no. 3,
433–437.

[Hak95] Armin Haken, Counting bottlenecks to show monotone P 6= NP, FOCS, IEEE Com-
puter Society, 1995, pp. 36–40.

[HN12] Trinh Huynh and Jakob Nordström, On the virtue of succinct proofs: Amplifying com-
munication complexity hardness to time-space trade-offs in proof complexity, STOC
(Howard J. Karloff and Toniann Pitassi, eds.), ACM, 2012, pp. 233–248.

[HPV77] John Hopcroft, Wolfgang Paul, and Leslie Valiant, On time versus space, Journal of
the ACM 24 (1977), no. 2, 332–337.

[HU07] Alexander Hertel and Alasdair Urquhart, Game characterizations and the PSPACE-
Completeness of tree resolution space, Computer Science Logic (Jacques Duparc and
Thomas Henzinger, eds.), Lecture Notes in Computer Science, vol. 4646, Springer
Berlin / Heidelberg, 2007, pp. 527–541.

[HW97] Johan H̊astad and Avi Wigderson, Composition of the universal relation, Advances
in Computational Complexity Theory, DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, American Mathematical Society, 1997, pp. 119–134.

[JL74] Neil D. Jones and William T. Laaser, Complete problems for deterministic polynomial
time, Proceedings of the Sixth Annual ACM Symposium on Theory of Computing
(New York, NY, USA), STOC ’74, ACM, 1974, pp. 40–46.

[JMNŽ12] Matti Järvisalo, Arie Matsliah, Jakob Nordström, and Stanislav Živný, Relating proof
complexity measures and practical hardness of SAT, Principles and Practice of Con-
straint Programming (Michela Milano, ed.), Lecture Notes in Computer Science,
Springer Berlin Heidelberg, jan 2012, pp. 316–331.

[Joh01] Jan Johannsen, Depth lower bounds for monotone semi-unbounded fan-in circuits,
Theoretical Informatics and Applications 35 (2001), no. 3, 277–286.

[KAI79] Takumi Kasai, Akeo Adachi, and Shigeki Iwata, Classes of pebble games and complete
problems, SIAM Journal on Computing 8 (1979), no. 4, 574–586.

[KPPY84] Maria Klawe, Wolfgang J. Paul, Nicholas Pippenger, and Mihalis Yannakakis, On
monotone formulae with restricted depth, STOC (New York, NY, USA), ACM, 1984,
pp. 480–487.

34

[KR13] Gillat Kol and Ran Raz, Competing provers protocols for circuit evaluation, Proceed-
ings of the 4th conference on Innovations in Theoretical Computer Science (New York,
NY, USA), ITCS ’13, ACM, 2013, pp. 473–484.

[Kra01a] Jan Kraj́ıček, On the weak pigeonhole principle, Fundamenta Mathematicae 170
(2001), no. 1, 123–140.

[Krá01b] Richard Král’ovič, Time and space complexity of reversible pebbling, SOFSEM 2001:
Theory and Practice of Informatics (Leszek Pacholski and Peter Ružicka, eds.), Lec-
ture Notes in Computer Science, vol. 2234, Springer Berlin / Heidelberg, 2001,
pp. 292–303.

[KRW95] Mauricio Karchmer, Ran Raz, and Avi Wigderson, Super-logarithmic depth lower
bounds via the direct sum in communication complexity, Computational Complexity
5 (1995), no. 3/4, 191–204.

[KW90] Mauricio Karchmer and Avi Wigderson, Monotone circuits for connectivity require
super-logarithmic depth, SIAM Journal on Discrete Mathematics 3 (1990), no. 2, 255–
265.

[Las01] Jean B. Lasserre, Global optimization with polynomials and the problem of moments,
SIAM Journal on Optimization 11 (2001), no. 3, 796–817.

[Lee59] Chang-Yeong Lee, Representation of switching circuits by binary-decision programs,
Bell System Technical Journal 38 (1959), no. 4, 985–999.

[LMN93] Nathan Linial, Yishay Mansour, and Noam Nisan, Constant depth circuits, fourier
transform, and learnability, Journal of the ACM 40 (1993), no. 3, 607–620.

[LMT00] Klaus-Jörn Lange, Pierre McKenzie, and Alain Tapp, Reversible space equals deter-
ministic space, Journal of Computer and System Sciences 60 (2000), no. 2, 354 –
367.

[LNNW95] László Lovász, Moni Naor, Ilan Newman, and Avi Wigderson, Search problems in the
decision tree model, SIAM Journal on Discrete Mathematics 8 (1995), no. 1, 119–132.

[LTV97] Ming Li, John Tromp, and Paul Vitanyi, Reversible simulation of irreversible compu-
tation by pebble games, arXiv:quant-ph/9703009 (1997), Physica D120 (1998) 168-176.

[LV96] Ming Li and Paul Vitanyi, Reversibility and adiabatic computation: Trading time and
space for energy, Proceedings of the Royal Society of London. Series A: Mathematical,
Physical and Engineering Sciences 452 (1996), no. 1947, 769–789 (en).

[LV03] Richard Lipton and Anastasios Viglas, Non-uniform depth of polynomial time and
space simulations, Fundamentals of Computation Theory (Andrzej Lingas and Bengt
Nilsson, eds.), Lecture Notes in Computer Science, vol. 2751, Springer Berlin / Hei-
delberg, 2003, pp. 323–354.

[LW12] Richard J. Lipton and Ryan Williams, Amplifying circuit lower bounds against poly-
nomial time with applications, IEEE Conference on Computational Complexity, 2012,
pp. 1–9.

[McK10] Pierre McKenzie, 2010, Personal communication.

35

[MS01] Ketan D. Mulmuley and Milind Sohoni, Geometric complexity theory I: An approach
to the P vs. NP and related problems, SIAM Journal on Computing 31 (2001), no. 2,
496–526.

[MS08] , Geometric complexity theory II: towards explicit obstructions for embeddings
among class varieties, SIAM Journal on Computing 38 (2008), no. 3, 1175–1206.

[Mul99] Ketan D. Mulmuley, Lower bounds in a parallel model without bit operations, SIAM
Journal on Computing 28 (1999), no. 4, 1460–1509.

[Mul11] , On P vs. NP and geometric complexity theory, Journal of the ACM 58 (2011),
no. 2, 5:1–5:26.

[Nor12] Jakob Nordström, Pebble games, proof complexity and time-space trade-offs, To appear
in Logical Methods in Computer Science.

[PH70] Michael S. Paterson and Carl E. Hewitt, Comparative schematology, Record of the
Project MAC conference on concurrent systems and parallel computation (Jack B.
Dennis, ed.), ACM, New York, NY, USA, 1970, pp. 119–127.

[PI00] Pavel Pudlák and Russell Impagliazzo, A lower bound for DLL algorithms for k-sat,
Proceedings of the eleventh annual ACM-SIAM symposium on Discrete algorithms
(Philadelphia, PA, USA), SODA ’00, Society for Industrial and Applied Mathematics,
2000, pp. 128–136.

[Pot10] Aaron Potechin, Bounds on monotone switching networks for directed connectivity,
2010, An updated version to appear in Journal of the ACM.

[PTC76] Wolfgang J. Paul, Robert Endre Tarjan, and James R. Celoni, Space bounds for a
game on graphs, Proceedings of the Eighth Annual ACM Symposium on Theory of
Computing (New York, NY, USA), STOC ’76, ACM, 1976, pp. 149–160.

[Raz85] Alexander A. Razborov, Lower bounds on the monotone complexity of some boolean
functions, Soviet Mathematics Doklady 31 (1985), no. 2, 354–357.

[Raz91] , Lower bounds for deterministic and nondeterministic branching programs,
FCT (Lothar Budach, ed.), Lecture Notes in Computer Science, vol. 529, Springer,
1991, pp. 47–60.

[Rei08] Omer Reingold, Undirected connectivity in log-space, Journal of the ACM 55 (2008),
17:1–17:24.

[RM99] Ran Raz and Pierre McKenzie, Separation of the monotone NC hierarchy, Combina-
torica 19 (1999), no. 3, 403–435.

[RR97] Alexander A Razborov and Steven Rudich, Natural proofs, Journal of Computer and
System Sciences 55 (1997), no. 1, 24–35.

[Ruz81] Walter Larry Ruzzo, On uniform circuit complexity, Journal of Computer and System
Sciences 22 (1981), no. 3, 365–383.

[RW92] Ran Raz and Avi Wigderson, Monotone circuits for matching require linear depth,
Journal of the ACM 39 (1992), no. 3, 736–744.

36

[Sav70] Walter J. Savitch, Relationships between nondeterministic and deterministic tape com-
plexities, Journal of Computer and System Sciences 4 (1970), no. 2, 177–192.

[Sch08] Grant Schoenebeck, Linear level lasserre lower bounds for certain k-CSPs, IEEE, oct
2008, pp. 593–602.

[Set75] Ravi Sethi, Complete register allocation problems, SIAM Journal on Computing 4
(1975), no. 3, 226–248.

[Tse70] Grigori Samuilovich Tseitin, On the complexity of derivation in propositional cal-
culus, Studies in Constructive Mathematics and Mathematical Logic, Part 2 (Ana-
tol Oles’evich Slisenko, ed.), Consultants Bureau, New York, 1970, pp. 115–125.

[Tul09] Madhur Tulsiani, CSP gaps and reductions in the lasserre hierarchy, Proceedings of
the 41st annual ACM symposium on Theory of computing (New York, NY, USA),
STOC ’09, ACM, 2009, pp. 303–312.

[Urq95] Alasdair Urquhart, The complexity of propositional proofs, The Bulletin of Symbolic
Logic 1 (1995), no. 4, 425–467.

[Urq11] , The depth of resolution proofs, Studia Logica 99 (2011), no. 1, 349–364.

[VT89] H. Venkateswaran and Martin Tompa, A new pebble game that characterizes parallel
complexity classes, SIAM Journal on Computing 18 (1989), no. 3, 533–549.

[VW09] Emanuele Viola and Avi Wigderson, One-way multiparty communication lower bound
for pointer jumping with applications, Combinatorica 29 (2009), no. 6, 719–743.

[Weh11] Dustin Wehr, Lower bound for deterministic semantic-incremental branching programs
solving GEN, CoRR abs/1101.2705 (2011).

[Wil00] Ryan Williams, Space-efficient reversible simulations, Tech. report, 2000.

[Wil05] , Parallelizing time with polynomial circuits, Proceedings of the seventeenth
annual ACM symposium on Parallelism in algorithms and architectures (New York,
NY, USA), SPAA ’05, ACM, 2005, p. 171175.

A Bounds on Information

This appendix collects the information theoretic (counting) arguments of Raz and McKenzie [RM99]
used in this work. It may be a good idea to consult [RM99] (and also [EIRS01] that inspired [RM99],
e. g., on the notion of predictability) for the intuition behind the information theoretic arguments
(used in the depth lower bounds in restricted models [RM99,BEGJ98,Joh01,EM10]).

Let X := [K]` be an `-fold product space and let C be a subset of X. Given a co-ordinate
j ∈ [`], define the bipartite graph Graphj(C) := 〈VL, VR, E〉, where VL := C�j and VR := C�[`]\j
and (vL, vR) ∈ E iff there is a c ∈ C such that c�j = vL ∈ VL and c�[`]\j = vR ∈ VR.

Definition A.1 (Average Degree [RM99]). Given j ∈ [`], we have Graphj(C) = 〈VL, VR, E〉 and

AveDegj(C) :=
|E|
|VR|

=
|C|
|C�[`]\j |

.

37

Definition A.2 (Min Degree and Thickness [RM99]). Given j ∈ [`], we have Graphj(C) =
〈VL, VR, E〉 and

MinDegj(C) := min
vR∈VR

deg(vR) .

Note that MinDegj(C) > 0, by definition of projection. Now

Thickness(C) := min
j∈[`]

MinDegj(C) .

Lemma A.3 (Large Size means Large Average Degree [RM99, Claim 5.1], [EIRS01, Lemma 4]).
Let C ′ ⊆ C. Then for any j,

AveDegj(C
′) ≥ |C

′|
|C|
·AveDegj(C) .

Lemma A.4 (Entropy Refill). For any j ∈ [`],

|C�[`]\j |
Kt−1

=
|C|
Kt

K

AveDegj(C)
.

Lemma A.5 (Dropping Index does not Drop Thickness [RM99, Claim 5.2]). For any j ∈ [`],

Thickness(C�[`]\j) ≥ Thickness(C) .

Lemma A.6 (Distilling Thickness from Average Degree [RM99, Corollary 5.4]). Assume that
K ≥ `20. If for every j, AveDegj(C) ≥ 4 ·K19/20, then there exists C ′ ⊆ C such that:

1. |C ′| ≥ |C|/2, and

2. Thickness(C ′) ≥ K17/20.

B Nondeterministic DAG Evaluation Problem

This appendix specializes the communication framework of Dart game to the Generation problem
over a directed acyclic graphG, denoted DartkG. As a result, this section generalizes the lower bounds
on monotone circuit depth for Generation by Raz–McKenzie [RM99] to any directed acyclic graph.
This has been claimed by Elias–McKenzie [EM10], which do not seem to be published. Results in
this appendix are not original, but are included for ease of reference.

Appendix B.1 recalls the hardness escalation argument of Raz–McKenzie [RM99] for translat-
ing the decision tree complexity of the Raz–McKenzie pebble game to monotone communication
complexity, and Appendix B.2 proves a lower bound on monotone circuit depth as Theorem 13.

Pierre McKenzie [McK10] introduced the following computational problem, which is roughly a
monotone variant of the DAG Evaluation Problem, and lies in the combinatorial core of the lower
bound on monotone circuit depth for Generation [RM99,Joh01,EM10]. This problem can be seen
as a parameterized version of the P-complete problem of monotone circuit evaluation. By studying
a slice of the problem (for a fixed graph G and constant k), we can focus on the combinatorics of
the ‘flow of values’ over the graph. Indeed, we will analyze it to give a lower bound on the depth of
monotone circuits solving the problem of Generation, whose Yes-instances have a structure of G.

38

Definition B.1 (Nondeterministic DAG Evaluation Problem over G). Consider a DAG G and a
bit-length parameter k ∈ N. Denote the set of k-bit strings as {0, 1}k ∼= [K], where K := 2k. The
Nondeterministic DAG Evaluation Problem over G (NDEPkG) is specified by the following.

Input For every vertex a ∈ V , there is a function ta : [K]δ
in(a) → 2[K].35 The input to NDEPkG

enumerates the n bits of 〈ta〉a∈V as n boolean variables where n := K
∑

a∈V K
degin(a).

‘Computation’ Define inductively the sets of values 〈za〉a∈V ∈ (2[K])V by

za :=
⋃

v�
δin(a)

∈z�
δin(a)

ta
(
v�δin(a)

)
∈ 2[K]

for a ∈ V .36 That is, the set za is union of ta applied to the sets at the in-neighbors of a.35

Output The output of NDEPkG is the tuple of sets 〈zw〉w∈W ∈ (2[K])W .

Henceforth, without loss of generality, focus on DAGs with exactly one sink vertex τ. The
interest is in the boolean circuit depth complexity of computing a decision version of NDEPkG (as
opposed to a 2[K]-valued function).

Definition B.2 (Boolean Nondeterministic DAG Evaluation Problem). Fix a non-constant mono-

tone boolean function τ on subsets of k-bit strings τ : 2{0,1}
k → {0, 1}, say the dictatorship

τ(S) := (S 3 0k) for S ⊆ {0, 1}k.37 The Boolean Nondeterministic DAG Evaluation Problem
(BNDEPkG) seeks to compute τ(zτ).

B.1 Dart Game over G: Structured Protocol for Hardness Escalation

To study the depth complexity of monotone circuits, Raz–McKenzie introduced the Dart game
framework [RM99, §2] based on the communication game of Karchmer–Wigderson [KW90]. Raz–
McKenzie then specialized the Dart game to the Generation problem with a structure of a pyramid
graph [RM99, §3] or of a line graph [RM99, §4.1]. Central to the lower bound argument in [RM99] is
the Raz–McKenzie pebble game [McK10,EM10]. McKenzie [McK10] and Elias–McKenzie [EM10]
observed that the lower bounds on monotone circuit depth in [RM99] can be extended to the
Generation problem with a structure of any directed acyclic graph G, and the lower bounds scale
in the same way as the value of the Raz–McKenzie pebble game over G. In order words, the
Raz–McKenzie pebble game abstracts away the graph structure from the lower bound argument
of [RM99].

Definitions B.4 and B.5 specialize notions from the Dart game of Raz–McKenzie [RM99, §2] to
the Generation problem over directed acyclic graphs, denoted DartkG. Lemma B.6 (based on the
adversarial strategy of Raz–McKenzie [RM99, §3.3 and §4.1]) shows that structured protocols for
this specialized Dart game is effectively playing the Raz–McKenzie pebble game.

Notation B.3 (Index and Table). Consider a DAG G = (V,E) and a bit-length parameter k ∈ N.

Denote K := 2k. Let Ṽ := V \ {τ} be the non-sink vertices. Let X := [K]Ṽ be indices, and

Y := ({0, 1}[K])Ṽ be tables, over Ṽ . x�a ∈ [K] denotes the entry of x ∈ X indexed by a ∈ Ṽ , and
y�a :=

{
i ∈ [K] : (i, a) ∈ y

}
denotes the restriction of y ∈ Y to a ∈ Ṽ .38

35Note that for a source vertex a ∈ U , its function ta degenerates to have a domain of [K]∅, hence the function
ta ∈ 2[K] can be treated as a subset of k-bit string. Thus its set za is just its function ta ∈ [K] treated as a subset of
k bit-string.

36Note that z�δin(a) ∈ (2[K])δ
in(a) is identified with a (product) subset z�δin(a) ⊆ [K]δ

in(a), by v�δin(a) ∈ z�δin(a) iff

v�a′ ∈ z�a′ for all a′ ∈ δin(a).
37All non-constant monotone boolean functions are equivalent with respect to the (restricted) lower bounds in this

work. The dictatorship is chosen here since its computation is trivial, i. e., takes no extra depth.
38A subset S ⊆ [K] is identified with its indicator function χS ∈ {0, 1}[K], where χS(i) = 1 iff i ∈ S.

39

Definition B.4 (Dart Game over G). The Dart Game over G (DartkG) is a (co-operative) com-
munication game played between two parties, the Index Party and the Table Party. The Index
Party is given the indices over vertices x ∈ X := [K]Ṽ , and the Table Party is given the values

of the tables y ∈ Y := ({0, 1}[K])Ṽ . For each input instance (x, y) ∈ X × Y to DartkG, define the
boolean values ua := (x�a ∈ y�a) for a ∈ Ṽ , Define uw := False for w ∈W . They communicate to
locate a ∈ V such that ua = False but ua′ = True for all a′ ∈ δin(a). Denote the communication
complexity of DartkG by CC(DartkG).

Definition B.5 (Structured Communication Protocol [RM99, §2.2]). A communication protocol
for DartkG is structured if, in each round, the Index Party sends the index x�a for some a ∈ Ṽ (using
k bits),39 and the Table Party sends the value ua = (x�a ∈ y�a) (using one bit), and they repeat
the above until they have located the answer a ∈ V . The structured complexity of G (denoted as
SC(G)) is the number of rounds used by the shortest structured protocol to solve DartkG.

Theorem 11 (Structured Complexity [RM99, Theorem 2.1]). If 2k ≥ |V |20, then CC(DartkG) =
SC(G)Ω(k), where the constant in Ω(·) is independent of G.

Lemma B.6 (Structured Protocol and Raz–McKenzie Pebble Game). SC(G) = h − 1 iff RMG

takes h time to play.

Proof. Consider a round-by-round isomorphism between (the subgames of) structured DartkG and
RMG as follows. Namely, a certain round of an execution of a structured protocol of DartkG is
identified with the configuration 〈〈P,⊥, B〉〉 in RMG (see Definition 3.15), where P ⊆ V are the
vertices whose values are known (including τ ∈ W ⊆ V), and B ⊂ P are the vertices whose
values are True in DartkG. Under this mapping, structured DartkG and RMG have the same initial
configuration, and DartkG is over iff RMG is over. Also, a round identified with 〈〈P,⊥, B〉〉 is followed
by a next round identified with 〈〈P ′,⊥, B′〉〉 iff 〈〈P,⊥, B〉〉 ` C ` 〈〈P ′,⊥, B′〉〉 for some Colorer
configuration C in RMG̃. Finally, the value of a round (i. e., the number of additional rounds before

DartkG is over) in structured DartkG agrees with the value of 〈〈P,⊥, B〉〉 in RMG̃ (see Definition 3.16),

due to the same recursive dependence: the Index Party (Pebbler) wants to choose a vertex a ∈ Ṽ ,
so that no matter the Table Party (Colorer) replies with ua is True (blue) or False (red), the
next round has a value smaller by at least one.

B.2 Lower Bound for Nondeterministic Evaluation

Recall that given a monotone boolean function f : {0, 1}n → {0, 1}, the monotone Karchmer–
Wigderson game (m-KWf) is a communication game between two parties defined as follows: Party
1 (the Yes party) is given a Yes instance x ∈ f−1(1), Party 0 (the No party) is given a No instance
y ∈ f−1(0), and they communicate to locate a bit position i ∈ [n] where xi > yi. Karchmer and
Wigderson observed that the monotone communication complexity captures exactly the monotone
circuit depth.31

Theorem 12 (Karchmer–Wigderson [KW90, Theorem 2.2]31). The depth complexity of f on mono-
tone boolean circuits is exactly the communication complexity of m-KWf .

Lemma B.9 naturally generalizes [RM99, Lemma 3.5 and §4.1] (from the pyramid graphs and
the line graphs respectively) to any directed acyclic graph.

39The two parties should agree on a common protocol before communicating to specify the vertex a ∈ Ṽ in each
round, so the vertex a ∈ Ṽ is understood to both parties and need not be communicated.

40

Notation B.7 (Variables for BNDEPkG). Recall that an instance to BNDEPkG specifies functions

ta : [K]δ
in(a) → 2[K] for all a ∈ V , encoded as n := K

∑
a∈V K

degin(a) bits. Hence any tuple of values

v�{a}∪δin(a) ∈ [K]{a}∪δ
in(a) indexes an input bit (variable) of ta, namely, whether ta

(
v�δin(a)

)
⊆ [K]

contains v�a ∈ [K].

Definition B.8 (Index and Table Instances). X is identified with a subset of Yes instances

to f := BNDEPkG, Y a subset of No instances, as follows. Given any x ∈ X = [K]Ṽ , let its
Yes-extension x̂ ∈ [K]V be such that x̂�Ṽ = x and x̂�τ = 0k ∈ τ−1(1) ⊂ [K] (Definition B.2).
Consider a Yes instance I(x) ∈ f−1(1) where a boolean variable indexed by v�{a}∪δin(a) is True
in I(x) iff v�{a}∪δin(a) = x̂�{a}∪δin(a). Note that va ∈ za in I(x) iff va = x̂a (by induction on

a ∈ V). Given any y ∈ Y = (2[K])Ṽ , let its No-extension ŷ ∈ (2[K])V be such that ŷ�Ṽ = y
and ŷ�w = ∅ ⊂ τ−1(0) ⊂ [K] (Definition B.2). Consider a No instance I(y) ∈ f−1(0) where a
boolean variable indexed by v�{a}∪δin(a) is False in I(y) iff (i) v�a′ ∈ ŷ�a′ for all a′ ∈ δin(a); and
(ii) v�a /∈ ŷ�a. Note that if va ∈ za in I(y), then va ∈ ŷa (by induction on a ∈ V).

Lemma B.9 (Reduction in Communication Games). CC(DartkG) ≤ CC(m-KWBNDEPkG
).

Proof. Given a communication protocol Π for m-KWf where f := BNDEPkG, we construct a com-
munication protocol Π′ for DartkG of the same complexity. For any input (x′, y′) ∈ X × Y to DartkG,
the two parties can construct an input (x, y) :=

(
I(x′), I(y′)

)
∈ f−1(1) × f−1(0) to m-KWf with-

out communicating. Now they run the protocol Π for m-KWf , getting a bit position i ∈ [n] such

that xi > yi, corresponding to a boolean variable indexed by v�{a}∪δin(a) ∈ [K]{a}∪δ
in(a). Since the

boolean variable is True in x = I(x′), we have v�{a}∪δin(a) = x̂′�{a}∪δin(a). And as the boolean

variable is False in y = I(y′), we have (i) v�a′ ∈ ŷ′�a′ for all a′ ∈ δin(a); and (ii) v�a /∈ ŷ′�a. It
follows that ua is False but ua′ = True for all a′ ∈ δin(a) (Definition B.4). Hence they can output
a for DartkG, and this completes the description of Π′.

Theorem 13 is a corollary of Lemmas B.6 and B.9 and Theorems 11 and 12. It implies a lower
bound on the depth of monotone circuits solving the Generation problem whose Yes-instances have
a structure of G.

Theorem 13 (Lower Bound for Nondeterministic Evaluation). For any directed acyclic graph G
whose Raz–McKenzie pebble game takes h time, if 2k ≥ |V |20, then any monotone circuit computing
BNDEPkG has depth at least Ω(hk), where the constant in Ω(·) is independent of G.

41

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

