
On the Size of Depth-Three Boolean Circuits

for Computing Multilinear Functions

Oded Goldreich∗ Avi Widgerson†

March 25, 2013

Abstract

We propose that multi-linear functions of relatively low degree over GF(2) may be good
candidates for obtaining exponential1 lower bounds on the size of constant-depth Boolean cir-
cuits (computing explicit functions). Specifically, we propose to move gradually from linear
functions to multilinear ones, and conjecture that, for any t ≥ 2, some explicit t-linear functions
F : ({0, 1}n)t → {0, 1} require depth-three circuits of size exp(Ω(tnt/(t+1))).

Towards studying this conjecture, we suggest to study two frameworks for the design of depth-

three Boolean circuits computing multilinear functions, yielding restricted models for which
lower bounds may be easier to prove. Both correspond to constructing a circuit by expressing
the target polynomial as a composition of simpler polynomials. The first framework corresponds
to a direct composition, whereas the second (and stronger) framework corresponds to nested
composition and yields depth-three Boolean circuits via a ”guess-and-verify” paradigm in the
style of Valiant. The corresponding restricted models of circuits are called D-canonical and
ND-canonical, respectively.

Our main results are (1) a generic upper bound on the size of depth-three D-canonical
circuits for computing any t-linear function, and (2) a lower bound on the size of any depth-
three ND-canonical circuits for computing some (in fact, almost all) t-linear functions. These
bounds match the foregoing conjecture (i.e., they have the form of exp(tnt/(t+1))). Another
important result is separating the two models: We prove that ND-canonical circuits can be
super-polynomially smaller than their D-canonical counterparts. We also reduce proving lower
bounds for the ND-model to Valiant’s matrix rigidity problem (for parameters that were not
the focus of previous works).

The study of the foregoing (Boolean) models calls for an understanding of new types of
arithmetic circuits, which we define in this paper and may be of independent interest. These
circuits compute multilinear polynomials by using arbitrary multilinear gates of some limited
arity. It turns out that a GF(2)-polynomial is computable by such circuits with at most s gates
of arity at most s if and only if it can be computed by ND-canonical circuits of size exp(s).
A similar characterization holds for D-canonical circuits if we further restrict the arithmetic
circuits to have depth two. We note that the new arithmetic model makes sense over any field,
and indeed all our results carry through to all fields. Moreover, it raises natural arithmetic
complexity problems which are independent of our original motivation.

Keywords: Constant-depth Boolean circuits, depth-three Boolean circuits, arithmetic circuits,
circuit lower bounds, multilinear functions, multilinear circuits, high-order tensors, matrix rigidity.

∗Research performed when visiting the IAS. Partially supported by the Israel Science Foundation (grant
No. 1041/08). Address: Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel.
oded.goldreich@weizmann.ac.il

†School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540, USA. avi@ias.edu
1Throughout this paper, when we say that a function f is exponential, we mean that f(n) = exp(Θ(n)).

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 43 (2013)

Contents

1 Introduction 1

1.1 The candidate functions . 1
1.2 Design from direct composition: the D-canonical model 3
1.3 Design from nested composition: the ND-canonical model 5
1.4 An arithmetic circuit complexity perspective . 6
1.5 Related work . 8
1.6 Various conventions . 9
1.7 Organization . 9

2 Multilinear circuits with general gates 10

2.1 The two complexity measures . 10
2.2 Relation to canonical circuits . 13

3 Upper Bounds 15

3.1 A generic upper bound . 15
3.2 Improved upper bounds for specific functions (e.g., F t,n

leq) 16

4 Lower Bounds 18

4.1 On the complexity of almost all multilinear functions 18
4.2 The complexity of bilinear functions and matrix rigidity 19

5 On a restricted model 22

5.1 The restricted model separates F t,n
all and F t,n

diag from F 2,n
leq 23

5.2 On the restricted complexity of almost all t-linear functions 25

Acknowledgments 26

Bibliography 26

Appendix A: On separating NL from P 28

Appendix B: On worst-case vs average-case 28

Appendix C: On the size of DNFs and CNFs computing multilinear functions 30

A gap between DNF and CNF size . 30
C.1 A lower bound that hold for all t-linear functions . 31
C.2 The intermediate range: a parity-level lower bound 32
C.3 Lower bounds that are exponential in tn . 33

An upper bound for F 2,n
leq . 33

A general lower bound . 34
Instantiations of the general lower bound . 35

i

1 Introduction

Strong lower bounds on the size of constant-depth Boolean circuits computing parity and other
explicit functions (cf., e.g., [27, 6] and [19, 22]) are among the most celebrated results of complexity
theory. These quite tight bounds are all of the form exp(n1/(d−1)), where n denote the input length
and d the circuit depth. But we do not know of any exponential lower bounds (i.e., of the form
exp(Ω(n))) on the size of constant-depth circuits computing any explicit function (i.e., a Boolean
function in E = ∪c∈NDtime(fc), where fc(n) = 2cn).

Providing exponential lower bounds on the size of constant-depth Boolean circuits computing
explicit functions is a central problem of circuit complexity, even when restricting attention to
depth-three circuits (cf., e.g., [9, Chap. 11]). It seems that such lower bounds cannot be obtained by
the standard interpretation of either the random restriction method [4, 6, 27] or the approximation
by polynomials method [19, 22]. Many experts have tried other approaches (cf., e.g., [8, 10]2), and
some obtained encouraging indications (i.e., results that refer to restricted models, cf., e.g., [16]);
but the problem remains wide open.

There are many motivations for seeking exponential lower-bounds for constant-depth circuits.
Two notable examples are separating NL from P (see Appendix A) and presenting an explicit
function that does not have linear-size circuits of logarithmic depth (see Valiant [25]). Another
motivation is the derandomization of various computations that are related to AC0 circuits (e.g.,
approximating the number of satisfying assignments to such circuits). Such derandomizations can
be obtained via “canonical derandomizers” (cf. [5, Sec. 8.3]), which in turn can be constructed
based on strong average-case versions of circuit lower bounds; cf. [14, 15].

It seems that the first step should be beating the exp(
√

n) size lower bound for depth-three
Boolean circuits computing explicit functions (on n bits). A next step may be to obtain a truly
exponential lower bound for depth-three Boolean circuits, and yet another one may be to move to
any constant depth.

This paper focuses on the first two steps; that is, it focuses on depth-three circuits. Further-
more, within that confined context, we focus on a restricted type of circuits, which emerges rather
naturally from the class of functions that we propose to study.

1.1 The candidate functions

We suggest to study specific multilinear functions of relatively low degree over the binary field,
GF(2), and in the sequel all arithmetic operations are over this field. For t, n ∈ N, we consider
t-linear functions of the form F : ({0, 1}n)t → {0, 1}, where F is linear in each of the t blocks of
variables (which contain n variables each). Such a function F is associated with a t-dimensional
array, called a tensor, T ⊆ [n]t such that

F (x(1), x(2), ..., x(t)) =
∑

(i1,i2,...,it)∈T

x
(1)
i1

x
(2)
i2
· · · x(t)

it
(1)

where here and throughout this paper x(j) = (x
(j)
1 , ..., x

(j)
n) ∈ {0, 1}n for every j ∈ [t]. Indeed, we

refer to a fixed partition of the Boolean variables to t blocks, each containing n variables, and to
functions that are linear in the variables of each block. Such functions were called set-multilinear
in [16]. Note that the input length for these functions is t ·n; hence, exponential lower bounds mean

bounds of the form exp(Ω(tn)).

2The relevance of the Karchmer and Wigderson approach [10] to constant-depth circuits is stated explicitly in [11,
Sec. 10.5].

1

We will start with a focus on constant t, and at times we will also consider t to be a function of n,
but n will always remain the main length parameter. Actually, it turns out that t = t(n) = Ω(log n)
is essential for obtaining exponential lower bounds (i.e., size lower bounds of the form exp(Ω(tn))
for depth-d circuits, when d > 2).

A good question to ask is whether there exists any multilinear function that requires constant-
depth Boolean circuit of exponential size (i.e., size exp(Ω(tn))). We conjecture that the answer is
positive.

Conjecture 1.1 (a sanity check for the entire approach): For every d > 2, there exist t-linear

functions F : ({0, 1}n)t → {0, 1} that cannot be computed by Boolean circuits of depth d and size

exp(o(tn)), where t = t(n) ≤ poly(n).

We believe that the conjecture holds even for t = t(n) = O(log n), and note that, for any fixed t,
there exist explicit t-linear functions that cannot be computed by depth-two circuits of size 2tn/4

(see Appendix C.3).
Merely proving Conjecture 1.1 may not necessarily yield a major breakthrough in the state-

of-art regarding lower bounds, although it seems that a proof will need to do something more
interesting than mere counting. However, disproving Conjecture 1.1 will cast a shadow on our
suggestions, which may nevertheless maintain their potential for surpassing the exp((tn)1/(d−1))
barrier.3

Assuming that Conjecture 1.1 holds, one should ask which explicit functions may “enjoy” such

lower bounds. Two obviously bad choices are (1) F t,n
all(x

(1), ..., x(t)) =
∑

i1,...,it∈[n] x
(1)
i1
· · · x(t)

it
and

(2) F t,n
diag(x

(1), ..., x(t)) =
∑

i∈[n] x
(1)
i · · · x

(t)
i , since each is easily reducible to an n-way parity (the

lower bounds for which we wish to surpass).4 The same holds for any function that corresponds
either to a rectangular tensor (i.e., I1 × · · · × It, where I1, .., It ⊆ [n]) or to a sparse tensor (e.g.,
T ⊆ [n]t such that |T | = O(n)). Ditto w.r.t the sum of few such tensors. Indeed, one should seek
tensors T ⊆ [n]t that are far from the sum of few rectangular tensors (i.e., far from any tensor of
low rank [23]). On the other hand, it seems good to stick to as “simple” tensors as possible so as
to facilitate their analysis (let alone have the corresponding multilinear function be computable in
exponential-time (i.e., in E)).5

A less obvious bad choice. Consider the function F t,n
leq : ({0, 1}n)t → {0, 1} such that

F t,n
leq(x

(1), x(2), ..., x(t)) =
∑

1≤i1≤i2≤···≤it≤n

x
(1)
i1

x
(2)
i2
· · · x(t)

it
(2)

(having the corresponding tensor T t,n
leq = {(i1, ..., it) ∈ [n]t : i1 ≤ i2 ≤ · · · ≤ it}). Note that

this function is polynomial-time computable (e.g., via dynamic programming),6 and that t = 1

3Showing an upper bound of the form exp((tn)1/(d−1)) on the size circuits of depth d that compute any t-linear
function seems unlikely (cf. [16], which proves an exponential in t lower bound on the size of depth-three arithmetic
circuits).

4Note that F t,n
all (x(1), ..., x(t)) =

Q

j∈[t]

P

ij∈[n] x
(j)
ij

, which means that it can be computed by a t-way conjunction

of n-way parity circuits, whereas F t,n
diag is obviously an n-way parity of t-way conjunctions of variables.

5Thus, these tensors should be constructible within exp(tn)-time. Note that we can move from the tensor to the
multilinear function (and vice versa) in nt << exp(tn) oracle calls.

6Note that F t,n
leq (x(1), ..., x(t)) equals

P

i∈[n] F
t−1,i
leq (x

(1)
[1,i], ..., x

(t−1)
[1,i]) ·x(t)

i , where x
(j)
[1,i] = (x

(j)
1 , ..., x

(j)
i). So, for every

t′ ∈ [t − 1], the dynamic program uses the n values (F t′,i
leq (x

(1)

[1,i]
, ..., x

(t′)

[1,i]
))i∈[n] in order to compute the n values

(F t′+1,i
leq (x

(1)

[1,i], ..., x
(t′+1)

[1,i]))i∈[n].

2

corresponds to Parity. Unfortunately, for every constant t ≥ 2, the function F t,n
leq is not harder

than parity: It has depth-three circuits of size exp(O(
√

n)); see Proposition 3.4. Thus, we move
the slightly less simple candidates presented next.

Specific candidates. We suggest to consider the following t-linear functions, F t,n
tet and F t,n

mod p

(especially for p ≈ 2t ≈ n), which are presented next in terms of their corresponding tensors (i.e.,
T t,n
tet and T t,n

mod p, resp).

T t,n
tet =



(i1, ..., it) ∈ [n]t :

∑

j∈[n]

|ij − (n/2)| ≤ n/2



 (3)

T t,n
mod p =



(i1, ..., it) ∈ [n]t :

∑

j∈[t]

ij ≡ 0 (mod p)



 (4)

Note that these functions are also computable in polynomial-time.7 For p < n, it holds that

F t,n
mod p(x

(1), ..., x(t)) equals F t,p
mod p(y

(1), ..., y(t)), where y
(j)
r =

∑
i∈[n]:i≡r (mod p) x

(j)
i for every j ∈ [t]

and r ∈ [p]. This reduction may have a forbidding “size cost” in the context of circuits of a specific
depth (especially if p ≪ n), but its cost is insignificant if we are willing to double the depth of
the circuit (and aim at lower bounds that are larger than those that hold for parity). Thus, in the
latter cases, we may assume that p = Ω(n), but of course p < tn must always hold.

We note that none of the bilinear versions of the foregoing functions can serve for beating the
exp(
√

n) lower bound. Specifically, the failure of F 2,n
mod p is related to the aforementioned reduction,

whereas the failure of F 2,n
tet is related to the fact that boundary of its tensor has linear size (just

as in the case of F 2,n
leq). But these weaknesses do not seem to propagate to the trilinear versions.

(In contrast, the function F t,n
leq fails also for higher values of t, since the boundary of T t,n

leq can be
“decomposed” into a constant number of lower-dimensional tensors. But this does not seem to be
the case for F t,n

tet.)

What’s next? In an attempt to study the viability of our suggestions and conjectures, we defined
two restricted classes of depth-three circuits and tried to prove lower bounds on the sizes of circuits
from these classes that compute the foregoing functions. Our success in proving lower bounds
was very partial, and will be discussed next – as part of the discussion of these two classes (in
Sections 1.2 and 1.3).

1.2 Design from direct composition: the D-canonical model

What is a natural way of designing depth-three Boolean circuits that compute multilinear functions?

Let us take our cue from the linear case (i.e., t = 1). The standard way of obtaining a depth-
three circuit of size exp(

√
n) for n-way parity is to express this linear function as the

√
n-way sum

of
√

n-ary functions that are linear in disjoint sets of variables. The final (depth-three) circuit is

7Again, we use dynamic programming, but here we apply it to generalizations of these functions. Specif-
ically, let T t,n,d

tet = {(i1, ..., it) ∈ [n]t :
P

j∈[n] |ij − (n/2)| ≤ d} and note that the associated function

satisfies F t,n,d
tet (x(1), ..., x(t)) =

P

i∈[n] F
t−1,n,d−i
tet (x(1), ..., x(t−1)) · x(t)

i . Likewise, consider the tensor T t,n,r
mod p =

n

(i1, ..., it) ∈ [n]t :
P

j∈[t] ij ≡ r (mod p)
o

and note that the associated function satisfies F t,n,r
mod p(x

(1), ..., x(t)) =
P

i∈[n] F
t−1,n,r−i
mod p (x(1), ..., x(t−1)) · x(t)

i .

3

obtained by combing the depth-two circuit for the outer sum with the depth-two circuits computing
the
√

n internal sums.
Hence, a natural design strategy is to express the target multilinear function (F) as a polynomial

(H) in some auxiliary multilinear functions (Fi’s), and combine depth-two circuits that compute
the auxiliary multilinear functions with a depth-two circuit that computes the main polynomial
(i.e., H). That is, we “decompose” the multilinear function on the algebraic level, expressing it
as a polynomial in auxiliary multilinear functions (i.e., F = H(F1, ..., Fs)), and implement this
decomposition on the Boolean level (i.e., each polynomial is implemented by a depth-two Boolean
circuit). Specifically, to design a depth-three circuit of size exp(O(s)) for computing a multilinear
function F the following steps are taken:

1. Select s arbitrary multilinear functions, F1, ..., Fs, each depending on s input bits;

2. Express F as a polynomial H in the Fi’s;

3. Obtain a depth-three circuit by combining depth-two circuits for computing H and the Fi’s.

Furthermore, we mandate that H(F1, ..., Fs) is a formal multilinear function; that is, the monomials
of H do not multiply two Fi’s that depend on the same block of variables. The size of the resulting
circuit is taken to be exp(Θ(s)): The upper bound is justified by the construction, and the lower
bound by the assumption that (low degree) polynomials that depend on s variables require depth-
two circuits of exp(s) size. (The latter assumption is further discussed in Section 2.2.)8

Circuits that are obtained by following this framework are called D-canonical, where “D” stands
for direct (or deterministic, for reasons that will become apparent in Section 1.3). D-canonical
circuits seem natural in the context of computing multi-linear functions by depth-three Boolean
circuits.

For example, the standard design, reviewed above, of depth-three circuits (of size exp(
√

n)) for
(n-way) parity yields D-canonical circuits. In general, D-canonical circuits for a target multilinear
function are obtained by combining depth-two circuits that compute auxiliary multilinear functions
with a depth-two circuit that computes the function that expresses the target in terms of the
auxiliary functions. The freedom of the framework (or the circuit designer) is reflected in the choice
of auxiliary functions, whereas the restriction is in insisting that the target multilinear functions
be computed by composition of a polynomial and multilinear functions (and that this composition
corresponds to a formal multilinear function).

Our main results regarding D-canonical circuits are a generic upper bound on the size of D-
canonical circuits computing any t-linear function and a matching lower bound that refers to almost
all t-linear functions. That is:

Theorem 3.1: For every t ≥ 2, every t-linear function F : ({0, 1}n)t → {0, 1} can be computed by

D-canonical circuits of size exp((tn)t/(t+1)).

(Corollary to) Theorem 4.1: For every t ≥ 2, almost all t-linear functions F : ({0, 1}n)t → {0, 1}
require D-canonical circuits of size at least exp(Ω(tn)t/(t+1)).

Needless to say, the begging question is what happens with explicit multilinear functions.

8In brief, when computing t-linear polynomials, a lower bound of exp(Ω(s/2t)) on the size of depth-two circuits
can be justified (see Appendix C). Furthermore, for 2t ≪ s, a lower bound of exp(Ω(s)) can be justified if the CNFs
(or DNFs) used are “canonical” (i.e., use only s-way gates at the second level).

4

Problem 1.2 (main problem regarding D-canonical circuits): For every t ≥ 2, prove a exp(Ω(tn)t/(t+1))
lower bound on the size of D-canonical circuits computing some explicit function. Ditto when t may

vary with n, but t ≤ poly(n).

Of course, at this time, it would be interesting to obtain any lower bound that goes beyond the
exp(
√

tn) barrier. As mentioned in Section 1.1, for every t ≥ 2, the function F t,n
leq cannot be

used towards that goal: By Proposition 3.4, F t,n
leq has D-canonical circuits of size exp(O(

√
n)). In

contrast, F t,n
tet seems quite promising (see Section 4.2).

We comment that we obtained the exp(O(
√

n))-sized D-canonical circuits for F t,n
leq by realizing

that F t,n
leq has linear-size circuits of logarithmic depth (i.e., it is simple in the sense of Valiant [25]),

and thus it must have subexponential size depth-three circuits (cf. [25]). Reverse-engineering
Valiant’s argument, as applied to F t,n

leq, and optimizing the design, we arrived at the current proofs,
which are presented (in Section 3.2) in a self-contained manner (without mentioning Valiant’s
method).

1.3 Design from nested composition: the ND-canonical model

As appealing as D-canonical circuits may appear, it turns out that one can build significantly
smaller circuits by employing the “guess and verify” technique of Valiant [24, 25]. This allows to
express the target function in terms of auxiliary functions, which themselves are expressed in terms
of other auxiliary functions, and so on. That is, the “expression depth” is no longer 1, it is even
not a priori bounded, and yet the resulting circuit has depth-three.

The basic idea is to use s non-deterministic guesses for the values of s auxiliary functions,
and to verify each of these guesses based on (some of) the other guesses and at most s bits of
the original input. Thus, the verification amounts to the conjunction of s conditions, where each
condition depends on at most 2s bits (and can thus be verified by a CNF of size exp(2s)). The final
depth-three circuit is obtained by replacing the s non-deterministic guesses by a 2s-way disjunction.

This way of designing depth-three circuits leads to a corresponding framework, and the circuits
obtained by it are called ND-canonical, where “ND” stands for non-determinism. In this framework
depth-three circuits of size exp(O(s)) for computing a multilinear function F are designed by the
following three-step process:

1. Select s auxiliary multi-linear functions, F1, ..., Fs;

2. Express F as well as each of the other Fi as a polynomial in the subsequent Fi’s and in at
most s input bits;

3. Obtain a depth-three circuit by combining depth-two circuits for computing these polynomi-
als, where the combination implements s non-deterministic choices as outlined above.

As in the D-canonical framework, the polynomials used in Step (2) should be such that replacing
the functions Fi’s in them yields multilinear functions (i.e., this is a syntactic condition). Again,
the size of the resulting circuit is taken to be exp(Θ(s)).

Note that, here (in the case of ND-canonical circuits), the combination performed in Step (3) is
not a functional composition (as in the case of the D-canonical circuits). It is rather a verification
of the claim that there exists s+1 values that fit all s+1 expressions (i.e., of F and the Fi’s). The
implementation of Step (3) calls for taking the conjunction of these s + 1 depth-two computations
as well as taking a 2s+1-way disjunction over all possible values that these computations may yield.

5

The framework of ND-canonical circuits allows to express F in terms of Fi’s that are themselves
expressed in terms of Fj ’s, and so on. In contrast, in the D-canonical framework, the Fi’s were
each expressed in terms of s input bits. A natural question is whether this generalization actually
helps. We show that the answer is positive.

Theorem 2.3: There exists bilinear functions F : ({0, 1}n)2 → {0, 1} that have ND-circuits of size
exp(O(

√
n)) but no D-circuits of size exp(o(n2/3)).

Turning to our results regarding ND-circuits, the upper bound on D-canonical circuits clearly
holds for ND-circuits, whereas our lower bound is actually established for ND-canonical circuits
(and the result for D-canonical circuits is a corollary). Thus, we have

(Corollary to) Theorem 3.1: For every t ≥ 2, every t-linear function F : ({0, 1}n)t → {0, 1} can be

computed by ND-canonical circuits of size exp((tn)t/(t+1)).

Theorem 4.1: For every t ≥ 2, almost all t-linear functions F : ({0, 1}n)t → {0, 1} require ND-

canonical circuits of size at least exp(Ω(tn)t/(t+1)).

Again, the real challenge is to obtain such a lower bound for explicit multilinear functions.

Problem 1.3 (main problem regarding ND-canonical circuits): For every t ≥ 2, prove a exp(Ω(tn)t/(t+1))
lower bound on the size of ND-canonical circuits computing some explicit function. Ditto when t
may vary with n, but t ≤ poly(n).

For starters, prove a exp(Ω(tn)0.51) lower bound on the size of ND-canonical circuits computing

some explicit t-linear function.
As a possible step towards this goal we reduce the task of proving such a lower bound for F 3,n

tet to
proving a lower bound on the rigidity of matrices with parameters that were not considered before.
In particular, an exp(ω(

√
n)) lower bound on the size of ND-canonical circuits computing F 3,n

tet will
follow from the existence of an n-by-n Toeplitz matrix that has rigidity ω(n3/2) with respect to
rank ω(n1/2). For more details, see Section 4.2.

1.4 An arithmetic circuit complexity perspective

The two models of canonical (depth-three) Boolean circuits are rooted in and correspond to two
models of arithmetic circuits (for computing multilinear functions). In both arithmetic models, a
(multilinear) function F is computed by composing auxiliary (multilinear) functions and variables
of F . The D-canonical circuits are obtained by a straightforward implementation of some direct
composition (i.e., F = H(F1, ..., Fs), where each Fi depends on at most s variables of F). The ND-
canonical circuits are obtained by a Valiant-like implementation of some general nested composition
of auxiliary functions and variables; that is, guessing and verifying the values of all auxiliary
functions, where each auxiliary function is expressed in terms of F ’s variables and subsequent
auxiliary functions. In either case, the parameter that determines the size of the resulting Boolean
circuit is the maximum between the number of auxiliary functions and the number of variables that
appear explicitly in each auxiliary function. This parameter restricts the power of the underlying
arithmetic circuits or rather serves as their complexity measure. Let us spell out these two models
of arithmetic circuit complexity.

The arithmetic circuits we refer to arise when viewing the foregoing auxiliary functions as gates
that compute arbitrary multilinear functions of their arguments that correspond to other auxiliary

6

functions and/or input variables (such that arguments that depend on variables in the same block
are not multiplied by such gates). The aforementioned parameter corresponds to the maximum
between the number of gates and the arity of these gates.9 Direct composition corresponds to
depth-two arithmetic circuits (with such general gates), where the target function corresponds to
the top gate and the auxiliary functions correspond to the gates that feed into the top gate. Nested
composition corresponds to arithmetic circuits (with such general gates) of arbitrary depth, where
gates may feed gates that are not necessarily the top gate. More specifically:

• Following [16], we say that an arithmetic circuit is multilinear if its input variables are parti-
tioned into blocks and the gates of the circuit compute multilinear functions such that if two
gates have directed paths from the same block of variables then the results of these two gates
are not multiplied together.

• We say that the direct-composition complexity of F , denoted C2(F), is at most s if F can be

computed by a depth-two multi-linear circuit with at most s gates that are each of arity at

most s.

• We say that the nested-composition complexity of F , denoted C(F), is at most s if F can be

computed by a multi-linear circuit with at most s gates that are each of arity at most s.

We stress that the multilinear circuits in the foregoing definition employ arbitrary multilinear
gates, whereas in the standard model the gates correspond to either (unbounded) addition or
multiplication. Our complexity measure is related to but different from circuit size: On the one
hand, we only count the number of gates (and discard the number of leaves, which in our setting
may be larger). On the other hand, our complexity measure also bounds the arity of the gates.

Note that for any linear function F , it holds that C2(F) = Θ(C(F)), because all intermediate
gates can feed directly to the top gate (since, in this case, all gates compute linear functions).10

Also note that C2(F) equals the square root of the number of variables on which the linear function
F depends. In general, C(F) ≥

√
tn for any t-linear function F that depends on all its variables, and

C(F) ≤ C2(F) ≤ tn for any t-linear function F . Thus, our complexity measures (for non-degenerate
t-linear functions) range between

√
tn and tn.

Clearly, F has a D-canonical (resp., ND-canonical) circuit of size exp(Θ(s)) if and only if C2(F) =
s (resp., C(F) = s). Thus, all results and open problems presented above (i.e., in Sections 1.2
and 1.3) in terms of canonical (Boolean) circuits are actually results and open problems regarding
the complexity of (direct and nested) composition (i.e., C2(·) and C(·)). Furthermore, the results
are actually proved by referring to these complexity measures. Specifically, we have:

Thm. 3.1: For every t-linear function F , it holds that C(F) ≤ C2(F) = O((tn)t/(t+1)).

Thm. 4.1: For almost all t-linear function F , it holds that C2(F) ≥ C(F) = Ω((tn)t/(t+1)).

Thm. 2.3: There exists a bilinear function F such that C(F) = O(
√

n) but C2(F) = Ω(n2/3).

9There is a small discrepancy between the parameter as defined in the prior paragraph and the way it is defined
here: In the prior definition we only bounded the number of leaves (variables) that feed into each gate, while the
number of non-leaves that feed a gate is bounded by the total number of gates. Thus, the arity of the gate (as defined
here) is at most twice the value defined before. Also, our current gate count also counts the top gate, whereas it was
not counted before. On the other hand, when defining direct composition complexity before, we did not allow the
top gate to have leaves, but this can be fixed by adding dummy gates that take a single leaf each.

10A more general argument is presented in Remark 2.4, which asserts that if gate G computes a monomial that
contains no leaves, then this monomial can be moved up to the parent of G.

7

We stress that the foregoing lower bounds are existential, whereas we seek ω(
√

n) lower bounds for
explicit multilinear functions.

Hence, this paper introduces and initiates a study of a new model of arithmetic circuits and
accompanying new complexity measures. The new model consists of multilinear circuits with arbi-

trary gates, rather than the standard multilinear circuits that use only addition and multiplication
gates. In light of this generalization, the arity of gates becomes of crucial importance and is indeed
one of our complexity measures. Our second complexity measure is the number of gates in the
circuit, which (in our context) is significantly different from the number of wires in the circuit
(which is typically used as a measure of size). Our main complexity measure is the maximum of
these two measures (i.e., the maximum between the arity of the gates and the number of gates in
the circuit). Our initial motivation for the study of this arithmetic model is its close relation to
canonical Boolean circuits, and from this perspective depth-two arithmetic circuits have a special
appeal.

A natural question is whether our complexity measure (i.e., C) decreases if one waives the
requirement that the arithmetic circuit be a multilinear one (i.e., the gates compute multilinear
functions and they never multiply the outcomes of gates that depend on the same block of variables).
The answer is that waiving this restriction in the computation of any t-linear function may decrease
the complexity by at most a factor of 2t (see Remark 2.11).

We note that the arithmetic models discuss above make sense with respect to any field. The
reader may verify that all results stated for C2(·) and C(·) hold for every field, rather than merely
for the binary field. Ditto for the open problems.

1.5 Related work

Multilinear functions were studied in a variety of models, mostly in the context of algebraic and
arithmetic complexity. In particular, Nisan and Wigderson [16] initiated a study of multilinear

circuits as a natural model for the computation of multilinear functions. Furthermore, they obtained
an exponential (in t) lower bound on the size of depth-three multilinear circuits that compute a
natural t-linear function (i.e., iterated matrix multiplication for 2-by-2 matrices).11

The multilinear circuit model was studied in subsequent works (cf., e.g., [18]); but, to the best
of our knowledge, the parameter introduced in Section 1.4 was not studied before. Nevertheless, it
may be the case that techniques and ideas developed in the context of the multilinear circuit model
will be useful for the study of this new parameter (and, equivalently, in the study of canonical
circuits). For example, it seems that the latter study requires a good understanding of tensors,
which were previously studied with focus at a different type of questions (cf., e.g., [17]).

In the rest of this discussion, we differentiate between our model of multilinear circuits that
refers to arbitrary gates of arity that is reflected in our complexity measure and the standard model

of multilinear circuits [16] that uses only addition and multiplication gates (of unbounded arity).
For the sake of clarity, we shall refer to canonical circuits rather than to our model of multilinear
circuits, while reminding the reader that the two are closely related.

The difference between the standard model of constant-depth multilinear circuit and the model
of constant-depth Boolean circuits is rooted in the fact that the (standard) multilinear circuit model
contains unbounded fan-in addition gates as basic components, whereas unbounded fan-in addition
is hard for constant-depth Boolean circuits. Furthermore, the very fact that n-way addition requires
exp(n)-size depth-two Boolean circuits is the basis of the approach that we are suggesting here. In

11Thus, n = 4 and t is the number of matrices being multiplied.

8

contrast, hardness in the multilinear circuit model is related to the total degree of the function to
be computed.12

The foregoing difference is reflected in the contrast between the following two facts: (1) multi-
linear functions of low degree have small depth-two multilinear circuits (i.e., each t-linear function
F : ({0, 1}n)t → {0, 1} can be written as the sum of at most nt products of variables), but (2) al-
most all such functions require depth-three Boolean circuits of subexponential size (because parity
is reducible to them). Furthermore, (2’) almost all t-linear functions require depth-three canonical

circuits of size at least exp(Ω(tn)t/(t+1)), see Theorem 4.1. Hence, in the context of low-degree mul-
tilinear functions, depth-three Boolean circuits (let alone canonical ones) are weaker than standard
(constant-depth) multilinear circuits, and so proving lower bounds for the former may be easier.

1.6 Various conventions

As stated up-front, throughout this paper, when we say that a function f : N→ N is exponential, we
mean that f(n) = exp(Θ(n)). Actually, exp(n) often means exp(cn), for some unspecified constant
c > 0. Throughout this paper, we restrict ourselves to the field GF(2), and all arithmetic operations
are over this field.13

Tensors. Recall that any t-linear function F : ({0, 1}n)t → {0, 1} is associated with the tensor
T ⊆ [n]t that describes its existing monomials (cf., Eq. (1)). This tensor is mostly viewed as a
subset of [n]t, but at times such a tensor is viewed in terms of its corresponding characteristic
predicate or the predicate’s truth-table; that is, T ⊆ [n]t is associated with the predicate χT :
[n]t → {0, 1} or with the t-dimensional array (χT (i1, ..., it))i1,...,it∈[n]) such that χT (i1, ..., it) = 1 iff
(i1, ..., it) ∈ T . The latter views are actually more popular in the literature, and they also justify
our convention of writing

∑
k∈[m] Tk instead of the symmetric difference of T1, ..., Tm ⊆ [n]t (i.e.,

(i1, ..., it) ∈
∑

k∈[m] Tk iff |{k ∈ [m] : (i1, ..., it) ∈ Tk}| is odd).

1.7 Organization

The rest of this paper focuses on the study of the direct and nested composition complexity of
multilinear functions (and its relation to the two canonical circuit models). This study is conducted
in terms of the arithmetic model outlined in Section 1.4; that is, of multilinear circuits with general
multilinear gates and a complexity measure that accounts for both the number of these gates and
their arity. The basic definitional issues are discussed in Section 2, upper bounds are presented in
Section 3, and lower bounds in Section 4.

In Section 5 we study a restricted arithmetic model obtained by allowing only standard addition
and multiplication gates (and considering the same complexity measure as above, except for not
counting multiplication gates that are fed only by variables). While this model is quite natural, it
is quite weak. Still, this model allows to separate F t,n

all and F t,n
diag from the “harder” F 2,n

leq , which
means that in this model we are able to prove a non-trivial lower bound on an explicit function.

In addition, mainly due to their role in the canonical framework, we also studied the size of
depth-two circuits computing various multilinear functions (see Appendix C). Even in this case,

12Concretely, the conjectured hardness of computing a multilinear function by constant-depth Boolean circuits
may stem from the number (denoted n) of variables of the same type (i.e., the variables in x(j)), even when the
arity of multiplication (denoted t) is relatively small (e.g., we even consider bilinear functions), whereas in the
multilinear circuits hardness seem to be related to t (cf., indeed, the aforementioned lower bound for iterated matrix
multiplication).

13However, as stated in Section 1.4, all results extend to other fields.

9

we leave several open problems. One key notion in our study of depth-two circuits is that of the
number of variables that influence the linear function that is obtained from the t-linear function
by fixing random values to all other t− 1 blocks of variables.

Two shorter appendices refer to (1) the effect of lower bounds (on the size of constant-size
circuits) on the class NL, and (2) worst-case vs average-case (size) complexity in the context of
constant-depth circuits for multilinear functions. See Appendices A and B, respectively.

2 Multilinear circuits with general gates

In this section we introduce a new model of arithmetic circuits, where gates may compute arbitrary
multilinear functions (rather than either addition or multiplication, as in the standard model).
Accompanying this new model is a new complexity measure, which takes into account both the
number of gates and their arity. This model (and its restriction to depth-two circuits) is presented
in Section 2.1 (where we also present a separation between the general model and its depth-two
restriction). As is clear from the introduction, the model is motivated by its relation to canonical
depth-three Boolean circuits. This relation is discussed in Section 2.2.

Recall that we consider t-linear functions of the form F : (GF(2)n)t → GF(2), where the tn
variables are partitioned into t blocks with n variables in each block and F is linear in the variables
of each block. Specifically, for t and n, we consider the variable blocks x(1), x(2), ..., x(t), where

x(j) = (x
(j)
1 , ..., x

(j)
n) ∈ GF(2)n.

2.1 The two complexity measures

We are interested in multilinear functions that are computed by composition of other multilinear
functions, and define a conservative (or syntactic) notion of linearity that refers to the way these
functions are composed. Basically, we require that this composition does not result in a polynomial
that contains terms that are not multilinear, even if these terms cancel out. Let us first spell
out what this means in terms of standard multilinear circuits that use (unbounded) addition and
multiplication gates, as defined in [16]. This is done by saying that a function is J-linear whenever
it is multilinear (but not necessarily homogeneous) in the variables that belongs to blocks in J .

• Each variable in x(j) is a {j}-linear function.

• If an addition gate computes the sum
∑

i∈[m] Fi, where Fi is a Ji-linear function computed

by its ith child, then this gate computes a (
⋃

i∈[m] Ji)-linear function.

• If a multiplication gate computes the product
∏

i∈[m] Fi, where Fi is a Ji-linear function

computed by its ith child, and the Ji’s are pairwise disjoint, then this gate computes a
(
⋃

i∈[m] Ji)-linear function.

We stress that if the Ji’s mentioned in the last item are not pairwise disjoint, then their product
cannot be taken by a gate in a multilinear circuit. We now extend this formalism to arithmetic
circuits with arbitrary gates, which compute arbitrary polynomials of the values that feed into them.
Basically, we require that when replacing each gate by the corresponding depth-two arithmetic
circuit that computes this polynomial as a sum of products (a.k.a monomials), we obtain a standard
multilinear circuit. In other words, we require the following.

10

Definition 2.1 (multilinear circuits with general gates): An arithmetic circuit with arbitrary gates

is called multilinear if each of its gates satisfies the following condition. Suppose that a gate com-

putes H(F1, ..., Fm), where H is a polynomial and Fi is a Ji-linear function computed by the ith

child of this gate. Then, each monomial in H computes a function that is J-linear, where J is the

disjoint union of the sets Ji that define the linearity of the functions multiplied in that monomial;

that is, if for some set I ⊆ [m] this monomial multiplies Ji-linear functions for i ∈ I, then these Ji’s

should be disjoint and their union should equal I. The function computed by the gate is J ′-linear,

where J ′ is the union of all the sets that define the linearity of the functions that correspond to the

different monomials in H.

Alternatively, we may require that if a gate multiplies two of its inputs (in one of the monomials
computed by this gate), then the sub-circuits computing these two inputs do not depend on variables
from the same block (i.e., the two sets of variables in the directed acyclic graphs rooted at these
two vertices belong to two sets of blocks with empty intersection).

Definition 2.2 (the complexity of multilinear circuits with general gates): The arity of a multilin-

ear circuit is the maximum arity of its (general) gates, and in the number of gates we count only the

general gates and not the leaves (variables). The complexity of a multilinear circuit is the maximum

between its arity and the number of its gates.

• The nested complexity of a multilinear function F , denoted C(F), is the minimum complexity

of a multilinear circuit that computes F .

• The direct complexity of a multilinear function F , denoted C2(F), is the minimum complexity

of a depth-two multilinear circuit that computes F .

Clearly, C2(F) ≥ C(F) for every multilinear function F . For linear functions F , it holds that
C2(F) ≤ 2C(F), because in this case all gates are addition gates and so, w.l.o.g., all intermediate
gates can feed directly to the top gate. This is no longer the case for bilinear functions; that is,
there exists bilinear functions F such that C2(F)≫ C(F).

Theorem 2.3 (separating C2 from C): There exist bilinear functions F : (GF(2)n)2 → GF(2)
such that C(F) = O(

√
n) but C2(F) = Ω(n2/3). Furthermore, the upper bound is established by a

depth-three multilinear circuit.

The furthermore clause is no coincidence: As outlined in Remark 2.4, for every t-linear function F ,
the value of C(F) is obtained by a multilinear circuit of depth at most t + 1.

Proof: Consider a generic bilinear function g : GF(2)n+s → GF(2), where g is linear in the first
n bits and in the last s =

√
n bits. Using the fact that g is linear in the first n variables, it will

be useful to write g(x, z) as
∑

i∈[m] gi((x(i−1)s+1, ..., xis), z). Indeed, each gi is a bilinear function

on GF(2)s ×GF(2)s. Define f : GF(2)2n → GF(2) such that f(x, y) = g(x,L1(y), ..., Ls(y)), where
Li(y) =

∑si
k=(i−1)s+1 yk.

Clearly, C(f) ≤ 2s + 1 by virtue of a depth-three multilinear circuit that first computes v ←
(L1(y),, Ls(y)) (using s gates each of arity s), then computes wi ← (g1((x(i−1)s+1, ..., xis), v) for
i ∈ [s] (using s gates of arity 2s), and finally compute the sum

∑
i∈[s] wi (in the top gate). The rest

of the proof is devoted to proving that for a random g, with high probability, the corresponding f
satisfies C2(f) = Ω(n2/3).

We start with an overview of the proof strategy. We consider all functions f : GF(2)n ×
GF(2)n → GF(2) that can be derived from a generic bilinear function g : GF(2)n×GF(2)s → GF(2)

11

(by letting f(x, y) = g(x,L1(y), ..., Ls(y))). For each such function f , we consider a hypothetical
depth-two multilinear circuit of complexity at most m = 0.9n2/3 that computes f . Given such a
circuit, we derive a circuit that computes the underlying function g, whereas the circuit that we
derive belongs to a set of size smaller than 20.9sn. But since the number of possible functions g is
2sn, this means that most functions f derived as above from a generic g do not have depth-two
multilinear circuit of complexity at most m = 0.9n2/3; that is, for almost all such functions f , it
holds that C2(f) > 0.9n2/3. The actual argument follows.

Consider an arbitrary depth-two multilinear circuit of complexity m that computes a genetic
f (derived as above from a generic g). (We shall assume that the top gate of this circuit is not
fed directly by any variable, which can be enforced by replacing such variable with singleton linear
functions while possibly doubling m.) By the multilinear condition, the top gate of this circuit
computes a function of the form

B(F1(x), ..., Fm′ (x), G1(y), ..., Gm′′ (y)) +
∑

i∈[m′′′]

Bi(x, y), (5)

where B is a bilinear function (over GF(2)m
′ × GF(2)m

′′
), the Fi’s and Gi’s are linear functions,

the Bi’s are bilinear functions, each of these function depends on at most m variables, and m′ +
m′′ + m′′′ < m.

We now consider a random restriction of y that selects at random ij ∈ {(j − 1)s + 1, ..., js} for
each j ∈ [s], and sets all other bit locations to zero. Thus, for a selection as above, we get y′ such
that y′i = yi if i ∈ {i1, ..., is} and y′i = 0 otherwise. In this case, f(x, y′) equals g(x, yi1 , ..., yis). We
now look at the effect of this random restriction on the expression given in Eq. (5).

The key observation is that the expected number of “live” y′ variables (i.e., y′i = yi) in each Bi

is at most m/s; that is, in expectation, Bi(x, y′) depends on m/s variables of the y-block. It follows
that each Bi(x, y′) can be specified by ((m + m/s) log2 n) + m2/s bits (in expectation), because
Bi(x, y′) is a bilinear form in the surviving y-variables and in at most m variables of x, whereas
such a function can be specified by identifying the variables and the bilinear form applied to them.
Hence, in expectation, the residual

∑
i Bi(x, y′) is specified by less than m3/s + 2m2 log2 n bits,

and we may pick a setting (of i1, ..., is) that yields such a description length. This means that,
no matter from which function g (and f) we start, the number of possible (functionally different)
circuits that we derive from Eq. (5) is at most

2m2 ·




∑

k∈[m]

(
n

k

)


m

· 2m3/s+2m2 log2 n (6)

where the first factor reflects the number of possible bilinear functions B, the second factor reflects
the possible choices of the linear functions F1, ..., Fm′ , G1, ..., Gm′′ , and the third factor reflects
the number of possible bilinear functions that can be computed by

∑
i Bi(x, y′). However, for

m = 0.9n2/3, the foregoing number is smaller than 21.1m3/s < 20.9sn, which is much smaller than
the number of possible functions g (which is 2sn). Hence, for m = 0.9n2/3, not every function f
can be computed as in Eq. (5), and the theorem follows.

Digest. The proof of the lower bound in Theorem 2.3 is quite unusual in its combination of the
method of random restrictions with a counting argument.14 This argument may be decoupled into
two parts pivoted at an artificial complexity class, denoted G, that contains all functions g that

14Indeed, in some sense, this combination is also present in Andreev’s super-quadratic proof for formula size [1].

12

have multilinear circuits of a small description. Using the random restriction, we show that if f
has complexity smaller than 0.9n2/3, then the underlying g is in G. The counting argument then
shows that most g’s are not in G. Combining these two facts, we conclude that most functions f
(constructed based on a function g as in the proof) have complexity at least 0.9n2/3.

Remark 2.4 (on the depth of multilinear circuits achieving C): In light of the above, it is natural

to study the depth of general multilinear circuits (as in Definition 2.1), and the trade-offs between

depth and other parameters (as in Definition 2.2). While this is not our primary focus here, we

make just one observation: If C(F) = s for any t-linear function F , then there is a depth t + 1
circuit with arity and size O(s) computing F as well. This observation is proved in Proposition 4.5.

2.2 Relation to canonical circuits

As outlined in Section 1.4, the direct and nested complexity of multilinear functions are closely
related to the size of D-canonical and ND-canonical circuits computing the functions. Below, we
spell out constructions of canonical circuits, which are depth-three Boolean functions, having size
that is exponential in the relevant parameter (i.e., D-canonical circuits of size exp(C2) and ND-
canonical circuits of size exp(C)).

Construction 2.5 (D-canonical circuits of size exp(C2)): Let F : (GF(2)n)t → GF(2) be a t-linear

function, and consider a depth-two multilinear circuit that computes F such that the top gate applies

an m-ary polynomial H to the results of the m gates that compute F1, ..., Fm, where each Fi is a

multilinear function of at most m variables. (Indeed, we assume, without loss of generality, that
the top gate is fed by the second-level gates only, which in turn are fed by variables.)15 Consider

the following depth-three Boolean circuit that computes F .

1. Let CH be a CNF (resp., DNF) that computes H.

2. For each i ∈ [m], let Ci be a DNF (resp., CNF) that computes Fi, and let C ′
i be a DNF (resp.,

CNF) that computes 1 + Fi.

3. Composing CH with the various Ci’s and C ′
i’s, while collapsing the two adjacent levels of

or-gates (resp., and-gates), we obtain a depth-three Boolean circuit C.

The derived circuit C is said to be D-canonical, and a circuit is said to be D-canonical only if it can

be derived as above.

Clearly, C computes F and has size exponential in m ≤ C2(F)− 1. In particular, we have

Proposition 2.6 (depth-three Boolean circuits of size exp(C2)): Every multilinear function F has

depth-three Boolean circuits of size exp(C2(F)).

It turns out that the upper bound provided in Proposition 2.6 is not tight: There exists multilinear
functions that have depth-three Boolean circuits of size exp(C2(F)3/4). This follows by combining
Theorem 2.3 and Proposition 2.8, where Theorem 2.3 shows that for some bilinear functions F
it holds that C(F) = O(

√
n) = O(n2/3)3/4 = O(C2(F))3/4, and Proposition 2.8 shows that every

multilinear function F has depth-three Boolean circuits of size exp(C(F)). This leads us to the
construction of ND-canonical circuits.

15Variables that feed directly into the top gate can be replaced by 1-ary identity gates.

13

Construction 2.7 (ND-canonical circuits of size exp(C)): Let F : (GF(2)n)t → GF(2) be a t-
linear function, and consider a multilinear circuit that computes F such that the each of the m
gates applies an m-ary polynomial Hi to the results of prior gates and some variables, where H1

corresponds to the polynomial applied by the top gate. Consider the following depth-three Boolean

circuit that computes F .

1. For each i ∈ [m] and σ ∈ GF(2), let Cσ
i be a CNF that computes Hi + 1 + σ. That is, Cσ

i

evaluates to 1 iff Hi evaluate to σ.

2. For each v
def
= (v1, v2, ..., vm) ∈ GF(2)m, let

Cv(x
(1), ..., x(t)) =

∧

i∈[m]

Cvi
i (Πi,1(x

(1), ..., x(t), v), ...,Πi,m(x(1), ..., x(t), v)),

where the Πi,j’s are merely the projection functions that describe the routing in the multilinear

circuit; that is, Πi,j(x
(1), ..., x(t), v)) = vk if the jth input of gate i is fed by gate k and

Πi,j(x
(1), ..., x(t), v)) = x

(ℓ)
k if the jth input of gate i is fed by the kth variable in the ℓth

variable-block (i.e., the variable x
(ℓ)
k).

3. We obtain a depth-three Boolean circuit C by letting

C(x(1), ..., x(t)) =
∨

(v2,...,vm)∈GF(2)m−1

C(1,v2,...,vm)(x
(1), ..., x(t))

The derived circuit C is said to be ND-canonical, and a circuit is said to be ND-canonical only if it

can be derived as above.

Note that C(x(1), ..., x(t)) = 1 if and only if there exists v = (v11, v2, ..., vm) ∈ GF(2)m such that
v1 = 1 and for every i ∈ [m] it holds that Hi(Πi,1(x

(1), ..., x(t), v), ...,Πi,m(x(1), ..., x(t), v)) = vi. For
this choice of v, the vi’s represent the values computed in the original arithmetic circuit (on an
input that evaluates to 1), and it follows that C computes F . Clearly, C has size exponential in
m ≤ C(F). In particular, we have

Proposition 2.8 (depth-three Boolean circuits of size exp(C)): Every multilinear function F has

depth-three Boolean circuits of size exp(C(F)).

A key question is whether the upper bound provided in Proposition 2.8 is tight. The answer
depends on two questions: The main question is whether smaller depth-three Boolean circuits can
be designed by deviation from the construction paradigm presented in Construction 2.7. The second
question is whether the upper bound of exp(m) on the size of the depth-two Boolean circuits used
to compute m-ary polynomials (of degree at most t) is tight. In fact, it suffices to consider t-linear
polynomials, since only such gates may be used in a multilinear circuit.

The latter question is addressed in Appendix C, where it is shown that any t-linear function that
depends on m variables requires depth-two Boolean circuits of size at least exp(Ω(exp(−t) ·m)).
(Interestingly, this lower bound is tight; that is, there exist t-linear functions that depends on m
variables and have depth-two Boolean circuits of size at most exp(O(exp(−t) ·m)).) Conjecturing
that the main question has a negative answer, this leads to the following conjecture.

Conjecture 2.9 (C yields lower bounds on the size of general depth-three Boolean circuits): No

t-linear function F : (GF(2)n)t → GF(2) can be computed by a depth-three Boolean circuit of size

smaller than exp(Ω(exp(−t) · C(F)))/poly(n).

14

When combined with adequate lower bounds on C (e.g., Theorem 4.1), Conjecture 2.9 yields size
lower bounds of the form exp(Ω(exp(−t) · nt/(t+1))), which yields exp(n1−o(1)) for t =

√
log n. In

the special cases that emerge from lower bounds on C, a tighter relation may hold – as stated in
the following Conjecture 2.10, which allows using larger values of t.

Conjecture 2.10 (Conjecture 2.9, stronger form for special cases): None of the multilinear func-

tions F ∈ {F t,n
tet, F

t,n
mod p : p ≥ 2} can be computed by a depth-three Boolean circuit of size smaller

than exp(Ω(C(F)))/poly(n). The same holds for almost all t-linear functions.

When combined with adequate lower bounds on C (e.g., Theorem 4.1), Conjecture 2.10 yields size
lower bounds of the form exp(Ω((tn)t/(t+1))), which for t = log n yields exp(Ω(tn)).

The authors are in disagreement regarding the validity of Conjecture 2.9 (let alone Conjec-
ture 2.10), but agree that also refutations will be of interest.

Remark 2.11 (waiving the multilinear restriction): We note that arbitrary arithmetic circuits

that compute t-linear functions can be simulated by multilinear circuits of the same depth, while

increasing their complexity measure by a factor of at most 2t. This can be done by replacing any

gate in the original circuit with 2t − 1 gates in the multilinear circuit such that the gate associated

with I ⊆ [t] computes the monomials that are I-linear (but not I ′-linear, for any I ′ ⊂ I). The

monomials that are not [t]-linear are not computed, and this is OK because their influence must

cancel out at the top gate. This refers to the standard arithmetic model in which the computation

of a polynomial must yield the same polynomial over the extension field.16

3 Upper Bounds

We first present a generic upper bound on the direct complexity (i.e., C2-value) of any t-linear
function, and then present improved upper bounds that hold (“non-trivially”) for some specific
t-linear functions (e.g., F t,n

leq).

3.1 A generic upper bound

The following upper bound is derived by a (depth-two) multilinear circuit with a top gate that
computes addition (i.e., a linear function).

Theorem 3.1 (an upper bound on C2(·) for any multilinear function): Every t-linear function

F : (GF(2)n)t → GF(2) has D-canonical circuits of size exp(O(tn)t/(t+1)); that is, C2(F) =
O((tn)t/(t+1)).

Here (and elsewhere), we use the fact that tt/(t+1) = Θ(t).

Proof: We partition [n]t into m subcubes such that the side-length of each subcube (i.e., ℓ
def
=

n/m1/t) equals m/t. This balances the number of subcubes against the number of variables corre-
sponding to each subcube (i.e., t · ℓ). We then write the tensor that corresponds to F as a sum of
tensors that are each restricted to one of the aforementioned subcubes. Details follow.

We may assume that t = O(log n), since the claim holds trivially for t = Ω(log n). Partition [n]t

into m cubes, each having a side of length ℓ = (nt/m)1/t = n/m1/t; that is, for k1, ..., kt ∈ [n/ℓ],

16We refer to the infinite extension field obtained by extending the base field with tn formal variables. In this
extension field of GF(2), the polynomials x2 and x are different.

15

let Ck1,...,kt = Ik1 × · · · × Ikt , where Ik = {(k − 1)ℓ + j : j ∈ [ℓ]}. Clearly, [n]t is covered by this
collection of cubes, and the sum of the lengths of each cube is tℓ. Let T be the tensor corresponding
to F . Then,

F (x(1), ..., x(t)) =
∑

k1,...,kt∈[n/ℓ]

Fk1,...,kt(x
(1), ..., x(t))

where Fk1,...,kt(x
(1), ..., x(t)) =

∑

(i1,...,it)∈T∩Ck1,...,kt

x
(1)
i1
· · · x(t)

it
.

It follows that C2(F) ≤ max(tℓ,m), which in turn is O((tn)t/(t+1)) if we choose m = tℓ (and use
ℓ = n/m1/t).

3.2 Improved upper bounds for specific functions (e.g., F
t,n
leq)

Clearly, the generic upper bound can be improved upon in many special cases. Such cases include
various t-linear functions that are easily reducible to linear functions such as (1) F t,n

all(x
(1), ..., x(t)) =∑

i1,...,it∈[n] x
(1)
i1
· · · x(t)

it
=

∏
j∈[t]

∑
i∈[n] x

(j)
i and (2) F t,n

diag(x
(1), ..., x(t)) =

∑
i∈[n] x

(1)
i · · · x

(t)
i . Specifi-

cally, we can easily get C2(F
t,n
all) ≤ t

√
n+1 and C2(F

t,n
diag) ≤ t

√
n. In both cases, the key observation

is that each n-way sum can be written as a sum of
√

n functions such that each function depends on√
n of the original arguments. Furthermore, in both cases, we could derive (depth-three) multilinear

formulae of complexity t
√

n + 1 that use only (
√

n-way) addition and (t-way) multiplication gates.
While such multilinear formulae do not exist for F 2,n

leq (see Section 5), the full power of (depth-two)

multilinear circuits with general gates yields C2(F
2,n
leq) = O(

√
n).

Proposition 3.2 (an upper bound on C2(F
2,n
leq)): The bilinear function F 2,n

leq has D-canonical cir-

cuits of size exp(O(
√

n)); that is, C2(F
2,n
leq) = O(

√
n).

Proof: Letting s
def
=
√

n, we are going to express F 2,n
leq as a polynomial in 3s functions, where each

of these functions depends on O(s) variables. The basic idea is to partition [n]2 into s2 squares of
the form Si,j = [(i− 1)s + 1, is]× [(j − 1)s + 1, js], and note that ∪i<jSi,j ⊂ T 2,n

leq ⊂ ∪i≤jSi,j. Thus,

F 2,n
leq can be computed by computing separately the contribution of the diagonal squares and the

contribution of the squares that are above the diagonal. The contribution of the square Si,i can
be computed as a function of the 2s variables that correspond to it, while the contribution of each
off-diagonal square can be computed as the product of the corresponding sum of x(1)-variables and
the corresponding sum of x(2)-variables. Details follow.

• For every i ∈ [s], let Li(x
(1)) =

∑
j∈[s] x

(1)
(i−1)s+j , which means that Li(x

(1)) only depends on

x
(1)
(i−1)s+1, ..., x

(1)
is .

• For every i ∈ [s], let L′
i(x

(2)) =
∑

j∈[s] x
(2)
(i−1)s+j .

• For every i ∈ [s], let Qi(x
(1), x(2)) =

∑
(j1,j2)∈T 2,s

leq

x
(1)
(i−1)s+j1

· x(2)
(i−1)s+j2

, which means that

Qi(x
(1), x(2)) only depends on x

(1)
(i−1)s+1, ..., x

(1)
is and x

(2)
(i−1)s+1, ..., x

(2)
is .

16

Noting that

F 2,n
leq(x

(1), x(2)) =
∑

i∈[s]

Qi(x
(1), x(2)) +

∑

1≤i<j≤s

Li(x
(1)) · L′

j(x
(2)),

the claim follows.

We turn to another bilinear function, the function F 2,n
mod p, where F t,n

mod p is defined in Eq. (4).

Proposition 3.3 (an upper bound on C2(F
2,n
mod p)): The bilinear function F 2,n

mod p has D-canonical

circuits of size exp(O(
√

n)); that is, C2(F
2,n
mod p) = O(

√
n).

Proof: Let s =
√

n, and let’s consider first the case p ≤ s. For every r ∈ Zp, consider the

functions Lr(x
(1)) =

∑
i≡r (mod p) x

(1)
i and L′

r(x
(2)) =

∑
i≡r (mod p) x

(2)
i . Then, F 2,n

mod p(x
(1), x(2)) =

∑
r∈Zp

Lr(x
(1)) · L′

p−r(x
(2)). Each of the foregoing p ≤ s linear functions depend on n/p variables,

which is fine if p = Ω(s). Otherwise, we replace each linear function by ⌈n/ps⌉ auxiliary functions
(in order to perform each n/p-way summation), which means that in total we have 2p·⌈n/ps⌉ = O(s)

functions (each depending on n/p
⌈n/ps⌉ ≤ s variables).

In the case of p > s, we face the opposite problem; that is, we have too many linear functions,
but each depends on n/p < s variables. So we just group these functions together; that is, for a
partition of Zp to s equal parts, denoted P1, ..., Ps, we introduce s functions of the form

Qi(x
(1), x(2)) =

∑

r∈Pi




∑

i≡r (mod p)

x
(1)
i


 ·




∑

i≡p−r (mod p)

x
(2)
i




(and so avoid using the linear functions). Clearly, F 2,n
mod p(x

(1), x(2)) =
∑

i∈[s] Qi(x
(1), x(2)), and each

Qi depends on 2 · ⌈p/s⌉ · ⌈n/p⌉ = O(s) variables.

Finally, we turn to t-linear functions with t > 2. Specifically, we consider the t-linear function
F t,n
leq, focusing on t ≥ 3.

Proposition 3.4 (an upper bound on C2(F
t,n
leq)): For every t, it holds that C2(F

t,n
leq) = O(exp(t) ·√

n).

Proof: The proof generalizes the proof of Proposition 3.2, and proceeds by induction on t. We

(again) let s
def
=
√

n and partition [n]t into st cubes of the form Ck1,...,kt = Ik1 × · · · × Ikt , where
Ik = {(k − 1)s + j : j ∈ [s]}. Actually, we prove the following inductive claim that refers to the

simultaneously expressibility of the functions F
t,[(k−1)s+1,n]
leq for all k ∈ [s], where

F
t,[i,n]
leq (x(1), ..., x(t)) =

∑

(i1,...,it)∈T t,n
leq : i1≥i

x
(1)
i1
· · · x(t)

it
. (7)

Indeed, F t,n
leq = F

t,[1,n]
leq . We prove, by induction on t, that the functions F

t,[(k−1)s+1,n]
leq , for all

k ∈ [s], can be expressed as polynomials in t2t · s multilinear functions such that each of these
functions depends on t · s variables. The base case (of t = 1) follows easily by using the s functions

Li(x
(1)) =

∑
j∈[s] x

(1)
(i−1)s+j .

In the induction step, for every j ∈ [t], define Tj
def
= {(k1, ..., kt) ∈ T t,s

leq : k1 = kj < kj+1}, where

kt+1
def
= s + 1. Note that, for every k ∈ [s], the elements of T

t,[(k−1)s+1,n]
leq are partitioned according

17

to these Tj ’s; that is, each (i1, ..., it) ∈ T
t,[(k−1)s+1,n]
leq corresponds to some j ∈ [t] and k1 ≥ k such

that (i1, ..., ij) ∈ Ik1 × · · · × Ik1 and (ij+1, ..., it) ∈ T
t−j,[k1s+1,n]
leq . Thus, for every k ∈ [s], it holds

that

F
t,[(k−1)s+1,n]
leq (x(1), ..., x(t)) =

∑

j∈[t]

∑

k1≥k

P
(j)
k1

(x(1), ..., x(j)) · F t−j,[k1s+1,n]
leq (x(j+1), ..., x(t))

where P
(j)
k1

(x(1), ..., x(j))
def
=

∑

(i1,...,ij)∈(T j,n
leq ∩(Ik1

)j)

x
(1)
i1
· · · x(j)

ij
.

It follows that all F
t,[(k−1)s+1,n]
leq are expressed in terms of t · s new functions (each depending on

at most t · s inputs) and the functions provided by the induction hypothesis (but with different
variable names).17 So, in total we used ts +

∑
j∈[t−1](t− j)2t−j · s functions, each depending on at

most ts variables. Noting that ts +
∑

j∈[t−1](t− j)2t−j · s is upper bounded by t2ts, and it follows

that C(F t,n
leq) =≤ t2t · √n.

In order to prove C2(F
t,n
leq) ≤ t2t · √n, we take a closer look at the foregoing expressions.

Specifically, note that all F
t,[(k−1)s+1,n]
leq are expressed in terms of t2ts such that each function

is either expressed in terms of other functions or expressed in terms of variables. In terms of
multilinear circuits this means that each gate is fed either only by other gates or only by variables.
It follows that the top gate is a function of all gates that are fed directly by variables, and so we
can obtain a depth-two multilinear circuit with the same (or even slightly smaller) number of gates
and the same gate arity.

4 Lower Bounds

We believe that the generic upper bound established by Theorem 3.1 (i.e., every t-linear function
F satisfies C(F) ≤ C2(F) = O((tn)t/(t+1)) is tight for many explicit functions. However, we were
only able to show that almost all multilinear functions have a lower bound that meets this upper
bound. This result is presented in Section 4.1, whereas in Section 4.2 we present an approach
towards proving such lower bounds for explicit functions.

4.1 On the complexity of almost all multilinear functions

Theorem 4.1 (a lower bound on C(·) for almost all t-linear functions): For all t = t(n), almost

all t-linear functions F : (GF(2)n)t → GF(2) satisfy C(F) = Ω(tnt/(t+1)).

Recall that t = Θ(tt/(t+1)). Combined with Theorem 3.1, it follows that almost all t-linear functions
satisfy C(F) = Θ(tnt/(t+1)).

Proof: For m > t
√

n to be determined at the end of this proof, we upper bound the fraction of
t-linear functions F that satisfy C(F) ≤ m. Each such function F is computed by a multilinear
circuit with at most m gates, each of arity at most m. Let us denote by Hi the function computed
by the ith gate.

17By the induction hypothesis, for every t′ ∈ [t− 1], we can express the functions F
t−t′,[(k−1)s+1,n]
leq (x(1), ..., x(t−t′))

for all k ∈ [s], but here we need the functions F
t−t′,[(k−1)s+1,n]
leq (x(t′+1), ..., x(t)). Still, these are the same functions,

we just need to change the variable names in the expressions.

18

Recall that each of these polynomials (i.e., Hi’s) is supposed to compute a [t]-linear function.
We shall only use the fact that each Hi is t-linear in the original variables and in the other gates
of the circuit; that is, we can label each gate with an integer i ∈ [t] (e.g., i may be an block of
variables on which this gate depends) and require that functions having the same label may not be
multiplied nor can they be multiplied by variables of the corresponding block.

Thus, each gate specifies (1) a choice of at most m original variables, (2) a t-partition of the
m auxiliary functions, and (3) a t-linear function of the m variables and the m auxiliary function.
(Indeed, choice (2) is common to all gates.) Thus, the number of such choices is upper bounded by

(
nt

m

)
· tm · 2((2m/t)+1)t

(8)

where ((2m/t) + 1)t is an upper bound on the number of monomials that may appear in a t-
linear function of 2m variables, which are partitioned into t blocks. (Denoting by mj the number of
variables and/or gates that belong to the jth block, the number of possible monomials is

∏
j∈[t](mj+

1), where in our case
∑

j∈[t] mj ≤ 2m.) Note that Eq. (8) is upper bounded by exp((m/t)t +

m log nt) = exp((m/t)t), where the equality is due to m > t
√

n > t log n and t ≥ 2 (as we consider
here).

It follows that the number of functions that can be expressed in this way is exp((m/t)t)m+1,
which is a negligible fraction of all t-linear functions over (GF(2)n)t, provided that mt+1/tt ≪ nt,
which in turn holds for m = O(tnt/(t+1)). The claim follows.

Open problems. The obvious problem that arises is proving a similar lower bound for some
explicit multilinear function. A modest start is the following:

Problem 4.2 (the first goal regarding lower bounds regarding C): Prove that C(F) = Ω((tn)c) for

some c > 1/2 and some explicit multilinear function F : (GF(2)n)t → GF(2).

Actually, an even more modest start is to prove that C2(F) = Ω((tn)c) for some c > 1/2 and some
explicit multilinear function F : (GF(2)n)t → GF(2); that is, to consider only depth-two multilinear
circuits.

Problem 4.3 (the ultimate goal regarding lower bounds regarding C): For every t ≥ 2, prove that

C(F) = Ω((tn)t/(t+1)) for some explicit t-linear function F : (GF(2)n)t → GF(2). Ditto when t may

vary with n, but t ≤ poly(n).

Actually, a lower bound of the form C(F) = Ω((tn)ǫt/(ǫt+1)), for some fixed constant ǫ > 0, will
also allow to derive exponential lower bounds when setting t = O(log n). A concrete suggestion
regarding Problem 4.2 is presented in the next subsection.

4.2 The complexity of bilinear functions and matrix rigidity

In this section we show that lower bounds on the rigidity (i.e., Valiant’s matrix rigidity) of matrices
yield lower bounds on the C-value of bilinear functions associated with these matrices. We then
show that even lower bounds for non-explicit matrices (e.g., generic Toeplitz (or circulant) matrices)
would yield lower bounds for explicit trilinear functions, specifically, for our candidate function F 3,n

tet .
Let us first recall the definition of matrix rigidity (as defined by Valiant [24] and surveyed in [12]).

The rigidity of a matrix A for target rank r is the minimum disagreement between A and a matrix

19

of rank at most r, where the disagreement between two matrices is the number of entries on which
they disagree (i.e., the disagreement between A = (ai,j) and B = (ai,j) is |{(i, j) : ai,j 6= bi,j}|).
Although matrix rigidity problems are notoriously hard, it seems that they were not extensively
studied in the range of parameters that we need (i.e., rigidity Ω(n3/2) for rank Ω(n1/2)). Here is
its basic connection to our model.

Theorem 4.4 (reducing C lower bounds to matrix rigidity): If T is an n-by-n matrix that has

rigidity m3 for rank m, then the corresponding bilinear function F satisfies C(F) ≥ m.

In particular, if there exists an n-by-n Toeplitz matrix that has rigidity m3 for rank m, then the

corresponding bilinear function F satisfies C(F) ≥ m.

Proof: As a warm-up, we first prove that C2(F) > m; that is, we prove a lower bound re-
ferring to depth-two multilinear circuits rather than to general multilinear circuits. Suppose
towards the contradiction that C2(F) ≤ m, and consider the multilinear circuit that guaran-
tees this bound. Without loss of generality (cf. Construction 2.5), it holds that F (x(1), x(2)) =
H(F1(x

(1), x(2)), ..., Fm−1(x
(1), x(2))), where H is computed by the top gate and Fi is computed by

its ith child. W.l.o.g, the first m′ functions (Fi’s) are quadratic functions whereas the others are lin-
ear functions (in either x(1) or x(2)). Furthermore, each Fi depends on at most m variables. Since
H(F1(x

(1), x(2)), ..., Fm−1(x
(1), x(2))) is a formal bilinear polynomial (in x(1) and x(2)), it follows

that it has the form ∑

i∈[m′]

Qi(x
(1), x(2)) +

∑

(j1,j2)∈P

Lj1(x
(1))Lj2(x

(2)), (9)

where P ⊂ [m′ + 1,m − 1] × [m′ + 1,m− 1] and each Qi and Lj depends on at most m variables.
Furthermore, each of the Lj is one of the auxiliary functions Fi’s, which means that the second
sum (in Eq. (9)) depends on at most m− 1 different (linear) functions. Note that the matrix that
corresponds to the first sum in Eq. (9) has less than m3 one-entries (since the sum of the Qi’s
depends on at most m′ ·m2 < m3 variables), whereas the matrix that corresponds to the second
sum in Eq. (9) has rank at most m − 1 (since the sum of the Lj1Lj2’s depends on at most m − 1
linear functions). But this contradicts the hypothesis that T has rigidity m3 for rank m.

Turning to the actual proof (of C(F) > m), which refers to multilinear circuits of arbitrary
depth, we note that in the bilinear case the benefit of depth is very limited. This is the case because
nested composition is beneficial only when it involves free occurrence of the original variables (since
terms that are only product of auxiliary functions can be moved from the expression for Fi to the
expressions that use Fi). In particular, without loss of generality, linear Fi’s may be expressed in
terms of the original variables only, whereas quadratic Fi’s are expressed in terms of the original
variables and possibly linear Fi’s. Thus, the expression for F (x(1), x(2)) is as in Eq. (9), except that
here for every (j1, j2) ∈ P either Lj1 or Lj2 is one of the auxiliary functions Fi’s. This suffices for
completing the argument. Details follow.

Suppose towards the contradiction that C(F) ≤ m, and consider the multilinear circuit that

supports this bound. It holds that F (x(1), x(2)) = H(F1(x
(1), x(2)), ..., Fm−1(x

(1), x(2)), x
(1)
I1

, x
(2)
I2

),
where H is the bilinear function computed by the top gate, |I1|+ |I2| ≤ m and the Fi’s are auxiliary
functions that are computed by other gates of the circuit, where each such gate has arity at most m.
Each gate computes a bilinear function of its argument, which we express as a sum of monomials
of the following type.

Monomials that contain only auxiliary functions Fj: Such a monomial may be either a sin-
gle multilinear function or a product of two linear functions. Without loss of generality, such

20

monomials exist only in the computation of the top gate (and not in the computation for any
other gate, because the computation of such monomials can be moved from the current gate
to all gates to which it feeds).

Monomials that contain only original variables: Each quadratic (resp., linear) function com-
puted by a gate has at most m2 (resp., m) such monomials.

Mixed monomials that consist of the product of a linear function and an original variable:

Such monomials cannot exist in the computation of linear functions.

Summing together all mixed monomials (regardless of the gate to which they belong), we obtain at
most m−1 quadratic forms, since each quadratic form is the product of one of the auxiliary (linear)
functions Fi and a linear combination of the original variables. Adding to this sum (denoted S1)
the sum (denoted S2) of all monomials (computed by the top gate) that are a product of two linear
Fi’s, we still have at most m − 1 quadratic forms that are each a product of one of the auxiliary
(linear) functions Fi and a linear combination of the original variables.18 Let us denote the resulting
function (i.e., S1 + S2) by F ′, and the corresponding matrix by T ′. Note that T ′ has rank at most
m − 1 (since it is the sum of at most m − 1 rank-1 matrices, which correspond to the different
linear Fi’s). Lastly, note that F + F ′ contains only quadratic monomials that are each either a
product of two variables or an auxiliary function, which in turn consists of at most m2 monomials
that are each a product of two variables.19 Thus, F + F ′ consists of at most (m − 1) ·m2 < m3

such products, which implies that T ′ differs from T on less than m3 entries. This implies that T
does not have rigidity m3 for rank m, and the claim follows.

Before proceeding, let us generalize one of the observations used in the proof of Theorem 4.4 in
order to prove the following

Proposition 4.5 (on the depth of multilinear circuits achieving C): If C(F) = s for any t-linear

function F , then there is a depth t + 1 circuit with arity and size O(s) that computes F .

Proof: Generalizing an observation made in the proof of Theorem 4.4, note that monomials in
the expression for Fi that contain only auxiliary functions can be moved to the expressions of all
functions that depend on Fi. Thus, without loss of generality, each auxiliary function Fi (computed
by a internal gate) can be expressed in terms of input variables and auxiliary functions that are of
smaller degree (than the degree of Fi). It follows that the depth of multilinear circuits computing
a t-linear function needs not exceed t + 1.

Implications on F 3,n
tet . We now suggest to try to obtain an improved lower bound on C(·) for

the trilinear function F 3,n
tet (see Eq. (3)), which is an explicit multilinear function (with t = 3),

18This relies on the fact that Fi · Fj may be viewed as a product of Fi and the linear combination of the original
variables given by the expression for Fj .

19In other words, assuming that the first m′ < m auxiliary functions (i.e., Fi’s) are bilinear functions, we observe
that

F =

m′

X

i=1

Qi +

m−1
X

i=m′+1

LiFi ,

where Qi is the sum of the products of two variables that appear in Fi and the Li’s are arbitrary linear functions
(which may depend on an arbitrary number of variables in either x(1) or x(2)). Thus, F ′ =

Pm−1
i=m′+1 LiFi corresponds

to a tensor of rank at most m−1, whereas F −F ′ =
Pm′

i=1Qi is the sum of at most m′ ·m2 products of two variables.

21

via a reduction to proving a rigidity lower bound for a random (or actually any) Toeplitz matrix
(corresponding to t=2). Recall that a Toeplitz matrix is a matrix (ti,j)i,j∈[n] such that ti+1,j+1 = ti,j.

The reduction, which is presented next, actually reduces proving lower bounds on C(F 3,n
tet) to proving

lower bounds on the C-value of any bilinear function that corresponds to a Toeplitz matrix.

Proposition 4.6 (from F 3,n
tet to Toeplitz matrices): If there exists an n-by-n Toeplitz matrix such

that the corresponding bilinear function F satisfies C(F) ≥ m, then C(F 3,n
tet) = Ω(m).

Proof: For simplicity, assume that n = 2n′ + 1 is odd, and consider the trilinear function
F3 : (GF(2)n

′+1)3 → GF(2) associated with the tensor T3 = {(i1, i2, i3) ∈ [[n′]]3 :
∑

j ij ≤
n/2}, where [[n′]]

def
= {0, 1, ..., n′}. Note that multilinear circuits for F 3,n

tet yield circuits of sim-

ilar complexity for F3: For y
(j)
[[n′]] = (y

(j)
0 , y

(j)
1 , ..., y

(j)
n′), the value of F3(y

(1)
[[n′]], y

(2)
[[n′]], y

(3)
[[n′]]) equals

F 3,n
tet(0

n′
y

(1)
[[n′]], 0

n′
y

(2)
[[n′]], 0

n′
y

(3)
[[n′]]). This means that we may modify each of the expressions used

for F 3,n
tet by replacing the first n′ variables in each variable-block with the value 0 (i.e., omit the

corresponding monomials).20

Next, note that if F3(x, y, z) =
∑

(i,j,k)∈T3
xiyjzk satisfies C(F3) ≤ m, then the same upper bound

holds for any bilinear function that is associated with an (n′ + 1)-by-(n′ + 1) triangular Toeplitz
matrix (i.e., tj+1,k+1 = tj,k and tj,k = 0 if j < k). This holds because any linear combination of
the 1-slices of T3 (i.e., the two-dimensional tensors T ′

i = {(j, k) : (i, j, k) ∈ T} for every i ∈ [[n′]])
yields a transpose of a triangular Toeplitz matrix, and all such matrices can be obtained by such
a combination; that is, for every I ⊆ [[n′]], it holds that the matrix (tj,k)j,k∈[[n′]] such that tj,k =
|{i ∈ I : (i, j, k) ∈ T}| mod 2 satisfies tj,k+1 = tj+1,k and tj,k = 0 if j +k > n′, and each such matrix
can be obtained by a choice of such an I. (We can and will ignore the transpose operation in the
sequel.)

Finally, note that multilinear circuits for any bilinear function that is associated with a trian-
gular Toeplitz matrix yields circuits of similar complexity for general Toeplitz matrix. This holds
because each Toeplitz matrix can be written as the sum of two triangular Toeplitz matrices (i.e.,
an upper-triangular one and a lower-triangular one).

Hence, establishing an Ω(nc) lower bound on C(F 3,n
tet) reduces to establishing this bound for some

Toeplitz matrix. This gives rise to the following

Problem 4.7 (on the complexity of Toeplitz matrices): Prove that there exists an n-by-n Toeplitz

matrix such that the corresponding bilinear function F satisfies C(F) ≥ nc, for some c > 1/2.

As we saw, Problem 4.7 would be resolved by

Problem 4.8 (on the rigidity of Toeplitz matrices): For some c > 1/2, prove that there exists an

n-by-n Toeplitz matrix T that has rigidity m3 for rank m = nc.

5 On a restricted model

In continuation to Definition 2.2, we consider a restricted complexity measure that refers only
to multilinear circuits that use standard addition and multiplication gates. Needless to say, the

20The opposite direction is equally simple: Just note that F 3,n
tet can be expressed as a sum of the values in the eight

directions corresponding to {±1}3.

22

multiplication gates in a multilinear circuit computing a t-linear function have arity at most t,
whereas the arity of the addition gates is accounted for in our complexity measure. Furthermore,
in our complexity measure we do not count multiplication gates that are fed by variables only. For
sake of clarify, we spell out the straightforward adaptation of Definition 2.2:

Definition 5.1 (the complexity of multilinear circuits with standard gates): A standard multilinear

circuit is a multilinear circuit (as in Definition 2.2) having only addition and multiplication gates,

and its complexity is the maximum between the arity of its gates and the number of its non-trivial

gates, where the trivial gates are multiplication gates that are fed by variables only. The restricted

complexity of a multilinear function F , denoted RC(F), is the minimum complexity of a standard

multilinear circuit that computes F .

Indeed, we avoided introducing a depth-two version of Definition 5.1. Note that for every t-linear
function F , it holds that C(F) ≤ t · RC(F), since trivial multiplication gates can be eliminated by
increasing the arity of the circuit (in the general model) by a factor of at most t.21

5.1 The restricted model separates F
t,n
all and F

t,n
diag from F

2,n
leq

As stated (implicitly) in Section 3.2, it holds that RC(F t,n
all) ≤ t

√
n + 1 and RC(F t,n

diag) ≤ t
√

n. We

show that this upper bound does not hold for F 2,n
leq . We start with a general result.

Theorem 5.2 (lower bound on the restricted complexity of bilinear functions): Let F : (GF(2)n)2 →
GF(2) be a bilinear function with a corresponding tensor T ⊆ [n]2. If T has rigidity ǫn2 with respect

to rank r > 1, then RC(F) ≥ min(r,
√

ǫ · n).

Using r = Ω(1/ǫ), we obtain RC(F) = Ω(min(1/ǫ,
√

ǫ ·n)), which is optimized at ǫ = n−2/3 yielding
RC(F) = Ω(n2/3). Such a rigidity bound can be established for T 2,n

leq (cf. Proposition 5.3). For

a random matrix T , we can obtain rigidity Ω(n2) with respect to rank Ω(n), which implies that
for almost all bilinear functions F it holds that RC(F) = Ω(n). The latter lower bound is tight,
since (for any t ≥ 1) any t-linear function F satisfies RC(F) ≤ nt/2 (via a multilinear formula with
addition gates that sum-up all the relevant monomials).

Proof: We assume that m
def
= RC(F) <

√
ǫ · n, and show that m ≥ r. Consider a standard

multilinear circuit that computes F with m′ addition gates of arity at most m and m′′ non-trivial
multiplication gates, where m′ + m′′ ≤ m. Note that the top gate cannot be a multiplication gate,
because such a multilinear circuit can only compute bilinear functions that correspond to rank-1
matrices. Thus, the circuit, which is a directed acyclic graph (DAG) rooted at the top gate, can
be decomposed into a top layer that consists of a DAG of addition gates, an intermediate layer of
multiplication gates, and a bottom layer that consists of a DAG of addition gates and variables
(which feeds linear functions to the multiplication gates). We note that the number of trivial
multiplication gates that feed the top DAG is at most m2, because this DAG has m′ ≤ m addition
gates each of in-degree at most m.

We truncate the foregoing circuit at the trivial multiplication gates (which compute products
of variables), obtaining a new circuit that computes a bilinear function F ′ with a tensor T ′ such
that |T + T ′| ≤ m2 (since T + T corresponds to the function computed by the sum of the trivial
multiplication gates). This new circuit has no trivial gates and it has m′′ non-trivial multiplication

21In a gate that is fed by a trivial multiplication-gate, the argument representing the trivial gate’s output is replaced
by the (up to) t input variables feeding this trivial gate.

23

gates (each computing a bilinear function that corresponds to a rank-1 matrix). Hence T ′ has rank
at most m′ (since it is the sum of m′ rank-1 matrices). We consider two cases:

1. If m′′ ≤ r, then T ′ has rank at most r, and we derive a contradiction to the hypothesis that
T has rigidity ǫn2 with respect to rank r, since |T + T ′| ≤ m2 < ǫn2.

2. Otherwise, m′′ ≥ r, and it follows that m ≥ r.

The claim follows.

Proposition 5.3 (a bound on the rigidity of F 2,n
leq): For every r < n/O(1), the tensor T 2,n

leq has

rigidity at least Ω(n2/r) with respect to rank r.

The rigidity lower bound is quite tight, since T 2,n
leq is O(1/r)-close to

∑
k∈[r](Ik × Jk), where for

every k ∈ [r] it holds that Ik = {(k − 1)n/r + 1, ..., kn/r} and Jk = {(k − 0.5)n/r + 1, ..., n}.
Proof: For a constant c > 1 to be determined later, we consider any r < n/c. We shall prove that

any matrix T ′ = (T ′
i,j)i,j∈[n] of rank r is Ω(1/r)-far from T

def
= T 2,n

leq ; that is, |T ′ + T | = Ω(n2/r).
Let T ′ be an arbitrary matrix of rank at most r. We say that i ∈ [n] is good if |{j ∈ [n] : T ′

i,j 6=
Ti,j}| < n/cr. The claim of the proposition reduces to proving that at least half of i ∈ [n] are not

good, since in this case T ′ disagrees with T on at least n
2 · n

cr = n2

2cr entries. It is thus left to prove
the latter claim.

Let G denote the set of good i ∈ [n], and supposed towards the contradiction that |G| > n/2.
For c′ ∈ [1, c/2] to be (implicitly) determined later, select c′r indices i1, ..., ic′r ∈ G such that for
every k ∈ [c′r− 1] it holds that ik+1 > ik + (n/2c′r). Let us denote the ithk row of T by vk, and the
ithk row of T ′ by v′k. Then, for a random non-empty set K ⊆ [c′r], it holds that

1. with probability greater than 1− 2−r, the vector
∑

k∈K vk has weight greater than n/6; and

2. with probability at least 2−r, the vector
∑

k∈K v′k has weight 0.

(The first claim follows from the structure of T and the distance between the ik’s, whereas the
second claim follows from the rank of T ′.)22 Combining (1) and (2), it follows that there exists
non-empty set K ⊆ [c′r] such that the vector

∑
k∈K vk has weight greater than n/6 but the vector∑

k∈K v′k has weight 0. But this is impossible because the distance between these two vectors is
at most |K| · n/(cr) ≤ c′n/c < n/6, where the last inequality require selecting c > 6c′. The claim
(that |G| ≤ n/2) follows.

Corollary 5.4 (lower bound on the restricted complexity of F 2,n
leq): RC(F

2,n
leq) = Ω(n2/3).

Indeed, Corollary 5.4 follows by combining Theorem 5.2 and Proposition 5.3, while using r = n2/3

and ǫ = 1/r. The resulting lower bound is tight:

22Specifically, for a random K, the weight of the vector
P

k∈K vk is distributed as
P

j∈[c′r−1](ij+1 − ij) · Xj ,

where Xj =
P

k∈K Tik,ij
(mod 2, as always). Thus, Xj =

P

k≤j Yk, where Yk = 1 if k ∈ K and Yk = 0

otherwise, which implies that the Xj ’s are IIDs uniformly distributed in {0, 1}. For sufficiently large c′, we in-
deed have Pr[

P

j∈[c′r−1]Xj > c′r/3] > 1 − 2−r, and (1) follows since
P

j∈[c′r−1](ij+1 − ij) · Xj is greater than

(n/2c′r) ·
P

j∈[c′r−1]Xj . Turning to (2), consider a maximal set of independent vectors among the v′1,, v
′
c′r, and

denote its set of indices by I . Then, PrK [
P

k∈K v′k = 0] can be computed by first selecting a random K′ ⊆ ([c′r] \ I),
and then (for any outcome K′) selecting a random K′′ ⊆ ([c′r] ∩ I), which implies that this probability equals
2−|I| ≥ 2−r.

24

Proposition 5.5 (upper bound on the restricted complexity of F 2,n
leq): RC(F

2,n
leq) = O(n2/3).

Proof: Consider a partition of [n]2 into n4/3 squares, each with side ℓ = n1/3: For i, j ∈ [n/ℓ],
let Si,j = [(i − 1)n/ℓ + 1, in/ℓ] × [(j − 1)n/ℓ + 1, jn/ℓ], and note that ∪i<jSi,j ⊂ T 2,n

leq ⊂ ∪i≤jSi,j.

Thus, F 2,n
leq can be computed by computing separately the contribution of the n/ℓ = n2/3 diagonal

squares and the contribution of the squares that are above the diagonal. The contribution of the
square Si,i can be computed as the sum of its relevant ℓ2 = n2/3 entries, which means that the sum
of the contribution of all diagonal squares consists of less than n4/3 monomials. This sum can be
computed by n2/3 + 1 addition gates, each of arity n2/3.

The contribution of the above-diagonal squares can be computed by writing ∪i<jSi,j as
∑

i∈[n/ℓ] Ri,

where Ri = [(i−1)n/ℓ+1, in/ℓ]× [(i−1)n/ℓ]. The contribution of each of the n/ℓ = n2/3 rectangles
(i.e., Ri’s) can be computed by multiplying two linear expressions. The point is that there are n2/3

linear expressions each involving ℓ = n1/3 variables of the first block, and n2/3 linear expressions each
involving a prefix of the sequence of variables of the second block. The former n2/3 linear expressions
can be computed by n2/3 addition gates, each of arity n1/3, whereas the latter can be computed by
n2/3 addition gates, each of arity n1/3+1 by using [(i−1)n/ℓ] = [(i−2)n/ℓ]∪[(i−2)n/ℓ+1, (i−1)n/ℓ]
(i.e., the ith addition gate sums the result of the i − 1st addition gate and ℓ new variables). The
claim follows.

5.2 On the restricted complexity of almost all t-linear functions

Recall that for every t-linear function F , it holds that RC(F) = O(nt/2), by a circuit that merely
adds all relevant monomials. We prove that for almost all t-linear functions this upper bound is
tight up to a logarithmic factor.

Proposition 5.6 (a lower bound on RC(·) for almost all t-linear functions): For all t = t(n), almost

all t-linear functions F : (GF(2)n)t → GF(2) satisfy RC(F) = Ω(nt/2/ log nt).

Proof: We just upper bound the number of standard multilinear circuits of complexity m. Each
such circuit corresponds to a DAG with m vertices, each representing either an addition gate or a
(non-trivial) multiplication gate. In addition, each of these non-trivial gates may be fed by some
variables or trivial multiplication gates (which are not part of this DAG), but the number of such
feeds is at most m and each is selected among at most (n + 1)t possibilities. Thus, the number of
such circuits is at most

2m · 2(m
2) ·

(
(n + 1)t

m

)m

(10)

where 2(
m
2) upper bounds the number of m-vertex DAGs, 2m accounts for choice of the gate types,

and
((n+1)t

m

)
accounts for the choice of DAG-external feeds to each gate. Clearly, Eq. (10) is upper

bounded by ((n + 1)t)m
2

= exp(tm2 log n), whereas the number of t-linear functions is 2nt
. The

claim follows.

25

Acknowledgments

We are grateful to Or Meir for extremely helpful discussions.

References

[1] A.E. Andreev. On a method for obtaining more than quadratic effective lower bounds for
the complexity of π-schemes. Moscow Univ. Math. Bull., Vol. 42 (1), pages 63–66, 1987.

[2] M. Ajtai. Σ1
1-formulae on finite structures. Ann. Pure Appl. Logic, Vol. 24 (1), pages 1–48,

1983.

[3] L. Babai. Random oracles separate PSPACE from the Polynomial-Time Hierarchy. IPL,
Vol. 26, pages 51–53, 1987.

[4] M.L. Furst, J.B. Saxe, and M. Sipser. Parity, Circuits, and the Polynomial-Time Hierarchy.
Mathematical Systems Theory, Vol. 17 (1), pages 13–27, 1984. Preliminary version in 22nd

FOCS, 1981.

[5] O. Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge Univer-
sity Press, 2008.

[6] J. Hastad. Almost Optimal Lower Bounds for Small Depth Circuits. Advances in Comput-

ing Research: a research annual, Vol. 5 (Randomness and Computation, S. Micali, ed.),
pages 143–170, 1989. Extended abstract in 18th STOC, 1986.

[7] J. Hastad. Computational Limitations for Small Depth Circuits. MIT Press, 1987.

[8] J. Hastad, S. Jukna. and P. Pudlak. Top-Down Lower Bounds for Depth-Three Circuits.
Computational Complexity, Vol. 5 (2), pages 99–112, 1995.

[9] S. Jukna. Boolean Function Complexity: Advances and Frontiers. Algorithms and Com-
binatorics, Vol. 27, Springer, 2012.

[10] M. Karchmer and A. Wigderson. Monotone Circuits for Connectivity Require Super-
Logarithmic Depth. SIAM J. Discrete Math., Vol. 3 (2), pages 255–265, 1990.

[11] E. Kushilevitz and N. Nisan. Communication complexity. Cambridge University Press,
1997.

[12] S.V. Lokam. Complexity Lower Bounds using Linear Algebra. Foundations and Trends

in Theoretical Computer Science, Vol. 4, pages 1–155, 2009.

[13] D. van Melkebeek. A Survey of Lower Bounds for Satisfiability and Related Problems.
Foundations and Trends in Theoretical Computer Science, Vol. 2, pages 197-303, 2007.

[14] N. Nisan. Pseudorandom bits for constant depth circuits. Combinatorica, Vol. 11 (1),
pages 63–70, 1991.

[15] N. Nisan and A. Wigderson. Hardness vs Randomness. Journal of Computer and System

Science, Vol. 49, No. 2, pages 149–167, 1994. Preliminary version in 29th FOCS, 1988.

26

[16] N. Nisan and A. Wigderson. Lower Bound on Arithmetic Circuits via Partial Derivatives.
Computational Complexity, Vol. 6, pages 217–234, 1996.

[17] R. Raz. Tensor-Rank and Lower Bounds for Arithmetic Formulas. Proceeding of the 42nd

STOC, pages 659–666, 2010.

[18] R. Raz and A. Yehudayoff. Lower Bounds and Separations for Constant Depth Multilinear
Circuits. ECCC, TR08-006, 2008.

[19] A. Razborov. Lower bounds on the size of bounded-depth networks over a complete basis
with logical addition. In Matematicheskie Zametki, Vol. 41, No. 4, pages 598–607, 1987
(in Russian). English translation in Mathematical Notes of the Academy of Sci. of the

USSR, Vol. 41 (4), pages 333–338, 1987.

[20] W.J. Savitch. Relationships between nondeterministic and deterministic tape complexi-
ties. JCSS, Vol. 4 (2), pages 177-192, 1970.

[21] R. Shaltiel and E. Viola. Hardness Amplification Proofs Require Majority. SIAM J. Com-

put., Vol. 39 (7),pages 3122–3154, 2010. Extended abstract in 40th STOC, 2008.

[22] R. Smolensky. Algebraic Methods in the Theory of Lower Bounds for Boolean Circuit
Complexity. In 19th STOC pages 77–82, 1987.

[23] V. Strassen. Vermeidung von Divisionen. J. Reine Angew. Math., Vol. 264, pages 182–202,
1973.

[24] L.G. Valiant. Graph-theoretic arguments in low-level complexity. Mathematical Founda-
tions of Computer Science, Springer, Lecture Notes in Computer Science, Vol. 53, pages
162–176, 1977.

[25] L.G. Valiant. Exponential lower bounds for restricted monotone circuits. In 15th STOC,
pages 110–117, 1983.

[26] U.V. Vazirani. Efficiency Considerations in Using Semi-Random Sources. In 19th STOC,
pages 160-168, 1987.

[27] A.C. Yao. Separating the Polynomial-Time Hierarchy by Oracles. In 26th FOCS, pages
1-10, 1985.

27

Appendices

Throughout the rest of this paper (i.e., in the appendices), by circuits we mean Boolean circuits.
Since we are mainly interested in constant-depth circuits and in their size as being exponential in
some parameters (while disregarding the constant factor in the exponent), the difference between
formulas and circuits is immaterial here. Ditto with respect to the difference between the maximal
fan-in of gates in the circuit (or formula) and the total size. Indeed, a depth-d formula (or circuit)
of fan-in bound B, has size at most Bd, which is poly(B) = exp(log B), whenever d is constant. In
other words, for a constant depth circuit (or formula) C it holds that log(size(C)) is linear in the
logarithm of the fan-in bound.

Appendix A: On separating NL from P
This appendix provides details for a comment made in the introduction regarding the effect of
exponential lower bounds on the size of depth-three Boolean circuits on separating NL from P.

We start by recalling a folklore result regarding the circuit complexity of NL, which can be
proved by a natural generalization of the well-known idea underlying Savitch’s Theorem [20].

Theorem A.1 Every set in NL has constant-depth Boolean circuits of sub-exponential size. That

is, for every set S ∈ NL, there exists a constant c such that for any constant d > c, the set S has

depth-d circuits of exp(nc/d) size.

(In his survey of lower bounds for Satisfiability [13], van Melkebeek describes this result and its
proof in terms of alternating time; cf. [13, Sec. 3.2].)

Proof: We shall show that directed st-connectivity can be solved by depth-d circuits of size
exp(Õ(n2/d)), where n denotes the number of vertices (and factors that depend on d are hidden in
the Õ-notation). Let Φ(G,u, v, ℓ) denote the predicate indicating that there is a path of length at
most ℓ from u to v in the graph G. Observe that Φ(G, v0, vm+1, ℓ) can be written as

∃v1, ..., vm∀i ∈ [m + 1] Φ(G, vi−1, vi, ⌈ℓ/m⌉).

Indeed, in the proof of Savitch’s Theorem [20], one sets m = 1 (and recurses for log2 n steps), but
here we set m = n2/d and recurse for d/2 steps. We obtain the desired circuit by replacing the
existential quantifiers with 2m log2 n-way OR-gates and the universal quantifiers with ((m + 1)-way)
AND-gates.

Corollary A.2 If there is a function in the class C that has no constant-depth circuits of subexpo-

nential size, then NL is not contained in C.

Indeed, the same argument can be applied whenever the lower bound on the size of depth-d circuits
(for the function in C) is higher than exp(nO(1/d)). A simple case is when the lower bound is
oblivious of the constant depth (or rather holds uniformly over all constant depths). In general, the
lower bound may have the form Ld(n), and in such a case it suffices that for every c there exists a
d such that for sufficiently large n it holds that Ld(n) > exp(nc/d).

28

Appendix B: On worst-case vs average-case

The application of circuit lower bounds to derandomization requires (via the hardness-to-randomness
connection of cf. [14, 15]) requires strong average-case bounds, not merely worst-case ones. Here
average-case refers to the uniform distribution. Before continuing the discussion, let us clarify the
above notions.

We say that a circuit C approximates the Boolean function F with error probability ǫ if Prx[C(x) 6=
F (x)] ≤ ǫ, where the probability is taken over the uniform distribution (over strings of adequate
length). The notion of worst case corresponds to error probability 0, a mild level of average case
may refer to some constant error probability ǫ ∈ (0, 0.5), whereas a strong level of average case may
refer to error probability that has the form ǫ(n) = 0.5 − µ(n), where µ is some negligible function
(e.g., µ(n) = 2−Θ(n)).

The point is that even if one obtains exponential lower bounds (on the size of constant-depth
circuits) for computing some explicit function, these worst-case bounds do not necessarily yield
average-case lower bounds. In other settings, hardness amplification can be used to bridge the
gap, but in the context of constant-depth circuits generic hardness amplification to exponentially
vanishing advantage is quite unlikely (cf. [21], which assert that such a black-box amplification
implies a circuit for majority). Nevertheless, for t-linear function, hardness amplification to very
moderate error rate is possible.23

Proposition B.1 (implicit in [2, 3]): Let F : ({0, 1}n)t → {0, 1} be a t-linear function. If F cannot

be computed by depth d circuits of size s, then F cannot be approximated with error probability at

most 2−(t+2) by depth d− 4 circuits of size s/(exp(2t) · poly(n)).

Proof: Suppose that C approximates F with error probability at most ǫ; that is,

Prx(1),...,x(t)[C(x(1), ..., x(t)) 6=F (x(1), ..., x(t))] ≤ ǫ.

Then, following Babai [3], we can obtain a randomized circuit C ′ such that for every (x(1), ..., x(t)) ∈
({0, 1}n)t it holds that Pr[C ′(x(1), ..., x(t)) = F (x(1), ..., x(t))] ≥ 1 − 2tǫ. Specifically, C ′ selects
uniformly r(1), ..., r(t) ∈ {0, 1}n, and computes

C ′(x(1), ..., x(t); r(1), ..., r(t))
def
=

∑

(σ1,...,σt)∈{0,1}t

C(σ1x
(1) + r(1), ..., σtx

(t) + r(t)).

Note that C ′ can be implemented in depth depth(C) + 2 and size exp(2t) · size(C). Assuming that
ǫ ≤ 2−(t+2), the error probability of C ′ is at most 1/4.

We now apply Ajtai’s amplification procedure [2]. First, we reduce the error to below n−3 by
invoking C ′ for ℓ = O(log n) times (with independent coins) and taking a majority vote; that is,
C ′′(x;ω1, ..., ωℓ) = MAJ(C ′(x;ωi)i∈[ℓ]). This yields a (randomized) circuit C ′′ of depth depth(C ′)+1
and size poly(n) · size(C ′). Next, we constructs a (randomized) circuit C ′′′ that on input x invokes
C ′′(x) for n2 times, using coins ω1,1, ..., ωn,n, and outputs

∨
i∈[n]

∧
j∈[n] C

′′(x;ωi,j). Note that C ′′′

errs on x only if at least n invocations returned the wrong answer, which happens with probability

at most
(
n2

n

)
·(n−3)n < 2−tn (using t < log2 n or else the claim holds vacuously). Fixing a sequence of

coins that is good for all 2tn possible inputs, we obtain a (deterministic) circuit of depth depth(C)+4
and size exp(2t)poly(n) · size(C). The claim follows.

23Indeed, this result falls short of obtaining a strong level of average-case hardness. Thus, it is our hope that
exponential lower bounds for exact computation of multilinear functions will extend to approximation with error
probability of the form 0.5 − µ where µ is an exponentially vanishing function. Note that this was the case with
respect to the parity lower bounds (cf., e.g., [7, Chap. 8]).

29

Comment. Indeed, the foregoing argument produces a non-canonical circuit. The first step
(i.e., self-correction) would have been canonical if the r(j)’s were considered input variables, but
taking majority and computing a “weird” function (which corresponds to a “vast majority” promise
problem) are not canonical. Surely, there are things that canonical circuits cannot do well, but the
question is whether this matters when computing multilinear functions (rather than when doing
mild hardness amplification).

Appendix C: On the size of DNFs and CNFs computing multilinear
functions

We shall care both of the size of DNFs and CNFs computing various multilinear functions. The
main motivation is to establish a lower bound that will be used in the sanity check for depth-three
(and larger constant depth) circuits: The canonical rules for designing circuits, which are the core
of these sanity checks, include the use of depth-two circuits for computing multilinear functions.
(We shall actually need both DNFs and CNFs for computing each required multilinear function.)
Additional motivation comes from the feeling that the depth-two case may teach us something
about larger depth, but we actually doubt that feeling. Let us also warn that there may be a
significant difference between the size of DNFs and CNFs, as indicated by the t-linear function

F t,n
all(x

(1), ..., x(t))
def
=

∑
i1,...,it∈[n] x

(1)
i1
· · · x(t)

it
.

Proposition C.1 (a gap between CNFs and DNFs): The function F t,n
all has CNFs of size Õ(2n),

but no DNFs of size smaller than 2tn−t. In general, for any d ≥ 2, the function F t,n
all has depth-d

circuits of size exp(n1/(d−1)).

Proof: A depth-d circuit of size exp(n1/(d−1)) for computing F t,n
all follows from the fact that∑

i1,...,it∈[n] x
(1)
i1
· · · x(t)

it
equals

∏
j∈[t]

∑
i∈[n] x

(j)
i . (Thus, F t,n

all can be written as a conjunction of t
(depth-d) parity circuits.)

The lower bound on the size of DNFs follows by observing that (1) each (non-trivial) term in
such DNF must contain an occurrence of each variable, and (2) the probability that F t,n

all evalu-
ates to 1 is 2−t. Specifically, regarding (1), assume towards the contradiction that some term φ

lacks an occurrence of variable x
(j)
i , and consider an arbitrary assignment that satisfies this term.

Then, flipping the value of x
(j)
i keeps this term satisfied, whereas Fall cannot evaluate to 1 under

both assignments. (Here, as well as for verifying (2), it is useful to write F t,n
all(x

(1), ..., x(t)) as∏
j∈[t]

∑
ij∈[n] x

(j)
ij

.) Combining (1) with (2), we infer that the number of terms, denoted M , must

satisfy M · 2−tn ≥ 2−t.

The rest of this appendix. This appendix consists of a very basic study of the size of depth-
two circuits computing various multilinear functions. To set the stage, recall that a generic t-linear

function F has the form F (x(1), ..., x(t)) =
∑

(i1,...,it)∈T x
(1)
i1
· · · x(t)

it
, where T ⊆ (I1× · · · × It) ⊆ [n]t.

Needless to say, we shall consider the smallest possible rectangle I1×· · ·×It that contains T , which
means that Ij = {i∈ [n] : ∃(i1, ..., ij−1, i, ij+1, ..., it)∈T}.

It turns out that the size of depth-two circuits for such a function F may range between
exponential in 2−t ·∑j∈[t] |Ij | and exponential in

∑
j∈[t] |Ij |. We shall consider both cases, as well

as the intermediate case in which the size is exponential in maxj∈[t]{|Ij |}.
Clearly, exp(

∑
j∈[t] |Ij |) is an obvious upper bound on the size of DNFs and CNFs computing F .

We shall see that in some cases there exists a matching lower bound (of the form exp(Ω(
∑

j∈[t] |Ij |)),

30

which means that we discard polynomial relations in size). But we first turn to lower bounds that
hold in all cases, which have the weaker form of exp(2−t ·∑j∈[t] |Ij|).

C.1 A lower bound that hold for all t-linear functions

As will be proved next, a lower bound that holds for all t-linear functions F : ({0, 1}n)t → {0, 1}
has the form exp(2−t ·∑j∈[t] |Ij |), where the I1×· · · × It is the smallest rectangle that contains the
corresponding tensor T . We shall also see that this lower bound is the best possible (with respect
to lower bounds that are stated in terms of t and

∑
j∈[t] |Ij |).

Proposition C.2 (on the size of DNFs computing any multilinear function):

(general lower bound) For every T ⊆ [n]t, if (I1×· · ·×It) is the minimal rectangle that contains T ,

then F (x(1), ..., x(t)) =
∑

(i1,...,it)∈T x
(1)
i1
· · · x(t)

it
has neither a DNF nor a CNF of size smaller

than exp(exp(−t) ·∑j∈[t] |Ij |).

(matching upper bound) For every n ≥ m ≥ 3t−1, there exists a non-empty T ⊆ (I1×· · ·×It) ⊆ [n]t

such that
∑

j∈[t] |Ij | ∈ [m,m + O(log m)] and the corresponding F has DNFs and CNFs of

size exp(exp(−t) ·∑j∈[t] |Ij |).

Proof: In proving the lower bound, we assume, w.l.o.g, that |I1| = maxj{|Ij |}. Note that

F (x(1), ..., x(t)) can be written as
∑

i∈I1
Fi(x

(2), ..., x(t)) · x(1)
i , where each Fi(x

(2), ..., x(t)) is a (non-
trivial) (t−1)-linear function. Hence, by the Schwartz–Zippel Lemma (for small fields), it holds that,

for every i ∈ I1, the probability that F ′(x(1)) = F (x(1), r(2), ..., r(t)) depends on x
(1)
i , for uniformly

chosen r(2), ..., r(t) ∈ {0, 1}n, is at least 2−(t−1). It follows that there exists r(2), ..., r(t) ∈ {0, 1}n
such that F ′(x(1)) is a linear function of at least v

def
= |I1|/2t−1 variables, and thus has no DNF or

CNF of size smaller than 2v−1. The lower bound follows, since v > |I1|/2t = Ω(exp(−t) ·∑j∈[t] |Ij |).
For proving the upper bound, we first consider the case of m = 3t−1. Associate [m] ⊆ [n] with

the set, denoted 3[t−1], of all 3-way (ordered) partitions of [t− 1], and consider the function

F (x(1), ..., x(t)) =
∑

(A,B,C)∈3[t−1]




∏

j∈A

x
(j)
1


 ·




∏

j∈B

x
(j)
2


 ·




∏

j∈C

(x
(j)
1 + x

(j)
2)


 · x(t)

(A,B,C)

Indeed, this function is t-linear (since each j ∈ [t−1] appears in exactly one part of any 3-partition

(A,B,C) ∈ 3[t−1]) and it depends on the variables x
(1)
1 , x

(1)
2 , ..., x

(t−1)
1 , x

(t−1)
2 and x(t) (i.e., x

(t)
(A,B,C)

for all (A,B,C) ∈ 3[t−1]). Thus, the corresponding tensor is minimally bounded by the rectangle
{1, 2}t−1 × 3[t−1].

We show that, for any possible assignment to x(1), ..., x(t−1), at most 2t−1 of the 3t−1 variables of

x(t) are influential. First note that for each j ∈ [t−1] it cannot hold that r
(j)
1 = r

(j)
2 = r

(j)
1 +r

(j)
2 = 1.

Thus, for every r(1), ..., r(t−1) ∈ {0, 1}n, it holds that |{(A,B,C) ∈ 3[t−1] : M(A,B,C)(r
(1), ..., r(t−1))=

1}| ≤ 2t−1, where M(A,B,C)(r
(1), ..., r(t−1)) = (

∏
j∈A r

(j)
1) · (∏j∈B r

(j)
2) · (∏j∈C(r

(j)
1 + r

(j)
2)). This

established the foregoing claim.

Now, we can write a disjunction over all 22(t−1) assignments to x
(1)
1 , x

(1)
2 , ..., x

(t−1)
1 , x

(1)
2 and for

each such assignment write a DNF on 2t−1 influential variables. That is, letting r = (r
(1)
1 , r

(1)
2 , ..., r

(t−1)
1 , r

(t−1)
2),

we write
F (x(1), ..., x(t)) =

∨

r∈{0,1}2(t−1)

φr(x
(1)
1 , x

(1)
2 , ..., x

(t−1)
1 , x

(t−1)
2 , x

(t)
I(r))

31

where x
(t)
I(r) denote the sequence of variables in x(t) that are influential under the assignment r.

(Indeed, the DNF φr computes the Boolean function (
∧

j∈[t],i∈{1,2} x
(j)
i = r

(j)
i) ∧ PAR(x

(t)
I(r)), which

we do not bother to write in DNF.) Thus, we obtained a DNF of size exp(t+2t) = exp((2/3)t−1 ·m),
since m = 3t−1. (The same can be done with a top conjunction and CNFs, yielding a CNF.)24 In
general, when m > 3t−1, the claim follows by partitioning [m] into ⌊m/3t−1⌋ blocks of length 3t−1

and treating each block as above.

Corollary C.3 (lower bounds on the size of DNFs computing any multilinear function): Every t-
linear function that depends on all its variables has no depth-two circuits of size exp(o(exp(−t) ·n)).
Furthermore, the claim hold even if the function depends only on Ω(n) of its tn variables.

C.2 The intermediate range: a parity-level lower bound

For many natural t-linear functions, it is easy to obtain an exponential in n lower bound by reducing
Ω(n)-way parity to the t-linear function F : ({0, 1}n)t → {0, 1} at hand. Such a reduction amounts
to showing that fixing nt−n′ of the input bits of F results in the parity of the remaining n′ = Ω(n)
bits. Using such reductions, one can easily show the following.

Proposition C.4 (reductions from parity): Almost all t-linear function F : ({0, 1}n)t → {0, 1}
cannot be computed by depth-two circuits of size 20.49n. The t-linear functions F t,n

leq, F t,n
tet, and

F t,n
mod p for p ≤ n, cannot be computed by depth-two circuits of size 2n−2.

The first part (i.e., regarding almost all multilinear function) is stated merely for sake of demon-
strating the technique. We shall see a stronger results for almost all functions in Section C.3.

Proof: When considering a random t-linear function F : ({0, 1}n)t → {0, 1}, we consider the corre-
sponding tensor T , which is uniformly distributed among all subsets of [n]t. Hence, F (x(1), 1(t−1)·n) =∑

i∈[n] σi · x(1)
i , where σi = |{(i, i2, ..., it) ∈ T : i2, ..., it ∈ [n]}| mod 2. Thus, with overwhelmingly

high probability over the choice of T , at least 0.49n of the σi’s will be set to 1, which means that
we can use any depth-two circuit computing T in order to compute the parity of 0.49n bits.

Turning to F t,n
leq, note that F t,n

leq(x
(1), ..., x(t)) equals

∑
i∈[n] Fi(x

(2), ..., x(t))·x(1)
i , where Fi(x

(2), ..., x(t)) =
∑

i≤i2≤···≤it≤n x
(2)
i2
· · · x(t)

it
. Hence, for every j ∈ [2, t], setting r

(j)
n = 1 and r

(j)
k = 0 for every

k ∈ [n − 1], we get Fi(r
(2), ..., r(t)) = 1 for every i ∈ [n] (since r

(2)
i2
· · · r(t)

it
= 1 if and only if

i2 = · · · = it = n). Thus, F t,n
leq(x

(1), r(2), ..., r(t)) equals
∑

i∈[n] x
(1)
i . A similar argument applies to

F t,n
tet except that here (for every j ∈ [2, t]) we set r

(j)
n/2 = 1 and r

(j)
k = 0 for every other k ∈ [n].

Lastly, considering F t,n
mod p, for every j ∈ [3, t], we set r

(j)
1 = 1 and r

(j)
k = 0 for every k ∈

[2, n], whereas r
(2)
k = 1 iff k ∈ [p]. Note that F t,n

mod p(x
(1), ..., x(t)) equals

∑
i∈[n] Fi(x

(2), ..., x(t)) ·
x

(1)
i , where here Fi(x

(2), ..., x(t)) =
∑

(i2,...,it):(i,i2,...,it)∈T t,n
mod p

x
(2)
i2
· · · x(t)

it
, and the only term that

contributes to Fi(r
(2), ..., r(t)) is the one that satisfies i3 = · · · = it = 1 and i2 ∈ [p] such that

i2 ≡ −(i + (t − 2)) (mod p). Indeed, for each i ∈ [n] there exists exactly one such term. Thus,

F t,n
mod p(x

(1), r(2), ..., r(t)) equals
∑

i∈[n] x
(1)
i .

24Indeed, a corresponding CNF ψr computes the function (
W

j∈[t],i∈{1,2} x
(j)
i 6= r

(j)
i) ∧ PAR(x

(t)
I(r)).

32

C.3 Lower bounds that are exponential in tn

Some indication towards the non-triviality of such lower bounds comes from looking at bilinear
functions (i.e., t = 2). In contrast to what one may think, the size of depth-two circuits that
compute F 2,n

leq is significantly below 22n (i.e., it is at most 21.6n). The same holds for almost all

bilinear functions. Also, for p ≤ n, the size of depth-two circuits that compute F 2,n
mod p is at most

22n−Ω(p)). (In the context of t = 2, it makes no sense to consider F t,n
mod p for p > 2n.)

Proposition C.5 (upper bounds for some bilinear functions): The bilinear function F 2,n
leq(x, y) =∑

i≤j≤n xiyj has depth-two circuits of size 21.6n. The same upper bound holds for almost all bilinear

functions. The bilinear function F 2,n
mod p has depth-two circuits of size 2max(1.51n,2n−Ω(p)).

Proof: In all cases, the key observation is that, for all but a small fraction of the settings of the
y-variables, the number of relevant x-variables is significantly smaller than n. Thus, the DNF can
consist of the disjunction of DNFs that correspond to each of the possible assignments to y, and
most of these DNFs will be significantly smaller than 2n. (For implementation details, see the proof
of the upper bound in Proposition C.2.)

Starting with F 2,n
leq(x, y), we write F 2,n

leq(x, y) =
∑

i∈[n] cixi, where ci =
∑n

j=i yj. Note that the
ci’s are obtained by a full-rank linear transformation of the yj ’s. Thus, the number of relevant
x-variables for a random assignment to the y-variables (represented by k below) behaves like the
Binomial distribution on n events (with success probability 1/2), and so the size of the final DNF
will be

poly(n) ·
n∑

k=0

(
n

k

)
· 2k = poly(n) ·max

k∈[n]

{(
n

k

)
· 2k

}

= poly(n) · 2maxα∈[0,5,1]{α+H2(α)}·n

where H2 denotes the binary entropy function. Noting that maxα∈[0,5,1]{α + H2(α)} < 1.6, we are
done.

In the case of an arbitrary bilinear function F that is associated with the tensor T ⊆ [n]2, we
have F (x, y) =

∑
i∈[n] cixi, where ci =

∑
j∈[n]:(i,j)∈T yj. For a random tensor T ⊆ [n]2, with very

high probability, the ci’s are obtained by a rank (n−o(n))-rank linear transformation of the yj’s. In
such a case, the number of relevant x-variables for a random assignment to the y-variables behaves
like Bn−o(n) + o(n), where Bn′ is the Binomial distribution on n′ events (with success probability

1/2). Thus, the size of the DNF will be smaller than 2maxα∈[0,5,1]{α+H2(α)}·n+o(n), which is smaller
than 21.599n+o(n).

Turning to F 2,n
mod p, we write F 2,n

mod p(x, y) =
∑

r∈[p] Lr(x)·Lp−r(y), where Lk(z)
def
=

∑
j∈[n]:j≡k (mod p) zj .

Thus, the number of relevant x-variables for a random assignment to the y-variables behaves like
(n/p) · Bp, where Bp is the Binomial distribution on p events (which here reflect the values of the
linear functions Lp−r(y)); that is, here the size of the DNF will be poly(n) · 2n · E[2Bp·(n/p)], which
is upper bounded by 21.51n + Pr[Bp > 0.51p] · 22n = 21.51n + 22n−Ω(p).

Lower bounds for bilinear functions. We do not know whether the bilinear functions F 2,n
leq

and F 2,n
mod p (for p < n) require depth-two circuits of size that is significantly larger than 2n. This is

quite annoying but of no real significance, since we seek lower bounds of the form exp(Ω(tn)) for
t-linear functions. Still, the following problem is of natural interest.

33

Problem C.6 (does F 2,n
leq require significantly larger CNFs than parity?) Is it true that the bilinear

function F 2,n
leq(x, y) =

∑
i≤j≤n xiyj has no depth-two circuits of size smaller than 21.5n? Ditto for

the bilinear function F 2,n
mod p, when p ≤ n.25

In fact, the same may be asked of almost all bilinear functions.

Lower bounds for t-linear functions. Turning to larger values of t,we proceed in two steps.
The first step (captured by Proposition C.7) reduces establishing lower bounds on the size of depth-
two circuits computing a t-linear function F to establishing lower bounds on the number of variables
that influence the linear function that is obtained from F by fixing random values to all other t− 1
blocks of variables. The second step (represented by the subsequent propositions) establishes lower
bounds of the latter form for various t-linear functions.

Proposition C.7 (exponential lower bounds for some multilinear functions): Let F : ({0, 1}n)t →
{0, 1} be a t-linear function, n1, ..., nt ≥ 0 and ǫ1, ..., ǫt ≥ 0 such that

∑
j∈[t] nj ≥ 1 and

∑
j∈[t] ǫj <

1/4. Suppose that for each j ∈ [t], with probability at least 1 − ǫj over the choice of r(1), ..., r(t) ∈
{0, 1}t·n, the residual function F (r(1), ..., r(j−1), x(j), r(j+1), ..., r(t)) depends on at least nj variables.

Then, every depth-two circuit computing F has size at least 2m−3, where m
def
=

∑
j∈[t] nj.

The hypothesis holds for almost all t-linear functions with nj = (0.5− o(1))n and ǫj = 1/5t for all
j ∈ [t] (provided t = exp(o(n)), see Proposition C.8). On the other hand, the hypothesis does not
hold for t-linear functions F that can be presented as a product of a pair of a multilinear functions
(i.e., a t′-linear function and a (t− t′)-function).26

Proof: It will be more convenient to show that neither F nor F + 1 has a DNF of size smaller
than 2m−3. For any σ ∈ {0, 1}, suppose that F (x(1), ..., x(t)) + σ =

∨
k∈[M] φk(x

(1), ..., x(t)), where

each φk is a non-trivial conjunction. We shall show that M ≥ 2m−3.

For each k ∈ [M] and j ∈ [t], let D
(j)
k denote the set of variables in x(j) on which φk depends, and

let G
def
= {k ∈ [M] : (∀j ∈ [t]) |D(j)

k | ≥ nj} (denote the set of good φk’s). Letting F ′(x(1), ..., x(t))
def
=

σ +
∨

k∈G φk(x
(1), ..., x(t)), we shall prove that F ′ + σ is ǫ-close to F + σ, where ǫ =

∑
j∈[t] ǫj.

Assume, towards the contradiction, that F ′ + σ =
∨

k∈G φk is ǫ-far from F + σ =
∨

k∈[M] φk,

and let Bj
def
= {k ∈ [M] : |D(j)

k | < nj} (denote the set of φk that are bad for j). Note that
G = [M]\ (∪j∈[t]Bj), and that a random assignment to all the variables satisfies

∨
k∈([M]\G) φk with

probability greater than ǫ (since Pr[
∨

k∈([M]\G) φk(r
(1), ..., r(t)) = 1] equals Pr[F (r(1), ..., r(t)) + σ 6=

F ′(r(1), ..., r(t)) + σ], which is greater than ǫ by the contradiction hypothesis). Then, there exists
j ∈ [t] such that, with probability greater than ǫj, a random assignment to all the variables satisfies∨

k∈Bj
φk. Fixing such a j and recalling the main hypothesis, it follows that there exists an assign-

ment r(1), ..., r(t) such that
∨

k∈Bj
φk(r

(1), ..., r(t)) = 1 and f(x(j))
def
= F (r(1), ..., r(j−1), x(j), r(j+1), ..., r(t))

depends on at least nj variables (and is linear). Fix this assignment as well as a k ∈ Bj such that

φk(r
(1), ..., r(t)) = 1. Recalling that φ(x(j))

def
= φk(r

(1), ..., r(j−1), x(j), r(j+1), ..., r(t)) depends on less
than nj variables and is not identically 0, we reach a contradiction (because we can set nj − 1

25Note that T t,n
mod p = ∅ for p > tn.

26That is, if F (x(1), ..., x(t)) equals F1(x
(1), ..., x(t′)) · F2(x

(t′+1), ..., x(t)), then for every j ∈ [t′] with probability at

least 1/2 the function F2 evaluates to 0 under a random assignment to x(t′+1), ..., x(t), and in this case the value of
the residual F does not depend only any variable in x(j).

34

variables of φ(x(j)) such that φ is determined to the value 1, and then set the remaining variables
such that f + σ is 0.27

Having established that F ′(x(1), ..., x(t)) + σ =
∨

k∈G φk(x
(1), ..., x(t)) is ǫ-close to F + σ, where

ǫ < 1/4, we note that F +σ evaluates to 1 with probability at least maxj∈[t]:nj≥1{(1−ǫj)}·1/2 > 3/8,
where the first factor lower bounds the probability that assigning random values to the variables
x(1), .., x(j−1), x(j+1), ..., x(t) of F yields a non-trivial linear function in x(j). It follows that F ′ + σ,
which is 1/4-close to F + σ, evaluates to 1 with probability at least (3/8) − (1/4) = 1/8. This

implies that
∑

k∈G 2−ℓk ≥ 1/8, where ℓk =
∑

j∈[t] |D
(j)
k | ≥

∑
j∈[t] nj = m for every k ∈ G. Hence,

|G| ≥ 2m−3.

Proposition C.8 (almost all multilinear functions satisfy the hypothesis of Proposition C.7 with
linear nj’s): For every ǫ > 0, for almost all t-linear functions F : ({0, 1}n)t → {0, 1}, it holds that

for each j ∈ [t], with probability at least 1− exp(−Ω(ǫ2n)) over the choice of r(1), ..., r(t) ∈ {0, 1}t·n,

the residual function F (r(1), ..., r(j−1), x(j), r(j+1), ..., r(t)) depends on at least (0.5− ǫ) · n variables.

Thus, for any t = exp(o(n)), almost all t-linear functions F : ({0, 1}n)t → {0, 1}, satisfy the
hypothesis of Proposition C.7 with nj = (0.5 − o(1)) · n and ǫj = 1/5t for every j ∈ [t].

Proof: For simplicity of notation, let j = 1. For a generic t-linear function F associated with the

tensor T ⊆ [n]t and a generic assignment r(2), ..., r(t), we have F (x(1), r(2), ..., r(t)) =
∑

i∈[n] vix
(1)
i ,

where vi =
∑

(i,i2,...,it)∈T r
(2)
i2
· · · r(t)

it
. Defining Ik = {i ∈ [n] : r

(k)
i = 1}, it follows that vi =

|T ∩ ({i} × R)|, where R
def
= I2 × · · · × It. Note that, with probability 1 − exp(−n) over the

choice of r(2), ..., r(t) ∈ {0, 1}(t−1)·n, the (t− 1)-dimensional rectangle R is non-empty, and in such
a case vi = |T ∩ ({i} × R)| will be odd with probability 1/2 when T is selected at random. Thus,
with probability 1 − exp(−ǫ2n) over the random choice of both r(1), ..., r(t) ∈ {0, 1}t·n and a t-
linear function F : [n]t → {0, 1}, the residual function F (x(1), r(2), ..., r(t)) will depend on at least
(n/2) − ǫn variables. The same holds to any other j ∈ [t], and the claim follows by an averaging
argument.

Proposition C.9 (Fmod satisfies the hypothesis of Proposition C.7 with linear nj’s): Let p ≤ n,

and suppose that p is a prime such that 2 is a primitive root modulo p (i.e., 2 generates Z
∗
p). Then,

for any ǫ > 0 and each j ∈ [t], with probability at least 1− 4(t− 1) · 2−p − 2 · e−2ǫ2p over the choice

of r(1), ..., r(t) ∈ {0, 1}t·n, the residual function F t,n
mod p(r

(1), ..., r(j−1), x(j), r(j+1), ..., r(t)) depends on

at least (0.5 − ǫ) · n− ((p − n) mod p) variables.28

In particular, using p = p(n) and t = o(2p), with probability at least 1− exp(−√p) over the choice

of r(1), ..., r(t) ∈ {0, 1}t·n, the residual function F t,n
mod p(r

(1), ..., r(j−1), x(j), r(j+1), ..., r(t)) depends on
at least (0.5− o(1)) · n variables.

Proof: Since the function is symmetric, it suffices to establish the claim for j = 1. We shall also
start by considering the case that p = n.

27That is, we can set r(j) such that φ(r(j)) = 1 but f(r(j)) = σ, which means that
φk(r(1), ..., r(j−1), r(j), r(j+1), ..., r(t)) = 1 whereas F (r(1), ..., r(j−1), r(j), r(j+1), ..., r(t)) = σ, which contradicts the
hypothesis that F (x(1), ..., x(t)) + σ =

W

k∈[M] φk(x(1), ..., x(t)).
28Here, e denotes the natural logarithm base.

35

For simplicity of notation, we shall replace [n] by Zn. For every i ∈ Zn, let F t,n
mod n,i denote the

function associated with the tensor T
(t,n)
i = {(i1, ..., it) ∈ Z

t
n :

∑
j∈[t] ij ≡ i (mod n)}. Indeed,

T
(t,n)
0 ≡ T t,n

mod n, and we can write F t,n
mod n,i as

∑

i∈[n]

∑

(i2,...,it)∈T
(t−1,n)
n,n−i

x
(2)
i2
· · · x(t)

it
· x(1)

i . (11)

We shall prove, by induction on t ≥ 2, that, with probability at least 1−4(t−1)·2−n over the uniform

choice of r(2), ..., r(t) ∈ {0, 1}n, setting R
(t)
i =

∑
(i2,...,it)∈T

(t−1,n)
n,n−i

r
(2)
i2
· · · r(t)

it
(for each i ∈ Zp) yields a

distribution (R
(t)
1 , ..., R

(t)
n) of min-entropy at least n − 1 (i.e., no outcome occurs with probability

greater than 2−(n−1)). Observing that the residual function F t,n
mod n,i(x

(1), r(2), ..., r(t)) depends on

x
(1)
i if and only if R

(t)
i = 1, we conclude that, with probability at least 1− 4(t− 1) · 2−n − 2e−2ǫ2n,

the residual function depends on at least (0.5 − ǫ) · n variables.

The base of the induction (at t = 2) holds, since in that case R
(2)
1 , ..., R

(2)
n is merely a permutation

of the sequence r(2) (i.e., i2 ∈ T
(1,n)
n,n−i iff i2 ≡ n− i (mod n)). In the induction step, we use the fact

that R
(t+1)
i can be written as

∑
k∈Zn

r
(2)
k F t−1,n

mod n,n+i−k(r
(3), ..., r(t+1)), which is distributed identically

to
∑

k∈Zn
BkR

(t)
i−k, where the Bk’s are IIDs each uniformly distributed in {0, 1}. Letting R denote

an n-by-n matrix in which the ith column is the result of i downward rotations of (R
(t)
1 , ..., R

(t)
n)⊤,

it holds that (R
(t+1)
1 , ..., R

(t+1)
n) is distributed identically to bR, where b = (B1, ..., Bn).

We now invoke a result of [26] that states that if R (which is a shifted matrix (of dimension
n with 2 generating Z

∗
n)) is neither identically zero nor identically one, then it has rank at least

n−1. Recalling that the induction hypothesis asserts that, with probability at least 1−4(t−1)2−n ,

the vector (R
(t)
1 , ..., R

(t)
n) has min-entropy at least n− 1, it follows that with probability 1− 4(t−

1)2−n − 2 · 2 · 2−n the matrix R has rank at least n − 1. In that case bR has min-entropy at least
n− 1 (since b us uniformly distributed in {0, 1}n).

This complete the proof for the case that p = n. The case of p < n is treated by observing

that F t,n
mod p(x

(1), ..., x(t)) equals F t,p
mod p(y

(1), ..., y(t)), where y
(j)
r =

∑
i∈[n]:i≡r (mod p) x

(j)
i , for every

j ∈ [t] and r ∈ [p]. Thus, fixing the values of x(2), ..., x(t) at random, means doing so to y(2), ..., y(t),
and if the residual function F t,p

mod p depends on k of the variables y(1), then the corresponding

residual function F t,n
mod p depends on at least k · ⌊n/p⌋ of the variables x(1). Noting that k · ⌊n/p⌋ =

(k/p) · n− ((p − n) mod p), the claim follows.

Proposition C.10 (Ftet satisfies the hypothesis of Proposition C.7 with linear nj’s): For each

j ∈ [t], with probability at least 1− nt−2 · exp(−Ω(n)) over the choice of r(1), ..., r(t) ∈ {0, 1}t·n, the

residual function F t,n
tet(r

(1), ..., r(j−1), x(j), r(j+1), ..., r(t)) depends on at least n/5 variables.

Proof: Since the function is symmetric, it suffices to establish the claim for j = 1. For simplicity,

we shall consider the related functions F
(t,n)
m , for m = 0, 1, ..., n/2, that correspond to the tensors

T
(t,n)
m = {(i1, ..., it) ∈ {0, 1, ...,m}t :

∑
j∈[t] ij ≤ m}. Clearly, if F

(t,n)
n/2 satisfies the hypothesis of

Proposition C.7 with linear nj’s, then so does F t,n
tet. For every m ∈ {0, 1, ..., n/2}, we write the

function F
(t,n)
m (x(1), x(2), ..., x(t)) as

∑

i∈[n]

F
(t−1,n)
m−i (x(2), ..., x(t)) · x(1)

i . (12)

36

We shall prove, by induction on t ≥ 2, setting X
(t)
i = F

(t−1,n)
i (r(2), ..., r(t)) (for each i ∈ {0, 1, ..., n/2}),

where r(2), ..., r(t) ∈ {0, 1}n are uniformly distributed, yields a distribution (X
(t)
0 , ...,X

(t)
n/2) of min-

entropy at least (n/2) + 1 − (t − 2) · log2 n (i.e., no outcome occurs with probability greater than

nt−2 · 2−((n/2)+1)). Observing that the residual function F
(t,n)
n/2 (x(1), r(2), ..., r(t)) depends on x

(1)
i if

and only if X
(t)
i = 1, we conclude that, with probability at least 1− nt−2 · exp(−ǫ2n), the residual

function depends on at least (0.5− ǫ) · (n/2) variables.

The base of the induction (at t = 2) holds, since in that case X
(2)
0 ,X

(2)
1 , ...,X

(2)
n/2 is uniformly

distributed (since, X
(t)
i =

∑i
k=0 r

(2)
k). In the induction step, we use the fact that X

(t+1)
i can be

written as
∑i

k=0 X
(t)
k r

(t+1)
i−k . For m = (n/2) + 1, letting R denote an m-by-m matrix in which the

ith row equals (X
(t)
0 ,X

(t)
1 , ...,X

(t)
i−1, 0, ..., 0), it holds that (X

(t+1)
0 ,X

(t+1)
1 , ...,X

(t+1)
m) is distributed

identically to Rb, where b = (r
(t+1)
0 , r

(t+1)
1 , ..., r

(t+1)
m). We now make the following observations:

1. If X
(t)
0 ,X

(t)
1 , ...,X

(t)
n/2 were uniformly distributed, then for every i ∈ [m], the matrix R would

have had rank m − i + 1 with probability 2−i. This is because R has rank m + 1 − i if and

only if (X
(t)
0 ,X

(t)
1 , ...,X

(t)
i−1) = 0i−11.

2. Since X
(t)
0 ,X

(t)
1 , ...,X

(t)
n/2 has min-entropy m− (t− 2) · log2 n, the matrix R has rank m+1− i

with probability at most nt−2 · 2−i.

3. If R has rank r, then Rb has min-entropy r, which implies that Pr[Rb=v] ≤ 2−r for every v.

Thus, for any v ∈ {0, 1}m+1,

Pr[Rb = v] =

m∑

i=0

Pr[rank(R) = m + 1− i] · Pr[Rb = v | rank(R) = m + 1− i]

≤
m∑

i=0

(nt−2 · 2−i) · 2−(m+1−i)

which is upper bounded by nt−1 · 2−(m+1), and the induction claim follows.

Proposition C.11 (Fleq satisfies the hypothesis of Proposition C.7 with linear nj’s): For t <

o(
√

log n) and each j ∈ [t], with probability at least 1 − o(1/t) over the choice of r(1), ..., r(t) ∈
{0, 1}t·n, the residual function F t,n

leq(r
(1), ..., r(j−1), x(j), r(j+1), ..., r(t)) depends on at least (0.25 −

o(1)) · n variables. Furthermore, for j ∈ {1, t}, a lower bound of (0.5 − o(1)) · n holds.

Combined with Proposition C.7, the furthermore claim implies that for any t ∈ [3, o(
√

log n)], the
t-linear function F t,n

leq has no depth-two circuits of size 2n+0.24·(t−2)·n. On the other hand, for t > 4n,

the function F t,n
leq evaluates to 1 with exponentially vanishing probability, and (by Eq. (13) (below))

this implies that F t,n
leq violates the hypothesis of Proposition C.7.

Proof: The key observation is that for every j ∈ [t], it holds that

F t,n
leq(x

(1), ..., x(t)) =
∑

i∈[n]

F j−1,i
leq (x

(1)
[1,i], ..., x

(j−1)
[1,i]) · F t−j,n−i+1

leq (x
(j+1)
[i,n] , ..., x

(t)
[i,n]) · x

(j)
i , (13)

37

where x
(k)
[a,b] = (x

(k)
a , ..., x

(k)
b). It will also be useful to let x

([c,d])
[a,b] denote the variable sequence

x
(c)
[a,b], ..., x

(d)
[a,b]. Thus, Eq. (13) can be written as

F t,n
leq(x

([1,t])
[1,n]) =

∑

i∈[n]

F j−1,i
leq (x

([1,j−1])
[1,i]) · F t−j,n−i+1

leq (x
([j+1,t])
[i,n]) · x(j)

i , (14)

and we are interested in the distribution of the pair of n-bit long sequences (F j−1,i
leq (x

([1,j−1])
[1,i]))i∈[n]

and (F t−j,n−i+1
leq (x

([j+1,t])
[i,n]))i∈[n], when x

([1,t])
[1,n] are assigned random values. Note that these two

sequences are independent of one another (since the first depends only on x(1), ..., x(j−1) whereas
the second depends only on x(j+1), ..., x(t)). Hence, if in each of these two sequences almost each

element is 1 with probability approximately 1/2 and this holds also conditioned on the value of

almost each other element in the sequence, then the fraction of influential variables in x(j) would
be approximately 1/4.

In general, for every t′ ≥ 1, we shall be interested in the behavior of the distribution of the (n-bit

long) sequence (F t′,i
leq(x

([1,t′])
[1,i])i∈[n], when x(1), ..., x(t′) are uniformly and independently distributed

in {0, 1}n. Note that this corresponds directly to the sequence (F j−1,i
leq (x

([1,j−1])
[1,i]

))i∈[n] (by setting

t′ = j − 1), and also represents the sequence (F t−j,n−i+1
leq (x

([j+1,t])
[i,n]))i∈[n] (by setting t′ = t − j and

replacing [i, n] with [i] (and n− i + 1 with i)).
We first observe that for t′ = 1 the foregoing sequence is uniformly distributed in {0, 1}n, since

(F 1,i
leq(x

([1,1])
[1,i])i∈[n] equals (

∑
k∈[i] x

(1)
k)i∈[n]. A key observation regarding t′ > 1 is that

F t′,i
leq(x

([1,t′])
[1,i]) =

∑

k∈[i]

F t′−1,k
leq (x

([1,t′−1])
[1,k]) · x(t′)

k . (15)

In general, it is useful to realize that we are dealing with a sequence of sequences of random

variables, which are each defined on top of the previous one. That is, let X
[t′]
i

def
= F t′,i

leq(x
([1,t′])
[1,i]),

and note that Eq. (15) asserts that X
[t′]
i =

∑
k∈[i] X

[t′−1]
k · R(t′)

k , where (R
(t′)
1 , ..., R

(t′)
n) is uniformly

distributed in {0, 1}n independently of anything else. (Indeed, we may also introduce dummy X
[0]
k ’s

set to 1, and write X
[1]
i =

∑
k∈[i] X

[0]
k ·R

(1)
k .)

We shall prove that, for adequate functions ℓt′ : (0, 1]→ N, it holds that for every i2 ≥ i1+ℓt′(ǫ)
and every σ, τ ∈ {0, 1}:

Pr
[
X

[t′]
i2

= X
[t′]
i1

+ τ
∣∣∣X [t′]

i1
= σ

]
≤ 0.5 + ǫ (16)

In particular, this means that Pr[X
[t′]
i2

=1] ∈ [0.5±ǫ]. We note that the case of τ = 1 (in Eq. (16)) is

actually trivial, since by Eq. (17)-(18), it suffices to show that Pr[
∑i2

k=i1+1 X
[t′−1]
k ·R(t′)

k =1] ≤ 1/2,

which just holds by the independence and uniformity of the R
(t′)
k ’s. Also note that we have already

shown that Eq. (16) holds for t′ = 1 with ℓ1 ≡ 1. We shall proceed by induction on t′. The key
observation is that, for any i2 > i1, it holds that

X
[t′]
i2

=

i2∑

k=1

X
[t′−1]
k ·R(t′)

k (17)

= X
[t′]
i1

+

i2∑

k=i1+1

X
[t′−1]
k ·R(t′)

k . (18)

38

Thus, if the sequence X
[t′−1]
i1+1 , ...,X

[t′−1]
i2

is not all zeros, then Pr[X
[t′]
i2

= X
[t′]
i1

] = 1/2. So we will be
done if i2 is sufficiently larger than i1 such that the former condition holds with probability at least

1 − ǫ. For t′ = 2, this happens whenever i2 > i1 + log2(1/ǫ), since the sequence X
[1]
i1+1, ...,X

[1]
i2

is

uniformly distributed in {0, 1}i2−i1 . For general t′ > 2, we use the induction hypothesis regarding

the sequence X
[t′−1]
i1+1 , ...,X

[t′−1]
i2

, which asserts that, in intervals of length ℓt′−1(ǫ), value-changes
occur with probability at least 0.5−ǫ > 0.4. Intuitively, this means that ℓt′(ǫ) = O(ℓt′−1(ǫ)·log(1/ǫ))
should do, but this intuition is based on the false assumption that what happens within disjoint
intervals (of length ℓt′−1(ǫ)) is statistically independent. Yet, as shown next, picking ℓt′(ǫ) =
O(ℓt′−1(ǫ/O(1)) · ǫ−1) will do; that is, in this case, with probability at least 1 − ǫ, the sequence

X
[t′−1]
i1+1 , ...,X

[t′−1]
i2

will not be the all-zero sequence. This is a special case of the following more
general claim.29

Technical Claim: For γ < δ/4 and m′ < γm/3, let Z1, ..., Zm be an arbitrary sequence of (possibly
dependent) 0-1 random variables. Suppose that, for every j2 ≥ j1 + m′ and every σ, τ ∈ {0, 1}, it
holds that Pr[Zj2 = Zj1 + τ |Zj1 = σ] ≤ 0.5 + γ. Then,

Pr




∑

i∈[m]

Zi 6∈ [(0.5 ± δ) ·m]


 <

12γ

δ2

Proof: Let S =
∑

i∈[m] Zi and µ = E[S], and note that |µ− (m/2)| ≤ γm + m′ < δm/2. Applying
Chebyshev’s Inequality, we have

Pr[|S − µ| > δm/2] ≤ Var[S]

δ2m2/4

=
4

δ2m2
·

∑

j1,j2∈[m]

(E[Zj1Zj2]− E[Zj1] · E[Zj2]) . (19)

The contribution of the pairs that are at distance at most m′ apart totals in less than m·(2m′+1) <
3m′m. As for the other (j1, j2) pairs, each has a contribution of

Pr[Zj1Zj2 =1]− Pr[Zj1 =1] · Pr[Zj2 =1] = Pr[Zj1 =1] · (Pr[Zj2 =1|Zj1 =1]− Pr[Zj2 =1])

< 2γ

Thus, Eq. (19) is upper bounded by 4·(3m′m+2γm2)
δ2m2 < 12γ

δ2 , and the claim follows.

Let us re-cap: By the Technical Claim, if i2 ≥ i1 + ℓt′(ǫ), where ℓt′(ǫ) = O(ℓt′−1(ǫ/O(1))/ǫ),

then, with probability at least 1−ǫ, the sequence X
[t′−1]
i1+1 , ...,X

[t′−1]
i2

will not be the all-zero sequence,

and conditioned on that event X
[t]
i2

= X
[t]
i1

with probability 1/2. This establishes the induction claim

for t′; that is, for every i2 ≥ i1 + ℓt′(ǫ), the probability that X
[t′]
i2

= X
[t′]
i1

, conditioned on any value

of X
[t′]
i1

, is between 0.5 − ǫ and 0.5 + ǫ. Note that we are using ℓt′(ǫ) = O(ℓt′−1(ǫ/O(1))/ǫ), which
solves to ℓt′(ǫ) = exp(O(t′)2 + O(t′ log(1/ǫ))).

We are almost done. Applying the Technical Claim with γ = ǫ/20, δ = ǫ1/3, while setting m = n,

m′ = ℓt′(ǫ/20) < ǫn (which is possible for t = o(
√

n) and some ǫ = o(1)), and Zi = X
[t′]
i for every

i ∈ [n], we conclude that, with probability at least 1− ǫ1/3, the sequence X
[t′−1]
1 , ...,X

[t′−1]
n has at

least (0.5−ǫ1/3) ·n ones. This does not quite finish the entire proof, because it could hypothetically

29Use γ = ǫ/50 and δ = 0.49, and set m = i2 − i1, m
′ = ℓt′−1(ǫ/50) < ǫm/150, and Zi = X

[t′−1]
i1+i for every i ∈ [m].

39

be that (when x
([1,t])
[1,n] are assigned random values) the ones in the sequences (F j−1,i

leq (x
([1,j−1])
[1,i]))i∈[n]

and (F t−j,n−i+1
leq (x

([j+1,t])
[i,n]))i∈[n] (almost) always reside in different locations. Of course, this cannot

be the case, but proving this fact requires a small generalization of the Technical Claim: Specifically,
under the same conditions as in the claim, one can show that for every set S ⊆ [m],

Pr

[
∑

i∈S

Zi 6∈ [(0.5 ± δ) · |S|]
]

<
12γm

δ2|S|

Now, we can first fix at random the sequence (F j−1,i
leq (x

([1,j−1])
[1,i]))i∈[n], let S denote the set of indices

assigned the value 1, and now set at random the sequence (F t−j,n−i+1
leq (x

([j+1,t])
[i,n]))i∈[n]. Finally, the

proposition follows.

Problem C.12 (Improving Proposition C.11): Does a statement analogous to Proposition C.11

holds for higher values of t? Specifically, does it hold for t = Ω(log n) rather than for all t =
o(
√

log n)?

Corollary C.13 (exponential lower bounds for almost all functions and for Fleq, Ftet and Fmod):
For t = exp(o(n)), almost all t-linear functions F : ({0, 1}n)t → {0, 1} require depth-two circuits

of size at least 2(0.5−o(1))·tn. Ditto for F t,n
mod n if t = o(2n) and n is a prime with 2 as a primitive

root modulo n. Likewise, if t = o(
√

log n), then F t,n
leq require depth-two circuits of size at least

20.5+(0.25−o(1))·tn, and if t < n/ log2 n, then F t,n
tet require depth-two circuits of size at least 2tn/5.

40

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

