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Abstract

We investigate the autoreducibility and mitoticity of complete sets for several classes with
respect to different polynomial-time and logarithmic-space reducibility notions.

Previous work in this area focused on polynomial-time reducibility notions. Here we
obtain new mitoticity and autoreducibility results for the classes EXP and NEXP with
respect to some restricted truth-table reductions (e.g., <5, <t, <h.,).

Moreover, we start a systematic study of logarithmic-space autoreducibility and mitotic-
ity which enables us to also consider P and smaller classes. Among others, we obtain the
following results:

e Regarding <!98, <% <" and <!9% complete sets for PSPACE and EXP are mitotic,

and complete sets for NEXP are autoredu01ble
o All <P ,-complete sets for NL and P are <l $.-autoreducible, and all <% _complete

Sbit
sets for NL, P and A} are <, Og r-autoreducible.
e There is a <3°%t-complete set for PSPACE that is not even <btt—autoreducible.

Using the last result, we conclude that some of our results are hard or even impossible to
improve.

1 Introduction

A set C is called autoreducible if C' can be reduced to itself by a reduction that does not query its
own input. In this way, each reducibility induces a corresponding autoreducibility notion. The
main question in connection with autoreducibility asks whether all complete sets of a certain
complexity class are autoreducible. Interestingly, answering such questions often leads to new
separations of complexity classes.

For example, consider the question of whether all polynomial-time truth-table-complete sets
for EXP are polynomial-time truth-table-autoreducible. Buhrman et al. [5] show that a positive
answer results in NL # NP while a negative answer implies PH # EXP. So the study of the
autoreducibility of complete sets is a fascinating and important topic.

Mitoticity is another structural property of complete sets that could lead to separations of
complexity classes. A set C is mitotic if it can be partioned into sets C; and Cs such that
C, C1, and (5 are equivalent. Here again each reducibility induces a corresponding notion of
mitoticity.
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Over the past 20 years, researchers were able to solve autoreducibility and mitoticity ques-
tions for several complexity classes and with respect to several polynomial-time reducibility
notions. With our paper we further develop this knowledge in two ways: First, we extend
techniques by Buhrman et al. [5] to show new mitoticity results for EXP and NEXP. Second,
we start a systematic investigation of autoreducibility and mitoticity for logarithmic-space re-
ductions. Since the previous research was concerned with polynomial-time reductions, it did
not produce conclusions about P or smaller classes.

With respect to polynomial-time 2-truth-table reducibility (<%,,) we show that all EXP-
complete sets are mitotic and all NEXP-complete sets are autoreducible. With respect to
logspace reducibilities (e.g., <log gg‘f%t, g}ftgt, gl})g) we obtain several autoreducibility and mi-
toticity results for complete sets of the classes NL, P, PSPACE, EXP, and NEXP. Table 1
summarizes previously known results and their references together with results newly obtained
in this paper. For example, we show:

(i) All §12?%t—complete sets for PSPACE are S;?%t—mitotic.
(i) All ggﬁ%t—complete sets for EXP are S;?%t—mitotic.

Note that in both cases, mitoticity implies autoreducibility.
The restriction of the reduction allows us to show stronger negative results. We prove:

(iii) There exists a §§%t—complete set for PSPACE that is not Sﬁgt—autoreducible.

This result is particularly interesting, since it shows that statement (i) does not hold for géﬁ%t and
that (ii) cannot be improved to §gf%t, unless one separates EXP from PSPACE. Furthermore,
for logspace bounded-truth-table reducibility we obtain that resolving the autoreducibility or
mitoticity of complete sets for classes between L. and PSPACE in one or the other way implies
new separations of complexity classes:

(iv) For every C € {P,NP, A} PP} it holds that

— if all §{;gt—complete sets for C are §%;)tgt—autoreducible, then C # PSPACE

— otherwise, L # C.

The paper is organized as follows. Section 2 contains the preliminary definitions and some
basic propositions about autoreducibility and mitoticity. In section 3 we use search techniques
in computation trees to establish autoreducibility of complete sets for NL and P. In section 4 we
use local checkability to obtain further autoreducibility results for NL, P, and Ai. Moreover,
we argue that some of those results are difficult to improve, as such an improvement would
separate P or A} from PSPACE. In section 5 we consider higher complexity classes such as
PSPACE, EXP, NEXP and use diagonalization to obtain mitoticity and autoreducibility results,
some of which again are hard or even impossible to improve.

2 Preliminaries

Let log0 = 0 and logn = [logyn| for n > 1. A set is called trivial if it is finite or cofinite;
otherwise the set is called nontrivial. The characteristic function of a set A is denoted by c4 or
simply A. If M is a machine, then M (x) denotes the computation of M on input x and L(M)
denotes the language accepted by M. Let (---) be a standard pairing function computable in
logarithmic space.

The operators A, V, —, <—, <+ denote the usual 2-ary Boolean functions and —=A, =V, A, 4, ®
denote the negations of these functions.



reduction NL P A‘,: PSPACE EXP NEXP references

<le AR ADS. ARE. AE ME  MRE AR 27,35.53,56
Slﬁft Alﬁ%t Agﬁ%t Migg ergg Alrgg 3.5, 5.15

<o Aus At =

<log. ME My%  AYS 57,511

S AT AR, A M ME, A, 27,35, 511
Phe AV AR A% PG, MPRL AR, 2735511
g{fﬁ Ai‘éi_T A}ZE-T A%gg_T X, X, 4.1, 4.2, 4.8, [5]
<loe Ales M Mygs  ANS 3.5,5.6,5.11
<los Ales MpE Mg AE 3.5,5.6,5.11
Slt(t)g Aﬁg Aﬁg Ai‘gg 3.5, 4.8

<loe Al Ales ploe 3.5,4.8

reduction NP Ag PSPACE EXP NEXP references

<k ME MR MR ME ME 3,6, 7, 8]

<T-te M7 g M7 g MR, ME, [4,7,8, 9], 5.15
<5t ME,,  Ab.  [5],5.7,5.11
Sg—ctt Mi.cm Ai-m 5.6, 5.11

Sh-dte AR dte AR -dte Mp g Apaw (7], 5.6,5.11
<bet X3 [5]

<eht Mb, AR 5.6, 5.11

<Bet Al Ab ME, AR [7], 5.6, 5.11
<t ARPP AR AR"P 2, 5]

<% AR AR AR [2, 5]

Table 1: Are all complete sets for certain classes autoreducible or even mitotitc? For each
reduction < in the first column and each class C in the first row, the corresponding cell shows
if all <-complete sets for C are autoreducible or mitotic, where My means <j-mitotic, and Ay
means <y-autoreducible. From the first cell in the upper table we know for instance that all

Siﬁg—complete sets for NL are §lﬁ%t—autoreducible. k > 2 is a fixed integer, « is an arbitrary
binary boolean function. For the cells marked with X7, X5, and X3, negative results are known:

There is a Sftgt—complete set for PSPACE that is not §ftgt-aut0reducible (Theorem 4.2) and a

S%;)tgt—complete set for EXP that is not §Ett-aut0reducible [5]. Results implied by universal
relations between reductions are omitted. For the definitions of the reductions and the classes,
see section 2.



The notions of polynomial-time (resp., logspace) oracle Turing machine and polynomial-
time-computable (resp., logspace-computable) function are defined according to Ladner, Lynch,
and Selman [10, 11].

For sets A and B we say that A is polynomial-time Turing reducible to B (A <} B), if
there exists a polynomial-time oracle Turing machine that accepts A with B as its oracle. If
M on input x asks at most O(log |z|) queries, then A is polynomial-time log-Turing reducible
to B (A gﬁ)g_T B). If M’s queries are nonadaptive (i.e., independent of the oracle), then A is
polynomial-time truth-table reducible to B (A <!, B). If M asks at most k nonadaptive queries,
then A is polynomial-time k-truth-table redu01ble to B (A <}, B). A is polynomial-time
bounded-truth-table reducible to B (A <P.. B), if A <P . B for some k. A is polynomial-time

=btt Sk-tt
disjunctive-truth-table reducible to B (A <I.. B), if there exists a polynomial-time-computable

function f such that for all z, f(x) = (ql,flft.,qn) for some n > 1 and (r € A < cg(q1) V
--cg(qn)). If n is bounded by some constant k, then A is polynomial-time k-disjunctive-truth-
table reducible to B (A <£ att B)- The polynomial-time conjunctive-truth-table reducibilities
<Pt and <} . are defined analogously. A is polynomial-time many-one reducible to B (4 <
B), if there exists a polynomial-time-computable function f such that (z € A < f(z) € B).
For a k-ary Boolean function «, A is polynomial-time a-truth-table reducible to a set B (A <P,
B), if there exists a polynomial-time-computable function f such that f(z) = (q1,...,qx) and
(r e A <= alep(q1),.-.,cB(qr))). We also use the following logspace reducibilities which
are defined analogously in terms of logspace oracle Turing machines and logspace-computable

log log log log log log log log log log log
functions: <r% <50y See s el e Sdte Skedte Settr Sheety Smo Satis

Consuier a logspace oracle Turing machine M on input z. If we run through all configurations
and compute the next string that is queried, we obtain a list L of all strings that are possibly
queried during the computation of M on z. Now we can simulate the computation of M on x
such that each time a string ¢ is queried, we query all strings from L and use the answer to ¢ in
the further computation. This shows that we may assume that logspace oracle Turing machines
query nonadaptively.

Proposition 2.1 ([10]) A Sﬁg B if and only if A Slf)g B.

1 1 1
Definition 2.2 (autoreducibility) For < € {<%, log-T’ <t <hitr Stuer ST <lg§ 1 <teos
S}co_%t, };gt} a set A is <-autoreducible, if A < A via an oracle Turing machine that on input

x does not query x.
P P P P P log log log log log log
For < € {<§y» Spaw Setr Shetr Smo ot Sdiv Skt Scitr ket <ms Satt)s 0

set A is <-autoreducible, if A < A wvia a function f such that if f(z) = (q1,...,qn), then
.Z‘¢ {QIv"'v(In}'

Definition 2.3 (mitoticity) For any polynomial-time reducibility <P, a set A is <P-mitotic,
if there exists a separator S € P such that A =P ANS =P ANS. Analogously we define
mitoticity for logspace reducibilities at which the separator is chosen from L.

Proposition 2.4 For every reduction < and every non-trivial set A, if A is <-mitotic, then A
1s <-autoreducible.

Proposition 2.5 Let C be a complexity class and k > 1.

1. For all reducibility notions < € {<log <f%t,<}fogT,<1§%,<§g,§ig§ T,_lé’g}, if A is <-
complete for C, then A is <-complete for coC.

2. If A is <k 8 .-complete for C, then A is <}€°itt—complete for coC.

3. If A is <Ctt—complete for C, then A is <dtt—complete for coC.
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4. If A is <}€Ogdtt complete for C, then A is <k & i-complete for coC.
5. If Ais <dtt complete for C, then A is <Ctt—complete for coC.

Proposition 2.6 The following holds for k > 1.

N

lo lo lo lo lo lo lo . .
. For all reducibility notions < € {<p° <k%t7<kgT7<btgt’<ttg’<lo§ <t} if A is <-

autoreducible, then A is <- autoreduczble.

A is <}€ ot -autoreducible = A is <k dtt—autoreducible.

A s <§%—auto7‘educzble = Ais <§)tgt—aut0reducible.
log

A is <k att -autoreducible = A is <k; ot

A is Slﬁ%—autoreduczble = Ais Sctt—autoreducible.

-autoreducible.

SRS

Proposition 2.7 Let k> 1 and let C be a complexity class closed under complementation.

1. All <! me-complete sets for C are <1 $.-autoreducible.

2. All <}€O%tt complete sets for C are <}€O%t—aut0reducible.

3. All <k %tt-complete sets for C are §k_tt—aut0reducible.

Proof We first show item 2, so let A be S}iﬁtt—complete for C and some k > 1. C is closed under
complementation, hence A € C and thus A S}Co_%tt A via some f,ie,z ¢ A <— \/iC 1Yi € A,

where f(z) = (y1,...,yx). If = & {y1,...,yr}, this yields a <k%t—autoreduct10n for A. If

x € f(x), then x ¢ A, since otherwise the reduction shows a contradiction.

To show item 3, let A be <}€°gtt complete for C. By Proposition 2.5, A4 is <}f§tt-complete for

coC =C. So 4 is <! <k tt-autoredumble by the argument above. From Proposition 2.6 we obtain

that A 1s < kgtt—autoredumble

Finally, item 1 follows from item 2 and item 3 for k = 1. a

Proposition 2.8 Let C be a complem’ty class that is closed under complementation. For every

Boolean function o, if A is <att-complete for C, then A is <( o8 )t -complete for C.

Proof Let A be Sfﬁ—complete for C and B € C, where a is a k-ary Boolean function. We have
to show that B Sl((:g it A- Since B € C, there is a function f that shows B <% A. On input z,
consider (y1,y2,...,yx) = f(x). We now have z € B <= a(ca(y1),ca(y2),-..,ca(yx)). This
means that z € B <= (—a)(ca(y1),ca(y2),-..,ca(yx)) and thus f also shows B Sl((:ga)tt A O

3 Autoreducibility by Self-Reducibility

We use the notion of self-reducibility to show the autoreducibility of complete sets. Observe
that for NL and P there exist self-reducible, Siﬁg—complete sets, which follows from the char-
acterizations in terms of nondeterministic and alternating logspace machines. In this section
we argue that this implies that all complete sets for NL and P are autoreducible (not only
for Slﬁg, but also several other logspace reducibility notions). For example, we obtain that all

<I°¢_complete sets for NL and P are <}°®-autoreducible.

The following notion of <log self-reducibility is a restriction of gllgg—autoreducibility which

demands that oracle queries have a certain structure.



Definition 3.1 ([1]) A is Slf)g—self—reducible if there is a logspace oracle Turing machine M
that accepts A with oracle A such that on input x, the queries asked by M are of the same length
as x, lexicographically smaller than x, and differ from x at most in the last log |x| symbols.

The notions of < 28_self-reducibility and <k%t—self-reducibility are defined analogously. By

Proposition 2.1, a set is §Tg-se1f-reduc1ble if and only if it is §i‘zg—self—reducible.

There is a technical difficulty in defining self-reducibility for disjunctive and conjunctive
truth-table reducibilities. In these cases, the reduction cannot simply accept or reject, but must
generate queries that represent the answer. However, a self-reduction on input z = yO‘y| is
not allowed to make any query, since the last log || symbols of z already reached the minimal
possible value. Therefore, in the definition below the self-reduction may accept or reject without
asking any queries.

Definition 3.2 A set A is <lcﬁ3gt—self—reducible if there is a logspace-computable function f whose
values can be 0, 1, or a list of words (y1,...yn) where n > 1 such that the following holds: If
f(z) € {0,1}, then ca(z) = f(z). Otherwise, it holds that f(x) = (y1,...yn) such that the y;
are of the same length as =, are le:vicogmphically smaller than x, differ from x at most in the
last log |x| symbols, and © € A < (ca(y1) V-V cA(yn)) If n is bounded by some constant k,
then A is Sﬁ%tt-self-reducible. The notions of <Ctt -self- reduczbzlzty and <k Ctt-self-reducibility

are defined analogously. A is Smg-self-reduczble if it is Sl_dtt-self—reduczbzle.

Each nontrivial self-reducible set B is autoreducible. The lemma below says that if a set A
is in some sense equlvalent to a self-reducible set B, then also A is autoreducible. The proof for

the easiest case of < dtgt works by first executing the reduction A <8 B and then it iteratively
log

follows exactly one of the self-reducibility-queries of B. For each of these queries, the <j3-
reduction to A is computed. If x does not occur among the queries of this reduction, we can
complete the reduction. Otherwise, we continue the self-reduction on this path, as it positively
depends on whether z € A.

Lemma 3.3 Letl > 1 and A, B be sets.

1. A<le p <log A and B is <i‘;g—self—reducible = Ais §i‘;g—aut0reducible.
2. A<los g <11°%t A and B is <2 S -self-reducible = A is <12°tt-auto7’educible.
3. A<ep <ld°tgt A and B is <dtgt-self reducible =—> A s <dtt-aut0reducible

4o A<REB <%, A, Bis <V8, -self-reducible = A is <52 -autoreducible.

Proof 1. Let A <% B via f. Let hi be the unary Boolean function that results from the
reduction B Sict)g A on input ¢, when all queries r # x are substituted by their answers ca(r).
Hence hi is the unary Boolean function with the property cg(q) = hi(ca(x)). Moreover, let
M be the oracle Turing machine performing the Sﬁg—self—reduc‘cion of B. The following oracle
machine computes a §l§g—autoreduction for A on input x:

s:= f(x), p:=id
let q1,...,qr be the words queried by M on input s
if hi', ..., hd¥ are all constants then
return the result of M on s, where queries are answered according to h', ..., hi*
choose i such that hZ is not constant
let s := ¢; and 3 := hd
goto 2

RN e



Observe that this computation can be executed in logarithmic space without querying the input
2. The machine only needs logarithmic space, since the queries ¢; differ from f(x) only in the
last log|z| symbols. Note that the computation eventually stops in line 4, since s is always
replaced by a lexicographically smaller string.

For the correctness note that in line 2 we always have c4(x) = S(cp(s)): It is true at the
beginning of the computation and in line 5 it holds that cp(q;) = h¥ (ca(z)) and since h¥ is
either non or id, we obtain ca(z) = h¥ (cg(q;)). This shows that A is §1rl?g—autoreducible and
hence Sﬁg—autoreducible by Proposition 2.1.

2. We argue analogously. Note that in this case £ < 2 and we can check whether the
functions hd’ are constants without asking any queries (since We consider <1 tt—reductions)

3. Let h(q) be the set of words queried by the reduction B <o <att % A on input ¢. In line 3 of the
above algorithm, it suffices to check whether = belongs to at least one of the sets h(q1), ..., h(q)-
If so, say x € h(g;), then we continue with s := ¢;. Otherwise, we return h(q1) U --- U h(gg).

For the correctness of the modified algorithm note that in line 2 we always have c4(x) =
cp(s): This is true at the beginning of the computation and in line 5 it holds that ca(z) =
cp(s) =cplq1) V- Veplar) = ep(¢) = ca(x) and thus ca(z) = cp(a).

4. We argue similar to 3., while observing that in this case k < 2 and |h(q1) Uh(g2)| < 2[. O

Proposition 3.4 Let k > 1.

1. There is a <\%-complete set for NL that is <12°;5m self-reducible.

2. There is a <10 -complete set for NL that is <12°Ctt—self reducible.

3. There is a <k me-complete set for P that is <2 $.-self-reducible.

4. There is a §mg-complete set for ACF (resp., SACF, NCk) that is §}fgg-self—7‘educible.

Proof The evaluation of Boolean circuits over binary OR (resp., AND) is Siﬁg—complete for NL
and <2 & ip-self-reducible (resp , 12 ®..-self-reducible). The evaluation of Boolean circuits over
binary OR and AND is Sn?lg—complete for P and is §2_tt-self—reducible.

For the classes ACF, SAC*, and NC*, the following problem has the desired properties: For
a given circuit C' and a given number ¢ determine whether the i-th gate of C' has value 1. O

With Lemma 3.3 and Proposition 3.4 we show the autoreducibility of logspace complete sets.
Theorem 3.5 Let k > 1.

1. All Sict)g—complete sets for NL, P, ACF, SACF, or NCF are Si(gg—autoreducible.
All <11°%t complete sets for NL or P are §12(f%t—aut07“educible.

All <1§tgt-complete sets for NL are <lﬁ%-autor€ducz’ble.

All Sﬁ%-complete sets for NL are Sctt-autoreducz'ble.

All S}Co_%tt—complete sets for NL are <12°kg_dtt—autoreducible.

All S}Co_g -complete sets for NL are <12Okg w -autoreducible.

7. All <1°g—complete sets for NL are <2 See- and <12°%tt—auto7’educible.

S GvA Lo e

Proof Let A be <{%-complete for NL (resp., P). By Proposition 3.4, there exists a <58 -self-
reducible set B that is giﬁg—complete for NL (resp., P). By Lemma 3.3, A is gtt $-autoreducible.

The remaining statements are shown analogously. The statements about conjunctive au-
toreducibility are obtained by the Propositions 2.5 and 2.6 and the fact that NL is closed under

complement. O

We now use self-reducibility to show that for restricted §12?%t reducibility it holds that com-
plete sets for NL and P are autoreducible.



Theorem 3.6 All sets that are Sl(o_%)tt—complete for NL (resp., P) are Sftgt—autoreducible.
Proof We argue for P (the case of NL is shown analogously). Let a = (=), let A be <'8-
complete for P, and let M be some alternating machine that accepts A. Consider the set

R = {(z,C) | configuration C'is the root of an accepting subtree in M (x)}

and observe that R, R € P. Hence there are logspace-computable functions f, ¢ that show
R,R §10?§t A. Let Cy denote the start configuration of M on input z. We may assume:

o f((z,Co)) queries (a — z) for some fixed a € A
e for every stop configuration Cy, neither f((z,Cs)) nor g((z,Cs)) queries x

The following algorithm traverses M (x) and keeps the invariant x € A <— (z,C) € R.

. C:=0y

. (C1, Cq) := successor configurations of C' in M (z)

. B := type of node C' in M (x)

if # =V then:
let f({z,C1)) = (y1 = y2) and f({z,C2)) = (y3 = ya)
if @ ¢ {y1,2,y3, ya} then return ((y1 — y2) V (y3 — y4))
else if x € {y1,y3} then return some fixed value a € A

else set C':= C;, where y9; = x, and continue with step 2
else (B =AN):

let g((z,C1)) = (y1 — y2) and g({z, C2)) = (y3 — y4)

if x ¢ {y1,y2,y3,y4} then return (=(y1 — y2) A =(y3s = ya))

else if € {y2,y4} then return some fixed value b ¢ A

else set C := (}, where y2;_; = z, and continue with step 2

© 0 NS U W

[
W= o

After line 1, the invariant clearly holds. Assume that we reach line 8, so 8 = V and f((z,C};)) =
(y2i—1 = x). f o ¢ A, then (z,C) ¢ R and hence (z,C;) ¢ R. If z € A, then ca(y2i—1) — ca(x)
is true and hence (x,C;) € R. So after setting C := Cj, the invariant still holds. Assume now
that we reach line 13. so § = A and g({z,C;)) = (x — y2;). If x € A, then (x,C) € R and hence
(x,C;) € R. If z ¢ A, then ca(x) — ca(yo;) is true and hence (x,C;) € R. So after setting
C := C}, the invariant still holds.

Since the invariant always holds, the return statements in line 6 and line 11 are obviously
correct. So suppose we stop in line 7 and it holds that = € {y1,ys}, hence f((z,C;)) = (z — y2).
Then = ¢ A leads to the following contradiction: if z ¢ A, then (z — y;) is true, hence
(x,C;) € R, which implies (x,C) € R, which implies € A. Suppose now that we stop in line
12 and it holds that = € {y2,v4}, hence g((x,C;)) = (y2i-1 — z). Then = € A leads to the
following contradiction: if € A, then (y2;—1 — ) is true, hence (z,C;) € R, which implies
(x,C) ¢ R, which implies = ¢ A.

Observe that the algorithm will eventually return, because we assumed that stop configura-
tions do not query =. O

4 Autoreducibility by Local Checkability of Computations

If we represent computations of NL, P, and Ai machines in tableaus or configuration graphs,
we can locally check the consistency of these computations. This technique allows us to show

(i) the Sigg_T—autoredu(}ibility of all S};gt—complete sets for NL, P, and AP, and



(ii) the <btgt—autoreduc1b1hty of all <lo‘ft—complete sets for NL and P, for all 2-ary Boolean «.

Using techniques by Buhrman et al. [5] we show that not all <btgt—complete sets for PSPACE are

<%;)tgt—autoreducible. Hence certain improvements of (i) and (ii) are difficult to obtain: Improving
(i) to <btt—aut0reducibility for P (resp., A}) implies P # PSPACE (resp., A} # PSPACE), and
improving (ii) to 3-ary Boolean « for P implies P # PSPACE.

Moreover, we obtain that resolving the <btt-autoreduc1b1hty of <btt—complete sets for P,
NP, PP, A}, X7, or II} leads to unknown separations of complexity classes.

Theorem 4.1 1. All <L°tgt

2. All <};gt;-complete sets for P are Sigg_T—autoreducible.

-complete sets for NL are gigg_T—autOTeducible.

Proof We show item 2 (the proof of 1 is analoguous), so let A be <l;gt—complete for P. Recall

that P = AL and let M be an alternating logspace TM with L(M) = A. Consider the set

R = {{(z,C) | configuration C is the root of an accepting subtree
in the configuration graph of M on input x}.

Note that the configuration graph of M on input = also contains those configurations of M on
input z of length O(log |z|) that are not reachable from the start configuration of M on input
x. Observe that R € AL, hence R <btt A via some logspace oracle Turing machine. Let hS be
the unary Boolean function that results from the reduction R <btt A on input (x,C) when all
queries ¢ # x are substituted by their answers c4(q). Hence cg({x,C)) = h$(ca(x)). We may
assume that for every input x:

° hgo = id, where (Y is the start configuration of M on input x
e h$s is constant for every stop configuration Cy of M on input =

So for every x, there exists a configuration C in the configuration graph of M on input x with

successors C; and Cy such that h$ is not constant, while h$t and h$? are constant. Let C(z) be

the smallest such configuration and let B = {(z,14) | the i-th bit of C(x) is one}. Observe that

B € AL and hence B <]1;)tgt A. Thus the function g(z) £ C(z) can be computed by a logspace

oracle Turing machine with oracle A such that on input z, the machine queries O(log |x|) words.
We describe the Sigg_T—autoreduction on input z:

1. compute C(x) using ¢g’s machine with oracle AU {z}
2. verify that C is a configuration with successors Cp,Cy of M on input x such that

e h¢ is not constant and
e hC1 and AS? are constant

otherwise return 0
3. if C'is an existential configuration, then return hS (h$1 v h$?)
if C is a universal configuration, then return hS (hS1 A hS?)

Note that in the case x ¢ A, it could be that in step 1, the algorithm does not correctly
compute the configuration C'(z). However, the algorithm never rejects erroneously in step 2,
since the verification in step 2 always passes for the correct configuration C(x).

If the algorithm reaches step 3, then hg is not constant while hgl and th are constant.
Hence for an existential (resp., universal) C it holds that hS? V h? = cp({z, C)) = hS (ca(x))
(resp., h$1 A hS2 = cp({z,C)) = hS(ca(x))). So the algorithm accepts if and only if = € A
(which follows from the fact that either hY = id or h$ = non).



The algorithm works in logspace and queries O(log|z|) words. Hence A is <}g§T
autoreducible. a

Theorem 4.1 raises the question of whether one can improve this result to obtain a non-
adaptive autoreduction. The next theorem and its corollary show that at least in the case of
P (Theorem 4.1.2) such an improvement is difficult to obtain as it separates P from PSPACE.
The proof is based on an idea by Buhrman et al. [5] who show that not all <} ,-complete sets
for EXP are <}, -autoreducible.

Theorem 4.2 For every k there is a <2T complete set for PSPACE that is not <1°,§tt
autoreducible. In particular, not all <btt—complete sets for PSPACE are <btt—aut07’educzble.

Proof We construct a set A € PSPACE that contains two tracks, one track encodes a §iﬁg—

complete set K and the other one diagonalizes against all <1°gtt—reductlons Because these
reductions are able to ask polynomially large queries, a straightforward encoding of K into A
fails, since the diagonalization would have to decide K in the simulation of the reduction. The
trick by Buhrman et al. is to include switch points that swap the tracks and always send the
reduction onto the track that contains barriers.

Let ¥ = {0,1} and let {M;}; be an enumeration of all §1S,§_tt—autoreductions such that the
computation of M; on x can be simulated in space ilog || and asks queries of length at most
|z|*. Furthermore, we may assume that M; on inputs of length n queries exactly n* distinct

words. The diagonalization against M; will be done on input 0*®) for ¢(i) = 2222 . This ensures
that the length of the largest query on this input is (¢(i))* < t(i + 1).

Let K C {0,1}* be <i&-complete for PSPACE such that K N XW~1 = () for all i € N.
Furthermore, we assume that K € DSPACE(n).

We define A_; = () and iteratively construct the stages A9 € A7 € Ay C ... such that
A= Ujen Ai

Stage i: Let n = t(i) and Q = {q1,...,q,+} be the words queried by M;(0"). Let L =
QN1¥2" and R = QNOXZ" be the “left” and “right” queries and subdivide them further into
blocks according to their length as follows: L; = LN {z | n? ™ < |z < n?}, R =RN{z |
n? " < |z| <n?} for 1 < j < [logi]. We claim that at least one of the following holds:

X) 9l € Ly3r1 € RaVls € Ly3ry € Ry - Vliogi] € Liiog 13 og ) € Rpiogiy
MAZ 1UL U Ul1og 41 Ur1U-Ur(iog 41 (0™) rejects

Y) VTl C R1dly € LiVro C Rodls C Lo .. Vrﬂogﬂ - Rﬂogi] Hlﬂogﬂ - L[logi] :

M A;_1UlLU-- Ul[]ogz]UrlU U""[logz](

; 0™) accepts

This follows by basic logic: =X has the structure 3l1Vrq--- : M;(0") accepts. From this we
obtain Y, since 3l;Vr; H implies Vr;3l; H for all H.

If X holds, then we define A; = {0"}U{lz [z € KAt(i) < |z < t(i+1)—1}Ur1U- - -Urfegq),
where the [; result from K and the r; are chosen in the order rq,... 704 as the lexico-
graphically minimal r; C R; such that

A; UL U---UL i1Ur1U---Ur ;
Vljp1 C Ljy13rja C© RjpaVljpo C Ljqg---: M; s flos ]

)

(0™) rejects.

If X does not hold, then Y holds and we analogously define A; = {0z | z € K A t(i) < |z] <
t(i+1) =1} Ul U+ Ulfogq]- We show following:

1K <2 A
2. A € PSPACE
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3. Ais not glf,ﬁg_tt—autoreducible

1.: Let z be some input and ¢ € N such that #(:) < |z| < (i + 1) — 1 (all other inputs are
trivial). First we query 0! € A. If the answer is “yes”, then we return the answer to the query
1z € A. Otherwise, we return the answer to the query Oz € A.

2.: By induction on i we show that A € DSPACE(n**1). The induction base is trivial, since
it is a finite case. For the induction step, we first show that we can decide inputs of the form
0/ in DSPACE(n**1) and then we show it for inputs of length between ¢(i) and t(i + 1).

For inputs of the form 0" where n = ¢(i) we only have to decide whether situation X holds
or not. Note that we cannot write down all queries of M;(0"), as some may be too large. We
can, though, record the first symbol and the length of each query and thus determine the set
R; or Lj it lies in or whether it is shorter than n. Queries that are shorter than n can even be
answered by the induction hypothesis. Furthermore, queries can be identified by their sequence
number, since all queries are distinct and the reduction is non-adaptive. This means that we
can find out whether situation X holds or not by a depth-first-search of the expression tree:
Each node in the tree can be encoded as a string of answers to the at most n* queries that are
larger than n and thus takes space n*. The value of a leaf can be determined by simulating
M;(0™) on this set of answers, which uses only ilogn space. In total, we can decide 0" at least
in space nFt1.

Now let = be an input such that ¢(i) < |z| < t(i+1). Without loss of generality, assume that
X holds (we can again determine that). If z € 1X* just simulate the algorithm that decides K
in linear space. If z starts with 0, but is not a query of Mi(Ot(i)), we can reject. Otherwise,
there is some j such that x € R;. We now recursively compute all sets r1,...,r;_1 and l1,...,[;,
which is possible in DSPACE(nF 1), since n > #(i)? ' is now large enough. We again search
the expression tree for X in depth-first-manner, but now only for the given values of rq,...,7rj_1
and l1,...,l; and we search for the lexicographically smallest value of r; for which X holds. We
can find out the sequence number of the query x, since our input x is large enough and accept
if and only if x € r;.

3.: For every i we ensured that M;“(Ot(i)) accepts if and only if 0/() ¢ A, and thus A is not

<log

<*? -autoreducible. 0
n -tt

It follows that improving Theorem 4.1.2 to <10g (-autoreducibility or <l e ~autoreducibility

separates P from PSPACE. At this point we also observe two similar statements (4.3.2 and
4.3.3) which will explain the difficulty of improving the Theorems 4.8 and 4.11 below.

Corollary 4.3 Letc>1 and k > 2.

1. If all <]1;tgt—complete sets for P are <l ne o ~autoreducible, then P # PSPACE.
2. 1If all <3 $.-complete sets for P are <btt—aut07"educible, then P # PSPACE.

3. If all <btt—complete sets for A} are Snc_tt—autoreducz’ble, then A} # PSPACE.

Trivially, all <btgt complete sets for L are <btt—autoreduc1ble and <btgt—m1totlc This shows

that proving or refuting Theorem 4.2 for class like P, NP, or Az leads to unknown separations
of complexity classes.

Corollary 4.4 Let k > 1 and C € {P,NP,PP,A} ¥V TI}}.

1. If all <|Dtt complete sets for C are <btt—aut0r6ducible, then C # PSPACE, otherwise C # L.
2. If all <btt—complete sets for C are <btt—mit0tz’c, then C # PSPACE, otherwise C # L.
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Using another technique by Buhrman at al. [5] we generalize the proof of Theorem 4.1
and obtain similar results for the classes AE. By Corollary 4.3.3, improving the theorem to

<% _autoreducibility or even <I°®-autoreducibility separates A} from PSPACE.

Snett Spit
For z = z; - - - 2, €{0, 1} and an (m+n)-ary Boolean formula ¢ with variables y1, . .., Ym+n,
©(z) denotes the n-ary Boolean formula obtained by substituting y; for z; where ¢ € {1,...,m}.

Definition 4.5 Let k > 0. If k is even, let Q :=V,R:= 3, and Q := 3, R :=V otherwise.

1. ¥3-3SAT := {¢ | ¢ is a Boolean formula in 3-DNF if k is even and in 3-CNF otherwise,
has km variables, and 3z, € {0,1}™Vz,_q1 € {0,1}" - Qz1 € {0,1}™ (2, ..., 21) = 1}

2. T;-3SAT := {¢ | ¢ is a Boolean formula in 3-CNF if k is even and in 3-DNF otherwise,
has km variables, and ¥z, € {0,1}" 321 € {0,1}™--- Rz € {0, 1} @(2p,...,21) = 1}

3. Yp-EMW := {¢ € Xy-3SAT | if k > 1 and ¢ has km wvariables, then the minimal zj €
{0,1}™ such that p(zx) € I1_1-3SAT is even}

Note that Xo-EMW = ¥(-3SAT = {¢ | ¢ is a true Boolean sentence in 3-DNF'}.

Theorem 4.6 ([13]) Fork >1 and L € X} there exists an f € FL such that for alln, f(2") =
©n 18 an (n+km)-ary Boolean formula such that for allz € {0,1}", z € L < ¢, (x) € Xi-3SAT.

Theorem 4.7 For k > 1, X,-EMW is <i8-complete for AV

Proof Wagner [12] shows that the problem of whether the minimal satisfying assignment of
a given Boolean formula is even is <h,-complete for AS. The same technique combined with

Theorem 4.6 shows that X -EMW is S}%g—complete for Ag 41 O

Theorem 4.8 For k > 1, all sets A that are §%;)tgt-complete for AEH are ﬁgg_T-automducz’ble.

Proof For every h € FA} | we define a g{ftgt—reduction Ry, and functions h*,h™ € FA}

as follows: Choose the smallest ¢ € N such that |h(z)| < |z|¢ 4+ ¢. Let By be the set of pairs
(z,1) such that bit ¢ in h(z)’s binary representation is 1. By € A}, and hence S]l:tgt-reduces
to A via a machine Rj, where R}, is the lexicographically first such machine. So the values

R (z,i) for i < |2|°+ c tell us the binary representation of h(x). If the query z is not allowed,
icfofere 2 By (@,4) and
h(z) L Di<lzlete 20 Rﬁ_{m}(az, i). If x € A, then h(z) = h(z). If z ¢ A, then h™(x) = h(x).

By Theorem 4.7, there is an f € FL and a polynomial r such that |f(z)| < r(|z|) and
x €A < f(x) € Lp-EMW for all z. Let ¢, := f(x). We may assume that ¢, has the right
format (3-DNF if k is even, 3-CNF otherwise), has the m-bit variables y,...,y1, and for all ¢
and all z,...,2z1 < 2™, the value p(zg,...,21) is independent of z;’s highest bit. For every i,
let @, = @, if (kK —1) is even, and ¢, ; := —p, otherwise. For i = k,...,1, we define:

we can only compute the following candidates for h(z): ht(z) £

zi(z) == min({z < 2™ | pi(Zh, - - ., Ziv1, 2) € I;_1-3SAT} U {2"71})

si(r) == max({j <m | 2z (z) and z; (z) differ at the j-th bit from right} U {0})

%) := min(z] (2), 7 ()

For fixed i, ¢, ; can be computed in space O(log(|z|)) and z;,s;,Z; € FA} ;.

F; .= {x ‘ (pmﬂ'(fk(lj), . ,EZ‘_H(.%')) S E,;—3SAT}
E;, = {CC ‘ (pxﬂ'(fk(.ﬁ), e ,§i+1(l’)) S ZZ—EMW}
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Observe that F;, FE; € AZ_H and x € A < @, € Xp-EMW <= z € E\. So the theorem is
implied by the following statement, which we show by induction.

F;, E; <log A fori=0,...,k, where on input x the reduction does not query .

First, let ¢ = 0. Since Ey = Fp, it suffices to argue for Fy. If k is even, then ¢, 0 = ¢,, and
¢z is in 3-DNF. If £ is odd, then ¢, 0 = —¢,, and ¢, is in 3-CNF. Hence in both cases, after
moving the negation to the literals, ¢, o is in 3-DNF. Define

s(x) := min({j < r(|z|) | conjunction j in ¢4 0(Zk,...,21) is satisfied} U {r(|z|)})

and note that s € FAp |, hence s*(x) and s~ (z) are computable in logarithmic space with
O(log |x|) queries to A — {z}. Sox € Fy <= ¢30(Zk,...,21) =1 <= s (x) or s~ (x) point
to a conjunction in ¢z o(Zk, . ..,Z1) that is satisfied. We argue that the right-hand side of this
equivalence can be tested with O(log|z|) queries to A — {z}: Both conjunctions consist of 3
literals. The value of each such literal is determined by one bit of some Z;(z). The index j
and the position of these bits can be determined in logarithmic space (without oracle queries),
since ¢, is computable in logarithmic space. Using sj (z), s; (x), and the reduction R,; we can
determine the value of each bit in Z;(x) with O(log|z|) queries to A — {x}.

For the induction step, suppose the claim holds for some i < k. We show the claim for ¢ + 1.
On input z, we determine ;7 () and s, (z) with O(log |z|) queries to A — {x}.

Case 1: s, (z) # si ().

Without loss of generality we assume ;7 ; (x) > s;, (). Using Rzl+1 we can test with O(log|z|)
queries to AU {z} whether z; | (z) and 2, (z) differ at the slH( x)-th bit from right. If this
holds, then s;41(x) # s;,,(x) and « € A. Otherwise, s;11(z) # s/ ;(z) and hence x ¢ A. Since
Fiy1, Eipq € A, and we know c4(z), we can determine with O(1) queries to A — {z} whether
x € Fj41 and whether z € ;4.

Case 2: s ,(z) = s;4(2) = sip1(z) = 0.

In this case, zi41(x) = 2 | (x) = 2, (), hence
€ Fipy1 = @rit1(Zk(7),. .., Ziv2(z)) € Xi41-35AT <= 2, ,(7) < < 2™ and
r€FEip1 <= ¢rit1(Zk(z),. zl+2(az)) € Xi11-EMW <= 2, (7) is even and < om—1,

The right-hand sides correspond to bit m — 1 and bit 0 of 2, ; (), which can be determined via
R, , with a constant number of queries to A — {z}.

Case 3: s/ ,(z) = s (z) = sita(z) > 0.

With R, , we test With O(log |z|) queries to AU {z} whether 2, (), 23, (z) > 2™~ 1. If so,
then ZZ+1( ) 2m= , Pz, 1+1(fk, .. Ez+2) ¢ Eerl 3SAT and Pz, i+1(§k7 c. ,fﬂ,g) ¢ EH,l—EMW,
which means = ¢ Fiy; and = ¢ EH—l Otherwise, Zz-l—l( z) < 2™ lor 2z (x) <2

rEAN Zz+1($) <z (2) = Zip(x) =21 () =zi11(2) < 2" 0piv1(Zhy - -+, Ziv1) ET-3SAT
T€ANZ (2)> 27, (2) = zia(2) =2, (2), Zig1(2) =27, (2), 0uit1(Zk, - - -, Zig1) 11;-3SAT
s @ AN (2) <z (2) = zipa (@) =24 (2), Zig1(2) =21 (2), 02it1(Zk, - - -, Zig1) € 11;-3SAT
T @ AN (2)> 2, (2) = Zipi(e) =27 (@) =zip1 (@) < 277 Y 0pir1(Zny - .., Ziv1) €T1-3SAT

If 2 1 (z) < 27 (x) then let v(z) := 1 else let v(z) := 0. We obtain

r€A — —|'U(33) ) (,Ogg’z‘_t,_l(?k, . ,5,‘.1_1) e I1,-3SAT
= () D 0r,i(Z, ..., Zit1) € 8i-38AT = wv(x) ® z € F;.
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Note that v(z) = Rg;{x}(:ﬂ, si+1(z)). Together with the induction hypothesis, we can test the

right-hand side of the equivalence with O(log|z|) queries to A—{z}. So we obtain c4(z) which
allows us to determine with O(1) queries to A—{z} whether = € F;;; and whether x € F;;;. O

Corollary 4.9 All <(*-complete sets for Ay, are <1%¢_qutoreducible.

Proof The proof of the <btt—case also works for the Sict)g—case, as the bounded number of
queries is only used when we count the number of queries in the autoreduction. O

In the proof of the next lemma we locally check conﬁguration graphs of nondeterministic
(resp., alternating) logspace machines to obtain the <btt autoreducibility of Slf (-complete
sets for NL and P. Together with the results from previous sections this shows Theorem 4.11,
which states that for every fixed 2-ary Boolean function «, all <lof’tgt—complete sets for NL and

P are <btgt—aut0redu01ble By Theorem 4.2, improving the theorem to 3-ary Boolean functions
separates P from PSPACE.

Lemma 4.10 All sets Sl(of))tt-complete for NL or Sl(og) -complete for P are <btt—aut0reducible.

Proof We will argue for P (the case of NL is shown analogously). Let A be Sl(f_g}) (-complete
for P and let M be some alternating machine that shows A € P. Consider the set R = {(:r, C) |

C' is the root of an accepting subtree in M (z)} and observe that R € P, hence R <lo (H) A via
some logspace-computable function f. We assume:

e for every configuration C of M(z), f((z,C)) queries two distinct words
e for the start configuration Cy of M (x), f({x,Cp)) queries x
e for every stop configuration Cs of M(x), f({x,Cs)) does not query z

Hence there must be a configuration C' in the configuration graph of M on input x with suc-
cessors C1,Cy such that f((x,C)) queries z, and both f({(x,C})) and f({z,C3)) do not query
. We loop over all configurations until we find such a configuration C'. Now we can determine
x € A by at most five queries different from z. a

Theorem 4.11 For every a: {0,1}2 — {0,1}, all <&_complete sets for NL and all <\8-

complete sets for P are §btt—aut07"educzble.

Proof Let a: {0,1}> — {0,1}, C € {NL,P}, and let A be <}§§ complete for C. We have the
following cases:

e « is constant: there are no < att—complete sets for C.

o afr,y) =z, a(x,y) =y, a(r,y) = ~z, or a(x,y) = —y: Theorem 3.5.2 shows that A is
<12 %.-autoreducible.

e o € {A,V, (=), (=V)}: Proposition 2.7 shows that <°€-complete sets for C are <i%,-
autoreducible for o € {A,V}. Since C is closed under complementation, the remaining
functions follow by Proposition 2.8.

e o € {+»,®}: Lemma 4.10 shows that for o =<+, <'8-complete sets for C are <{f§
autoreducible. Since C is closed under complementation, the case of « = @ follows again
by Proposition 2.8.

o o€ {—> <, (= =), (= <)}: Theorem 3.6 shows that for « =—, gftgt—complete sets for C
are <b,§—autoredu01ble By symmetry, this also holds for o =<—. Since C is closed under
complementation, the case of the remaining functions follows again by Proposition 2.8.

O
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5 Mitoticity and Autoreducibility by Diagonalization

We use diagonalization to obtain logspace mitoticity and autoreducibility results. Generally
speaking, the diagonalization prevents difficult cases that could not be handled. Buhrman et
al. [5] use this technique to show for EXP and other classes that all <) -complete sets are
Sg_tt—autoreducible. We extend this technique and show the statement for NEXP.

Moreover, we consider several logspace reducibilities and obtain results for PSPACE, EXP,
and NEXP, as those classes are powerful enough to diagonalize against logspace reductions.
Since PSPACE and EXP are closed under complementation, we obtain that their many-one
complete sets are mitotic. For NEXP we can only show that many-one complete sets are
autoreducible.

5.1 Complete Sets for Classes closed under Complementation

We will first show mitoticity and autoreducibility results for Slﬁg—complete sets and for ng%t—

complete sets, that generally apply to classes that have certain closure properties. For this
purpose, we first define length-restricted reductions computable in space log?.

Definition 5.1 Let A and B be sets.

1. We define A Slﬁthn B similarly to A Slﬁg B, except that, on input x, the computation
of f(x) is allowed to use (log|z|)? space, but it must hold that |f(x)| < c- |z|, where ¢ > 0
is some constant.

2. We define A Slﬁfj'lm B similarly to A Slﬁft B, except that, on input x, the oracle machine
is allowed to use (log|x|)? space, but may only ask one oracle question of length at most
¢ |x|, where ¢ > 0 is some constant.

We obtain the following results.

Theorem 5.2 If a class C is closed under union, complement, and §}$1g2_hn—reducibility, then

all giﬁg-complete sets in C are <&-mitotic.

Proof Let A be Slﬁg—complete, we show that A is <1%-mitotic. Let f1, f2, ... be an enumeration
of logarithmic-space-bounded Turing transducers such that the computation of f; on x can be
simulated in space logi - (1 4 log |x|) using a binary alphabet.

Bi 2 {y|y=1(042,0), |fiw)] < |yl and fi(y) ¢ A}
By £ {y|y=(0"2,0"), |fi(y) > [yl and 2 € A}
B B U By

IS

B; € C, since By glﬁgQ_lin A e (C. By €C, since By glﬁgmin A € C. Hence B € C and there
exists some j such that B <8 A via f;. If there exists a y = (0%, x, 01#1*) such that Lfi(w)l <yl
then y € B < fj(y) ¢ A < y ¢ B, which is a contradiction. Therefore, |f;(y)| > |y| for all y.
This shows that A <% B via g(z) £(07, 2, 01"°) and A <% A via h(z) = fj(g(x)). Note that
|h(z)| > |x|? for all . Since h € FL, there exists a ¢ > 3 such that for all x € 32

|z> < |h(z)] < =], (1)
Let

SLly | min{i e N | |z| < QCi} is even}
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and note that S € L. From (1) it follows that for every x € Y22 there exists an i €
{1,...,|logc]} such that z € S < hi(x) ¢ S (where h' is the i-th superposition of h). Let

hi(z), if |z| > 2

r(z) £ a, if |z <2and x € A
a, if |z <2andx ¢ A
where i = min{l,...,[logc] | z € S & hi(z) ¢ S}, a is a fixed element in A, and a’ is a

fixed element in A. Note that r € FL, since c¢ is constant. Moreover, for all z it holds that
(x€S e r(z)¢S)and (xr € A< r(z) € A). Therefore, ANS <198 ANS and ANS <1 ANS
both via r. Moreover A =% AN S , since S € L. This shows that A is <log_mitotic. O

Corollary 5.3 All Slﬁg-complete sets for the following classes are <1%%_mitotic: QP =
DTIME(2PoVoe(®)) - PSPACE, EXP, REC, DSPACE(s) and NSPACE(s) for all space-
constructible s > 10g2.

Proof The classes satisfy the requirements in Theorem 5.2. O

We adapt a technique by Buhrman et al. [5] to the logspace setting and obtain the following
result.

Theorem 5.4 If a class C is closed under Sa?%s'lin—reducibility, then all §12(f%t—complete sets for

C are gg?%t—autoreducible.

Proof Let {M;}; be an enumeration of all §12(f%t—reductions such that the truth-table used by M;
on input  and the number of queries different from x can be obtained in space logi-(1+1log |x|)
using a binary alphabet. Without loss of generality, we assume that all reductions always query
exactly two distinct values.

Let A be gl;%t—complete for C and let D be the set of words accepted by the following algorithm.

1. If the input is not of the form (0%, z), then reject.
2. Determine v := A(z) with one query to the oracle A.
3. Simulate M;(0%, z) and let ¢ be the truth-table that is obtained if we replace the query z
with the value v (if applicable).
4. If t is constant:
accept if and only if ¢ = false.
5. If ¢ is of the form y ¢ A (for y # z):
accept if and only if v = false.
6. If ¢ is of the form y € A (for y # z):
accept if and only if v = true.
7. If the value of ¢ depends on two queries different from x:
accept if and only if v = true.

2 .
The algorithm describes a glﬁft'hn—reduction to A and so D € C. Hence, D Slz?%t A via some

machine M;. We describe an autoreduction for A on input z: If Mj(Oj,x) does not query =,
then act just as M;. Otherwise, accept if and only if the other query belongs to A.

Note that the reduction can be computed in logarithmic space and does not query its own
input. If M, does not query x, the autoreduction is obviously correct. If M; has a truth-table ¢
that is constant once the value of x € A is substituted, then by line 4, (0/,z) € D <= t = false
which contradicts the fact that D ggf%t A via M;. Therefore, M; accepts if and only if the query
different from x lies in A and thus the autoreduction is correct. O
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Corollary 5.5 All <120%t—complete sets for the following classes are <2 t.-autoreducible: QP =
DTIME(2r°¥log(n)) - PSPACE, EXP, REC, DSPACE(s) and NSPACE(s) for all space-
constructible s > log?.

Proof Follows from Theorem 5.4. O

5.2 Complete Sets for NEXP

It is unknown whether the above results apply to NEXP, so here we cannot conclude mitoticity.
We can, however, show that sets complete for NEXP are at least autoreducible.

Theorem 5.6 1. For every k> 1 and < € {<} 4i0) Shcitr Saier <ext)» every <-complete set
for NEXP is <-autoreducible.
2. For every k > 1 and < € {S}iitt’ §}€°_%tt, <g)tgt7 <IC(;%} every <-complete set for NEXP is
<-autoreducible.

Proof We first show the first statement of the theorem. Here, we argue for <l , as the
other cases are shown analogously. Let A be a < dtt-complete set for NEXP. Recall that
A <B. B <= there exists a polynomial-time computable function f such that for all z,
flz) ={q1,...,qn) and (x € A < B(q1) V- --B(q)). Let {fi}i>1 be an enumeration of
all polynomial-time Turing transducers such that the computation of f; on x can be simulated
in time |z|° +i. Let B be the set of inputs (0%, x) accepted by the following nondeterministic

algorithm in exponential time.

e () := set of all queries of f; on input (0%, ).
e If 2 ¢ Q, then accept (0, z) <= z € A.
e Otherwise, reject (0%, x).

Obviously B € NEXP. So B <}, A via some disjunctive truth-table reduction f;.

For every z, if x is one of the queries of f;((0/, z)), then, by the above algorithm, (0, z) ¢ B.
Hence for each query q of f;((07,z)) we have ¢ ¢ A. In particular z ¢ A. On the other hand, if
({07, 2)) = {q1,...,qm) and = # ¢; for all i, then z € A < (0/,2) € B < ca(q1) V- Vealgm).
Based on this observation, we obtain the following autoreduction for A, where x is the input.

e () := set of all queries of f; on input (07, z).
o If 2 ¢ @, then return f;((07,z)). -
e Otherwise, return some fixed value y € A — {x}.

Hence A is < dtt—autoreducible

In order to show the second statement for < dtgt, suppose that A is < dtt—complete for NEXP.

Observe that the above enumeration {f;};>1 includes all <iftgt-reductlons If B <L°fé A via the

< dtgé reduction f;, then f; is logspace computable, and hence the described autoreduction of A

on input x can be computed in logspace. The other cases for logspace are shown analogously.
O

Note that every non-trivial <1 dtt—autoreducible set is also Slﬁg—autoreducible, and similarly

every non-trivial <P  -autoreducible set is also <h-autoreducible, hence Theorem 5.6 covers

= dtt
1
<m? and <}, as a special case.

Theorem 5.7 1. Every <% -complete set for NEXP is <} . -autoreducible.
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2. Every <2 $.-complete set for NEXP is <2 $.-~autoreducible.

Proof We first show that <% -complete sets for NEXP are <} -autoreducible. Let A be a
<b ,;-complete set for NEXP. Let {M,;};>1 be an enumeration of all <}, reductions such that
the computation of M; on z can be simulated in time |z|*+i. Observe that L; <5, Lo if and only
if there exist polynomial-time computable functions f: ¥* — (3*)? and g: ¥*x{0,1}? — {0, 1}
such that for all z, f(x) = (q1,q2) and x € L; < g(x, La(q1), L2(g2)) = 1. In this sense, let
fi and g; be the functions that correspond to the reduction M;. Without loss of generality we
assume that if f;(z) = (g1, g2), then g1 # go. Let B be the set of inputs (0%, z) accepted by the
following nondeterministic algorithm N in exponential time.

o Compute fi((0%,2)) = (g1, ) and let @ = {g1, ).

o If z ¢ @ then: accept (0",z) <= =z € A.

e Otherwise x € ) and without loss of generality we assume x = ¢;. Let gf be the 2-ary
Boolean function defined by ¢¥(a, ) £ g;(x, o, ) and consider all possible cases for ¢?:

1. g7 is constant 0 or constant 1: accept (0, 2) <= gt =0
gi (o, B) = B or gf(a, B) = ~B: accept (0i,z) <= zc A
g% (a, B) = a or g¥(a, B) = —a: reject (0%, x

g% € {A, A, 4V, <} accept (07, z)

g% € {-A, =, -, V,®}: reject (07, z)

AR

Observe that B € NEXP. So B <), A via some <}, reduction M;. Compute f;((0?,z)) =
(q1,q2) and let Q = {q1,q2}. Before we describe a <}, autoreduction for A, we have to observe
some facts. Suppose g1 = = and consider the following cases:

1. gj is constant 0 or constant I: (0/,2) € B <= gj =0, contradicting B <5 A via M.

2. gf(a,ﬁ) = f or gf(a,,@) =4 If g}”(a,ﬁ) = f, we obtain z € A <— (0/,z) € B <=
97 (A(z), A(g2)) =1 <= A(q) =1 <= ¢2 € A. Similarly, if g7 (o, 8) = =3, we obtain
r€A = (V,z2) €EB < gj(A(2),Alg2)) =1 <= -Alp)=1 < ¢ ¢ A

3. gj(a,8) = a or gj(a, 8) = —a: In both cases (0/,z) ¢ B, hence g7(A(z), A(g2)) = 0.
Thus if g;-”(a,ﬁ) = «, then x ¢ A, and if gf(a,ﬁ) = -, then z € A.

4. g7 € {N,#, 4,7V, <} Here (07,2) € B, hence gj(A(z), A(g2)) = 1. If g7 € {A, A},
then z € A. If g7 € {¢~,~V}, thenz ¢ A. If g] = <>, thenz € A < ¢z € A.

5. 97 € {=A, =, «,V,@}: Here (0/,z) ¢ B, hence gf(A(m),A(qg)) =0. If g} € {-n,—1},
then x € A. If g7 € {+,V}, then z ¢ A. Ifgf = @, thenz € A < ¢ € A

We describe a Sg_tt autoreduction of A on input x:

o Compute f;((0,z)) = (g1, ¢2) and let Q = {q1, g2}-

o If x ¢ Q: accept iff MJA accepts (07, z).

e Otherwise, suppose x = ¢; (the case x = g2 is analogous). By the above arguments, gf
cannot be constant and we have the following cases:

- g] (o, B) = B: accept <= ¢ € A
g5 (v, B) = =B accept <= ¢2 ¢ A

— gf(a B) = a: reject

- g;”(oz B) = —a: accept

— gj € {N, =N\, —, A} accept

— g7 €{V, 2V, <, #}: reject

— gj € {¢,®}: accept <= g € A
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Hence A is <} -autoreducible.

In order to show the second statement, suppose that A is <l2°tt—complete for NEXP. Observe
that the above enumeration {M;};>1 includes all <i% -reductions. If B <% A via the <\
reduction M;, then f; and g; are logspace computable, and hence the described autoreduction
of A on input x can be computed in logspace. a

Note that by Theorem 4.2 (resp., [5]), there exist <g°%t—complete sets for PSPACE (resp.,
<% ;-complete sets for EXP) that are not <E’tgt—autoredu01ble (resp., <j,,-autoreducible), hence
1mpr0v1ng Theorem 5.7.1 to <%, separates NEXP from EXP, and improving Theorem 5.7.2 to

3 %, separates NEXP from PSPACE.

5.3 Complete Sets for PSPACE and EXP

We show that for some restricted polynomial-time truth-table reductions, complete sets for
EXP are complete under length-increasing reductions, and the same holds considering logspace
reductions for PSPACE and EXP. By carefully repeating the length-increasing reductions in
such a way that we switch between stages defined by a separator set we obtain mitoticity for
PSPACE and EXP.

Definition 5.8 Given two sets A and B, we define A <., B if there is a Turing machine M
such that A = L(MP) and all queries made by MP(z) are of length strictly greater than |x|.

p p P log log log log
T{w "0“?"5 <2%t e Shettli Shedtdi il et <mti 4 ST Soti Sketelir Sk dteli
og og og o
Zatiae Seoar S are defined similarly.

Berman [3] and Ganesan and Homer [6] show that all many-one complete sets for EXP are
many-one length-increasing equivalent. In the following lemma, we generalize to show that it
also holds for some certain polynomial-time reductions and logspace reductions under EXP and
PSPACE.

Lemma 5.9 1. For every k > 2 and < € {<h,,<h ..,
sets for EXP are <-li equivalent.
2. For every k > 2 and < € {<12°%t, <L°§tt, <Lo_%ltt, <}§%, <g’§c} all <-complete sets for EXP
(resp., PSPACE) are <-li equivalent.

<I§ dtt7<£)tt7 gtt}f all <-complete

Proof We show the lemma for <J .. the other cases are shown analogously. Let A be any
Sg_tt—complete set for EXP and K be the canonical <h-complete set for EXP. Observe that
A <P K, so it suffices to show K <} . . A.

Let {M }i>1 be an enumeration of all <b reductions such that the computation of M; on
x can be simulated in time |z|* + 4. Note that Ly <}, Lo if and only if there exist polynomial-
time computable functions f: ¥* — (X*)? and g: ¥* x {0,1}?> — {0,1} such that for all z,
f(z) = (q1,¢q2) and © € Ly < g(x,La(q1), L2(q2)) = 1. Let f; and g¢; be the functions that
correspond to the reduction M;. Without loss of generality we assume that if f;(z) = (¢1, q2),
then |q1]| < |g2|. This is not a restriction, because we can always switch ¢; with g2 and modify g;
on z accordingly. Let B be the set of inputs (0, ) accepted by the following nondeterministic
algorithm N in exponential time.

compute (0%, 2)) = (g1, g2)

if [(0*,z)| < |q1| < |gz|, then accept <= =z € K

if ’ql‘ < ‘q2“ < ‘<OZ,$>‘, then accept < gi(va(QI)7A(QQ)) =0
if |g1] < [{0*, z)| < |g2|, then consider the following cases:

Ll
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(a) gi(z,A(q1),0) = gi(z, A(q1),1): accept <= gi(z, A(q1),0) = 0.
(b) gi(x, A(q1),B) = B for all B: accept < z € K.
(¢) gi(x,A(q1),B) = —p for all B: accept <= x ¢ K.

Claim 5.10 B € EXP.

¢}

Proof We analyze the running time of the above algorithm on input (0%, z) where n = [(0, x)|.

e M; on input = can be simulated in time |z|* + i, hence computing f;({0%, z)) in step 1 and
gi(z,a, B) in step 3 and step 4 is possible in exponential time in n.

e K € EXP, so deciding x € K in step 2 and step 4 takes exponential time in n.

e A € EXP and in step 3 we have |qi| < |g2| < n. Hence computing A(¢g;) and A(ge) in
step 3 takes time exponential in n.

e Analogously, computing A(q;) in step 3 takes time exponential in 7.

O

Because B € EXP and A is Sg_tt—complete for EXP, we have B Sg_tt A by some reduction
M;. Let f;((07,2)) = (g1, g2). Observe the following for B’s algorithm on input (07, z):

L If (07, 2)] < |@1] < |g2f, then 2 € K < (V/,z2) € B < gj(z,A(q1),A(q)) = 1.
Notice that in this case, both ¢; and g2 are longer than .

2. If |¢1| < |g2| < (0% z)|, we have (07,2) € B <= gj(z,A(q1),4A(g2)) = 0, which
contradicts the fact that M; reduces B to A. Hence this case cannot occur.

3. If |q1| < (0%, 2)| < |ga], consider each case in the algorithm:

(a) If gj(xaA((h)vO) = gj(:U?A((h)’ 1)a we have <0jax> €EB — gj(va((h)’A((D)) =0,
which contradicts the fact that M; reduces B to A. Hence this case cannot occur.

(b) If gj(z, A(q1),B) = B for all B, we obtain x € K <= (V,z) € B <+
9i(Alq1), Alq2)) = Alg2) =1 <= g2 € A. ‘

(c) If gj(z,A(q1),B) = —p for all B, we obtain z € K <= (0/,z) ¢ B <=
gj(A(ql),A(QQ)) =1- A(QQ) =0 <— qo € A.

So, in this case we have ¥ € K <= ¢o € A with |z| < [{07, )| < |ga|-

We describe a <9 . . reduction from K to A on input z:

1. compute fj(<0j,x>) = (q1,42)
2. if {07, z)| <|q1| < |g2|, then accept <= g;(z, A(q1), A(g2)) =1
3. if [¢1] < {07, x)| < |ge|, then accept <= A(gq2) = 1.

P
Hence K <j, ,, ; A. O

P p p b
hectts Shodtt Settr Sqie)s every <-

Theorem 5.11 1. For every k > 2 and < € {<},,<
complete set for EXP is <-mitotic.
2. For every k > 2 and < € {§12?%t, S}i%tt, S}i%itt’ §l§%, Séotgt}, every <-complete set for EXP

(resp., PSPACE) is <-mitotic.

Proof We prove the theorem for <} .., other cases will follow similarly. Let A be <} .-
complete for EXP. By Lemma 5.9, A x X* §S_Ctt_h A. Hence there exist polynomial-time
computable functions f and g such that z € A x ¥* < (f(z) € AAg(x) € A). Since f,g are
polynomial-time computable, there is an I > 0 such that |z|'/! < |f(z)|, |g(z)| < |z|* for all z.

Define t; = 2 and t;4, = (t;)%°, and let S = {z| for some odd i,#; < |z| < ti+1}. Note that
S € P. We show that 4, ANS, and AN S are <5 t-equivalent.
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Claim 5.12 A=), ANnSand A=), ANS.

Proof Since S € P, ANS <2 ot A and ANS <2 ot A We describe the reduction A §§_Ctt ANS,
the reduction A §S_Ctt AN S is similar.
On input z with |z| > 2, compute i such that ¢; < |z| < t;41. Consider the following cases:

Case 1: iisodd, i.e., z € S. Choose y sufficiently large such that (t;12)! < |[(z,9)| < (tiy2)?.
This is possible in polynomial time, since (tz+2) = ()22 = ()4 < |2,

Let F(a) = £({z.4)) and G(a) = g{(o.1)). S0 [F(@)] = |7({.0))| > [{5.0)[" > tir2 and
F(@)] = [z )] < |@p)l! < (ti2) = tiss. Hence tisg < [F(x)] < tiss, ie., Fz) € .
Similarly we have G(z) € S. Therefore, x € A < (z,y) € Ax¥* < F(z) = f((z,y)) €
AN G)=g((z,y) € A < F(z) e ANS N G(x) e ANS.

Case 2: i is even, i.e., z ¢ S. Similar to case 1, we choose y such that (t;+1)" < |(z,9)| <

(tiv1)*.
Let F(xz)=f({(z,y)) and G(x)=g({x,y)). Sotir1 < |F(x)|,|G(x)| < tl+2 and F(z),G(z)€S.

Therefore, x € A <= (v,y) € AxYX* <= F(x) = f((z,y) € A N G(z) = g((z,y)) €
A<~ Fx)e ANS N G(x) e ANS.
Combining the two cases, we obtain that A <} ., ANS. O

Claim 5.13 ANS <)  ANSand AnS <5, ANS.

Proof We show ANS Sg—ctt AN S, the other reduction is similar. Let a1, as be fixed elements
from A. On input z, compute i such that ¢; < |z| < ¢;41 and consider the following cases:

Case 1: i is odd, i.e., z € S. Similar to Claim 5.12, we choose y such that (t;;1)" <
[z, )| < (tis)?.

Let F(z) = f((z,y)) and G(z) = g((z,y)). By similar reasoning, t;11 < |[F(x)|,|G(z)| <
tiro. Since i is odd, F(z) € S and G(z) € S. Sox € ANS < z€ A < (z,y) €
AXY* = F(z) = f({z,9)) € A A G(z) = g((z,y)) € A & F(z) € ANS A G(x) € ANS.

Case 2: i iseven, ie., z ¢ S. Hence z ¢ ANS. Let F(x) = a; and G(z) = ag. It holds
that 1€ ANS < F(z)€ ANS A G(z) € ANS.

This shows ANS <5 .. ANS by the functions F and G. )
We conclude that A is <8 ,-mitotic. O

Note that by Theorem 4.2 (resp., [5]), there exist <3 ¢.-complete sets for PSPACE (resp.,
<% ,-complete sets for EXP) that are not <k?§—autoredu01ble (resp., Sgtt—autoreducible), hence

Theorem 5.11 cannot be improved to <3 b or <B ...

5.4 Complete Sets for 1-Truth-Table Reductions

Homer, Kurtz, and Royer [9] and Buhrman [4] showed that for EXP and NEXP, every <} -
complete set is also <h-complete. Their approach also applies to <1 tt—complete sets for
PSPACE, EXP and NEXP, so we have the following theorem.

Theorem 5.14 ([4, 9]) 1. All Slﬁ%t—complete sets for PSPACE (resp., EXP,NEXP) are
§ﬁg-complete for PSPACE (resp., EXP, NEXP).
2. All <Y\ -complete sets for EXP (resp., NEXP) are <%,-complete for EXP (resp., NEXP).
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Proof Similar to [4, Theorem 3.2 and Theorem 3.4]. O

This means that most of the obtained results for many-one complete sets also hold for

1-truth-table complete sets. We obtain the following corollary.

Corollary 5.15 1. All Sll?%t-complete sets for PSPACE, EXP are Slﬁg—mitotic.

2. All Sllcf%t—complete sets for NEXP are Sﬁg—autoreducz’ble.
3. All §1f_tt-complete sets for EXP,NEXP are <h -mitotic.

Proof Recall that:

o every <i®complete set for PSPACE, EXP is <125-mitotic (see Corollary 5.3)
e every §}fﬁg—complete set for NEXP is §iﬁg-autoreducible (see Theorem 5.6)
e every <h-complete set for EXP, NEXP is <} -mitotic [7, §]

Applying Theorem 5.14 we obtain:

e cvery Slﬁft—complete set for PSPACE, EXP is <% mitotic
e cvery §11(i%t-complete set for NEXP is §£g—autoreducible
e every < -complete set for EXP, NEXP is <h-mitotic
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