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Abstract

We study a collection of concepts and theorems that laid the foundation of matchgate com-
putation. This includes the signature theory of planar matchgates, and the parallel theory of
characters of not necessarily planar matchgates. Our aim is to present a unified and, when-
ever possible, simplified account of this challenging theory. Our results include: (1) A direct
proof that Matchgate Identities (MGI) are necessary and sufficient conditions for matchgate
signatures. This proof is self-contained and does not go through the character theory. More
importantly it rectifies a gap in the existing proof. (2) A proof that Matchgate Identities already
imply the Parity Condition. (3) A simplified construction of a crossover gadget. This is used
in the proof of sufficiency of MGI for matchgate signatures. This is also used to give a proof
of equivalence between the signature theory and the character theory which permits omittable
nodes. (4) A direct construction of matchgates realizing all matchgate-realizable symmetric
signatures.

1 Introduction

Leslie Valiant introduced matchgates in a seminal paper [25]. In that paper he presented a way to
encode computation via Pfaffian and Pfaffian Sum, and showed that a non-trivial, though restricted,
fragment of quantum computation can be simulated in classical polynomial time. Underlying this
magic is a way to encode certain quantum states by a classical computation of perfect matchings,
and to simulate certain quantum gates by the so-called matchgates. These matchgates are weighted
graphs, not necessarily planar, and are equipped with input and output nodes, as well as the so-
called omittable nodes. Each matchgate is associated with a character, whose entries are defined
in terms of Pfaffian and Pfaffian Sum.

Three years later, there was great excitement when Valiant invented holographic algorithms [28],
where he also introduced planar matchgates. These matchgates are planar graphs, have a subset
of vertices on the outer face designated as external nodes, and each matchgate is associated with
a signature. The entries of a signature are defined in terms of the perfect matching polynomial,
PerfMatch(·). For planar weighted graphs, this quantity can be computed by the well-known
Kasteleyn’s algorithm [15] (a.k.a. FKT algorithm [22]) in polynomial time, which uses Pfaffian and
a Pfaffian orientation.

These holographic algorithms are quite exotic, and use a quantum-like superposition of frag-
ments of computation to achieve custom designed cancellations. The two basic ingredients of
holographic algorithms from [28] are matchgates and holographic transformations. A number of
concrete problems are shown to be polynomial time computable by this novel technique, even
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though they appear to require exponential time, and minor variations of which are NP-hard. They
challenge our perceived boundary of what polynomial time computation can do. Since we don’t
really have any reasonable absolute lower bounds that apply to unrestricted computational models,
our faith in such well-known conjectures such as P 6= NP or P 6= P#P are based primarily on the
inability of existing algorithmic techniques to solve NP-hard or #P-hard problems in polynomial
time. To maintain this faith, it is imperative that we gain a better understanding of what the
new methodology can or cannot do. To quote Valiant [28], “any proof of P 6= NP may need to
explain, and not only to imply, the unsolvability” of NP-complete or #P-complete problems by
this methodology. It becomes apparent that there is a fundamental problem of what are the in-
trinsic limitations of these matchgates, and what is the relationship between characters of general
matchgates and signatures of planar matchgates.

In [24], Valiant showed that the character of every 2-input 2-output matchgate must satisfy five
polynomial identities, called Matchgate Identities. Valiant used this to show that certain quantum
gate cannot be simulated by the characters of these matchgates. In a sequence of two papers [1, 3]
a general study of the character theory and the signature theory of matchgates was undertaken.
These papers achieved the following general results: Essentially there is an equivalence between the
character theory and the signature theory of matchgates, and a set of useful Grassmann-Plücker
identities together with the Parity Condition are a necessary and sufficient condition for a sequence
of values to be the signature of a planar matchgate. This set of useful Grassmann-Plücker identities
will be called Matchgate Identities (MGI) in the general sense. Along the way they also established
a concrete characterization of symmetric signatures, which are signatures whose entries only depend
on the Hamming weight of the index.

However, this proof is tortuous. In particular the proof for the signature theory of planar
matchgates goes through characters. More importantly, there is a subtle but important gap in the
proof that every planar matchgate signature must satisfy these Matchgate Identities. The gap has
to do with the non-uniform and exponentially many ways in which the induced Pfaffian orientations
on subgraphs of a planar graph can introduce a correction factor (−1) to Pfaffian values, relative
to perfect matchings.

In this paper we present a full, self-contained proof that MGI characterize planar matchgate
signatures. This proof does not involve character theory or any non-planar matchgate. Moreover,
we include a short proof demonstrating that MGI imply the Parity Condition. Previously this was
presented as a separate requirement for matchgates, but now we show MGI entirely characterize
matchgate signatures. We then revisit and clarify the equivalence between planar matchgates and
the original general matchgates. Along the way we introduce a concise matchgate for the “crossover
gadget”, using only real weights 1 and −1. Previously the only known such gadget uses complex
values. Finally, it has been known that the MGI greatly simplify for symmetric signatures. By
the general theory any symmetric sequence satisfying MGI must be realizable as the signature
of a planar matchgate. However, previously this existence is only known by going through the
entire equivalence proof of characters and signatures, which also uses the only known “crossover
gadget”. In this paper, we present a simple, direct construction of a planar matchgate realizing
any symmetric sequence satisfying MGI.

The most intricate part of this paper is the proof that planar matchgate signatures must satisfy
MGI. The subtle gap in the existing proof stems from the following. To compute the signature of a

matchgate G, we assume it has a fixed Pfaffian orientation
−→
G . This induces a natural Pfaffian ori-

entation for every subgraph,
−→
Gα, where α is a bitstring specifying a removal pattern of the external
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nodes from G. A Pfaffian orientation may introduce an extra (−1) factor, a “sign change”, to the

corresponding perfect matching value. However, whether
−→
G has a sign change does not immedi-

ately imply if
−→
Gα has a sign change: the presence or absence of the “sign change” may itself change

between different external node removals! As there are exponentially many possible bitstrings α
for possible removal patterns, this severely complicates any proof trying to show they must satisfy
MGI. We note that Pfaffian orientations are themselves an important topic [23], and this result is
the first to our knowledge concerning the behavior of Pfaffian orientations of exponentially many
subgraphs under node removals.

Thus, our main goal is to show that the change of the sign change occurs in a pattern such that
MGI still hold. We do so using Theorem 6. Essentially, it proves the following. For any two fixed
bit positions i < j referencing the external nodes, let bibj ∈ {0, 1}2 be the bit pattern on these two
bits. Then, while the sign change may be different for different values of bibj , the change of sign
change when we go from bibj to bi bj is always the same, independent of the removal pattern on
the other external nodes. This is succinctly expressed as a quadruple product identity. Moreover,
this is in fact the strongest statement we can say about a pair of nodes and their change of signs,
(see Fig. 1). Fortunately this is also sufficient to prove MGI.

This paper is organized as follows. In Section 2 we define all the concepts and terminology in the
signature theory of planar matchgates. We will also prove that MGI imply the Parity Condition.
We will restrict to planar matchgates pertaining to signature theory here. The terminology having
to do with general (not necessarily planar) matchgates and characters will be delayed till Section 6.
In Section 3 we will give a self-contained proof of some known identities. This is partly for the
convenience of the readers, partly to give simplified proofs when possible. For example, the earlier
proof of Theorem 5 from [11] goes through skew-symmetric bilinear forms and operators acting on
the exterior algebra of a module over some commutative ring. Here we present a direct, elementary
proof. In Section 4 we prove that every matchgate signature satisfies MGI. In Section 5 we prove
that MGI are also sufficient to be realizable as a matchgate signature. Here we also give the
simplified construction of a crossover gadget. In Section 6 we discuss the character theory. In
Section 7 we give the direct construction for matchgates realizing symmetric signatures. Some
concluding remarks are in Section 8.

2 Preliminaries

Matchgate, PerfMatch definitions A matchgate is an undirected weighted plane graph G
with k distinguished “external” nodes on its outer face, ordered in a clockwise order. (We will see
shortly that without loss of generality we may assume the graph G is connected. Therefore it is
a plane graph, i.e., a planar graph given with a particular planar embedding, and the outer face
is both uniquely defined and has a connected boundary.) Without loss of generality, we assume
all edge weights are non-zero; zero weighted edges can be deleted. We define the perfect matching
polynomial, PerfMatch(G), as the following:

PerfMatch(G) =
∑

M∈M(G)

∏
e∈M

w(e) (1)

whereM(G) is the set of all perfect matchings in G and w(e) is the weight of edge e in G. For each
length-k bitstring α, G defines a subgraph Gα obtained from G by the following operation: For all
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1 ≤ i ≤ k, if the i-th bit αi of α is 1, then we remove the i-th external node and all its incident
edges. Thus, G00...0 = G, and G11...1 is G with all external nodes removed.

Signature, perfect matching term definitions We define the signature of the matchgate G
as the vector ΓG = (ΓαG), indexed by α ∈ {0, 1}k, as follows:

ΓαG = PerfMatch(Gα) =
∑

M∈M(Gα)

∏
e∈M

w(e). (2)

For a perfect matching M ∈M(Gα) we define ΓαG(M) =
∏
e∈M w(e) as the perfect matching term,

equal to the product of the edge weights for the matching M . Where G is clear, we omit the
subscript G, and write Γα for ΓαG, and Γα(M) for ΓαG(M).

Pfaffian orientations, induced Pfaffian orientations For a plane graph G, we can compute
PerfMatch(G) using Kasteleyn’s algorithm [15] via the Pfaffian. A Pfaffian orientation on G is an
assignment of a direction to each edge of G in such a way that each face, except possibly the outer
face, has an odd number of clockwise oriented edges when one traverses the boundary of the face.
Such an orientation is easy to compute for any plane graph. Note that any “bridge edge” (an edge
both sides of which belong to the same face) can be oriented arbitrarily, and the traversal of the face
will count the edge twice, once clockwise and once counter-clockwise. Under a Pfaffian orientation
on G, the Pfaffian of a skew-symmetric matrix defined by G and the orientation, defined below,
is equal to ±PerfMatch(G). We fix a single Pfaffian orientation for G and call the directed graph
−→
G . Note that

−→
Gα, which is obtained from

−→
G by removing some vertices and their incident edges

according to α, is also Pfaffian-oriented. This is because we only remove zero or more vertices
on the outer face, and the removal of these vertices and their incident edges do not create any
non-outer face. Thus a single fixed Pfaffian orientation for G induces a set of Pfaffian orientations,
one for each Gα. We consider a Pfaffian orientation for G is fixed, and each Gα inherits the induced
Pfaffian orientation.

Skew-symmetric matrix Now we assume the vertices of G are labeled by a totally ordered
set, for example, 1 < 2 < . . . < n. Given an orientation on G, we define a skew-symmetric

adjacency matrix A = A−→
G

for
−→
G as follows. Let (u, v) be a directed edge from u to v in

−→
G .

Then Au,v = w({u, v}), and Av,u = −w({u, v}), where w({u, v}) is the weight of the corresponding
edge in G. Note that if the labels u < v, then the entry above the diagonal Au,v = w({u, v}),
and its reflected entry below the diagonal Av,u = −w({u, v}). If u > v then the entry above the
diagonal Av,u = −w({u, v}) and its reflected entry below the diagonal Au,v = w({u, v}) instead.
The diagonal and all other locations (u, v) not corresponding to an edge in the matrix A are set to
0. The lower-left triangle of A is the negation of the upper-right triangle.

Pfaffian The Pfaffian of an n× n matrix, where n ≥ 2 is even, is defined as follows:

Pf(A) =
∑
π

επAi1,i2Ai3,i4 , . . . , Ain−1,in (3)

where the sum is over all permutations π =
(
1 2 . . . n
i1 i2 . . . in

)
such that i1 < i2, i3 < i4, . . ., in−1 < in

and i1 < i3 < i5 < . . . < in−1. The term επ is −1 or 1 depending on whether the parity of π is odd
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or even, respectively. We note that there is a natural 1-1 correspondence between permutations π
in this canonical expression and the set of partitions of [n] into disjoint pairs, which are potential
perfect matchings. A permutation π corresponds to an actual perfect matching iff all the pairs are
edges. It is known and easy to verify that the sign επ can also be computed by the parity of the
number of overlapping pairs (+1 if it is even, −1 if it is odd). We say {i2k−1, i2k} and {i2`−1, i2`}
is an overlapping pair iff i2k−1 < i2`−1 < i2k < i2` or i2`−1 < i2k−1 < i2` < i2k.

We note that the term επAi1,i2Ai3,i4 , . . . , Ain−1,in is the same for any listing of the partition

[n] = {i1, i2} ∪ {i3, i4} ∪ . . . ∪ {in−1, in}, where π =
(
1 2 . . . n
i1 i2 . . . in

)
, independent of the ordering

of the pairs, as well as the order within each pair. We also note that this definition is valid for
any linear order on the vertices; it need not be the set of consecutive integers from 1 to n. This

is particularly relevant when we consider the Pfaffian of
−→
Gα, where the vertices will inherit the

labeling from G.
As convention, if n is odd, then Pf(A) = 0; if n is zero, then Pf(A) = 1.

Relating Pf to PerfMatch If A = A−→
G

, we call επAi1,i2Ai3,i4 , . . . , Ain−1,in a Pfaffian term. As
observed, there is a 1-to-1 correspondence between all non-zero Pfaffian terms and perfect matchings
in M(G). If M is a perfect matching, we denote the corresponding Pfaffian term by Pf−→

G
(M). A

perfect matching term has the same value, up to a ± sign, as the corresponding Pfaffian term.
In other words, Pf−→

G
(M) = ±ΓG(M). They may indeed differ, even under a Pfaffian orientation.

The heart of the FKT algorithm is the proof that for the skew symmetric matrix of a Pfaffian-
oriented graph, either every pair of corresponding terms are the same, or every pair of corresponding
terms differ by a minus sign. Thus, Pf(A−→

G
) = ±PerfMatch(G). This equality is an equality of

polynomials: Given a Pfaffian oriented
−→
G , there exists an ε = ±1, such that

Pf(A−→
G

) = εPerfMatch(G) (4)

and if (4) holds for one set of edge weights, then every Pfaffian term is ε times its corresponding
perfect matching term, for every set of weights.

Pfaffian signature definition As the orientation in
−→
G induces a Pfaffian orientation for all

Gα, we can naturally refer to
−→
Gα. Note that

−→
Gα =

−→
Gα, the oriented graph obtained by

−→
G after

removing some vertices and incident edges according to α, in the same way as before. Also note
that A−→

Gα
is obtained from A−→

G
by removing the appropriate columns and rows indicated by α. We

abbreviate Pf(A−→
Gα

) as Pfα−→
G

. Where
−→
G is clear, we just write Pfα. With a given Pfaffian orientation

on the plane graph G, and a given labeling of its k external nodes in clockwise order, we define

the Pfaffian Signature of
−→
G to be the vector (Pfα) indexed by α ∈ {0, 1}k. Each Pfα is a sum of

Pfaffian terms, by the definition of Pf(A−→
Gα

), under the induced Pfaffian orientation.

Critically, eq. (4) is a term by term equation: For every α ∈ {0, 1}k, there exists ε(α) ∈ {−1, 1},
such that for all M ∈M(Gα),

Pf−→
Gα

(M) = ε(α)ΓGα(M). (5)

Matchgate Identities We state the Matchgate Identities, or MGI.

Theorem 1. Let Γ be the signature of a matchgate with k external nodes. For any length-k
bitstrings α, β ∈ {0, 1}k, let α ⊕ β ∈ {0, 1}k be their bitwise XOR, and let P = {p1, . . . , pl}, where
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p1 < . . . < pl, be the subset of [k] whose characteristic sequence is α ⊕ β. Here pi is the i-th bit
where α and β differ. Then, the signature Γ satisfies:

l∑
i=1

(−1)iΓα⊕epiΓβ⊕epi = 0, (6)

where ej denotes a length-k bitstring with a 1 in the j-th index, and 0 elsewhere.

We will show that this is a complete characterization of what vectors can be planar matchgate
signatures.

Parity Condition A perfect matching has an even number of vertices. Therefore it follows that
PerfMatch(Gα) = 0, whenever Gα has an odd number of vertices. Thus, either for all α of odd
Hamming weight, or for all α of even Hamming weight, Γα = 0.

Matchgate Identities Imply Parity Condition Here we show that this Parity Condition is
a consequence of MGI.

Theorem 2. If a vector Γ obeys the MGI, then it also obeys the Parity Condition.

Proof. For a contradiction assume Γα 6= 0 and Γβ 6= 0, for some α and β of even and odd Hamming
weight respectively. We define Γ̃ by Γ̃γ = Γγ⊕α. Since γ⊕γ′ = (γ⊕α)⊕(γ′⊕α), the vector Γ obeys
the MGI implies that the vector Γ̃ also obeys the MGI. Also Γ̃00...0 = Γα 6= 0 and Γ̃β⊕α = Γβ 6= 0.
Note that β ⊕ α has an odd Hamming weight.

Let β′ = {p1, . . . , pl} be of minimum odd Hamming weight such that Γ̃β
′ 6= 0, where l ≥ 1. Now

invoke the MGI on the bitstrings 00 . . . 0⊕ ep1 and β′ ⊕ ep1 . That gives

0 = −Γ̃00...0Γ̃β
′
+

l∑
i=2

(−1)iΓ̃00...0⊕ep1⊕epi Γ̃β
′⊕ep1⊕epi . (7)

If l = 1 then the sum
∑l

i=2 is vacuous, and we have a contradiction. So l ≥ 2 and we consider

each term in the sum
∑l

i=2. Observe that for every 2 ≤ i ≤ l, β′ ⊕ ep1 ⊕ epi has an odd Hamming

weight less than that of β′, hence Γ̃β
′⊕ep1⊕epi = 0. Thus the sum

∑l
i=2 is zero but Γ̃00...0Γ̃β

′ 6= 0,
a contradiction.

Nonetheless, in further development of the signature theory, our experience is that the Parity
Condition is a good criterion to apply first.

The Sign MGI were first introduced by Valiant in [24] in the context of proving certain 2-input
2-output quantum gate cannot be realized by a matchgate. It was shown that 2-input 2-output
matchgates must satisfy certain identities which are named Matchgate Identities. These identities
are actually concerned with characters of matchgates. These so-called characters are defined di-
rectly in terms of Pfaffians, and their underlying matchgates need not be planar by definition. In
the case of 2-input 2-output matchgates, these character values constitute a 4 by 4 matrix, called
a character matrix. Subsequently in [1] and [3], this theory is generalized to matchgates of an ar-
bitrary number of external nodes. The ultimate result is that there is an equivalence of matchgate
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characters (of not necessarily planar matchgates) and matchgate signatures (of planar matchgates).
See Section 6. Furthermore Matchgate Identities (together with the Parity Condition) are a neces-
sary and sufficient condition for a vector of values to be the signature of a (planar) matchgate. By
Theorem 2, in fact the Matchgate Identities already logically imply the Parity Condition.

The existing proof of the equivalence of being a matchgate signature and satisfaction of MGI
(together with parity requirements) is quite long and tortuous. In particular it goes through
characters. More importantly, there is a gap in the existing proof that Matchgate Identities are
a necessary condition for a matchgate signature. The gap is to exactly account for the change of
signs from Pfaffians to signatures. We will rectify this situation. Our new proof is direct and self-
contained; we show that Matchgate Identities are a necessary condition for matchgate signatures
without going through characters.

We will first establish the Pfaffian Signature Identities.

Theorem 3. Let
−→
G be a plane graph with a Pfaffian orientation and k external nodes. For any

length-k bitstrings α, β ∈ {0, 1}k, let α⊕β ∈ {0, 1}k be their bitwise XOR, and let P = {p1, . . . , pl},
where p1 < . . . < pl, be the subset of [k] whose characteristic sequence is α⊕ β. Then,

l∑
i=1

(−1)iPfα⊕epiPfβ⊕epi = 0. (8)

Because of the “sign change” between Pfα and Γα, this statement does not immediately imply
Theorem 1. We need to know that the extra −1 factors between Pfα and Γα appear in just such a
pattern that the −1 factors all cancel each other in the Matchgate Identities in (6) relative to the
Pfaffian Signature Identities in (8). Before doing so, we will prove Theorem 3.

3 Proving the Pfaffian Signature Identities

Theorem 3 will follow from the Grassmann-Plücker Identities over Pfaffian minors of a matrix. We
state the following definition of the Grassmann-Plücker Identities for a skew-symmetric matrix A.
In writing Pf(i1, i2, . . . , iL) we mean the Pfaffian of the L × L matrix whose rows and columns
are the i1, i2, . . . , iL-th rows and columns of A, in that order. The order matters: Pf(i1, i2, . . .) =
−Pf(i2, i1, . . .), for instance. When we write Pf(i1, i2, . . . , îk, . . . , iK), the îk means that ik is ex-
plicitly excluded from that list.

Theorem 4 (The Grassmann-Plücker Identities). Let I = {i1, i2, . . . , iL}, J = {j1, j2, . . . , jK} be
subsets of indices of A, where i1 < i2 < . . . < iL and j1 < j2 < . . . < jK . Then

L∑
`=1

(−1)`−1Pf(j`, i1, . . . , iK)Pf(j1, . . . , ĵ`, . . . , jL) +

K∑
k=1

(−1)k−1Pf(i1, . . . , îk, . . . , iK)Pf(ik, j1, . . . , jL) = 0

(9)

Theorem 4 has the following short proof [24, 20] originally from [21].
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Proof of Theorem 4. From the definition of Pfaffian:

Pf(j`, i1, . . . , iK) =
K∑
k=1

(−1)k−1Pf(j`, ik)Pf(i1, . . . , îk, . . . , iK) (10)

Pf(ik, j1, . . . , jL) =

L∑
`=1

(−1)`−1Pf(ik, j`)Pf(j1, . . . , ĵ`, . . . , jL) (11)

and also

Pf(j`, ik) + Pf(ik, j`) = 0. (12)

The proof is completed by substituting these into the left hand side of eq. (9).

There is another form of these identities which is more closely related to the Pfaffian Signature
Identities. We state this theorem next. An earlier proof of Theorem 5 appears in [11]. They go
through skew-symmetric bilinear forms and operators acting on the exterior algebra Λ(M) of an
R-module M over some commutative ring R. Here we present a direct, elementary proof.

Theorem 5. Let A, I, J be as above. For a subset S of indices of A, we write Pf(S) when S is listed
in increasing order. Let D = I∆J = {k1, . . . , km} (listed in increasing order) be the symmetric
difference of I, J . Then

m∑
s=1

(−1)s−1Pf(I∆{ks})Pf(J∆{ks}) = 0 (13)

Proof of Theorem 5. We prove Theorem 5 by Theorem 4.
Considering a term in eq. (9), and let x be the element being moved from the index set of

one Pfaffian to another. If x ∈ I ∩ J , clearly the term is 0. It follows that there is a one-to-one
correspondence between the remaining terms in eq. (9) and (13). All that remains is showing that
each such term in eq. (9) has the same sign as its counterpart in (13).

Suppose x ∈ J − I. In that case, the term in eq. (9) is

(−1)zPf(x, i1, . . . , iK)Pf(j1 . . . , x̂, . . . , jL) (14)

where z is the number of elements in J preceding x, equivalently those elements in J less than x.
We write z = a+ b, where

a = |{y | y ∈ J − I, y < z}| (15)

b = |{y | y ∈ J ∩ I, y < z}| (16)

and we also define

c = |{y | y ∈ I − J, y < z}| . (17)

When we put the indices in Pf(x, i1, . . . , iK) in increasing order we move x along until it is in the
sorted order, we move x exactly b+ c times. Thus

Pf(x, i1, . . . iK) = (−1)b+cPf(I ∪ {x}) (18)
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and so it follows that
(−1)zPf(x, i1, . . . iK) = (−1)a+cPf(I ∪ {x}). (19)

It is clear that a+ c is precisely the number of those in D preceding x, exactly the sign in front of
the corresponding term in (13).

The argument for the case x ∈ J − I is symmetric.

Now we are ready to prove Theorem 3.

Proof of Theorem 3. We prove Theorem 3 by Theorem 5. For a matchgate G, let α, β be two
bitstrings of length k, where k is the number of external nodes in G. The i-th bit of α, denoted αi,
corresponds to the i-th external node in G in clockwise order.

Let U be the set of all internal (that is, not external) nodes in G. We define I = {vi | αi = 0}∪U ,
where vi is the label of the vertex in G which is the i-th external node referenced by αi. Similarly let
J = {vi | βi = 0} ∪ U . Observe that I∆J = {vi | αi 6= βi}. It follows that there is a term-for-term
correspondence between (13) of Theorem 5 and (8) of Theorem 3.

4 Matchgates Satisfy Matchgate Identities

We will now prove that while Pfα may differ from Γα by a sign depending on α, the differences
occur in just such a pattern that they cancel in the MGI. This will allow us to conclude that the
Pfaffian Signature Identities (8) differ from the MGI (6) by a global ±1 factor, thus proving the
Matchgate Identities.

Definition 1. For any M ∈ M(Gα), where Gα has the orientation
−→
Gα, we define the sign of the

perfect matching M to be:

sgn(M) =
Pf−→

Gα
(M)

ΓGα(M)
∈ {−1, 1} (20)

Recall that it is a polynomial equality that the Pfaffian is equal to ±PerfMatch, under a Pfaffian
orientation. Thus we can conclude that, for Pf−→

Gα
(M) and ΓGα(M), the value of sgn(M) is the

same ±1 for every perfect matching M ∈M(Gα). This allows us to define a very useful function:

Definition 2. For any α such that M(Gα) 6= ∅, we take any M ∈M(Gα) and define the function
δ:

δ(α) = sgn(M) =
Pf−→

Gα
(M)

ΓGα(M)
(21)

Note that δ(α) is well-defined; the value is independent of the choice of M ∈ M(Gα). It is
defined whenever M(Gα) 6= ∅. Recall that we have a fixed Pfaffian orientation for G and a fixed
induced orientation for all Gα.

We are ready to state the key theorem which implies the MGI.

Theorem 6. Let ubvcw ∈ {0, 1}k, where u ∈ {0, 1}i−1, b refers to the i-th bit, v ∈ {0, 1}j−i−1, c
refers to the j-th bit, and w ∈ {0, 1}k−j, with 1 ≤ i < j ≤ k. Let ũbṽcw̃ ∈ {0, 1}k be a possibly
different bitstring, but with b, c still referencing the i-th bit and j-th bit, respectively. Let b = 1− b
and c = 1− c. Then the following is true:

δ(ubvcw)δ(ubvcw) = δ(ũbṽcw̃)δ(ũbṽcw̃) (22)

when all four δ terms involved are defined.
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Figure 1: An example of a nontrivial instance of equation (22). Let the external nodes be 5, 6, 7, 8.
Observe that δ(0000) = 1, δ(1100) = −1, δ(0011) = −1, δ(1111) = 1. Thus, if we let b, c refer to
the first two external nodes, u, v both be the empty string, and w = 00 and w̃ = 11, we get the
situation where equation (22) becomes (1)(−1) = (−1)(1).

Note that the only equality we claim here is the pair-wise product being the same. The
individual δ terms can vary; for example there are cases when the above equation resolves to
(1)(−1) = (−1)(1) (see Fig. 1). The theorem asserts that if flipping two fixed bits changes the
“sign change” δ for some u, v, w, then it will change the sign change for all u, v, w of the same
lengths whenever δ is defined. It is an invariance of the change of sign change.

Since each factor in (22) is ±1, this equation can also be equivalently expressed as the following
quadruple product identity:

δ(ubvcw)δ(ubvcw)δ(ũbṽcw̃)δ(ũbṽcw̃) = 1 (23)

Theorem 6 implies the MGI Before proving Theorem 6 we show how it proves Theorem 1.
If there are no non-zero terms in a particular MGI indexed by α, β ∈ {0, 1}k, then the MGI is

trivial.
There is a 1-1 correspondence between the non-zero terms in (6) and (8). Since (8) is an

equality, if there are non-zero terms in (6), then there are at least two such terms. Consider all
non-zero terms in (6), and let each non-zero term from the Pfaffian identity (8) be divided by its
corresponding MGI term in (6). The ratio is of the form

Pfα⊕eiPfβ⊕ei

Γα⊕eiΓβ⊕ei
= δ(α⊕ ei)δ(β ⊕ ei), (24)

where i is a bit location where αi 6= βi. Consider any two such terms and form the product of the
two products of the pairs. This quadruple product has the form

δ(α⊕ ei)δ(β ⊕ ei)δ(α⊕ ej)δ(β ⊕ ej) (25)

for some 1 ≤ i < j ≤ k, which is the same as

δ(α⊕ ei)δ(α⊕ ej)δ(β ⊕ ej)δ(β ⊕ ei). (26)
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Figure 2: An example of preprocessing.

Let α` be the `-th bit in α (1 ≤ ` ≤ k). Recall that αi = βi, αj = βj . Letting b = αi and c = αj ,
we see that we can use Theorem 6 to conclude that the product of the first two terms equals the
product of the other two terms in (26), and so the whole product must be 1. This implies that all
Pfaffian identity terms differ from their corresponding MGI terms by the same global ±1 constant.
Note that δ is not defined exactly when that term in the MGI is 0 (and the corresponding Pfaffian
Signature Identity term is also 0), so it is sufficient to consider only those terms in the MGI where
the relevant δ is defined.

Theorem 1 is proved assuming Theorem 6.

Now we will prove Theorem 6. We first prove for the case b = c = 0. The proof for the case
b = 1, c = 0 is similar with only a few extra complications. The other cases follow by symmetry.

Preprocessing We assume that G is preprocessed in the following way: First we append a path
of length 2 from each external node in G. For the i-th external node, we will connect it to a new
node called î, which is then connected to another new node called i. The new nodes 1, 2, . . . , k are
now considered external nodes, and are labeled as such within the graph. All other nodes, including
all original nodes and all 1̂, 2̂, . . . , k̂ are non-external nodes. î will be given the label 2k + 1 − i.
Thus 1̂, 2̂, . . . , k̂ are ordered reversely 2k > 2k − 1 > . . . > k + 1 respectively. All other nodes (the
original nodes of G) are labeled arbitrarily starting from 2k + 1. The modified graph will now be
called G. Now all external nodes are at the end of a path of length at least 2. It is easy to check
that the signature Γ is not changed. As an example of the preprocessing for k = 5, consider Fig. 2.

Second, we make G a connected graph. If the graph is already connected then we do nothing.
Suppose it is not connected and there are several connected components Gi. Consider a clockwise
traversal of all the external nodes. We may consider the planar embedding is on the sphere with
one fixed point in the outer face designated as ∞. We temporarily connect each external node to
∞ by non-intersecting paths. As we clockwise-traverse from one external node to the next, if they
belong to different components Gi and Gj , we can connect one non-external node u from Gi to one
non-external node v from Gj by a path of length 2: u, e = {u,w}, w, e′ = {w, v}, v, together with
one extra node w′ and an edge {w,w′}. This gadget can be made disjoint from all the temporary
paths to ∞, and also disjoint from each other. All new edges (there are three edges on each such
gadget) have weight 1. In any perfect matching, w is matched to w′ and therefore this gadget has
no effect on the signature. Then we remove the temporary paths to ∞. The only purpose is to
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Figure 3: Adding e∗ in the b = 0, c = 0 case. In this example i = 1, j = 4, and bvc = 0100.

make the matchgate graph (1) connected, and (2) its outer face uniquely well-defined for the given
planar embedding, with a connected boundary.

Lastly, we concern ourselves with the orientation
−→
G for G. The k external nodes are labeled

clockwise 1 through k exactly in that order. When we index G with a length-k bitstring α, the
bits in α refer to the external nodes in G in this clockwise order. The neighbor î of i is labeled

2k + 1 − i. Then we let
−→
G be any Pfaffian orientation of G. Note that the orientation of bridge

edges (edges that are not part of any cycle) have no bearing on the orientation being a Pfaffian
orientation, and therefore can be arbitrary. In particular, for each {i, î} edge (being a bridge edge)
we assume it is oriented in the order (i, î): from low to high.

With our graph so preprocessed, we are ready to prove our theorem. For every bit values b and
c, and strings u, v, w, for brevity we will use Gbc to refer to the graph Gubvcw, suppressing u, v, w.

Proof for the case b = 0, c = 0. We assume that δ(u0v0w) and δ(u1v1w) are both defined (for the
particular u, v, w).

Hence there exists a perfect matching in G00, call it M00. Similarly there exists a perfect
matching in G11, call it M11. Let e∗ = {i, j} be a new edge (recall that i < j are the external
nodes referenced by b, c). This is an undirected edge placed in the outer face. Define the graph
G∗ = G00 ∪ {e∗}, having the same set of vertices as G00 and one extra edge e∗. See Fig. 3. This
introduces a new non-outer face, consisting of the segment from external nodes i to j (corresponding
to bvc) followed by e∗. The segment has a path from i to j through all the external nodes ` or
its neighbor ˆ̀ referenced in v because the boundary of the outer face is connected. Viewed from
within the new non-outer face just formed by this path and e∗, the segment bvc is traversed in
counter-clockwise direction.

By adding e∗ we have exactly one more face in G∗ compared to G, as well as compared to G00

and G11. Let
−→
G∗ =

−−→
G00 ∪ {

−→
e∗} with

−→
e∗ oriented either as (i, j) or as (j, i), such that that new face

has an odd number of clockwise oriented edges, as demanded by Kasteleyn’s algorithm to produce
a Pfaffian orientation. We note that each existing bridge edge {`, ˆ̀} corresponding to a bit 0 in v
contributes exactly one extra clockwise oriented edge in the traversal around the boundary of the
new face, since it is traversed in both directions exactly once. We define M∗ = M11 ∪ {e∗}. Note
that M∗ ∈M(G∗) and we may also consider M00 ∈M(G∗).

We shall use M∗ as an intermediate step to understand how δ(u0v0w) and δ(u1v1w) are related.

Our goal is to show that their product is a function entirely of i, j and
−→
G , and independent of u,

12



v and w, thus proving our theorem.
Claim: The signs of M∗ and M00 are the same. Formally:

Pf−−→
G00

(M00)

ΓG00(M00)
=

Pf−→
G∗

(M00)

ΓG∗(M00)
=

Pf−→
G∗

(M∗)

ΓG∗(M∗)
(27)

The first equality follows from the fact that adding the edge e∗ to G00 does not change the Pfaffian
term nor the perfect matching term, both corresponding to the perfect matching M00, since M00

does not contain the edge e∗. The second equality follows from the fact that all perfect matchings
in a Pfaffian-oriented graph must have the same sign. terms in a Pfaffian-oriented graph must have
the same sign.

Now we compare M∗ and M11. The perfect matching terms are the same, ΓG∗(M
∗) =

ΓG11(M11), since the additional edge e∗ has weight 1. We write out their Pfaffian terms explicitly.
For Pf−−→

G11
(M11) we will write it in the canonical form where the listing of matched edges are given

according to the stipulation after (3). Note that the nodes of G11 are linearly ordered by the in-
duced order from that of G. For Pf−→

G∗
(M∗) we will write it by appending the extra matched pair

{i, j} in the order i < j at the end.

Pf−−→
G11

(M11) = επ1Ax1,x2Ax3,x4 . . . Axn−1,xn (28)

Pf−→
G∗

(M∗) = επ2Ax1,x2Ax3,x4 . . . Axn−1,xnAi,j (29)

where x1 < x2, x3 < x4, . . . , xn−1 < xn, x1 < x3 < . . . < xn−1. Ai,j = ±1, and it is +1

if
−→
e∗ is oriented as (i, j) and it is −1 if it is oriented as (j, i), according to Kasteleyn’s al-

gorithm. The sign of the permutation επ1 counts the parity of the overlapping pairs among
{{x1, x2}, {x3, x4}, . . . , {xn−1, xn}}. The sign επ2 counts the parity of the overlapping pairs among
{{x1, x2}, {x3, x4}, . . . , {xn−1, xn}, {i, j}}. Thus επ2/επ1 = (−1)z, where z is the number of overlaps
between {i, j} and the edges in M11.

We account for these two sources of change in values separately.
Consider επ2/επ1 . To form an overlapping pair with {i, j}, a pair must be an edge with one label

between i and j and one label outside. Vertices with a label between i and j correspond exactly
to the external nodes within the segment v that are not removed. These external nodes must be
matched within M11 to a node of a label greater than j. It follows that z is precisely the number
of 0’s within v.

Now consider Ai,j . It is −1 if e∗ is oriented high-to-low in
−→
G∗, and 1 otherwise. Let f(

−→
G, i, j) be

this value when the orientation of e∗ is made to the graph G11...1⊕ei⊕ej—the graph obtained from
G with all external nodes removed except i and j—according to Kasteleyn’s algorithm. Relative
to this, if the orientation of e∗ is made to the graph G∗, the orientation is changed according to
the parity of the number of zeros in v, the removal pattern within the segment between i and j.
More precisely, each 0 within v adds one more bridge edge of the form {`, ˆ̀} where i < ` < j and

changes the orientation of e∗ exactly once. Hence the value Ai,j is precisely f(
−→
G, i, j)(−1)z, where,

again z is the number of 0’s within v.
Returning to our Pfaffian terms:

Pf−−→
G11

(M11) = επ1Ax1,x2Ax3,x4 . . . Axn−1,xn (30)

Pf−→
G∗

(M∗) = επ2Ax1,x2Ax3,x4 . . . Axn−1,xnAi,j (31)

= επ1Ax1,x2Ax3,x4 . . . Axn−1,xnf(
−→
G, i, j). (32)
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Figure 4: Adding e∗ in the b = 1, c = 0 case. In this example î = 10, j = 4, and bvc = 1100.

Note that the two factors (−1)z are canceled. So the sign difference between δ(u0v0w) and δ(u1v1w)

is entirely a function of
−→
G and i, j, and not the constituent u, v, w.

Proof for the case b = 1, c = 0. Following the idea of M00 and M11 from the previous proof, we
define M01 and M10 in the graphs G01, G10 respectively. Recall that the neighbor of i is î, and
the neighbor of j is ĵ, {i, î} ∈M01 and {j, ĵ} ∈M10, and that they are specially labeled such that
i < j < ĵ < î. We define a new edge e∗ = {j, î}, and G∗ = G10 ∪ {e∗}. See Fig. 4. The edge e∗

is drawn on the outer face of G10 so that G∗ is a plane graph with one more non-outer face. We

orient G∗ to
−→
G∗, namely to orient the edge e∗ appropriately as before by Kasteleyn’s algorithm.

Let M∗ = (M01 − {i, î}) ∪ {e∗}.
We claim, using the same reasoning from the previous proof, that M∗ and M10 have the same

sign.

Pf−−→
G10

(M10)

ΓG10(M10)
=

Pf−→
G∗

(M10)

ΓG∗(M10)
=

Pf−→
G∗

(M∗)

ΓG∗(M∗)
(33)

The first equality is because M10 does not contain the edge e∗ which was added to G10 to obtain
G∗. The second equality is because M10 and M∗ are both perfect matchings in a Pfaffian oriented

graph
−→
G∗.

Now we only need to compare M∗ and M01. The perfect matching terms are the same,
ΓG∗(M

∗) = ΓG01(M01), since both edges e∗ and {i, î} have weight 1. We shall use the same
approach as before to analyze the Pfaffian terms. Once again we write their Pfaffian terms explic-
itly:

Pf−−→
G01

(M01) = επ1Ax1,x2Ax3,x4 . . . Axn−1,xnAi,̂i (34)

Pf−→
G∗

(M∗) = επ2Ax1,x2Ax3,x4 . . . Axn−1,xnAj,̂i (35)

where the labels of the matching edges satisfy x1 < x2, x3 < x4, . . . , xn−1 < xn, x1 < x3 < . . . <
xn−1, and επ1 and επ2 count the parity of the number of overlapping pairs among the matching
edges in M01 and M∗ respectively. To compute επ2/επ1 , we only need to account for the parities of
the number of overlapping pairs between {i, î} and the other matching edges in M01, and between
{j, î} and the other matching edges in M∗. As a necessary condition, any such an overlapping edge
must have at least one end point strictly less than î. Let us account for all edges {x, y} with the
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minimum label min{x, y} < î. Those with min{x, y} < i are not overlapping edges since each has
a unique neighbor with label greater than î. The unique edge with min{x, y} = i is {i, î} in G01,
which is not present in G∗. The edges with i < min{x, y} < j are of the form {`, ˆ̀}. They are in
1-1 correspondence with the 0’s in v, and do contribute an overlapping pair in M∗ but not in M01.
The vertex j is not present in G01, and the edge e∗ = {j, î} has min{x, y} = j, and is in M∗. All
edges with j < min{x, y} < î either do not contribute to an overlap in both M01 and M∗ (when
j < min{x, y} ≤ k), or do contribute to an overlap in both M01 and M∗ (when k < min{x, y} < î).
The conclusion is that επ2/επ1 = (−1)z, where z is the number of 0’s in v.

Now consider Ai,̂i and Aj,̂i. Because we oriented the bridge edge {i, î} from low to high, we
know that Ai,̂i is 1. We now need only consider Aj,̂i. By the same reasoning to the previous proof,
we conclude

Aj,̂i = f(
−→
G, i, j)(−1)z, (36)

where f(
−→
G, i, j) is the ±1 value for Aj,̂i when we introduce the edge {j, î} to the graph obtained

from G with all external nodes removed except j, according to Kasteleyn’s algorithm.
Our conclusion is the same:

Pf−−→
G01

(M01) = επ1Ax1,x2Ax3,x4 . . . Axn−1,xnAi,̂i (37)

= επ1Ax1,x2Ax3,x4 . . . Axn−1,xn (38)

Pf−→
G∗

(M∗) = επ2Ax1,x2Ax3,x4 . . . Axn−1,xnAj,̂i (39)

= επ1Ax1,x2Ax3,x4 . . . Axn−1,xnf(
−→
G, i, j), (40)

again with the two factors (−1)z canceled. The second line follows from the fact that Ai,̂i = 1.

Again we conclude that the difference in sign between ubvcw and ubvcw is entirely a function of−→
G and i, j, and not of u, v, w.

With this, the proof of Theorem 1 is complete, namely (planar) matchgate signatures satisfy
the Matchgate Identities.

5 MGI Imply Matchgate-Realizable

Any signature of a matchgate must satisfy the Matchgate Identities. In this section, we show that
any Γ ∈ (C2)⊗k = C2k satisfying the Matchgate Identities can be realized as the signature of a
matchgate with k external nodes. Thus MGI are not only necessary but also sufficient conditions
for matchgate signatures.

Consider a length 2k vector Γ indexed by {0, 1}k satisfying MGI. If it is the all-zeros vector
then it is trivially realizable. So assume there is at least one non-zero value.

Preprocessing Assume Γβ 6= 0, for some β ∈ {0, 1}k. Define Γ′α = Γα⊕β/Γβ, where β =
β ⊕ 11 . . . 1. Thus, Γ′11...1 = 1, and Γ′ also satisfies MGI. In this section we will create a matchgate
G′ with signature Γ′. Given such a G′, we can create a matchgate G with signature Γ as follows:
First we add two new non-external nodes u, v to G′ and an edge {u, v} of weight Γβ. Those two
nodes are not connected to any other nodes—in effect they contribute exactly a factor Γβ to each
perfect matching term. Then, if the i-th bit of β is one, we add a new edge {vi, v′i} of weight one to
the i-th external node vi, and making v′i the new i-th external node. It follows that the signature
of G is exactly Γ.
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Figure 5: The embedding for K5.

Construction We now show that we can realize Γ satisfying MGI and Γ11...1 = 1. Let Kk denote
the complete graph on k vertices. The labels of Kk are ordered 1 < 2 < . . . < k, and correspond to
the bit positions in the index for Γ. We place the nodes of Kk on a convex curve, as illustrated in
Fig. 5. The nodes are arranged in clockwise order by their index, and two edges cross each other
geometrically in the drawing of the graph iff their labels form an overlapping pair as defined before
algebraically. (We assume the k nodes are placed in general position, so that any pair of crossing
edges intersect at a unique point. There are exactly

(
k
4

)
such intersection points.) For each α of

Hamming weight k − 2, note that Kα
k has exactly one edge left. For each such α, set the weight of

the unique edge in Kα
k to be Γα. This defines a weight for every edge of Kk.

Equality with Pfaffian Clearly our embedding of Kk is not planar for a general k ≥ 4. We
first prove the following equality: Let Pf(Kα

k ) be the Pfaffian value of the skew-symmetric matrix
representing Kα

k where the nodes of Kα
k have the induced order from 1 < 2 < . . . < k. Then for all

α ∈ {0, 1}k:
Pf(Kα

k ) = Γα. (41)

It follows that the
(
k
2

)
edge weights of Kk determine the 2k values of any Γ satisfying MGI.

Clearly (41) holds for any α of Hamming weight greater than or equal to k− 2. By assumption
Γ satisfies the Matchgate Identities (6). Inductively, consider α with Hamming weight k − l for
some even l > 2. Let {p1, . . . , pl} be the set of indices listed in increasing order p1 < . . . < pl, where
α has the bit 0. These are the bit positions where α differs from 1k. Consider the MGI on α⊕ ep1
and 1k ⊕ ep1 :

ΓαΓ11...1 =
l∑

i=2

(−1)iΓα⊕ep1⊕epiΓ1k⊕ep1⊕epi (42)

As Γ11...1 = 1, we see that Γα is defined by higher Hamming weight terms.
Thus all lower Hamming weight terms of Γ are determined by those of weight k − 2. However

we observe that, by (13), the Pfaffian values also satisfy exactly the same identities as MGI. By
induction, it follows that Pf(Kα

k ) = Γα for all α.

Planarizing Kk We want to show next that there exists a planar matchgate G with signature
ΓG = Γ. We construct such a G from Kk. Consider the convex embedding of Kk. For k ≥ 4 it
has some edge crossings, as shown in Fig. 5. The planar graph G is created by replacing each edge
crossing with a crossover gadget from Fig. 6. The crossover gadget is itself a matchgate X with
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Figure 6: The crossover gadget. The external nodes are those labeled, and all edge weights are 1,
except the edge labeled −1.

the following signature:

X0000 = 1 (43)

X0101 = 1 (44)

X1010 = 1 (45)

X1111 = −1 (46)

and for all other β ∈ {0, 1}4, Xβ = 0. We note that even though geometrically this gadget is only
symmetric under a rotation of π (but not π/2), its signature is invariant under a cyclic permutation,
and thus functionally it is symmetric under a rotation of π/2. Now we replace every crossing of a
pair of edges in the embedded Kk by a copy of X. For example, this replacement by the crossover
gadget changes Fig. 5 to Fig. 7. If an edge {i, j} in Kk crosses some other edges (this happens
for every non-adjacent i and j in the cyclic sense), then this replacement breaks the edge {i, j}
into several parts. If {i, j} crosses t ≥ 0 other edges, then it is replaced by t + 1 edges (outside
of crossover gadgets)—we will call them the i-j-passage—in addition to t copies of the crossover
gadget. Of course one copy of the crossover gadget is used for both edges of a pair of crossing edges
in this replacement. Define I to be the set of all edges in G that are not part of a crossover gadget.
Then each edge {i, j} in Kk defines a unique subset of edges in I, which is the i-j-passage. It is
clear that I is a disjoint union of these i-j-passages, over all

(
k
2

)
pairs 1 ≤ i < j ≤ k. Finally we

choose one edge in each i-j-passage to have the weight Γ[k]−{i,j}, namely the edge weight of {i, j} in
Kk. To be specific, we will choose this edge to be the one adjacent to i, the lower indexed external
node of {i, j}. All other edges of I are assigned weight one. See Fig. 8. This defines our planar
matchgate G with external nodes 1 < 2 < . . . < k.

We claim that ΓG = Γ.
Fix any α ∈ {0, 1}k. For any S ⊆ I, define MS(Gα) to be the subset of all perfect matchings

M ′ ∈ M(Gα) such that M ′ ∩ I = S. Every perfect matching M ∈ M(Kα
k ) defines a collection of

i-j-passages, for all {i, j} ∈ M . Let S(M) be the union of these i-j-passages. Clearly the perfect
matching M ∈ M(Kα

k ) can be recovered from S(M), and is unique for the given S(M). There is
a 1-1 correspondence between M and S(M). As an example, we consider M = {{1, 3}, {2, 5}} ∈
M(K00010

5 ). The set S(M) for G00010 is indicated in Fig. 9.
We will show that, for the purpose of computing the signature entry ΓαG, we only need to

consider those perfect matchings M ′ ∈M(Gα) that satisfy the following property:
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Figure 7: The graph from Fig. 5 with the crossovers replaced by crossover gadgets from Fig. 6.
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Figure 8: The “planarized” K5 with edge weights. The unlabeled edges have weight 1.
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Figure 9: The thick edges comprise S(M) for G00010, where M = {{1, 3}, {2, 5}}.

Property: There exists an M ∈M(Kα
k ), such that

M ′ ∩ I = S(M). (47)

This is a consequence of properties of the crossover gadget. If i is an external node in Gα,
then any M ′ ∈ M(Gα) must contain a unique edge e′ adjacent to i. There is a unique j, which
is another external node in G, such that e′ belongs to the i-j-passage. Then by the properties
of the crossover gadgets along this i-j-passage, we may assume M ′ contains all edges of this i-
j-passage, saturating j. In particular j belongs to Gα. All other M ′ collectively contribute 0,
since the evaluation of the crossover gadget X will be 0. More generally, in the computation of
ΓαG =

∑
M ′∈M(Gα)

∏
e′∈M ′ w(e′), we classify all M ′ ∈M(Gα) according to M ′ ∩ I. If S 6= S(M) for

any M ∈M(Kα
k ), then ∑

M ′∈M(Gα): M ′∩I=S

∏
e′∈M ′

w(e′) = 0. (48)

In fact, for any M ′ ∈ M(Gα) such that M ′ ∩ I = S which is not S(M) for any M ∈ M(Kα
k ),

it must be the case that at some crossover gadget X, S induces an external removal pattern
β 6∈ {0000, 0101, 1010, 1111}. Then Xβ = 0, and (48) follows.

Thus we restrict to those perfect matchings M ′ ∈ M(Gα) that satisfy the property (47). For
any M ∈M(Kα

k ), it is clear that∑
M ′∈MS(M)(G

α)

∏
e′∈M ′

w(e′) = (−1)c(M)
∏
e∈M

w(e), (49)

where c(M) counts the number of copies of X where the external removal pattern is β = 1111.
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Thus c(M) is exactly the number of overlapping pairs in M . It follows that

ΓαG =
∑

M ′∈M(Gα)

∏
e′∈M ′

w(e′) (50)

=
∑
S⊆I

∑
M ′∈MS(Gα)

∏
e′∈M ′

w(e′) (51)

=
∑

M∈M(Kα
k )

∑
M ′∈MS(M)(G

α)

∏
e′∈M ′

w(e′) (52)

= Pf(Kα
k ). (53)

The last equality is because each Pfaffian term in Pf(Kα
k ) has exactly the same sign as in (49).

Hence ΓG = Γ follows from this and (41).

Theorem 7. Any Γ ∈ (C2)⊗k satisfying the Matchgate Identities is the signature of a matchgate
with k external nodes. The matchgate has O(k4) nodes. If Γ11...1 = 1, achievable by a normalization
for every nonzero Γ, there exists a skew-symmetric matrix M ∈ Ck×k such that Γα = Pf(Mα), where
Mα is the matrix obtained from M by deleting all rows and columns belonging to the subset denoted
by α.

6 Character

In [25] Valiant showed that a fragment of quantum computation could be simulated in polynomial
time through the character of general (not-necessarily-planar) matchgates. The notion of a general
matchgate and its character ultimately inspired planar matchgates and their signatures. The char-
acter is directly based on the notion of the Pfaffian, and what counting problems are expressible in
that form. This section will be concerned with characters and general matchgates. It will conclude
by proving that characters of general matchgates are essentially equivalent to signatures of planar
matchgates.

6.1 Definitions

The Pfaffian of an Undirected Graph For an undirected, labeled, weighted graph G =
(V,E,W ) there is a skew-symmetric matrix MG. For i < j, we define (MG)i,j = w({i, j}), the
weight of the edge {i, j} ∈ E. If that edge does not exist, we say the weight is 0. For i > j, we
define (MG)i,j = −w({i, j}). We define Pf(G) = Pf(MG).

General Matchgate A general matchgate G = (V,E,W ) is an undirected, labeled, weighted
graph with three designated subsets of V . The set X ⊆ V is the set of input nodes, the set Y ⊆ V
is the set of output nodes, and the set T ⊆ V is the set of omittable nodes. These three subsets
are disjoint. The nodes in X ∪Y are called external nodes. They also define a (possibly nonempty)
fourth subset U = V − (X ∪ Y ∪ T ).

The ordered labeling of the nodes of G obey some rules: ∀i ∈ X, ∀j ∈ T : i < j, and
∀j ∈ T, ∀` ∈ Y : j < `. In other words, ordered from low-to-high, the input nodes X come
first, then the omittable nodes T , and finally the output nodes Y . The remaining nodes can be
interspersed throughout the ordering.
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The Omittable Nodes For G with a set of omittable nodes T , we define the “Pfaffian Sum”,
PfS, as follows:

PfS(G) =
∑
W⊆T

Pf(G−W ) (54)

where the sum is over all subsets W of T , and G−W is the graph obtained from G with all nodes
in W and their incident edges removed.

We can express this solely in terms of Pfaffians as well. Let I be the index set of MG. Define
λi = 1 if i is an index corresponding to an omittable node, and λi = 0 otherwise. Then,

PfS(G) =
∑
A⊆I

(
∏
i∈A

λi)Pf(MG[A]) (55)

where the sum is over all subsets A of I, and MG[A] is the matrix obtained from MG with the rows
and columns indexed by A removed. It was shown in [25] that, for a size-n graph:

PfS(G) =

{
Pf(MG + Λ(n)) if n even

Pf(M+
G + Λ(n+1)) if n odd

(56)

where Λ(n) is a simple matrix constructed from the λi values and M+
G is MG with an additional

final row, column of all zeros. Thus the Pfaffian Sum PfS(G) is also computable in polynomial
time. This “omittable node” feature seems to be quite different from what has been presented for
planar matchgate signatures. However, we shall see that it ultimately does not add more power.

The Character of a Matchgate Consider any Z ⊆ X ∪Y , a subset of the external nodes of G.
A general matchgate is ultimately part of a larger matchcircuit, and the external nodes in G are
connected to external edges. The following is from [25], “[w]e consider there to exist one external
edge from each node in X ∩ Z and from each node in Y ∩ Z. The other endpoint of each of the
former is some node of lower index than any in V and of each of the latter is some node of index
higher than any in V .”

The character of a matchgate G is defined as

χ(G,Z) = µ(G,Z)PfS(G− Z). (57)

The term µ(G,Z) is called the modifier value. It is one of ±1, and corresponds to the parity of
the overlapping pairs between matching edges in E and external edges. Recall that the number of
overlapping pairs is computed as a function of node labels. Due to the rules of index ordering, this
value is determined by (G,Z), and is independent of the particular matching in PfS(G−Z). Thus
µ(G,Z) is well-defined for any (G,Z).

We also define the naked character χ̌ of a matchgate, without the modifier.

χ̌(G,Z) = PfS(G− Z). (58)

For brevity and consistency, we write χαG = χ(G,Z), where α is the characteristic bitstring of
Z. The naked character will be referred to as χ̌αG. Where G is clear we may omit it.
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Matchcircuits These matchgates, not necessarily planar, were designed to show that the eval-
uation of some quantum circuits could be done in polynomial time. Matchgates can be combined
into matchcircuits in specific ways. The composition is helped by the modifiers; in fact their sole
purpose is to make this composition nicely expressible as a Pfaffian. We will not go into this de-
tail; please see [25]. From another perspective, a matchcircuit is simply a larger matchgate with a
modifier value set to a constant 1, as there are no more edges external to the entire matchcircuit.
The naked character of a matchcircuit is its character.

6.2 Equivalence of Naked Characters and Signatures

We will prove the following theorem:

Theorem 8. For a general matchgate G with k external nodes, there exist two planar matchgates
G1 and G2 such that for all α ∈ {0, 1}k,

χ̌αG = ΓαG1
+ ΓαG2

(59)

Proof. G may not be a planar graph. We draw it by placing its nodes on a semi-circle arc. The
nodes appear in a clockwise ordering, ordered exactly by their labels in the graph. The edges are
drawing as chords inside the semi-circle arc. If we place the nodes in general position, then any
pair of intersecting chords intersect at a unique point. Observe that two edges (u, v), (x, y), where
u < v and x < y, cross in the drawing exactly when u < x < v < y or x < u < y < v, i.e., exactly
when they form an overlapping pair. This arrangement is very similar to the planar matchgate
construction in Section 5.

We start by replacing every crossing of chords by the planar crossover gadget from Fig. 6. For
the purpose of this proof, we may consider G as a subgraph of some Kn. After each crossing has
been replaced by the crossover gadget we have a planar matchgate G′. We consider X ∪ T ∪ Y as
its external nodes. Let Γ′ be its signature. Let α ∈ {0, 1}|X∪T∪Y | indicate a bit removal pattern,
and let β and γ be its restrictions to X ∪Y and T respectively. The same proof in Section 5 shows
that

Γ′α = Pf(Gβ −Wγ), (60)

where Wγ is the subset of T indicated by γ.
Fix any β ∈ {0, 1}|X∪Y |, such that Gβ has an even number of nodes. Then we only need to

consider γ ∈ {0, 1}|T | of even Hamming weight in the sum (60). Similarly, if Gβ has an odd number
of nodes, then we only need to consider γ of odd Hamming weight in (60).

The following idea is from [28] (p. 1952). There exists a planar matchgate H with t = |T |
external nodes such that for any γ ∈ {0, 1}|T | of even Hamming weight, Hγ = 1, and for any
bitstring γ of odd Hamming weight, Hγ = 0 (see Section 7). Clearly H has an even number of
nodes, since H00...0 = 1. We define the planar matchgate G′1 by attaching H to the set T of G′ on
the side of the semi-circle arc opposite to all the intersecting chords in the embedding of G. Each
node in T is connected to a distinct external node of H by an edge of weight 1. We note that
composing G′ with H in this fashion does not introduce any more edge crossings, and all external
nodes X ∪ Y still remain on the outer face.

For all β where G′β1 has an even number of nodes, which happens exactly when Gβ has an even
number of nodes, the following hold:

Γβ
G′1

=
∑
Weven

ΓβG′−Weven
=
∑

even γ

Γ
α(β,γ)
G′ =

∑
even γ

Pf(Gβ −Wγ) = χ̌βG, (61)
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where the sum over Weven is for all even-sized subsets of T , and α(β, γ) is the bit string in

{0, 1}|X∪T∪Y | formed by concatenating β and γ, in the proper order. If G′β1 has an odd num-

ber of nodes, then Γβ
G′1

= 0.

There also exists a planar matchgate H ′ of arity t = |T | such that for any β of odd Hamming
weight, H ′β = 1, and for any bitstring β of even Hamming weight, H ′β = 0 (see Section 7). Use
H ′ instead of H we can define a planar matchgate G′2, which will have the signature values equal

to the naked character values of G for all β for which Gβ has an odd number of nodes. If G′β2 has

an even number of nodes, then Γβ
G′2

= 0.

This completes the proof.

Note that a matchcircuit is itself a large general matchgate with only a naked character. Thus,
its character is also expressible as the sum of two signatures of planar matchgates.

7 Symmetric Signatures

We return to planar matchgate signatures. We say a signature is even if it is the signature of an even
matchgate, i.e., a matchgate with an even number of nodes. An even signature has nonzero values
only for indices of even Hamming weight. We define an odd signature similarly. A signature Γ of
a matchgate is symmetric if, for all α, β of equal Hamming weight, Γα = Γβ. In other words, the
value of a signature entry is only a function of how many 1s are in its index, not their particular
pattern. These signatures are important because they have a clear combinatorial meaning. We
write a symmetric arity-k signature in the following form [z0, z1, . . . , zk], where zi is the value of
the signature for an index of Hamming weight i. The symmetric signatures that obey the MGI
have a very concise description, which we prove next.

Theorem 9. If [z0, . . . , zk] is an even symmetric matchgate signature, then zi = 0 for all odd i,
and there exist r1 and r2 not both zero such that for all even i ≥ 2:

r1zi−2 = r2zi. (62)

Conversely, every sequence of values satisfying these conditions is an even symmetric matchgate
signature. The statement for odd symmetric signatures is analogous.

Stated equivalently, a sequence is a symmetric matchgate signature iff it takes the following
form: Alternate entries of [z0, . . . , zk] are zero and the entries at the other alternate positions form
a geometric progression.

Proof. By the Parity Condition, all odd parity entries of the signature of an even matchgate are
zero. Consider any even i and j, where 0 ≤ i < j ≤ k. We invoke the MGI for α = 1i10k−i, β =
1i01j−i−10k−j . We use the exponentiation notation here to denote repetition. α has an odd
Hamming weight i+ 1 and β has an odd Hamming weight j−1. Note that i and j being both even
implies that j − i− 1 ≥ 1. Using the fact that Γ is symmetric, the MGI under α, β becomes:

zizj =
∑

(±)zi+2zj−2. (63)

There are an odd number (j − i− 1 ≥ 1) of terms in the sum, and the terms alternate their signs
and begin with a +, so we conclude that

zizj = zi+2zj−2. (64)
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In particular, if i is even and 0 ≤ i ≤ k − 4, then

zizi+4 = z2i+2. (65)

If zi+2 6= 0, then both zi 6= 0 and zi+4 6= 0. This means that if any even indexed entry that is
not the first or the last even indexed entry (call it a non-extremal entry) is nonzero, then all even
indexed entries are nonzero. In this case, the geometric progression is established, with common
ratio zi+2/zi = zi+4/zi+2, for even 0 ≤ i ≤ k − 4.

Suppose all non-extremal even indexed entries are zero. If k ≤ 3 then the theorem is self-evident.
Suppose k ≥ 4. Let k∗ ≤ k be the maximum even index. Then k∗ ≥ 4 and we have

z0zk∗ = z2zk∗−2. (66)

Note that k∗ − 2 ≥ 2 and therefore it is non-extremal. It follows that z0zk∗ = 0 and therefore at
most one extremal even indexed entry can be nonzero. It is also easy to verify that a sequence
satisfying the conditions of this theorem also satisfies MGI, and hence is a matchgate signature.
(See Section 7.1 for a direct construction.) This completes the proof for even signatures. The proof
for odd signatures is similar. The theorem follows.

Explicitly, there are just four cases for symmetric signatures of arity k:

1. [akb0, 0, ak−1b, 0, ak−2b2, 0, . . . , a0bk]

2. [akb0, 0, ak−1b, 0, ak−2b2, 0, . . . , a0bk, 0]

3. [0, akb0, 0, ak−1b, 0, ak−2b2, 0, . . . , a0bk]

4. [0, akb0, 0, ak−1b, 0, ak−2b2, 0, . . . , a0bk, 0].

7.1 Matchgates for Symmetric Signatures

We have already demonstrated how to build a planar matchgate realizing any MGI-satisfying
signature, through a planarizing procedure. Up till now the only known construction of a matchgate
realizing an arbitrary symmetric signature is through this general procedure. This is unsatisfactory,
since they ought to have more symmetry. However it is difficult to imagine a geometric construction
that is planar and symmetric for all pairs of external nodes 1 ≤ i < j ≤ k, if k ≥ 4. Now we
will present a simple and direct construction. The constructed matchgates are not geometrically
symmetric for all pairs of external nodes, but functionally they are, in terms of the signatures.

We present two closely related matchgate constructions, one for even symmetric signatures, and
the other for odd, which is a simple modification for the even signature case. Our constructions for
both these cases work regardless if the signature has odd or even arity.

In Fig. 10 we have an example of a planar matchgate for an even, arity-6 signature. Its design
can be described as a cycle of triangles which share vertices (each triangle has two weight x edges,
and a weight y base). For odd signatures, the construction is changed very slightly, as shown in
Fig. 11. The only modification is to delete one external node in a matchgate for an even symmetric
signature of arity one higher.

More specifically, to construct in general an even matchgate G of arity k, we first take k triangles
with vertices {ai, bi, ci} (1 ≤ i ≤ k). The edges {ai, bi} and {ai, ci} have weight x, and {bi, ci} has
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Figure 10: A matchgate for an even, symmetric, arity-6 signature.

weight y. We link them in a cycle, identifying ci with bi+1, where the index is counted modulo k.
The matchgate G has k external nodes {a1, . . . , ak}, and a total of 2k nodes.

Consider any α ∈ {0, 1}k of even Hamming weight. αi = 0 iff ai remains in Gα. If α = 1k, then
Gα is a cycle of length k. If k is odd, of course Gα has no perfect matchings. If k is even, there are
exactly two perfect matchings, each having weight yk/2.

Now assume α 6= 1k. Then cyclically α alternates between consecutive 0’s (called a 0-run) and
consecutive 1’s (called a 1-run). Each ai that remains in Gα must be matched to either bi (we call
it left-match) or ci = bi+1 (we call it right-match), both with weight x. Consider any 0-run. It is
clear that either all ai within this 0-run left-match or all right-match. Next consider a 1-run of m
1’s; it is between two 0-runs. If m is even, then the path of m edges all with weight y forces the two
neighboring 0-runs to take either both left-match or both right-match. Moreover, both possibilities
are realizable, and in each case the 1-run contributes a weight ym/2. If m is odd, then the path of
m edges forces the two neighboring 0-runs to take opposite types of left-match and right-match.
Again both possibilities are realizable; in one case the 1-run contributes a weight y(m−1)/2, and in
another case it contributes a weight y(m+1)/2. Furthermore, for two 1-runs 1m and 1m

′
both of odd

length and are consecutive in the sense that the only 1-runs in between are of even length, they
contribute a combined weight y(m+m′)/2. Since α has an even Hamming weight |α|, there is an even
number of 1-runs of odd length. Hence together the 1-runs contribute a weight y|α|/2. There are
exactly two perfect matchings in Gα, each uniquely determined by the left-match or right-match
choice of any particular ai in Gα. It follows that the signature value is Γα = 2xk−|α|y|α|/2. Clearly
by choosing x and y suitably, we can realize an arbitrary even symmetric signature.

The construction for odd symmetric signatures is to remove one external vertex in the match-
gate for an even symmetric signature of arity one higher. By the general form of odd symmetric
signatures, being a sub-signature [z1, . . . , zn] of an even symmetric signature [z0, z1, . . . , zn], the
proof is complete.
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Figure 11: A matchgate for an odd, symmetric, arity-5 signature.

8 Conclusion

Substantial work has been built on top of MGI in the signature theory of matchgates [7, 5, 18, 6,
17, 16, 8, 19, 9, 12]. In particular, a number of complexity dichotomy theorems have been proved
that use this understanding of what matchgates can and cannot compute. A general theme of
these theorems asserts that a wide class of locally constrained counting problems can be classified
into three types: (1) Those that are computable in polynomial time for general graphs; (2) Those
that are #P-hard for general graphs but computable in polynomial time over planar graphs; and
(3) Those that remain #P-hard for planar graphs. Moreover type (2) occurs precise for problems
which can be described by signatures that are realizable by planar matchgates after a holographic
transformation. This theme is generally proved for symmetric signatures [16, 9, 12]. For not-
necessarily-symmetric signatures, these are only proved in special cases [4]. This paper provides a
firm foundation for this theory and for future explorations.
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